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Constructions of DMT Optimal Vector Codes for
Asynchronous Cooperative Networks Using

Decode-and-Forward Protocols
Hsiao-feng Francis Lu, Member, IEEE

Abstract—An asynchronous cooperative network where differ-
ent time delays exist among nodes is considered in this paper.
Assuming the signals are OFDM modulated, it is first shown
that the diversity-multiplexing tradeoff (DMT) achieved by the
non-orthogonal selection decode-and-forward (NSDF) protocol
for this network is the same as that for the synchronous one.
In contrast to the complicated approximately universal “matrix”
codes, where each relay uses a different codebook, a systematic
construction of an extremely simple “vector” code is proposed.
Given the transmitted codeword vector, this vector will be used
by all nodes in the network for signal transmission; hence, the
proposed coding scheme greatly reduces the complexity of relay
deployment and decoding. Furthermore, it is proven that the
proposed scheme is optimal in terms of the DMT of the NSDF
protocol for this asynchronous network, provided all time delays
are distinct. Finally, it is shown that the proposed code design
can be extended to the orthogonal selection decode-and-forward
protocol and remains to be DMT optimal.

Index Terms—Asynchronous cooperative network, cyclic
division algebra, decode-and-forward protocol, diversity-
multiplexing gain tradeoff, multi-block space-time code.

I. INTRODUCTION

RECENTLY, there has been a growing interest in the
performance analyses and code designs of wireless

cooperative relay networks [1]–[10], where multiple relays
are used to help the source transmit coded information to
the destination. In a way, the relays cooperate to form a
virtual transmit array between the source and the destination.
Communication in such a network is in general assumed to
be half-duplex, i.e., at any time instant, a node can either
transmit or receive, but not both. With the half-duplex assump-
tion, several cooperative communication protocols have been
proposed for relay networks. In [3], Laneman et al. proposed
the orthogonal amplify-and-forward (OAF) and the orthogonal
selection decode-and-forward (OSDF) protocols. In the OAF
protocol,

1) the source first transmits to both relays and destination
in the first half-frame, and
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2) in the second half-frame, the relays transmit to the
destination an amplified version of the signals received
during the first half-frame.

The OSDF protocol, on the other hand, means that instead of
amplification, each relay will decode the signal at the end of
the first half-frame. If it succeeds in decoding, it will (possibly,
but not necessarily in asynchronous relay networks as will
be seen in the subsequent part of the paper) re-encode the
message using a different codebook and transmit in the second
half-frame. Some other protocols with improved performance,
including the non-orthogonal amplified-and-forward (NAF),
non-orthogonal selection decode-and-forward (NSDF), and
dynamic decode-and-forward (DDF) protocols are proposed
in [4]. By non-orthogonal it means that the source continues
to transmit in the second half-frame. Following the notion of
diversity-multiplexing tradeoff (DMT) proposed by Zheng and
Tse [11], the performances of these protocols are explicitly
characterized in [4], assuming that each node is equipped
with only one antenna. For the case of multiple antennas,
the DMT of NAF protocol can be found in [8]. By varying
the numbers of channel uses in the first and second frames,
a class of variable NSDF protocols is proposed in [9], and
the corresponding DMTs are also given. Furthermore, explicit
constructions of space-time codes that achieve the optimal
DMTs of these protocols are also provided in [9], [12]. These
codes are matrix codes in nature and are constructed based on
some cyclic division algebra.

However, it should be noted that all the aforementioned
works assume that the relay network is perfectly synchronized
in time. Specifically, they assume the following.

1) The relays must know the exact timing to begin the
transmission of the first and the second frames.

2) Most importantly, the path delays between the relays
and the destination, and between the source and the
destination are all of the same value.

Unfortunately, both assumptions are very hard to satisfy in
practice since the relays have respective local oscillators and
are usually geographically dispersed. Thus, it is unlikely for
the synchronous assumptions to hold in general.

Taking account of the asynchronous nature of wireless
cooperative relay networks, a slightly modified version of the
two-phase OSDF protocol has been considered in [5]–[7] for
the frame synchronized two-hop network. In such a network,
the source transmits to the relays in the first half-frame, then
the relays transmit to the destination in the second half-frame.
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To achieve full cooperative diversity for all possible path
delays in the second phase, several coding schemes based on
pairwise error probability (PEP) analysis have been proposed
in [5]–[7], [13], [14]. In [6], the authors proposed a variation of
the threaded algebraic space-time (TAST) codes. By viewing
the time delay at each relay node as a shift of column indices
in a row of a matrix, Shang and Xia proposed a systematic
construction of shift-full-rank matrices in [5] and showed that
these matrices can be used to produce fully-diverse space-
time trellis codes. In [10] Wei studied the DMT performance
of an asynchronous relay network in a continuous waveform
channel with two relays. Apart from the time-domain based
modulations, the technique of orthogonal-frequency-division-
multiplexing (OFDM) is known to be easily applicable to
communication in asynchronous scenarios without the need
of equalization. We remark that while OFDM easily avoids
the need of equalization, it introduces other system issues such
as carrier frequency synchronization and high peak-to-average
power ratio. A simple Alamouti transmission scheme using
OFDM for asynchronous cooperative systems was proposed
by Li and Xia [13] and was shown to achieve a diversity
gain of order 2. Following the same idea, a high-rate space-
frequency code was proposed in [14] based on the PEP
criterion.

In contrast to the PEP-based criterion, in this paper we will
focus on the DMT analysis and code design for the asyn-
chronous cooperative networks using NSDF protocol. Besides,
for practical reasons we will assume that each node knows
only the time delay of its incoming channel, but not others’.
Following [13], we will consider frequency-domain coding,
and the codes will be OFDM modulated to eliminate the need
of equalization, thereby reducing the hardware complexity.

This paper is organized as follows. In Section II we will
briefly introduce the system model of the OFDM-based asyn-
chronous cooperative network as well as the corresponding
NSDF protocol. The DMT performance of such asynchronous
NSDF protocol is analyzed in Section III. It will be seen that
the resulting DMT is the same as that for the synchronous
one; hence, it is expected there be no performance loss due
to the asynchronous nature of the underlying network at
high SNR regime, provided that an appropriate asynchronous
OFDM-based coding scheme is used. While the conventional
approximately universal, cyclic-division-algebra-based space-
time codes for the synchronous network [9] can be easily
modified to fit into the OFDM modulation and to achieve the
optimal DMT in the asynchronous case, these codes are matrix
codes in nature and are used such that each relay is associated
with a specific row of a code matrix. As a result, the relays
are distinguished by their places of rows in a matrix, and each
relay requires a distinct encoder. This greatly complicates the
fabrication and the deployment of relays in practice. In view of
this, a systematic construction of an extremely simple vector
code that operates on the asynchronous NSDF protocol will be
given in Section IV. It will be seen that given the transmitted
codeword vector, every node, including both source and relays,
in the network will transmit the same vector; hence, it greatly
reduces the complexity of relay deployment and decoding,
compared to the complicated matrix coding schemes. The
proposed construction is a variation of the multi-block space-
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Fig. 1. A relay network consisting of a source node 𝑆, a destination node
𝐷, and a collection of (𝑁 − 1) intermediate relay nodes.

time codes proposed by the author in [15]. These multi-block
codes are approximately universal [16] and DMT optimal in
MIMO point-to-point communication. They are modified such
that a SISO multi-block vector code is used by all nodes in the
asynchronous network. The proof of DMT optimality of the
proposed vector coding scheme will be given in Section IV-A.
Finally, in Section V we show that the DMT for the OSDF
protocol for asynchronous networks is also the same as that
for synchronous networks, and the same vector code proposed
in Section IV can be used to achieve the DMT optimality. In
Section VI we conclude the paper.

II. SYSTEM MODEL

Consider an asynchronous relay network consisting of a
source node 𝑆, (𝑁 − 1) relay nodes {𝑅2, ⋅ ⋅ ⋅ , 𝑅𝑁}, and a
destination node 𝐷 (see Fig. 1). Signal transmissions from 𝑆
to 𝑅𝑛, 𝑆 to 𝐷, and 𝑅𝑛 to 𝐷 are OFDM modulated using
𝑄 subcarriers. In the first phase of the NSDF protocol, given
the source message 𝑥 = [𝑥0, ⋅ ⋅ ⋅ , 𝑥𝑄−1]

⊤, the transmitter at
𝑆 first applies to 𝑥 a 𝑄-point inverse fast Fourier transform
(FFT), where by 𝑎⊤ we mean the transpose of the column
vector 𝑎. After attaching to this vector a cyclic prefix (CP)
of length 𝐿1, the resulting length-(𝑄 + 𝐿1) signal vector is
broadcasted from 𝑆 to all the remaining nodes. The sampled
discrete-time channel impulse response from 𝑆 to relay 𝑅𝑛 is
modeled as

ℎ𝑛[𝑘] = ℎ𝑛𝛿𝐾 [𝑘 − 𝜈𝑛], 𝑛 = 2, ⋅ ⋅ ⋅ , 𝑁, (1)

and the one from 𝑆 to 𝐷 is given by

𝑔1[𝑘] = 𝑔1𝛿𝐾 [𝑘 − 𝜏1], (2)

where 𝑔1 and ℎ𝑛, 𝑛 = 2, ⋅ ⋅ ⋅ , 𝑁 , are i.i.d. circularly symmet-
ric, ℂ𝒩 (0, 1) complex Gaussian random variables with zero
mean and unit variance. 𝛿𝐾 [𝑘] denotes the Kronecker delta
function, i.e. 𝛿𝐾 [𝑘] = 1 if 𝑘 = 0, and 𝛿𝐾 [𝑘] = 0 otherwise.
The parameters 𝜈𝑛’s and 𝜏1 are used to capture the discrete-
time delay from 𝑆 to 𝑅𝑛, and from 𝑆 to 𝐷, respectively.
To avoid inter-channel interference in the frequency domain,
we require 𝐿1 ≥ max{𝜏1, 𝜈2, ⋅ ⋅ ⋅ , 𝜈𝑁}, which can be safely
determined from field measurements. At the receiver end (re-
lays and destination), after removing the CP from the received
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signal and taking a 𝑄-point FFT, the resulting received signal
at the 𝑞th subcarrier at relay 𝑅𝑛 is given by

𝑟𝑛,𝑞 = ℎ𝑛𝜁
−𝑞𝜈𝑛
𝑄 𝑥𝑞 + 𝑧𝑛,𝑞, (3)

and the one at node 𝐷 is

𝑦1,𝑞 = 𝑔1𝜁
−𝑞𝜏1
𝑄 𝑥𝑞 + 𝑤1,𝑞, (4)

where 𝜁𝑄 := exp
(
𝚤 2𝜋
𝑄

)
, and 𝚤 =

√−1. The 𝑧𝑛,𝑞’s and

𝑤1,𝑞’s are i.i.d. ℂ𝒩 (0, 1) complex Gaussian random variables
that are used to model the additive noises.

Having received the signal vector 𝑟𝑛 = [𝑟𝑛,0 ⋅ ⋅ ⋅ , 𝑟𝑛,𝑄−1]
⊤,

the relay 𝑅𝑛 proceeds to decode the vector. Assuming (𝑀 −
1) relays, say 𝑅𝑖1 , ⋅ ⋅ ⋅ , 𝑅𝑖𝑀−1 , where {𝑖1, ⋅ ⋅ ⋅ , 𝑖𝑀−1} ⊆
{2, ⋅ ⋅ ⋅ , 𝑁}, have successfully decoded the message sent by
𝑆, these relays then independently use a different codebook to
re-encode the message. Let 𝑠𝑖𝑚 = [𝑠𝑖𝑚,0, ⋅ ⋅ ⋅ , 𝑠𝑖𝑚,𝑄−1]

⊤ be
the codeword produced by relay 𝑅𝑖𝑚 . Then together with the
source 𝑆, the (𝑀 − 1) relays will participate in the second-
phase communication. Let

𝑔𝑖𝑚 [𝑘] = 𝑔𝑖𝑚𝛿𝐾 [𝑘 − 𝜏𝑖𝑚 ] (5)

be the sampled discrete-time channel impulse response be-
tween relay 𝑅𝑖𝑚 and 𝐷, where 𝜏𝑖𝑚 is the corresponding
discrete-time delay. Following the same OFDM modulation
approach as in the first-phase, the received signal at the 𝑞th
subcarrier at destination node 𝐷 is given by

𝑦2,𝑞 = 𝑔1𝜁
−𝑞𝜏1
𝑄 𝑥′𝑞 +

𝑀−1∑
𝑚=1

𝑔𝑖𝑚𝜁
−𝑞𝜏𝑖𝑚
𝑄 𝑠𝑖𝑚,𝑞 + 𝑤2,𝑞, (6)

provided that the CP of the OFDM symbol in the second
half-frame has length 𝐿2 ≥ max{𝜏1, 𝜏2, ⋅ ⋅ ⋅ , 𝜏𝑁}. The 𝑔𝑖𝑚’s
and 𝑤2,𝑞’s are again, modeled as i.i.d. ℂ𝒩 (0, 1) complex
Gaussian random variables. The vector 𝑥′ =

[
𝑥′0 ⋅ ⋅ ⋅𝑥′𝑄−1

]⊤
is the codeword sent by 𝑆 to 𝐷 during the second phase. In
both phases, the codewords sent by either the source or the
relays are required to satisfy the following power constraint:

𝔼 ∥𝑥∥2𝐹 ,𝔼
∥∥𝑠𝑖𝑚∥∥2

𝐹
,𝔼 ∥𝑥′∥2𝐹 ≤ 𝑄 ⋅ 𝜌, (7)

where by ∥𝑥∥𝐹 we mean the Frobenius norm of the vector 𝑥.
𝜌 is the signal-to-noise ratio at each receive antenna.

III. DMT PERFORMANCE OF NSDF PROTOCOL

In this section, we will analyze the DMT performance of
the NSDF protocol discussed in the previous section. We first
briefly review some notations defined in [11] that will be
used in the subsequent analyses. Let 𝑓(𝜌) be a positive-valued
function in 𝜌. We say 𝑓(𝜌)

.
= 𝜌𝑏 if lim𝜌→∞

log 𝑓(𝜌)
log 𝜌 = 𝑏.

Notations of ≥̇ and ≤̇ are defined similarly. Secondly, let 𝒳 (𝜌)
be a family of codes, one for each SNR value, taking places
in 𝑈 channel uses. We say 𝒳 (𝜌) achieves multiplexing gain
at value 𝑟 if and only if ∣𝒳 (𝜌)∣ .

= 𝜌𝑟𝑈 .
To perform the DMT analysis, we use Gaussian random

codebooks, i.e., the entries of codewords 𝑥, 𝑥′, and 𝑠𝑖𝑚 , are
i.i.d. ℂ𝒩 (0, 𝜌) variables so that the power constraint (7) is
satisfied. First note that at the end of the first phase, relay
𝑅𝑛 fails to decode the message sent by 𝑆 if it is in outage.

Assuming the source transmits at multiplexing gain 𝑟, such
outage occurs with probability

Pr {𝑅𝑛 is in outage}

= Pr

{
𝑄−1∑
𝑞=0

log

(
1 + 𝜌

∣∣∣ℎ𝑛𝜁−𝑞𝜈𝑛
𝑄

∣∣∣2) ≤ 2𝑄 ⋅ 𝑟 log 𝜌
}

= Pr
{
log

(
1 + 𝜌 ∣ℎ𝑛∣2

)
≤ 2𝑟 log 𝜌

}
.
= 𝜌−(1−2𝑟)+ , (8)

where the factor 2𝑄 is because the communication takes
places in 2 OFDM symbols, each of length 𝑄, and (𝑥)+ :=
max{0, 𝑥}. Note that in (8) we have neglected the rate loss
due to the insertion of CP.

Let 𝒥𝑀 denote the event that there are (𝑀 − 1) relays,
𝑅𝑖1 , ⋅ ⋅ ⋅ , 𝑅𝑖𝑀−1 , participating in the second phase transmis-
sion. As the ℎ𝑛’s are i.i.d., the probability of 𝒥𝑀 is given
by

Pr {𝒥𝑀}
.
=

(
𝑁 − 1

𝑀 − 1

)(
1− 𝜌−(1−2𝑟)+

)𝑀−1

𝜌−(𝑁−𝑀)(1−2𝑟)+

.
=

⎧⎨
⎩

𝜌−(𝑁−𝑀)(1−2𝑟), 0 ≤ 𝑟 ≤ 1
2 ,

0, 𝑟 ≥ 1
2 ,𝑀 ≥ 2,

1, 𝑟 ≥ 1
2 ,𝑀 = 1.

(9)

Next, given event 𝒥𝑀 , let 𝑦
1

= [𝑦1,0 ⋅ ⋅ ⋅ 𝑦1,𝑄−1]
⊤ and

𝑦
2
= [𝑦2,0 ⋅ ⋅ ⋅ 𝑦2,𝑄−1]

⊤ be the signal vectors received by the
destination node 𝐷 during the first and the second phases,
respectively. Then we can rewrite the channel input-output
relation in the following matrix form

𝑦
1

= 𝐺1𝑥+ 𝑤1, 𝑦
2
= 𝐺1𝑥

′ +
𝑀−1∑
𝑚=1

𝐺𝑖𝑚𝑠𝑖𝑚 + 𝑤2,

where 𝑤1 := [𝑤1,0 ⋅ ⋅ ⋅𝑤1,𝑄−1]
⊤ and 𝑤2 :=

[𝑤2,0 ⋅ ⋅ ⋅𝑤2,𝑄−1]
⊤. The (𝑄 × 𝑄) matrices 𝐺1 and 𝐺𝑖𝑚

are respectively given by

𝐺1 := diag
(
𝑔1𝜁

−0⋅𝜏1
𝑄 , ⋅ ⋅ ⋅ , 𝑔1𝜁−(𝑄−1)⋅𝜏1

𝑄

)
,

𝐺𝑖𝑚 := diag
(
𝑔𝑖𝑚𝜁

−0⋅𝜏𝑖𝑚
𝑄 , ⋅ ⋅ ⋅ , 𝑔𝑖𝑚𝜁−(𝑄−1)⋅𝜏𝑖𝑚

𝑄

)
.

Note that 𝐺1𝐺
†
1 = ∣𝑔1∣2 𝐼𝑄 and 𝐺𝑖𝑚𝐺

†
𝑖𝑚

= ∣𝑔𝑖𝑚 ∣2 𝐼𝑄, where
by † we mean the Hermitian transpose of a matrix. Thus, given
𝒥𝑀 , the probability that 𝐷 is in outage and therefore fails to
recover the message is

𝑃out (𝑟∣𝒥𝑀 )

= Pr

{
log

(
1 + 𝜌 ∣𝑔1∣2

)

+ log

(
1 + 𝜌

(
∣𝑔1∣2 +

𝑀−1∑
𝑚=1

∣𝑔𝑖𝑚 ∣2
))

≤ 2𝑟 log 𝜌

}
.
= 𝜌−𝑑𝑀 (𝑟), (10)

where 𝑑𝑀 (𝑟) has been computed for the synchronous case in
[9, Eq. (115)]

𝑑𝑀 (𝑟) =

⎧⎨
⎩

𝑀(1− 2𝑟) + 2𝑟, 0 ≤ 𝑟 ≤ 1
2 and 𝑀 > 1,

2(1− 𝑟), 1
2 ≤ 𝑟 ≤ 1 and 𝑀 > 1,

(1− 𝑟), 0 ≤ 𝑟 ≤ 1 and 𝑀 = 1.
(11)
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Combining results of (9) and (11) gives the following theorem.
Theorem 1: In an asynchronous cooperative network with

(𝑁 − 1) relays, the diversity gain achieved by the NSDF
protocol at multiplexing gain 𝑟 is for 0 ≤ 𝑟 ≤ 1

𝑑∗(𝑟) := − lim
𝜌→∞ log𝜌

𝑁∑
𝑀=1

𝑃out (𝑟∣𝒥𝑀 ) Pr {𝒥𝑀}

= (𝑁 − 1)(1− 2𝑟)+ + (1− 𝑟). (12)

We remark that by neglecting the rate loss due to the insertion
of CP, the DMT 𝑑∗(𝑟) in (12) is exactly the same as that for
synchronous relay networks [4], [9].

Theorem 1 is indeed very surprising because of the follow-
ing. Intuitively speaking, there are two kinds of diversity gains
to be expected in the asynchronous relay network. The first is
the cooperative diversity gain resulting from the cooperation
among (𝑁 − 1) relays and the source node. The second is
the frequency-selective diversity gain due to the different time
delays associated with the paths from the (𝑁 − 1) relays to
the destination node. It is then very surprising that these two
different kinds of diversity gains do not multiply in the DMT
expression (12), and the overall diversity gain remains the
same as that of the synchronous network. A simple explanation
of this can be seen from the PEP analysis at the point 𝑟 = 0
given by Shang and Xia in [5] where the time delay is
interpreted as a shift of column indices in a row of the code
matrix of a space-time trellis code. Since there are 𝑁 rows
in the matrix and the shifts cannot increase the rank of the
different matrix that is already at full rank 𝑁 , the maximal
diversity gain equals 𝑁 , which agrees with (12). It means
the extra frequency diversity gain cannot benefit the fully-
cooperated system. A similar observation can be obtained from
[17]. In particular, we remark that all the 2𝑄 subcarriers must
be jointly coded. Otherwise, for example if the subcarriers
are coded independently, then it can be seen from the PEP
analysis presented in [17] that the resulting diversity gain can
be as low as 1, instead of 𝑁 , when the difference matrix is
of rank 1.

IV. PROPOSED CONSTRUCTION OF DMT OPTIMAL CODES

In the previous section we have seen the very surpris-
ing result that the cooperative diversity gain and frequency-
selective diversity gain do not multiply in the asynchronous
NSDF protocol. Such a result suggests a certain means of
simplification in code design. Recall that in the synchronous
relay network, where one obtains only the cooperative diver-
sity gain, approximately universal space-time matrix codes [9],
[12] are used to achieve the optimal DMT performance. While
the same approximately universal matrix codes still can be
extended and applied to the asynchronous relay network to
achieve the same DMT optimality, it is worth thinking how to
obtain the other kind of diversity gain, namely, the frequency-
selective diversity gain, provided by the asynchronous nature
of the network. In [18], we reported that the DMT for a
SIMO multi-path fading channel with 𝐿 paths and 𝑛𝑟 receive
antenna is 𝐿𝑛𝑟(1− 𝑟), which somewhat resembles the DMT
of (12) (and is exactly in the same form as the DMT for
asynchronous OSDF protocol given in Section V). This gives

us some hint that by seeking only the naturally-provided
frequency diversity, one might be able to fully recover the
optimal DMT (12). One merit of this approach is that we
can use an extremely simple vector code that operates on
the asynchronous NSDF protocol to achieve the same DMT
optimality (12) as the complicated matrix code does.

The proposed vector code is much simpler and easier to
implement than the matrix code because of the following.
In the matrix code, each relay is associated with a specific
row of a code matrix. Hence the relays are distinguished
by their places of rows in a matrix, and each relay requires
a distinct encoder. This greatly complicates the fabrication
and the deployment of relays in practice. On the contrary,
when using the vector code, every node in the network
will transmit the same code vector. Therefore, there is no
need to distinguish the relays as well as the corresponding
encoders during fabrication. The relays will be distinguished
naturally by their locations of deployment through the different
time delays. This approach greatly reduces the complexity of
relay deployment and decoding, compared to the complicated
approximately universal matrix coding schemes.

Below, we present a systematic construction of vector codes
that can achieve the optimal DMT (12) promised by the NSDF
protocol in asynchronous relay networks. Given the number of
subcarriers 𝑄 and the multiplexing gain 𝑟, let 𝕃 be a number
field that is a cyclic Galois extension of 𝔽 = ℚ( 𝚤 ) of degree
2𝑄. By viewing 𝕃 as a vector space over 𝔽 with integral
basis {𝑒1, ⋅ ⋅ ⋅ , 𝑒2𝑄}, every element 𝑥 in 𝕃 can be represented
as 𝑥 =

∑2𝑄
𝑖=1 𝑎𝑖𝑒𝑖 for some 𝑎𝑖 ∈ 𝔽. Let 𝒜QAM(𝑆

2) ⊂ ℤ[ 𝚤 ]
be a set consisting of 𝑆2-QAM symbols, i.e., it is given by

𝒜QAM(𝑆
2) = {𝑎+ 𝑏 𝚤 : −𝑆 ≤ 𝑎, 𝑏 ≤ 𝑆, 𝑎, 𝑏 odd integers}

with set size equal to 𝑆2. As 𝕃/𝔽 is cyclic Galois, let 𝜎 be
the generator of the Galois group Gal(𝕃/𝔽); then the proposed
code is the following

𝒳 :=

{
𝑥 = 𝜃

[
𝑥, 𝜎(𝑥), ⋅ ⋅ ⋅ , 𝜎2𝑄−1(𝑥)

]⊤
:

𝑥 =

2𝑄∑
𝑖=1

𝑎𝑖𝑒𝑖 and 𝑎𝑖 ∈ 𝒜QAM(𝜌
𝑟)

}
. (13)

Obviously, ∣𝒳 ∣ = 𝜌2𝑟𝑄 achieves multiplexing gain 𝑟 in 2𝑄
channel uses, or equivalently, in two OFDM symbols, when
neglecting the rate-loss due to CP. The parameter 𝜃 should be
set to meet the power constraint (7). In particular, for the DMT
purpose it suffices to set 𝜃2

.
= 𝜌1−𝑟 at high SNR regime. With

the above, we propose the following transmission scheme.

1) Given 𝑥 ∈ 𝒳 , the source 𝑆 transmits 𝜃 ⋅ 𝜎𝑞(𝑥) at the
𝑞th subcarrier, 𝑞 = 0, 1, ⋅ ⋅ ⋅ , 𝑄−1, during the first half-
frame, or equivalently, the first OFDM symbol of length
𝑄.

2) For the second half-frame, 𝑆 transmits 𝜃 ⋅ 𝜎𝑞+𝑄(𝑥)
at the 𝑞th subcarrier, 𝑞 = 0, 1, ⋅ ⋅ ⋅ , 𝑄 − 1. Also, the
relays which have successfully decoded the transmitted
message based on the first half of 𝑥 at the end of the
first half-frame will send the second half of 𝑥, i.e.,
𝜃
[
𝜎𝑄(𝑥) ⋅ ⋅ ⋅𝜎2𝑄−1(𝑥)

]⊤
to 𝐷 during the second half-

frame.
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Thus, the relays are literally helping the source 𝑆 complete
the transmission of the last 𝑄 symbols of 𝑥. Unlike all the
previously proposed codes [8], [9], [12], here the same vector
code 𝒳 is used by the source 𝑆 and by all the relays {𝑅𝑛}.
This gives a great reduction in the decoding complexity at
the destination 𝐷, compared to that of the matrix codes.
Furthermore, our scheme completely removes the difficulty
in implementing the NSDF protocol since all the relays now
use the same codebook for re-encoding, and there is no need
to distinguish the relays.

It turns out that the proposed vector coding scheme is
optimal in terms of the DMT for asynchronous cooperative
networks. Specifically, we have the following theorem. The
proof will be given in the next section.

Theorem 2: In an asynchronous cooperative network with
(𝑁−1) relays, given the desired multiplexing gain 𝑟, 0 ≤ 𝑟 ≤
1, let 𝒳 be the vector code defined in (13). Then, following
the NSDF transmission scheme proposed above, the resulting
diversity gain equals

𝑑(𝑟) = (𝑁 − 1)(1− 2𝑟)+ + (1− 𝑟), (14)

at high SNR regime, provided that the time delays from the
relays to the destination are all distinct.

The condition of distinct time delays is crucial to Theorem
2. It is because in applying the vector code to the asynchronous
NSDF protocol, the code does not seek the cooperative
diversity gain, but seeks the diversity gain resulting from
frequency selectivity. Should some of the relays have the
same time delay, the available frequency-selective diversity
gain decreases. It then follows that the vector code cannot
achieve the same DMT (12) in Theorem 1. Nevertheless,
the possibility of having the same time delay in practical
cooperative networks is highly unlikely as the relays are
sparsely deployed and each has its own local oscillator. In
this sense, the condition of distinct time delays required by
Theorem 2 can be easily met. On the other hand, we remark
that the space-time codes presented in [5], [7], [12] always
achieve full diversity no matter the time delays are distinct or
not. So such codes may be helpful to relax the assumption of
the distinct time delays.

In Fig. 2 we present a simulation result to compare the
outage performance of the approximately universal matrix
code given in [8], [9], [12] and that of the proposed vector code
at the rate of two bits per channel use with (𝑁−1) = 3 relays
and 𝑄 = 16 subcarriers. We remark that the simulation result
holds for all approximately universal codes, regardless of the
underlying algebra and its basis. It is seen that the performance
degradation resulting from the proposed vector code which
seeks only the frequency diversity gain is negligible. It justifies
the DMT optimality of the proposed code given in Theorem
2.

A. Proof of DMT Optimality of the Proposed Code

Below we will provide a proof to the DMT optimality
achieved by the coding scheme 𝒳 using the proposed trans-
mission scheme under the assumption of distinct time delay.
We will analyze the diversity gains achieved by 𝒳 in the first
and the second phases, respectively. We remark that our proof
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Fig. 2. Outage Performance comparison between the approximately universal
(AU) matrix code given in [8], [9], [12] and the proposed vector code at rate
2 bits per channel use with (𝑁 − 1) = 3 relays and 𝑄 = 16 subcarriers
using asynchronous NSDF protocol.

of DMT optimality of the proposed vector coding scheme
is very different from those of cyclic-division-algebra-based
matrix codes [9]. The latter relies solely on the property of
being approximately universal [16]. The proof of Theorem
2 calls for more complicated arguments, especially in the
second phase. This is because here we have pushed the vector
codes to their extremes so that the resulting coding scheme
is much simpler and requires little complexity not only in the
fabrication and deployment of the relays, but also in decoding.
Diversity Gain in the First Phase: Given 𝑥 =

[
𝑥⊤1 𝑥⊤2

]⊤ ∈
𝒳 , where 𝑥1 and 𝑥2 are both of length 𝑄, during the
first transmission phase the source 𝑆 broadcasts to all the
remaining nodes the OFDM modulated signal of 𝑥1. Below we
will show that in the first phase the codeword error probability
𝑃cwe(𝑟, 𝑅𝑛) of code 𝒳 at relay 𝑅𝑛 is

𝑃cwe(𝑟, 𝑅𝑛)
.
= 𝜌−(1−2𝑟)+ , (15)

which agrees exactly with (8). Such a result follows naturally
from the fact that the proposed vector code 𝒳 is approximately
universal [15] when it is seen by an individual relay. Thus,
simply by the property of approximately universal the DMT
performance of the proposed code 𝒳 in this phase should be
exactly the same as that achieved by the Gaussian random
codebooks.

Having seen the above insight, below we briefly outline the
DMT analysis in this phase. Using the signal model (3), at
relay node 𝑅𝑛 the squared Euclidean distance between the
noise-free received signals associated with any pair of distinct
codewords 𝑥 ∕= 𝑥′ ∈ 𝒳 is given by

𝑑21(𝑥, 𝑥
′) = 𝜃2 ∣ℎ𝑛∣2

𝑄−1∑
𝑞=0

∣𝜎𝑞(𝑥− 𝑥′)∣2

for some 𝑥 ∕= 𝑥′ ∈ 𝒪𝕃 associated with 𝑥 and 𝑥′, respec-
tively. By 𝒪𝕃 we mean the ring of algebraic integers in 𝕃.
Repeatedly using the arithmetic-mean geometric-mean (AM-
GM) inequality and the fact that

∣∣𝑁𝕃/𝔽(𝑥 − 𝑥′)
∣∣ ≥ 1 as in
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[15], [19] it can be shown that

𝑑21(𝑥, 𝑥
′)≥̇ 𝜃2 ∣ℎ𝑛∣2

[
𝑄−1∏
𝑞=0

∣𝜎𝑞(𝑥 − 𝑥′)∣2
]1/𝑄

≥𝜃2 ∣ℎ𝑛∣2
[

1∏2𝑄−1
𝑞=𝑄 ∣𝜎𝑞(𝑥− 𝑥′)∣2

]1/𝑄

≥̇ 𝜃2 ∣ℎ𝑛∣2
⎡
⎣2𝑄−1∑

𝑞=𝑄

∣𝜎𝑞(𝑥 − 𝑥′)∣2
⎤
⎦
−𝑄

𝑄

≥̇𝜃2 ∣ℎ𝑛∣2 𝜌−𝑟. (16)

Set ∣ℎ𝑛∣2 = 𝜌−𝛾𝑛 ; then using arguments similar to those in
[15], [19] it can be shown that the codeword error probability
𝑃cwe(𝑟, 𝑅𝑛) is upper bounded by

𝑃cwe(𝑟, 𝑅𝑛) ≤̇ Pr {𝛾𝑛 ≥ 1− 2𝑟} .
= 𝜌−(1−2𝑟)+ .

It agrees exactly with (8). Thus, we conclude that 𝒳 achieves
the optimal DMT performance in the first phase. Furthermore,
let 𝒥𝑀 denote the event of (𝑀 − 1) relays participating in
the second-phase transmission, and it is easy to see that the
probability of event 𝒥𝑀 is the same as (9).

Diversity Gain in the Second Phase: The DMT analysis of
the second phase transmission is more complicated than that of
the first as the previous approximately-universal insight cannot
be carried over to the present case completely. To elaborate,
the conventional approximately universal matrix codes [9],
[12] seek to achieve both the cooperative and frequency
selective diversity gains at the same time. But, the vector code
𝒳 , though being approximately universal as well, seeks only
the latter. Nevertheless, from the remark of Theorem 1 we have
already seen that the two diversity gains do not multiply in
the asynchronous network. It is, therefore, possible to rely on
only the frequency selective diversity gain to achieve the same
DMT optimality. Such a concept is realized by the proposed
coding scheme 𝒳 as we will see in subsequent discussions.

In a nutshell, the DMT performance analysis provided
below is an investigation of the frequency-selective diversity
gain achieved by 𝒳 . Let {𝑅𝑖1 , ⋅ ⋅ ⋅ , 𝑅𝑖𝑀−1} be the (𝑀 − 1)
relays which have successfully decoded the first half of 𝑥
during the first phase and are participating in the transmission
of the second phase. According to our proposed scheme, the
same second half of 𝑥 will be used by all the relays 𝑅𝑖𝑚 as
well as by the source node 𝑆 for information transmission
to the destination node 𝐷 in this phase; hence, there is no
need to re-encode using different codebooks. Now using the
signal model (6), the received signal at the 𝑞th subcarrier at
destination node 𝐷 in the second phase is given by

𝑦2,𝑞 =

[
𝑔1𝜁

−𝑞⋅𝜏1
𝑄 +

𝑀−1∑
𝑚=1

𝑔𝑖𝑚𝜁
−𝑞⋅𝜏𝑖𝑚
𝑄

]
𝑥2,𝑞 + 𝑤2,𝑞,

where 𝑥2 = [𝑥2,0 ⋅ ⋅ ⋅𝑥2,𝑄−1]
⊤ and 𝑥2,𝑞 = 𝜃 ⋅ 𝜎𝑄+𝑞(𝑥).

Again, for any pair of distinct codewords 𝑥 ∕= 𝑥′ ∈ 𝒳 ,
the squared Euclidean distance between the noise-free signals

𝑦 =
[
𝑦⊤
1
𝑦⊤
2

]⊤
associated with 𝑥 and 𝑥′ is given by

𝑑22(𝑥, 𝑥
′) = 𝜃2 ∣𝑔1∣2

𝑄−1∑
𝑞=0

∣𝜎𝑞(𝑥− 𝑥′)∣2

+ 𝜃2
𝑄−1∑
𝑞=0

∣ℓ𝑞+𝑄∣2
∣∣𝜎𝑞+𝑄(𝑥− 𝑥′)

∣∣2 , (17)

where we have set

ℓ𝑞+𝑄 := 𝑔1𝜁
−𝑞⋅𝜏1
𝑄 +

𝑀−1∑
𝑚=1

𝑔𝑖𝑚𝜁
−𝑞⋅𝜏𝑖𝑚
𝑄 . (18)

It should be noted that the ℓ𝑞’s are statistically correlated with
each other due to the frequency-selectiveness through (18).

a) The Case when 𝑀 = 1: First we consider the case
when no relays participate in the second phase, i.e., it is the
case of 𝑀 = 1 and corresponds to the event 𝒥1 discussed in
Section III. In this case, we see from (18) that ℓ𝑞 = 𝑔1𝜁

−𝑞⋅𝜏1
𝑄 ;

hence, the same AM-GM type arguments show

𝑑22(𝑥, 𝑥
′) = 𝜃2 ∣𝑔1∣2

[
2𝑄−1∑
𝑞=0

∣𝜎𝑞(𝑥− 𝑥′)∣2
]

≥̇ 𝜃2 ∣𝑔1∣2
[
2𝑄−1∏
𝑞=0

∣𝜎𝑞(𝑥− 𝑥′)∣2
] 1

2𝑄

≥̇ 𝜃2 ∣𝑔1∣2 .
= 𝜌1−𝑟−𝛼, (19)

where the second inequality follows again from∣∣𝑁𝕃/𝔽(𝑥− 𝑥′)
∣∣ ≥ 1 and where we have set ∣𝑔1∣2 = 𝜌−𝛼.

Now following an argument similar to (15), it can be shown
that 𝑃cwe (𝑟∣𝒥1) ≤̇ 𝜌−(1−𝑟)+ , which agrees exactly with the
third case of 𝑑𝑀 (𝑟) in (11).

b) The Case when 𝑀 > 1: The proof for the case of
𝑀 > 1 is more complicated. For ease of understanding, we
break the proof into two lemmas. We first show the following
lemma.

Lemma 3: Given the event 𝒥𝑀 , the codeword error prob-
ability in the second phase is upper bounded by the channel
outage probability of the corresponding frequency-selective
channel, i.e.,

𝑃cwe (𝑟∣𝒥𝑀 ) ≤ 𝑃FS,out (𝑟∣𝒥𝑀 )

:= Pr

{
2𝑄−1∑
𝑞=0

log
(
1 + 𝜌 ∣ℓ𝑞∣2

)
≤ 2𝑟𝑄 log 𝜌

}
,

(20)

where we have set ℓ𝑞 = 𝑔1 for 𝑞 = 0, 1, ⋅ ⋅ ⋅ , 𝑄− 1.
Proof: See Appendix A.

Intuitively, the result of (20) is more-or-less to be expected
since the proposed code scheme 𝒳 is approximately universal
[15]. Hence, 𝒳 should be able to achieve an error performance
that is upper bounded by the outage probability of underlying
channel, which turns out to be frequency-selective due to our
proposed transmission scheme.

The next step is to analyze the channel outage probability
(20), and we aim to show the following.
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Lemma 4: Given event 𝒥𝑀 , the channel outage probability
is upper bounded by

𝑃FS,out (𝑟∣𝒥𝑀 ) ≤̇ 𝜌−𝑑𝑀 (𝑟),

where 𝑑𝑀 (𝑟) is given in (11).
Proof: For ease of reading, the proof is relegated to

Appendix B.

Lemma 4 shows the frequency-selective diversity gain
achieved by the code 𝒳 is sufficient to compensate for its
loss in cooperative diversity gain. Once Lemma 4 is obtained,
combining it with Lemma 3 gives 𝑃cwe (𝑟∣𝒥𝑀 ) ≤̇ 𝜌−𝑑𝑀(𝑟),
which agrees with (10). Then the proof of Theorem 2 is
complete.

V. OFDM-BASED ASYNCHRONOUS COOPERATIVE

NETWORK USING OSDF PROTOCOL

In this section, we will extend our results to the asyn-
chronous OSDF protocol. Borrowing notations from Section
II, the signals at the 𝑞th subcarrier received respectively by
the relays and the destination during the first and the second
phases of the OSDF protocol are given by

𝑟𝑛,𝑞 = ℎ𝑛𝜁
−𝑞𝜈𝑛
𝑄 + 𝑧𝑛,𝑞,

𝑦1,𝑞 = 𝑔1𝜁
−𝑞𝜏1
𝑄 𝑥𝑞 + 𝑤1,𝑞,

𝑦2,𝑞 =

𝑀−1∑
𝑚=1

𝑔𝑖𝑚𝜁
−𝑞𝜏𝑖𝑚
𝑄 𝑠𝑖𝑚,𝑞 + 𝑤2,𝑞.

As the only difference lies in 𝑦2,𝑞 , the diversity gain achieved
in the first phase is the same as that in the NSDF protocol,
i.e., Pr{𝒥𝑀} is the same as (9). With regard to the second
phase, the probability that the destination 𝐷 is in outage and
therefore fails to recover the message given 𝒥𝑀 is

𝑃out (𝑟∣𝒥𝑀 ) = Pr

{
log

(
1 + 𝜌 ∣𝑔1∣2

)

+ log

(
1 + 𝜌

𝑀−1∑
𝑚=1

∣𝑔𝑖𝑚 ∣2
)

≤ 2𝑟 log 𝜌

}
.
= 𝜌−𝑑𝑜

𝑀 (𝑟).

It can be shown

𝑑𝑜𝑀 (𝑟) =

⎧⎨
⎩

𝑀(1− 2𝑟)+ + 2𝑟, if 0 ≤ 𝑟 ≤ 1
2 and 𝑀 > 1,

2(1− 𝑟), if 1
2 ≤ 𝑟 ≤ 1 and 𝑀 > 1,

(1 − 2𝑟)+, if 0 ≤ 𝑟 ≤ 1 and 𝑀 = 1.
(21)

Thus, combining (9) and (21) yields the following theorem.
Theorem 5: In an asynchronous cooperative network with

(𝑁 − 1) relays, the diversity gain achieved by the OSDF
protocol at multiplexing gain 𝑟 is 𝑑𝑜(𝑟) = 𝑁(1 − 2𝑟)+ for
0 ≤ 𝑟 ≤ 1

2 .
Again, we note that the above conclusion is drawn under the

neglect of rate loss due to CP. Compared with the NSDF asyn-
chronous DMT given in (12), we see the maximal multiplexing
gain achieved by asynchronous OSDF protocol is 1

2 while a
full multiplexing gain of 1 can be maintained in asynchronous

Fig. 3. Comparison of the DMTs of the asynchronous NSDF and OSDF
protocols with (𝑁 − 1) = 3 relays.

NSDF protocol. The decrease in maximal multiplexing gain in
OSDF protocol is because the source ceases to transmit new
information to destination in the second phase transmission.
A comparison between these two DMTs is given in Fig. 3.

For code construction, below we will show that the same
code 𝒳 given in (13) can be used for OSDF protocol
and achieves the optimal DMT 𝑑𝑜(𝑟). Specifically, given
𝑥 = 𝜃[𝑥, 𝜎(𝑥), ⋅ ⋅ ⋅ , 𝜎2𝑄−1(𝑥)]⊤ ∈ 𝒳 , the source 𝑆 broad-
casts the OFDM symbol 𝜃[𝑥, 𝜎(𝑥), ⋅ ⋅ ⋅ , 𝜎𝑄−1(𝑥)]⊤ to all
the relays and the destination in the first phase. The relays
which have successfully decoded 𝑥 based on the observations
in the first phase will transmit the second half of 𝑥, i.e.,
𝜃[𝜎𝑄(𝑥), ⋅ ⋅ ⋅ , 𝜎2𝑄−1(𝑥)]⊤ to 𝐷 in the second phase.

As the difference lies only in the second phase, the diversity
result of the first phase holds the same as (15), or equivalently,
(9). Regarding the second phase, it is clear that in event 𝒥1,
i.e., 𝑀 = 1, no relays will participate in the second-phase
transmission as they all fail to decode the message; hence, the
resulting codeword error probability is the same as that in the
NSDF protocol, and we have

𝑃cwe (𝑟∣𝒥1)
.
= 𝜌−(1−2𝑟)+ . (22)

For 𝑀 > 1, we redefine the ℓ𝑞’s as

ℓ𝑞 =

⎧⎨
⎩

ℓ𝑞 = 𝑔1𝜁
−𝑞⋅𝜏1
𝑄 , if 0 ≤ 𝑞 < 𝑄,

∑𝑀−1
𝑚=1 𝑔𝑖𝑚𝜁

−𝑞⋅𝜏𝑖𝑚
𝑄 , if 𝑄 ≤ 𝑞 < 2𝑄.

Following similar arguments as in Section IV-A we get

𝑃cwe(𝑟∣𝒥𝑀 ) ≤ Pr

{
2𝑄−1∑
𝑞=0

log𝜌

(
1 + 𝜌 ∣ℓ𝑞∣2

)
≤ 2𝑟𝑄

}

≤̇
∑

𝑟1+𝑟2≤2𝑟
𝑟1,𝑟2≥0

∑
𝑆∈𝒮

𝜌−(1−𝑟1)
+−(𝑀−1)(1−𝑟2)

+

.
= sup

𝑟1+𝑟2≤2𝑟
𝜌−(1−𝑟1)

+−(𝑀−1)(1−𝑟2)
+

. (23)
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For general 𝑀 , after combining (22) and (23) it is straightfor-
ward to show 𝑃cwe(𝑟∣𝒥𝑀 ) ≤̇ 𝜌−𝑑𝑜

𝑀(𝑟), where 𝑑𝑜𝑀 (𝑟) is defined
in (21). We summarize the above in the following theorem.

Theorem 6: The proposed vector code 𝒳 (13) is DMT
optimal for asynchronous OSDF protocol.

VI. CONCLUSION

In this paper we had presented the DMTs for the asyn-
chronous cooperative network using NSDF and OSDF proto-
cols, respectively. It was seen that using OFDM modulation
and neglecting the rate loss due to CP, the DMTs are the
same as those in the synchronous network. By seeking only
the frequency selective diversity naturally provided by the
asynchronous network, two optimal vector codes were pro-
posed and were shown to achieve the optimal DMTs of these
two asynchronous protocols, respectively. As the same vector
code is used by all transmitting nodes, the proposed scheme
is extremely simple compared to the complicated matrix
codes reported in [8], [9], [12]. These vector codes offer a
significant complexity reduction in not only the fabrication and
deployment of replays, but also the decoding at destination.

APPENDIX

A. Proof of Lemma 3

To quickly outline a proof of Lemma 3, we set ℓ𝑞 =
𝑔1 for 𝑞 = 0, ⋅ ⋅ ⋅ , 𝑄 − 1 and we will be working with
the ℓ𝑞’s. First, we re-order the ℓ𝑞’s such that ∣ℓ𝑗0 ∣2 ≤
∣ℓ𝑗1 ∣2 ≤ ⋅ ⋅ ⋅ ≤ ∣∣ℓ𝑗2𝑄−1

∣∣2 , where {𝑗0, 𝑗1, ⋅ ⋅ ⋅ , 𝑗2𝑄−1} =
{0, 1, ⋅ ⋅ ⋅ , 2𝑄 − 1}. We then rewrite (17) as 𝑑22(𝑥, 𝑥

′) =∑2𝑄−1
𝑞=0 𝜃2

∣∣ℓ𝑗𝑞 ∣∣2 ∣∣𝜎𝑗𝑞 (𝑥− 𝑥′)
∣∣2 . It should be noted that∣∣ℓ𝑗2𝑄−1

∣∣2 > 0 with probability 1. Set
∣∣ℓ𝑗𝑞 ∣∣2 = 𝜌−𝛼𝑗𝑞 .

Following similar techniques as in (16) it can be shown that
for any 0 ≤ 𝐾 ≤ 2𝑄− 1,

𝑃cwe (𝑟∣𝒥𝑀 ) ≤ Pr

{
2𝑄−1∑

𝑞=2𝑄−𝐾

(
1− 𝛼𝑗𝑞

) ≤ 2 𝑟𝑄,

1 ≤ 𝐾 ≤ 2𝑄− 1, 𝛼𝑗0 ≥ ⋅ ⋅ ⋅ ≥ 𝛼𝑗2𝑄−1

}
.

Note the above event is the same as the event {𝛼𝑗0 ≥ ⋅ ⋅ ⋅ ≥
𝛼𝑗2𝑄−1 ≥ 0 :

∑2𝑄−1
𝑞=0

(
1− 𝛼𝑗𝑞

)+ ≤ 2𝑟𝑄} [15] and this
proves Lemma 3.

B. Proof of Lemma 4

For simplicity, we first define the following two random
variables,

𝑇1 :=

𝑄−1∑
𝑞=0

log
(
1 + 𝜌 ∣ℓ𝑞∣2

)
= 𝑄 log

(
1 + 𝜌 ∣𝑔1∣2

)
,

𝑇2 :=

2𝑄−1∑
𝑞=𝑄

log
(
1 + 𝜌 ∣ℓ𝑞∣2

)
.

With the above, we have the following series of upper bounds
on the outage probability.

𝑃FS,out (𝑟∣𝒥𝑀 ) = Pr {𝑇1 + 𝑇2 ≤ 2 𝑟𝑄 log 𝜌}

≤
∑

𝑟1+𝑟2≤2𝑟
𝑟1,𝑟2≥0

Pr {𝑇1 ≤ 𝑟1𝑄 log 𝜌, 𝑇2 ≤ 𝑟2𝑄 log 𝜌}

(𝑎)

≤
∑

𝑟1+𝑟2≤2𝑟
𝑟1,𝑟2≥0

Pr

{
𝑇1 ≤ 𝑟1𝑄 log 𝜌, and

∪
𝑆∈𝒮

{𝑀−1∑
𝑖=1

log
(
1 + 𝜌 ∣ℓ𝑠𝑖 ∣2

)
≤ 𝑟2(𝑀 − 1) log 𝜌

}}

(𝑏)

≤
∑

𝑟1+𝑟2≤2𝑟
𝑟1,𝑟2≥0

∑
𝑆∈𝒮

Pr

{
𝑇1 ≤ 𝑟1𝑄 log 𝜌, and

𝑀−1∑
𝑖=1

log
(
1 + 𝜌 ∣ℓ𝑠𝑖 ∣2

)
≤ 𝑟2(𝑀 − 1) log 𝜌

}
, (24)

where 𝒮 := {𝑆 = {𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑀−1} : 𝑆 ⊆ {𝑄, ⋅ ⋅ ⋅ , 2𝑄− 1}}
is the collection of all (𝑀 − 1)-subsets. (a) follows from if
𝑇2 ≤ 𝑟2𝑄 log 𝜌, then there must exist an (𝑀 − 1)-subset of
the 𝑄 summands in 𝑇2 whose sum is ≤ 𝑟2(𝑀 − 1) log 𝜌. (b)
is the standard union-bound inequality.

To analyze each summand in (24), given any 𝑆 =
{𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑀−1} ∈ 𝒮 we define

ℓ𝑆 :=
[
ℓ𝑠1 ⋅ ⋅ ⋅ ℓ𝑠𝑀−1

]⊤
,

𝑔 :=
[
𝑔𝑖1 ⋅ ⋅ ⋅ 𝑔𝑖𝑀−1

]⊤
,

𝜇
𝑆
:=

[
𝜁−𝑠1𝜏1
𝑄 ⋅ ⋅ ⋅ 𝜁−𝑠𝑀−1𝜏1

𝑄

]⊤
.

Then by (18) the random variables ℓ𝑠𝑖 ’s involved in (24) can
be rewritten as a random vector

ℓ𝑆 = 𝐶𝑆 𝑔 + 𝑔1𝜇𝑆 ,

where the (𝑝, 𝑞)th entry of the ((𝑀 − 1)× (𝑀 − 1)) matrix

𝐶𝑆 is (𝐶𝑆)𝑝,𝑞 = 𝜁
−(𝑠𝑖𝑝−𝑄)𝜏𝑖𝑞
𝑄 = 𝜁

−𝑠𝑖𝑝 𝜏𝑖𝑞
𝑄 , 1 ≤ 𝑝, 𝑞 ≤𝑀 − 1.

Clearly, 𝐶𝑆 is a matrix of Vandermonde type. 𝐶𝑆 has full
rank of (𝑀 − 1) since the time delays 𝜏𝑛 are all distinct.
Furthermore, the complex Gaussian random vector ℓ𝑆 has
mean 0 and covariance matrix

𝐾ℓ𝑆
= 𝔼ℓ𝑆ℓ

†
𝑆 = 𝐶𝑆𝐶

†
𝑆 + 𝜇

𝑆
𝜇†
𝑆
= 𝑈𝑆Λ𝑆𝑈

†
𝑆 ,

where 𝑈𝑆 = [𝑢𝑚,𝑚′ ] is an (𝑀 − 1) × (𝑀 − 1) unitary
matrix and Λ𝑆 = diag (𝜆1, ⋅ ⋅ ⋅ , 𝜆𝑀−1) are the eigenvalues
of 𝐾ℓ𝑆

with 0 < 𝜆𝑚
.
= 𝜌0 for all 𝑚 = 1, ⋅ ⋅ ⋅ ,𝑀 − 1. By

the simulation of complex Gaussian random vectors we set
ℓ𝑆 = 𝑈𝑆

√
Λ𝑆 𝑣, where 𝑣 = [𝑣1, ⋅ ⋅ ⋅ , 𝑣𝑀−1]

⊤ is a length-
(𝑀 − 1) random vector with i.i.d. ℂ𝒩 (0, 1) entries. It then
follows that

𝑀−1∑
𝑖=1

log
(
1 + 𝜌 ∣ℓ𝑠𝑖 ∣2

)

=

𝑀−1∑
𝑖=1

log

(
1 +

∣∣∣∣(𝑈𝑆

√
𝜌Λ𝑆 𝑣

)
𝑖

∣∣∣∣
2)

=

𝑀−1∑
𝑖=1

log

(
1 +

∣∣∣∣(𝑈𝑆
√
𝜌 𝑣)𝑖

∣∣∣∣
2)

+𝑂(1),
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where the 𝑂(1) term follows from the eigenvalues 𝜆𝑚
.
= 𝜌0.

Substituting the above result into (24) yields

Pr

{(
1 + 𝜌 ∣𝑔1∣2

)
≤ 𝑟1 log 𝜌, and

𝑀−1∑
𝑖=1

log
(
1 + 𝜌 ∣ℓ𝑠𝑖 ∣2

)
≤ 𝑟2(𝑀 − 1) log 𝜌

}

(𝑎).
= Pr

{(
1 + 𝜌 ∣𝑔1∣2

)
≤ 𝑟1 log 𝜌, and

𝑀−1∑
𝑖=1

log
(
1 + 𝜌 ∣(𝑈𝑆 𝑣)𝑖∣2

)
≤ 𝑟2(𝑀 − 1) log 𝜌

}

(𝑏).
= Pr

{(
1 + 𝜌 ∣𝑔1∣2

)
≤ 𝑟1 log 𝜌, and

𝑀−1∑
𝑖=1

log
(
1 + 𝜌 ∣𝑣𝑖∣2

)
≤ 𝑟2(𝑀 − 1) log 𝜌

}

(𝑐).
= 𝜌−(1−𝑟1)

+−(𝑀−1)(1−𝑟2)
+

, (25)

where (a) follows from dropping the 𝑂(1) term, (b) is because
𝑣 and 𝑈𝑆 𝑣 are of the same statistical distribution, and (c) is
due to the point-to-point multi-block DMT [11], [15]. Finally,
combining results of (24), and (25), we see that given 𝒥𝑀 ,
the channel outage probability is upper-bounded by

𝑃FS,out (𝑟∣𝒥𝑀 ) ≤
∑

𝑟1+𝑟2≤2𝑟
𝑟1,𝑟2≥0

∑
𝑆∈𝒮

𝜌−(1−𝑟1)
+−(𝑀−1)(1−𝑟2)

+

.

Hence the corresponding diversity gain at the second phase is
given by

inf
𝑟1+𝑟2≤2𝑟

{
(1 − 𝑟1)

+ + (𝑀 − 1)(1− 𝑟2)
+
}

=

{
𝑀(1− 2𝑟)+ + 2𝑟, if 0 ≤ 𝑟 ≤ 1

2 , and 𝑀 > 1,
2(1− 𝑟), if 1

2 ≤ 𝑟 ≤ 1, and 𝑀 > 1.

This agrees exactly with the first two cases in (11). Now
the proof of Lemma 4 is complete.
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