1300

IEICE TRANS. FUNDAMENTALS, VOL.E93-A, NO.7 JULY 2010

[PAPER

A Hierarchical Criticality-Aware Architectural Synthesis
Framework for Multicycle Communication

Chia-I CHEN'®, Nonmember and Juinn-Dar HUANG', Member

SUMMARY In deep submicron era, wire delay is no longer negligible
and is becoming a dominant factor of the system performance. To cope
with the increasing wire delay, several state-of-the-art architectural synthe-
sis flows have been proposed for the distributed register architectures by en-
abling on-chip multicycle communication. In this article, we present a new
performance-driven criticality-aware synthesis framework CriAS targeting
regular distributed register architectures. To achieve high system perfor-
mance, CriAS features a hierarchical binding-then-placement for minimiz-
ing the number of performance-critical global data transfers. The key ideas
are to take time criticality as the major concern at earlier binding stages
before the detailed physical placement information is available, and to pre-
serve the locality of closely related critical components in the later place-
ment phase. The experimental results show that CriAS can achieve an aver-
age of 14.26% overall performance improvement with no runtime overhead
as compared to the previous art.

key words: multicycle communication, architectural synthesis, high-level
synthesis, performance-driven, criticality-driven

1. Introduction

As advancing into the deep-submicron (DSM) era, inter-
connect delay is becoming inevitable due to resistance-
capacitance delay, coupling effect, inductance, multiple-
gigahertz operating frequency, and so on [1]-[3]. In ar-
chitectural synthesis, the system clock cycle time is deter-
mined by the maximum sum of delay of both functional
units (FUs) and associated interconnects. If the delay of
long wires (especially for global interconnects) is still ne-
glected in the synthesis flow, unexpected large delay intro-
duced by long wires after physical mapping (floorplanning,
placement, and routing) is very likely to make a serious im-
pact on the whole system performance due to lengthened
clock cycle time. Therefore, global interconnects have been
becoming the performance bottleneck when pursuing higher
system speed, which also brings on so-called interconnect-
limited VLSI architectures [4]. To overcome this problem,
several synthesis flows are proposed to estimate long in-
terconnect delay by applying preliminary floorplanning and
thus obtain better synthesis results [S]-[7].

Conventionally, the centralized register (CR) architec-
ture is commonly presumed in high-level synthesis. In a CR-
based architecture, an FU is expected to access any register
within one clock cycle. Though the device speed generally
increases as the manufacturing process advances, the wire

Manuscript received November 12, 2009.

"The authors are with the Department of Electronics Engineer-
ing and the Institute of Electronics, National Chiao Tung Univer-
sity, Hsinchu, Taiwan, R.O.C.

a) E-mail: cichen.ee94g@nctu.edu.tw
DOI: 10.1587/transfun.E93.A.1300

delay does not scale as well as the feature size. Global wire
delay gradually dominates and significantly lengthens the
system cycle time. Hence, previous studies propose several
similar distributed register (DR) architectures to overcome
this issue [8]-[19]. In a DR-based architecture, the whole
system is divided into several clusters and each cluster con-
tains its own local FUs and registers. Consequently, the
inter-cluster interconnect delay can be fully isolated from
the intra-cluster delay. The latter includes the local wire de-
lay within a cluster and is supposed to be finished within
one cycle, while the former is the global data transfer delay
between different clusters and is allowed being completed
in multiple clock cycles. Therefore, DR-based architectures
can not only alleviate the increase of cycle time due to the
long interconnect delay but also enable simultaneous com-
putation and communication.

Though allowing multicycle global data transfer can re-
duce the impact on system clock speed in a DR-based ar-
chitecture, performance improvement is still limited by the
inaccurate delay estimation of long wires. Therefore, au-
thors in [10] propose the regular distributed register (RDR)
architecture and the corresponding synthesis methodology,
named multicycle architectural synthesis system (MCAS).
Due to the highly regular layout, it is applicable to pro-
vide a table of the accurate interconnect delay between each
cluster pair in this architecture. With this lookup table,
long wire delay can be estimated in a very precise fashion.
MCAS takes the behavioral design specification as the in-
put. Then, it goes through resource allocation, FU bind-
ing, scheduling-driven placement and post-layout schedul-
ing with re-binding procedures to get the synthesis result
(RTL description and the corresponding physical mapping
information). During FU binding, MCAS tries to minimize
the number of all potential global data transfers (pGDTs)
while only timing-critical global transfers can actually de-
grade the performance. That is, MCAS does not consider
the time criticality of the transfer when performing FU bind-
ing. Moreover, its fine-grained FU-level placer fails to pre-
serve the locality of related critical FUs due to the inherent
unstable nature of any simulated annealing (SA) engine. In
short, though MCAS can already do a reasonably good job,
there is still room for further performance improvement.

In this article, we propose a hierarchical performance-
driven criticality-aware architectural synthesis flow, named
CriAS, targeting the RDR-based architecture family [10]—
[16]. CriAS features a hierarchical binding-then-placement

Copyright © 2010 The Institute of Electronics, Information and Communication Engineers

CHEN and HUANG: A HIERARCHICAL CRITICALITY-AWARE ARCHITECTURAL SYNTHESIS FRAMEWORK FOR MULTICYCLE COMMUNICATION

Criticality-driven FU binding ‘

Coarsening 0 ‘

phase
v ‘ Criticality-driven bin binding ‘

. ‘ Performance-driven bin placement ‘
Uncoarsening g

phase
v ‘ Performance-driven FU placement ‘

Fig.1 The hierarchical binding-then-placement scheme.

methodology, where an intermediate transformation called
bin level is introduced. A bin is a fixed-capacity container of
FUs. CriAS is aware that a global transfer lying on a critical
path can potentially induce extra latency once the FU place-
ment is determined later. Hence, unlike MCAS, CriAS takes
the criticality into consideration to minimize the number of
potential critical global data transfers (pCGDTs) instead of
pGDTs at early binding stages, where the FU placement in-
formation is still not available yet. In CriAS, critical opera-
tions tend not to be bound into different FUs so that critical
global data transfers can be minimized. Similarly, FUs ly-
ing on critical paths tend not to be bound into different bins
to maximize the performance, where the bins are designated
to preserve the locality of related critical FUs. After hierar-
chical binding, CriAS performs simulated annealing (SA)-
based coarse-grained bin placement to finalize the locations
of bins (so as FUs). Since FUs within a bin remain together
during placement, the locality of closely related critical FUs
can thus be well preserved and a better result can be ex-
pected. Then a fine-grained FU placement is performed to
further improve the placement quality at the FU level due
to higher FU mobility. The hierarchical scheme is shown
in Fig. 1 —FU binding and bin binding form the coarsen-
ing phase while the uncoarsening one is composed of bin-
and FU-level placement. The experimental results show that
CriAS does provide better synthesis outcomes with higher
performance than the prior art.

The rest of this article is organized as follows. The
RDR-based architectures and MCAS procedures are briefly
introduced in Sect.2. Section 3 presents the key observa-
tions and motivations of our work. The proposed synthe-
sis flow CriAS is then described in Sect. 4, followed by the
experimental results in Sect.5. Finally, the concluding re-
marks are given in Sect. 6.

2. Preliminaries
2.1 RDR-Based Architecture

Synthesis flows targeting DR-based architectures can be
classified according to the interconnect delay models they
adopt. The synthesis task is relatively easier with zero
inter-cluster delay; however this delay model appears over-
simplified [17],[18]. The synthesis flow considering unit
inter-cluster delay makes a move toward reality but still not
close enough [20]. To be even more practical, the delay
model must be geometry-aware. However, with such an in-

1301

1
:; \REG\
| [cc] [B)p [oc] 1=

\REG\
| LcC |

Fig.2 The RDR-based architecture.

FSM
ol @
Oll®
[Fsw

island (2, 3)

terconnect delay model, synthesis task is inherently more
complicated and accuracy of delay estimation does affect
the quality of final synthesis result deeply.

Since the inaccurate delay estimation of long wires im-
pacts the system cycle time, a regular distributed register
architecture and its corresponding synthesis methodology,
RDR/MCAS, is proposed in the first place to solve this prob-
lem [10]. In an RDR-based architecture, a chip is parti-
tioned into a two-dimensional array of islands. Figure 2
illustrates a 2 x 3 RDR-based architecture. Each island con-
sists of a local register file (REG), a control finite state ma-
chine (FSM), and a configurable logic computational clus-
ter (LCC) which can implement arbitrary random logic and
datapaths. The size of an island is determined to ensure
that all local computation and communication can be com-
pleted in a single clock cycle. On the other hand, global data
transfers, which deliver data from one island to the other,
are allowed taking multiple clock cycles. Hence the inter-
connect delay between two clusters can be easily estimated
by in-between Manhattan distance. As shown in Fig.2, a
global data transfer between island(1, 1) and island(2, 3)
takes multiple (three) cycles. The notion of on-chip mul-
ticycle communication makes traditional architectural syn-
thesis a much more difficult work. It is because whether
a data transfer is local or global can only be resolved after
placement is completed, but the latency of a transfer must
be available at the scheduling stage, which is before place-
ment. The first dedicated synthesis flow MCAS, briefly de-
scribed in Sect. 2.2 later, is therefore proposed to deal with
this problem.

There are two similar variants of the original RDR,
RDR-Pipe and RDR-GRS, which can further reduce the re-
quired interconnect resource. More details about these two
variants can be found in [13]-[15]. Nevertheless, the syn-
thesis algorithm proposed in this article is applicable to all
the RDR-based architectures.

2.2 MCAS Flow

MCAS targets the RDR architecture and the overall flow
is shown in Fig.3. The inputs consist of the behavioral
design description in synthesizable C/VHDL and the ar-
chitecture specification. MCAS first generates the con-
trol/data flow graph (CDFG) from the given behavioral
description through SUIF infrastructure [21] and Machine

1302

RDR architecture spec.

Behavioral description

L
‘ CDFG generation ‘

¥ CDFG
‘ Resource allocation ‘

\ FU binding |

* Interconnected component graph

I Scheduling-driven placement I

Post-layout scheduling
with re-binding

‘ Backend processing
-
v

RTL VHDL files J Floorplan and
N multicycle path constraints
-

Fig.3 The overall flow of MCAS.

Fig.4 (a) A bound DFG, and (b) the corresponding ICG.

SUIF [22]. Resource allocation based on force-directed
scheduling (FDS) [23] is then performed to minimize the
resource usage without violating the timing constraint. Af-
ter resource allocation, the algorithm proposed in [8] is em-
ployed for functional unit binding to minimize the num-
ber of potential global data transfers. After FU bind-
ing, an interconnected component graph (ICG) is derived
through the bound CDFG. The ICG describes all the data
transfers among different FUs. Figure 4 gives an exam-
ple of bound DFG and the corresponding ICG. The ker-
nel of MCAS consists of scheduling-driven placement and
post-layout scheduling with re-binding. Scheduling-driven
placement employs an SA-based placer considering not
only approximated wirelength but also system performance
[24],[25]. Given physical location information, placement-
driven scheduling with re-binding further condenses the sys-
tem latency. The algorithm is based on a force-directed list-
scheduling (FDLS) framework [23] and the idea of dynamic
critical path scheduling [9], [26]. The backend procedures
include register/port assignment and datapath/FSM genera-
tion. In the end of the MCAS flow, synthesizable VHDL
RTL code with corresponding physical placement informa-
tion is generated.

3. Motivations
The key observations and motivations of this article arise

from the deficiency in FU binding as well as the use of SA-
based placer at the fine-grained FU level in MCAS. The de-

IEICE TRANS. FUNDAMENTALS, VOL.E93-A, NO.7 JULY 2010

(C)) (e)

—— > Actual data transfer
————-» Compatible edges w/o data transfer
ep Actual data transfer crossing FUs

Fig.5 (a) A scheduled DFG, (b) FU binding result in [8] and [10], (c)

modified schedule for (b), (d) an example placement, and (e) another FU
binding result.

tails are described in Sects. 3.1 and 3.2, respectively.
3.1 FU Binding

Since the location information is unknown yet, the FU bind-
ing algorithm proposed in [8] then adopted by MCAS [10]
is designed to minimize the number of potential global
data transfers (pGDTs) crossing islands. Given a scheduled
DFG, a weighted compatibility graph is built. A high/low
weight is assigned to a pair of compatible operations if there
is a/no data transfer between them. Then the maximum
weighted cliques that cover the graph are identified as the
binding result. An example scheduled DFG with compat-
ible edges is shown in Fig.5(a), in which the solid lines
representing the compatible edges with actual data transfers
(high weights) and the dotted lines representing the compat-
ible edges without data transfers (low weights). Figure 5(b)
shows the outcome with the shaded zones after applying FU
binding in [8] and [10]. The result is quite good in terms
of the given cost function because only one data transfer
needs to cross two different FUs, thus the number of pGDTs
is merely one. However, even if these two FUs are placed
in two neighboring islands as shown in Fig. 5(d), one extra
clock cycle is required to complete that global data trans-
fer. Hence the original schedule has to be modified as the
one shown in Fig.5(c) to fulfill the updated timing con-
straint. Unfortunately, the new schedule takes one more
control step because that global transfer exactly lies on the
critical path. Consider another feasible binding result shown
in Fig. 5(e), it does not look so good at first because two
data transfers can be global (i.e., the number of pGDTs is
two). However, given the same placement, it needs no ex-

CHEN and HUANG: A HIERARCHICAL CRITICALITY-AWARE ARCHITECTURAL SYNTHESIS FRAMEWORK FOR MULTICYCLE COMMUNICATION

: (+) ())
ol Eans o
© 9

(2) (b)

Fig.6 Two different placements with the corresponding schedules for
the same bound DFG.

tra control step to get a valid schedule because those two
global data transfers are non-critical. Through this example,
it should be noticed that the criticality of global data trans-
fers is much more important than the total number of global
data transfers while performing FU binding. Thus our pro-
posed framework tends to minimize the number of potential
critical global data transfers (pCGDTs) instead of pGDTs.

3.2 FU-Level Placer

The scheduling (performance)-driven placement procedure
in MCAS is performed by an SA-based placer operating
only at the FU level. That is, the atomic operating ele-
ment is a fine-grained single FU. Though the placer itself
is performance-driven, it is very hard to prevent those FUs
that should stay together from being separated due to the in-
herent unstable nature of any SA engine. Figure 6 illustrates
two different FU placement results with the corresponding
schedules for the same bound DFG. The result shown in
Fig. 6(a) is worse than that in Fig. 6(b) because the former
locates the adder and the multiplier in different islands and
thus turns the critical data transfer between them global. To
avoid this situation, a hierarchical placement strategy is in-
troduced. An FU container, named bin, is defined. It should
be a good idea to pack those closely related critical FUs into
a bin in the first place. Then the following SA-based placer
is intended to operate at the coarse-grained bin level. As a
result, the placer can only decide the locations of bins and
the desired strong locality among related critical FUs within
a bin is well preserved. Afterward a fine-grained FU-level
placer, which takes the result of bin-level placement as the
starting point, is applied. The FU-level placer is expected
to further improve synthesis results since a larger solution
space can be explored without the bin restriction.

4. Criticalities-Aware Synthesis

In this section, we present our hierarchical performance-
driven criticality-aware architectural synthesis flow, named
CriAS, which targets the RDR-based architecture family.
As mentioned, CriAS features a hierarchical binding-then-
placement strategy to facilitate higher system performance.
The first idea is to minimize the number of pCGDTs at ear-
lier synthesis stages. The advantage of considering pCGDTs
instead of pGDTs is that criticality is simply a better per-
formance metric before the placement detail is available, as
demonstrated in Sect.3. The criticality-driven hierarchical

1303

L DFG descrlptlon J BR architecture spec
[Criticality-driven FU binding |

* Interconnected component graph

‘ Resource allocation ‘

[criticality-driven bin binding |

Performance-driven
bin placement

(]

Performance-driven
FU placement

Post-layout scheduling \

with re-binding ‘

v

y A

@eduled and bound DFG J ‘ Placement information

I PN -

Fig.7 The overall flow of CriAS.

binding strategy consisting of both FU-level and bin-level
binding is proposed to carry out this idea, where a bin is a
fixed-capacity container of FUs. The other key idea is that
placement is performed at two different levels hierarchically
instead of the fine-grained FU level only, which keeps re-
lated critical FUs staying as close as possible.

Figure 7 shows the overall flow of CriAS. The input
of CriAS contains the given DFG and the RDR architecture
specification. After processing the input DFG, FDS is per-
formed for resource allocation and the initial scheduling re-
sult can then be obtained. Based on the initial schedule, the
criticality-driven FU binding is applied for minimizing the
number of pCGDTs, which is likely to boost the system per-
formance. The compatibility graph with proper edge weight
settings is built first based on the criticality of the edges.
Then, the FU binding problem can be further modeled as
a min-cost flow problem, and thus optimally solved accord-
ingly. More technical details are discussed in Sect. 4.1.

As mentioned in Sect. 3.2, the closely related critical
FUs can be packed into a bin first before starting SA-based
placement. A bin here is defined as an FU container whose
capacity is set as the same as the island capacity. In the bin
binding process, the directed multigraph edges originally
used to describe multiple data transfers between two FUs in
an interconnected component graph (ICG) are replaced by
a single undirected edge between two of them. Again, the
edge weights are determined based on the criticality of the
edges. The bin binding problem can then be formulated as a
capacity-constrained k-way min-cost partitioning problem,
and thus solved accordingly. After the hierarchical bind-
ing procedures, performance-driven SA-based placers at the
coarse-grained bin level (so-called bin placement) and then
the fine-grained FU level (so-called FU placement) are per-
formed. These procedures are detailed in Sects. 4.2 and 4.3.

After the physical location information is available, the
scheduling and binding information should be updated ac-
cordingly to preserve the validity of synthesis result. Then,

1304
3
3(2]3
3(2][1]2]3
321123
3[2/[1][2] 3
32|13
3

Fig.8 The Manhattan distance label from the central island.

a similar post-layout scheduling with re-binding procedure
proposed in [10] is also performed here. The output of
CriAS consists of a scheduled/bound DFG as well as the
corresponding physical placement information of all FUs.

4.1 Ccriticality-Driven FU Binding

As mentioned above, the criticality of global data trans-
fers should be the main concern while performing FU bind-
ing. To minimize the number of pCGDTs, an edge-weighted
compatibility graph is built first. The weight of an edge e,
criticality(e), is defined as (1).

0 not a data transfer

criticality(e) = {q - If (e) + B - sr(e) + v - ap(e) (D
a data transfer

In (1), criticality(e) is determined by the weighted sum of
three terms — the first one represents the location flexibility;
the second represents the reciprocal of the available slack;
and the last represents the number of affected paths. «a, 8
and y are adjustable weighting factors but should be prop-
erly chosen to ensure that the prior term dominates the sub-
sequent one. Conceptually, criticality(e) is designed to indi-
cate the severity level of the performance impact if the edge
e becomes a global data transfer. In other words, the higher
the weight of a global data transfer is, the worse the overall
performance can be.

The location flexibility of an edge e, If(e), is defined as
(2), where cstep(v) represents the scheduled control step of
a node v.

1
lf(e) =

5 2)
[cstep(vj) - cstep(vi)]

The location flexibility conceptually represents how hard to
locate the two related operations, v; and v;, without violat-
ing the timing constraint. Assume the difference between
cstep(v;) and cstep(v;) is n and v; is located at the central is-
land in Fig. &, there is no timing violation if v; can be placed
into any island with the distance label < n. The feasible lo-
cations for v; forms a diamond region of islands and its size
is proportional to 2. In other words, it gets more difficult to
meet the timing constraint during placement as the location
flexibility, which is inversely proportional to n?, gets larger.
Note that the performance can very likely be degraded if a
high-criticality data transfer becomes global.

Next, by definition, an operation should have no mobil-
ity in a given scheduled DFG. However, operations not lying

IEICE TRANS. FUNDAMENTALS, VOL.E93-A, NO.7 JULY 2010

Vo Vo

NO, O

(a) (b)
Fig.9 (a) A DFG before scheduling, and (b) after scheduling.

Fig.10 The number of affected paths of the edge e.

on critical paths do have certain mobility before schedul-
ing. Figure 9 depicts a DFG before and after scheduling.
According to Fig.9(a), the operation (vertex) v; is origi-
nally not critical. That is, the performance remains the same
even if v; is scheduled to the third control step as shown in
Fig. 9(b). However, (2) gives the same weight for all three
data transfers while the data transfer between vy and v; is
actually not as critical as the other two. Therefore, the re-
ciprocal of the slack on an edge e, sr(e), is defined as (3) and
is intended to point out this difference.

1
slack(e)

Conventionally, the slack on a vertex comes from the dif-
ference of scheduled control step between as late as pos-
sible (ALAP) scheduling and as soon as possible (ASAP)
scheduling [27]. With the same idea, here we extend the
idea of slack to the edge. The term as short as possible
(ASAPe) of an edge e(v;, v;), defined in (4), represents the
minimal possible length the edge can have. Similarly, the
term as long as possible (ALAPe) of an edge e(v;, v;), de-
fined in (5), represents the maximal possible length the edge
can have. The suffix letter e in both terms is used to avoid
possible confusion between the edge version and the vertex
one. As a result, the slack on an edge e is defined as the dif-
ference between ALAPe(e) and ASAPe(e), and shown in (6).
Again, an edge e with a smaller slack (larger sr(e)) is more
performance-critical.

3)

sr(e) =

AS APe(e) = max (0, ASAP(v;) - ALAP(v) - 1) (4)
ALAPe(e) = ALAP(vj) — ASAP(v;) (5)
slack(e) = ALAPe(e) — AS APe(e) (6)
At last, ap(e) defined in (7) is used to indicate how
many paths are affected by how the edge e(v;, v;) gets pro-
cessed. Figure 10 gives such an example. Conceptually, an

edge e with larger ap(e) should be handled with more care
since the result can affect more timing paths.

ap(e) = in-degree(v;) X out-degree(v;) @)

CHEN and HUANG: A HIERARCHICAL CRITICALITY-AWARE ARCHITECTURAL SYNTHESIS FRAMEWORK FOR MULTICYCLE COMMUNICATION

(a) (b) (c)

Fig.11 (a) An example ICG, (b) the corresponding modified ICG, and
(c) an IBG for a possible bin binding solution.

After properly setting the criticality weights of all
edges in the compatibility graph, the FU binding problem
is formulated as finding a solution in which the weight sum
of all pCDGTs is minimal. This FU binding problem can
already be optimally solved by the min-cost flow algorithm
described in [28]. In the end, the resultant ICG is derived as
the output of FU binding.

4.2 Criticality-Driven Bin Binding

As mentioned, it may not be a good idea to merely perform
placement at the fine-grained FU level due to the inherent
unstable nature of an SA-based placer. Alternatively, a set
of closely related performance-critical FUs can be first clus-
tered into a coarse-grained bin as an atomic operating ele-
ment during placement. A bin is defined as a fixed-capacity
container of FUs for preserving the locality. The capacity of
a bin is set identical to that of an island, which constrains the
number of FUs can be packed into a bin. The process about
how to validly pack FUs into bins is named bin binding.

Here, we present a criticality-driven bin binding ap-
proach. At the beginning, the ICG G(V, E), which enu-
merates all data transfers between FUs and is represented as
a directed multigraph, is transformed into an edge-weighted
undirected simple graph, named the modified ICG H(V, F).
H has the same vertex set of G. An undirected edge con-
necting two vertices (FUs) in H implies that there exists at
least one directed edge between those two vertices (regard-
less of the direction) in G. The weight of an edge f € F is
defined as the sum of location flexibility of all edges e € E
that are mapped to f during G-to-H transformation, and is
shown in (8) where If(e) is identical as (2). Conceptually, if
two FUs are connected by an edge with high weight, they
should be packed into the same bin for minimizing the num-
ber of pCGDTs.

wiH= > I ®)

VeeE mappedto feF

Figures 11(a) and 11(b) gives an example ICG and the
corresponding modified ICG. After properly setting edge
weights, the bin binding problem can be formulated as the
capacity-constrained k-way min-cost partitioning problem
and thus solved accordingly by an algorithm similar to that
proposed in [29]. Note that each FU node has a weight indi-
cating the (hardware) resource usage, thus the sum of node
weights of FUs that are packed into the same bin cannot ex-
ceed the given bin capacity. That is why the partitioning
is capacity-constrained. The bin binding result is indicated

1305

Partitioning (H) { // bin binding
// input: a modified ICG H(V, F)
1. set Vg = {} ; // a set of bins
while(! V.empty()) {
Set B = {} ; // a set of nodes (a bin)
Pick the max weighted net f,_, in F ;

Remove the two incident nodes from V ;
Modify the network ;
while(! B.full() and ! V.empty()) {

2

3

4

5. Add the two incident nodes into B ;
6

7

8

9 Pick the max weighted net £,

connected to nodes in B;

10. Add the incident node to B ;

11. Remove the incident node from V ;
12. Modify the network ;

13. } // end of inner while

14. Add B into Vg;

15. } // end of outer while
16. Build an edge set Ep in which every edge

implies a connected bin pair ;
17. return Gg ;

18. // output: an IBG Gg = (Vg, Eg) }

Fig.12 The pseudo code of capacity-constrained k-way min-cost
partitioning algorithm for bin binding.

using an interconnected bin graph (IBG). For example, a
possible IBG for the modified ICG shown in Fig. 11(b) is
depicted in Fig. 11(c). The pseudo code of our partitioning
algorithm is given in Fig. 12. At the end of this procedure,
all FUs are partitioned into a set of bins, which serve as the
input to the next stage — bin placement.

4.3 Hierarchical Performance-Driven Placement

The hierarchical performance-driven placement consists of
a coarse-grained bin-level placement and a fine-grained
FU-level placement, which regard a bin and an FU as an
atomic component during operation, respectively. Like
MCAS, both of our performance-driven placers are SA-
based. Within the kernel of our SA-based placers, list-
scheduling-based timing analysis on the bound DFG is per-
formed first. After timing analysis, the more critical a net is,
the higher the weight is assigned to the net. Then the placers
try to locate those bins/FUs connected by heavily-weighted
nets as close as possible. Meanwhile, more technical details
about the SA-based placer kernel can be found in [10], [24],
[25].

The bin-level placer actually performs mapping be-
tween bins and islands. As mentioned, the capacity of a bin
is set identical to that of an island, thus the procedure for
placing bins into islands is actually a one-to-one mapping.
Next, the FU-level placer follows the bin-level placer. It
takes the result produced by the bin-level placer as the ini-
tial solution and merely fine-tunes the placement outcome
instead of deriving a whole new one. Note that the major
difference here is that an FU instead of a bin is considered
as an atomic operation. In the beginning of FU-level place-
ment, bins are ‘unpacked’ and FUs originally packed into
the same bin can then be independently relocated. In other
words, FUs are allowed to be freely moved across islands

1306

without the bin constraint anymore.
5. Experimental Results
5.1 Experimental Environment Setting

Our CriAS system has been implemented in C++/Linux en-
vironment on a workstation with an Intel Xeon 2 GHz CPU
and 14 GB RAM. The target RDR-based architecture con-
sists of M X N islands. The value of (M, N) pair is dynam-
ically adjustable and depends on the size of the input case.
In our experiments, given a test case, M and N are selected
to keep the overall island utilization between 70-80% and
to make the aspect as square as possible. Meanwhile, the
parameter a, 8 and y, which should be properly chosen to
ensure that the prior term dominates the subsequent one as
mentioned, are set to 10°, 100, and 2, respectively, for all
the test cases.

For fair and comprehensive comparisons, three differ-
ent synthesis flows are implemented, as shown in Fig. 13.
Flowl is devoted to mimic the original MCAS [10]; Flow2
is the same as Flow1 except for performing the criticality-
driven FU binding instead; and the proposed CriAS is re-
ferred as Flow3. The comparisons between Flowl and
Flow2 disclose how effective the criticality-driven FU bind-
ing is; the comparisons between Flow2 and Flow3 reveal
how well the bin binding strategy and hierarchical place-
ment can do; and the comparisons between Flowl and
Flow3 demonstrate the difference of overall synthesis qual-
ity between MCAS and CriAS.

The test cases are chosen from different benchmark sets
[30]-[32], which are frequently adopted for evaluation pur-
pose. The basic information of these test cases (DFGs) is
given in Table 1. The first column lists the name of the test
case; the second and third columns describe the numbers

DFG description RDR architecture spec.

| |
‘ Resource allocation ‘

v v v

| Fubinding | || [Criticality-driven FU binding |

v L] L]

FU-level scheduling-driven Criticality-driven
placement bin binding

[

Performance-driven
bin placement

(1

Performance-driven
FU placement

A Y

‘ Post-layout scheduling with re-binding ‘

Flow3 (CriAS)

Experimental environment

Flow1 (MCAS) ‘ ‘ Flow2 ‘ ‘
y L]

Scheduled and bound DFG ‘ [Placement information

Fig.13

Three different synthesis flows.

IEICE TRANS. FUNDAMENTALS, VOL.E93-A, NO.7 JULY 2010

of nodes and edges, respectively; the dimension parameters
(M, N) and the overall resource utilization are shown from
the fourth column to the sixth. The last column reports the
minimum possible latency obtained by ASAP scheduling,
which considers no resource constraint.

5.2 Experimental Results and Discussions

The experimental results are shown in Table 2. The sec-
ond to the fourth columns report the required latency af-
ter synthesis using Flow1 to Flow3, respectively. The fifth
and sixth columns give the latency improvement in percent-
age for Flow2 over Flowl and Flow3 over Flow1, respec-
tively. The experimental results show that roughly 9% per-
formance improvement can be achieved on average by the
proposed criticality-driven FU binding. The overall synthe-
sis result produced by CriAS is 14.26% better than that by
MCAS on average. Besides, 5.36% improvement (14.26—
8.90%) is contributed jointly by bin binding and two-level
hierarchical placement. In summary, the experimental re-
sults clearly demonstrate that CriAS outperforms the exist-
ing flow MCAS due to the effectiveness of the proposed
criticality-driven FU binding, bin binding, and hierarchical
placement techniques.

Table 3 shows the runtime for each test case in all three
flows. All the test cases can be finished within 70 seconds.
For every test case the runtime of Flow2 is roughly the same
as that of Flow1 since the only difference between these two
flows is just the weight assignment approach within the FU
binding procedure. Meanwhile, though it seems that the

Table1 Basic information of the input DFGs.
testcase | #nodes | #edges | M N uti (%) | latency
arf 28 30 2 2| 72.73% 8
lee 49 62 2 2 75.00% 9
feed 53 50 2 2 75.23% 7

cosl 66 76 3 3 79.01% 8
mem 94 128 2 2 75.96% 8
ide 114 164 3 3 77.41% 16
jpeg_f 134 169 3 2 74.56% 13
fft16 414 672 6 4 72.25% 14
Table 2 Synthesis results of the three flows.
test case Flow1 Flow2 Flow3 2-to-1 3-to-1
(latency) | (latency) | (latency) (%) (%)
arf 17 16 14 5.88% 17.65%
lee 15 13 13 13.33% | 13.33%
feed 13 11 11 15.38% | 15.38%
cosl 19 18 17 5.26% 10.53%
mem 14 12 12 14.29% | 14.29%
ide 34 32 28 5.88% 17.65%
jpeg_f 24 22 20 8.33% | 16.67%
fftl16 35 34 32 2.86% 8.57%
avg. 8.90% 14.26%

CHEN and HUANG: A HIERARCHICAL CRITICALITY-AWARE ARCHITECTURAL SYNTHESIS FRAMEWORK FOR MULTICYCLE COMMUNICATION

Table 3 Runtime of the three flows.
test case Flowl Flow2 Flow3
(sec) (sec) (sec)
arf 0.02 0.01 0.02
lee 0.05 0.05 0.06
feed 0.11 0.11 0.12
cosl 0.18 0.18 0.21
mem 0.89 0.85 0.98
idc 0.60 0.59 0.62
Jpeg_f 1.62 1.58 1.84
fft16 63.66 65.5 65.31
45.0% i 44.93%
40.0%
35.0% -
30.0%
25.0% 21.05% 20.32Y%
200% 17
15.0% + a8
0% 17 .
5.0% - .
00% &£ T - T T f
FDS FU-B 8in-B 8in-P FU-P Post

Fig.14 Runtime share of procedures in CriAS.

proposed CriAS (Flow3) performs more complicated oper-
ations than Flow2 does, the consumed runtime does not in-
crease at all. The major reasons are: 1) the bin-level placer
deals with a relatively smaller problem size after bin bind-
ing; 2) the FU-level placer starts with a very good initial
solution, which facilitates a quick convergence.

The average runtime share of each major procedure
in CriAS over all the test cases is shown in Fig. 14. FDS
represents the resource allocation procedure, where force-
directed scheduling is applied; FU-B and Bin-B are for hi-
erarchical binding; Bin-P and FU-P are for the two-level
placers; at last, Post indicates the post-processing proce-
dure — post-layout scheduling with re-binding. The most
time consuming procedure Post, which is proposed in [10],
is invoked in all the three flows. The Post algorithm, which
performs placement-driven scheduling with re-binding, is
based on an FDLS framework [23]. Its time complexity is
roughly estimated as O(L - N*), where L is the target num-
ber of control steps (i.e., latency constraint) and N is the
number of operation nodes. The second most time consum-
ing procedure FU-B adopts a linear programming solver,
Ip_solve [33], for the min-cost flow problem. Both FU-P
and Bin-P are SA-based placers and the complexity analy-
sis is essentially similar to that of T-VPlace (the placement
part of VPR) [24],[25]. The timing complexity of FDS is
O(L? - N?), where L is the target number of control steps
and N is the number of operation nodes. More details of the
force-directed scheduling (FDS) can be found in [23], [27].
The pseudo code of Bin-B has been shown in Fig. 12 and the

1307

time complexity is O(E - U?), where U is the number of FUs
and E is the number of connections between FUs.

6. Conclusion

In this article, we present a hierarchical performance-
driven criticality-aware synthesis framework CriAS target-
ing generic RDR-based multicycle architectures. CriAS
features four key techniques: criticality-driven FU bind-
ing, criticality-driven bin binding, performance-driven bin-
level placement, and performance-driven FU-level place-
ment. During FU/bin binding, the pCGDT instead of the
pGDT is concerned. The FU binding problem is mod-
eled as the min-cost flow problem and optimally solved.
The bin binding problem is then formulated as a capacity-
constrained k-way min-cost partitioning problem and solved
accordingly. The hierarchical bin/FU-level placement is em-
ployed to keep related critical FUs staying as close as pos-
sible. The comprehensive experimental results demonstrate
that CriAS achieves an average of 14.26% overall perfor-
mance improvement without runtime increase as compared
to the prior art. The results apparently suggest that CriAS is
currently a better synthesis solution for applications target-
ing the RDR-based architecture supporting multicycle com-
munication design paradigm.

Acknowledgment

This work was supported in part by the National Science
Council of Taiwan under Grant NSC 98-2220-E-009-021.

References

[1] International Technology Roadmap for Semiconductors, Semicon-
ductor Industry Association, 2007.

[2] D. Matzke, “Will physical scalability sabotage performance gains?”
Computer, vol.20, pp.37-39, 1997.

[3] L.P. Carloni and A.L. Sangiovanni-Vincentelli, “Coping with la-
tency in SOC design,” IEEE Micro, vol.22, pp.24-35, 2002.

[4] WJ. Dally, “Interconnect-limited VLSI architecture,” IEEE Int’l
Conf. Interconnect Technology, 1999.

[5]1 Y. Mori, V. Moshnyaga, H. Onodera, and K. Tamaru, “A
performance-driven macro-block placer for architectural evaluation
of ASIC designs,” Proc. Annual IEEE Int’l1 ASIC Conf. and Exhibit,
pp.233-236, Sept. 1995.

[6] V. Moshnyaga and K. Tamaru, “A placement driven methodology
for high-level synthesis of sub-micron ASIC’s,” Proc. Int’l Symp.
Circuits and Systems, vol.4, pp.572-575, May 1996.

[7] P. Prabhakaran and P. Banerjee, ‘“Parallel algorithms for simultane-
ous scheduling, binding and floorplanning in high-level synthesis,”
Proc. Int’l Symp. Circuits and Systems, vol.6, pp.372-376, May
1998.

[8] D. Kim, J. Jung, S. Lee, J. Jeon, and K. Choi, “Behavior-to-
placed RTL synthesis with performance-driven placement,” Proc.
Int’l Conf. Computer Aided Design, pp.320-325, Nov. 2001.

[9] J.Jeon, D. Kim, D. Shin, and K. Choi, “High-level synthesis under
multi-cycle interconnect delay,” Proc. Asia and South Pacific Design
Automation Conf., pp.662-667, Jan. 2001.

[10] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architecture
and synthesis for on-chip multicycle communication,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol.23, no.4, pp.550-
564, April 2004.

1308

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]
[32]

[33]

C.-I Chen and J.-D. Huang, “CriAS: A performance-driven
criticality-aware synthesis flow for on-chip multicycle communica-
tion architecture,” Proc. Asia and South Pacific Design Automation
Conf., pp.67-72, Jan. 2009.

S.-H. Huang, C.-H. Chiang, and C.-H. Cheng, “Three-dimension
scheduling under multi-cycle interconnect communications,” IEICE
Electronics Express, vol.2, no.4, pp.108—114, Feb. 2005.

J. Cong, Y. Fan, and Z. Zhang, “Architecture-level synthesis for au-
tomatic interconnect pipelining,” Proc. Design Automation Conf.,
pp-602-607, June 2004.

W.-S. Huang, Y.-R. Hong, J.-D. Huang, and Y.-S. Huang, “A multi-
cycle communication architecture and synthesis flow for global in-
terconnect resource sharing,” Proc. Asia and South Pacific Design
Automation Conf., pp.16-21, Jan. 2008.

Y.-J. Hong, Y.-S. Huang, and J.-D. Huang, “Simultaneous data trans-
fer routing and scheduling for interconnect minimization in multicy-
cle communication architecture,” Proc. Asia and South Pacific De-
sign Automation Conf., pp.19-24, Jan. 2009.

A. Ohchi, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “High-
level synthesis algorithms with floorplaning for distributed/shared-
register architectures,” Proc. Int’l Symp. VLSI Design, Automation
and Test, pp.164-167, April 2008.

J. Cong, Y. Fan, and W. Jiang, “Platform-based resource binding
using a distributed register-file microarchitecture,” Proc. Int’l Conf.
Computer Aided Design, pp.709-715, Nov. 2006.

K. Lim, Y. Kim, and T. Kim, “Interconnect and communication syn-
thesis for distributed register-file microarchitecture,” Proc. Design
Automation Conf., pp.765-770, June 2007.

S. Gao, K. Seto, S. Komatsu, and M. Fujita, “Pipeline schedul-
ing for array based reconfigurable architectures considering inter-
connect delays,” Proc. Int’] Conf. Field-Programmable Technology,
pp.-137-144, Dec. 2005.

A. Terechko, E.L. Thenaff, M. Garg, J. van Eijndhoven, and
H. Corporaal, “Inter-cluster communication models for clustered
VLIW processors,” Proc. Int’l Symp. High Performance Computer
Architecture, 2003.

SUIF 2 Compiler System. [Online]. Available: http://suif.stanford.
edu/suif/suif2/

M. Smith and G. Holloway, “An introduction to machine SUIF and
its portable libraries for analysis and optimization,” Division of En-
gineering and Applied Sciences, Harvard University, 2002.

P. Paulin and J. Knight, “Force-directed scheduling for behavioral
synthesis of ASICs,” IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuits Syst., vol.8, no.6, pp.661-679, June 1989.

A. Marquardt, V. Bets, and J. Rose, “Timing-driven placement
for FPGAs,” Proc. Int’l Symp. Field Programmable Gate Arrays,
pp.203-213, Feb. 2000.

VPR: Versatile packing, placement and routing for FPGAs. [Online].
Available: http://www.eecg.toronta.edu/ vaughn/vpr/vpr.html

Y. Kwok and I. Ahmad, “Dynamic critical-path schedule: An effec-
tive technique for allocating task graphs to multiprocessors,” IEEE
Trans. Parallel Distrib. Syst., vol.7, no.5, pp.506-521, May 1996.
G.D. Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, New York, 1994.

R. Ahuja, T. Magnanti, and J. Orlin, Network flows: Theory, algo-
rithms, and applications, Prentice Hall, 1993.

C. Tseng and D.P. Seiwiorek, “Automated synthesis of data paths in
digital systems,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol.5, no.3, pp.379-395, July 1986.

MCAS: multicycle architectural synthesis system. [Online]. Avail-
able: http://cadlab.cs.ucla.edu/software_release/mcas/

ExPRESS group. [Online]. Available: http://express.ece.ucsb.edu/
T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
algorithms, 2nd ed., the MIT press, 2001.

Ip-solve: An open source mixed integer linear programming (MILP)
solver. [Online]. Available: http://sourceforge.net/projects/Ipsolve/

IEICE TRANS. FUNDAMENTALS, VOL.E93-A, NO.7 JULY 2010

Chia-I Chen received the B.S. degree in
Electronics Engineering from National Chiao
Tung University, Hsinchu, Taiwan, in 2005,
where she is currently working toward the Ph.D.
degree in the Institute of Electronics. Her cur-
rent research interests include high-level synthe-
sis and computer architecture.

Juinn-Dar Huang received the B.S. and
Ph.D. degrees in Electronics Engineering from
National Chiao Tung University, Hsinchu, Tai-
wan, in 1992 and 1998, respectively. He is
currently an Associate Professor in the Depart-
ment of Electronics Engineering and the Insti-
tute of Electronics, National Chiao Tung Uni-
versity. His current research interests include
high-level synthesis, design verification, 3D IC
architecture/CAD, and microprocessor design.
He has served in the Organizing Committees of
IEEE/ACM ASP-DAC 2010 and SASIMI 2010. He has been the Secretary
General of Taiwan IC Design Society (TICD) from 2004 to 2008, the Tech-
nical Program Committee Vice-Chair of VLSI Design/CAD Symposium
2008, the Technical Program Committee member of IEEE/ACM DATE
2008/2010, and the Organizing Committee member of IEEE International
Conference on Field-Programmable Technology (ICFPT) 2008. He is a
member of the IEEE, ACM, and Phi Tau Phi.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages false
 /ColorImageFilter /None
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

