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A modified instantaneous control algorithm with time-delay con- 
sideration for the active control of structures is developed in dis- 
crete-time formulation. The shift-invariant feedback gain matrix is 
obtained through an optimization process such that a prescribed 
instantaneous quadratic performance index is minimized. The 
effect of time-delay is taken into consideration by introducing a 
compensation scheme where the feedback gain matrix for the ideal 
control system is modified by the effective system matrix. It is 
proved that the real control system with time-delay compensation 
conserves the eigen-properties of the ideal control system with no 
time-delay. In the presence of time-delay, the equation of motion 
of the discrete-time control system remains a set of difference 
equations which makes the evaluation of the control system simple 
and straightforward. The feasibility of the proposed control algor- 
ithm is verified numerically through eigenvalue, frequency-domain 
and time-domain analyses by the tendon control of a structure. 
With the proposed control algorithm, the control system is still 
effective in spite of the presence of time-delay. © 1997 Elsevier 
Science Ltd. All rights reserved. 
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1. Introduction 

The impacts of control technology on different fields of 
engineering and the lives of mankind have been witnessed 
worldwide. In the civil engineering community, without 
exception, the topic of active control for dynamic response 
reduction originated by Yao ~ has become one of the domi- 
nant research fields since the 1970s 2-5. It is very encour- 
aging that the research area has now reached the stage of 
full-scale implementation 6 9. Meanwhile, further research 
efforts are still needed to thoroughly solve practical prob- 
lems in the implementation of control systems, such as the 
discrete-time nature of the control environment, time-delay 
effects, limited numbers of sensors and controllers, avail- 
ability of energy source, and reliability issues etc., before 
widespread applications of this novel technology become 
possible. 

Various control strategies have been proposed. Among 

them optimal control law is undoubtedly the most stringent 
and sound criteria for control design, by which the control 
signal is determined by minimizing a quadratic perform- 
ance index over a sufficiently long period of time ~°. The 
effectiveness of this algorithm for seismic response control 
of structures has been verified by Yang et al. ~j Yet, the 
complexity of solving the nonlinear system of Riccati equa- 
tions has discouraged most civil engineers from appreciat- 
ing this innovation. In an attempt to simplify the task of 
control design, Yang ~2 later proposed the instantaneous 
optimal control algorithm that avoids the trouble of solving 
the Riccati equation while conserving equivalent control 
efficiency. 

Almost all the control systems are now incorporated with 
a digital computer for both online calculation and data 
acquisition. This motivates not only the discrete-time for- 
mulation of the aforementioned control algorithms but also 
the development of new digital control strategies t3. With 
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the introduction of the digital computer, all information, 
including input control forces and output measurements, is 
basically discrete-time in nature. Therefore, it is more logi- 
cal and more realistic to formulate the control system in 
the discrete-time fashion. 

Prior experimental studies indicated that time-delay 
results in degradation of  the system performance and may 
lead to instability. Efforts for time-delay compensation 
have been made mainly through modification of the feed- 
back gains based on the principle of phase-shift H,t5 or 
through response prediction of the delayed states by either 
kinematic or dynamic approaches ~6. The former method 
needs to be performed in the phase space of modal coordi- 
nates. Unavoidable numerical errors would be accumulated, 
as the order of  the system grows, during back and forth 
transformations of  the states between physical and modal 
domains, and which would somehow abate the effect of 
compensation. The latter method uses either the truncated 
Taylor 's  expansion or the online solution of the system's 
equation for response forecasting. These approaches have 
been shown to be sensitive to the noise present in the sys- 
tem as reported in Reference 16. Other than the above men- 
tioned strategies, an interesting experimental study by 
Abdel-Mooty and Roorda w proposed a compensation 
scheme based on response sampling, curve fitting, and 
extrapolation for vertical vibration control of a simple 
bridge model. In their study the ideal feedback gains were 
used and the lagged responses were predicted through a 
filtering process. Only single mode control was considered 
in the tests and no spillover effect was observed for the 
uncontrolled modes. In the presence of  time-delay, the gov- 
erning equation of the active structural control system 
becomes a differential-difference equation instead of the 
original differential equation. The analytical method for the 
evaluation of the stability of the control system is limited 
to single-degree-of-freedom structures t~. 

In this paper, a modified instantaneous control algorithm 
is developed for the dynamic response control of  structures. 
The proposed algorithm is derived based on the concept of  
instantaneous controP -~ under a discrete-time framework in 
which first-order discretization of the continuous-time func- 
tion is considered. The effect of  time-delay is taken into 
consideration and a feedback compensation scheme is pre- 
sented by simply modifying the gain matrix with the effec- 
tive system matrix. Unlike the continuous-time system, the 
effects of  time-delay for the discrete-time control system 
can be easily accommodated in the difference equation and 
thereby assessed in a more elegant fashion, for a broader 
category of structures. It is proved through eigenvalue 
analysis that the real control system with time-delay com- 
pensation conserves the properties of  the ideal control sys- 
tem with no time-delay. The effectiveness of  the proposed 
control law with time-delay compensation is confirmed 
through numerical simulations. 

2 .  C o n t r o l  a l g o r i t h m  

When an n-degree-of-freedom (DOF) discrete-parameter 
structural system is subjected to environmental loads w(t)  
and counteracted by control forces u(t), its governing e q u  
ation can be taken as 

the n x n mass, damping and stiffness matrix, respectively, 
B is the n x p location matrix of control forces, and E is 
the n × q location matrix of  external loads. Represented in 
state-space form, the second-order differential equation ( 1 ) 
is changed to a first-order differential equation as 

z(t) = A,z( t )  + B,u( t )  + E,w(t )  (2) 

where 
F 1 

z(t) = [x ( t ) l  is the 2n x 1 state vector 
Lx(t)A 

I ° ' ]  A, = - M  ]K - M  ]C is t h e 2 n x 2 n  system matrix 

. = [ : . ]  i, control matr,  

i,t e    lo=matrix 

The control system described by the state equation (2) is 
linear and time-invariant so that its solution takes the form 

~ t ~  

= ~ c A ( t 2  - r )  Z(t2) eA'<'2-qlz(tl) + [B,u('r) 
J / I  

+ E~.w(r)]d'r 

(3) 

where t] and t 2 are any two time instants. During real-time 
control, suppose all information for the online calculation 
of control forces is sampled with period At and the control 
forces are calculated once every sampling period. Between 
two consecutive sampling instants, ( k -  1)At and kAt, the 
only available information about the control forces is 
u((k  - 1 )At) and u(kAt)  and the only available information 
about the external loads is w((k - 1 )At) and w(kAt).  There- 
fore, it is reasonable to assume that the control forces and 
external loads are linear between two consecutive sampling 
instants as 

z - ( k  -1 )A tu[kAt] ,  k A t -  z u[(k  - 1)At] + (4a) 
u ( r )  - At At 

( k -  1 ) A t ~  z <  kAt 

k A t -  "c 
w ( r ) =  At w [ ( k -  1)At] + T - ( k -  !)Atw[kAt] ' (4b) 

At 

( k - l ) A t ~  T < k A t  

When t~ = (k - 1)At, t2 = kAt, z[k] = z(kAt), u[k] = u(kAt)  
and w[k] = w(kAt)  are assigned, from equation (3), the 
analytical solution to the state equation (2) is a difference 
equation as 

z [ k ]  = A z [ k  - 1 ] + B o u [ k  - 1 ] + n l U [ k  ] 

+ Eow[k - 1 ] + ElW[k  ] 

(5) 

M£(t )  + Ck(t)  + Kx(t)  = Bu( t )  + Ew( t )  ( 1 ) where 

where x( t )  is the n x 1 displacement vector, M, C, K are A = 8 A . 6 ,  is the 2n x 2n discrete-time system matrix 
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Figure I 3DOF model structure with control device 

[ ,2  ] Bo = AsIA + A ? S  ( l - A )  B,. is the 2 n x p  discrete- 

time control matrix of the previous time step 

Bt = -As  ~ + A ? ~  ( A - I )  B,. is the 2 n x p  discrete- 

time control matrix of the current time step 

Eo = A,.]A + A ? S  ( I - A )  E~. is the 2n x q discrete- 

time load matrix of the previous time step 

[ 1 2  ] 
Et = -A2 ~ + A ?  2 ( A - I )  Ec is the 2n × q discrete- 

time load matrix of the current time step 

As a whole, it is more logical and more realistic for the 
structural control system to be modelled in a discrete- 
time fashion. 

The current active control forces are found such that the 
quadratic objective function 

J[k] = zr[k]Qz[k] + ur[k]Ru[k] (6) 

is minimized. In the above equation, Q is the 2n × 2n sym- 
metric positive semidefinite weighting matrix for the 
responses, R is the p × p  symmetric positive definite 
weighting matrix for the input control forces, and 
superscript T denotes transposition of a matrix. 

With instantaneous control law, the optimization prob- 
lem is: searching for the optimal control forces u[k] that 
minimize the performance index J[k] in equation (6) sub- 
ject to the constraint of the discrete-time state equation (5). 
Incorporated with the constraint equation (5), the Lagrang- 
ian J '  can be defined as 

f =  zV[k]Qz[k] + uT[k]Ru[k] + Ar[k]{Az[k - 1] 

+ B o u [ k -  1] +Bju[k]+Eow[k-  1] +E]w[k] (7) 

- z[k]} 

where A[k] is the 2n × 1 Lagrangian multiplier vector. 

:> 

Because the performance index is quadratic, and Q and R 
are positive semidefinite and positive definite matrices, 
respectively, the necessary and sufficient conditions for the 
minimization of the Lagrangian J '  are 

oJ'[k] 
Oh[k] 

ay'[k] 

az[ k ] 

aJ'[k] 

au[k] 

- A z [ k -  1] + Bou[k-  1] + B~u[k] (8) 

+ Eow[k-  1] +E~w[k] - z[k]  = 0 

- 2Qz[k] - A[k] = 0 (9) 

- 2Ru[k] + B~A[k] = 0 (10) 

From equation (9), the Lagrangian multipliers A[k] are lin- 
early related with the states as 

h[k] = 2Qz[k] ( 11 ) 

From equation (10), the control forces are linearly related 
with the Lagrangian multipliers A[k] as 

1 i T 
u[k] = - 2  R-  B~A[k] (12) 

By substituting equation (11 ) into (12), the control forces 
are in turn linearly related to the states as 

u[ k ] = -R- '  BrQz[ k ] = Gz[ k ] (13) 

where G = -R-tB~Q is the p x 2n feedback gain matrix 
which is a constant matrix. The control forces u[k] are sim- 
ply generated from the structural states z[k] multiplied by 
the precalculated constant feedback gain matrix G. 

3. T i m e - d e l a y  c o m p e n s a t i o n  

The discrete-time control system described by the state equ- 
ation (5) has been idealized where the control forces u[k] 
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Table 1 System parameters of 3DOF control system 

System parameter Parameter value 
(1) (2) 

Mass matrix, M (kg) [981 0 

981 

0 

Stiffness matrix, K (N/m) [2741 700 
/ 
-1 641 600 

L369 100 

Damping matrix, C (N-s/m) [382.8 -57.3 

/ 57.3 456.9 

L61.7 -2.6 

Modal frequencies, f(Hz) 12"24 1 

16.8o / 
L11.49] 

Modal damping ratios, ~'(% ) [1.611 
/ / /o.39/ 
L0.36J 

Control force location matrix, B [il 

External load location matrix, E [-981] 
/ / F981 / 
L-981J 

Tendon stiffness, kc (N/m) 372 100 

Tendon inclination, a (°) 36 

Response weighting matrix, O [O K O] 

Control weighting matrix, R 13 
16kccos%~ 

Control weighting factor, /3 0.25 

i81] 
-1 641 600 

3022200 

-1 624800 

61.7 1 

369100 1 
1624800 / 

1333600 J 

can be applied to the structure simultaneously as the states 
z[k] are measured. In practice, time has to be consumed 
during data conditioning, online calculation and control 
force application. Taking time-delay into consideration, the 
state equation (5) becomes 

z[k] = A z [ k -  1] + B o u [ k - 1 -  1] + B~u[k- l ]  

+ E o w [ k -  1] + Etw[k] 

(14) 

Following the optimization procedures stated in the pre- 
vious section, the necessary and sufficient conditions for 
the minimization of the performance index (15) are 

aJ'[k] 

M ' l k ]  

where 1 is the number of delayed time steps. The appli- 8z[k] 
cation of the control forces u[k] lags the measurement of 

M'[k] the state variables z[k] by lAt. With time-delay, the instant 
performance index (equation (6)) becomes Ou[k- I ]  

= A z [ k -  1] + B o u [ k - l -  11 + B ~ u [ k - l ]  (16) 

+ E o w [ k -  1] + E~w[k] - z[k] = 0 

= 2Qz[k] - A[k] = 0 (17) 

= 2 R u [ k -  l] + B~A[k] = 0 (18) 

J[k] = zT[k]Qz[k] + u T [ k -  l ] R u [ k -  I] (15) 

In the presence of time-delay, the optimization problem is 
converted to the minimization of the performance index 
(15) subject to the constraint of the state equation (14). 

From equations (17) and (18), the time-delay control forces 
u [ k - 1 ]  "are linearly related to the current state variables 
z[k] by 

u[k  - l] = - R  'B~Qz[k] = Gz[k] (19) 
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Figure 2 Top-floor absolute acceleration frequency response function at /= 0 
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Table 2 Control effect for 3DOF structure 

Number of delayed time steps 

Modal frequencies, 
f(Hz) 

Damping ratios, 
(%) 

No delay Time delay No delay Time delay 
consideration compensation consideration compensation 

/=0 2.407 ] 

10.522 / 

7.929 J 

16.2 1 

8.774 t 

63.75J 

,:2 F14.~1l [2.4071 [_,2.8~] rio.21 
/2.46~/ /10.~22/ /13.287/ /8.774/ 
L 9.387 J L 7.929 J L 5.01 J L63.75J 

,=4 r~o~] i~4o~1 p~141 r lOCi 
p964~ / /10~22/ /-9.245/ /8.774/ 
L 2.502 J L 7.929 J L10.523J L63.75J 

/1°.625/ /l°.522/ /-°.386 / /8.774/ 
L 2.528 J L 9.161 J L 7.95 J L23.123/ 

/15496/ /10522/ t-1596/ r8774f 
L 2.547 J L 8,698 J L 5,473 J L21.168J 

The control forces u [ k - 1 ]  depend on the state variables 
z[k] which are not available at the time step [k - l]. Conse- 
quently, the control law represented by equation (19) can- 
not be implemented. Instead of the current state variables 
z[k], the t ime-delay state variables should be used for the 
online calculation of  the t ime-delay control forces. In order 
to evaluate the stability of the control system, the corre- 
sponding autonomous system of  the t ime-delay state equ- 
ation (14) is considered. After substituting equation (19) 
into the t ime-delay state equation (14), the current state 

variables z[k] and the previous state variables z [ k -  1] are 
related by 

z[k] = ( l  + B]R 'WfQ)- ' (A - BoR ' B ~ Q ) z [ k - 1 ]  (20) 

= Sz[k - 1 ] 

where S is the 2n x 2n transition matrix 

S = ( I  + B~R-'Br, Q ) - ' ( A  - B o R - ] B r Q )  (21) 
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= ( I -  B i G )  I ( A  + B o G )  

By applying the relation in the above equation repeatedly 
to equation (19), the t ime-delay control forces u [ k -  l] can 
be generated from the t ime-delay state variables z [ k  - l] as 

u [  k - l] = GS~z[  k - 1] = G , z [  k - l] (22)  

where G ,  = G S  t is the p x 2n compensated feedback gain 
matrix. After t ime-delay compensation, the control law rep- 
resented by equation (21) can now be implemented. 

4. E v a l u a t i o n  o f  c o n t r o l  s y s t e m  

In eigenvalue analysis, the enhancement of the control sys- 
tem is indicated by the system paralneters such as natural 
frequencies and damping ratios extracted from the eigenval- 

ues of the system matrix. The ith eigenvalue ,/i can be 
expressed as 

m 

'Yi = Pi et°~ = e Zi%AreJ'°i~'l ¢iAI (23)  

where j = x/-1, ~oi is the ith effective natural frequency and 
~'~ is the ith damping ratio. Therefore, the ith effective natu- 
ral frequency and damping ratio can be extracted from the 
ith eigenvalue of the control system as 

1 
~o, = At  ~/(lnp')2 + 0,.2 (24)  

lnp i  
~'i = - x/(lnpi)2 + 07 (25) 

When Pi < 1, the damping ratio ~'i is positive so that the 



Instantaneous control of  structures with time-delay consideration: L. L. Chung et al 471 

Figure 5 

4 0 . 0 0  

m 

v 

"I- 
D 

3 0 . 0 0  - -  

2 0 . 0 0  

1 0 . 0 0  

0 . 0 0  

..'i 

- il 

J ii 

. . . . . . .  , 1  ° "  

i 

0 . 0 0  4 . 0 0  

1=6 

T i m  e - d e l a y  c o m p e n s a t i o n  

U n c o n t r o l l e d  

,t 

A 
i 

I ' I 
8 . 0 0  1 2 . 0 0  

f ( H z )  

Top- f l oo r  abso lu te  accelerat ion f requency  response func t ion  at / =  6 

t 
1 6 . 0 0  

Figure 6 

"1- 

4 0 . 0 0  

3 0 . 0 0  - -  

2 0 . 0 0  - -  

1 0 . 0 0  - -  

0 . 0 0  

i 

' I 
0 . 0 0  4 . 0 0  

1=8 

T im e-delay c o m p e n s a t i o n  

U neon tro l ied 

A i " ' ' ; °  "'%= o°' • 
r " i  . . . . . . . . . . . .  ' . . . . .  ? '  

8 . 0 0  1 2 . 0 0  
f ( H z )  

Top- f l oo r  abso lu te  acce lerat ion f requency  response func t ion  at / =  8 

1 6 . 0 0  

ith mode is stable and convergent. When Oi > 1, the damp- 
ing ratio ~'i is negative so that the ith mode is unstable and 
divergent. Therefore, if all the eigenvalues are located 
within the unit circle of  the complex plane, the control sys- 
tem is stable and convergent. The stability criterion for a 
discrete-time system is different from that for a continuous- 
time system ~9. 

In the uncontrolled case, the state equation (5) becomes 

z[k] = A z [ k -  1] + Eow[k-  I] + E~w[k] (26) 

The eigenproperties of  the structure can be extracted from 
the system matrix A. By substituting the control law equ- 
ation (13) into the state equation (5), the effective state 
equation for the ideal control system where time-delay does 
not exist is 

z[k] = A z [ k -  1] + BoGz[k-  1] + B,Gz[k] (27) 

+ Eow[k-  1] + E~w[k] 

From the above equation, the characteristic equation for the 
ideal control system is 

It - A T  -1  - B o G y  - I  - BIGI = 0 (28) 

where I.I denotes the determinant of  a matrix. The eigenpro- 
blem stated in the above characteristic equation is equival- 
ent to solving for the eigenvalues of the effective system 
matrix 

A" = ( I -  BjG)-I(A + BoG) = S (29) 

By substituting the control equation (21) into the state equ- 
ation (14), the effective state equation for the real system 
where time-delay does exist is 
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Figure 7 Top-floor relative displacement under El Centro earthquake at /=0  
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Figure8 Top-floor relative displacement under El Centro earthquake at /=2 
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z[  k ] = A z [  k - 1 ] + B o G , z [  k - I - 1 ] 

+ B i G , z [ k -  1] + E o w [ k -  l ] + E i w [ k ]  

(30) sation conserves the eigen-properties of the ideal control 
system with no time-delay. 

From the above equation, the characteristic equation for the 
real control system is 

I I - A y  -] - B o G ( A ' ) / y  - / - '  - B I G ( A ' ) / T / I  (31) 

= [F(y)l = 0 

It is found that the effective system matrix A '  for the ideal 
control system satisfies the characteristic equation for the 
real control system 

F ( A ' )  = 0 (32) 

Therefore, the real control system with time-delay compen- 

5. Numer ica l  verif ications 

The feasibility of the proposed control algorithm is verified 
numerically through the tendon control system of a three- 
degree-of-freedom (3DOF) structure. The dynamic charac- 
teristics of the model structure shown in F i g u r e  1 have been 
studied thoroughly ~5. The three-storey structure is subjected 
to seismic motion and counteracted by the tendon control 
device implemented on the first floor. Relevant parameters 
of the control system are listed in T a b l e  1. The control 
effectiveness is evaluated through eigenvalue, frequency- 
domain and time-domain analyses. In the eigenvalue analy- 
sis, the enhancement of  the control system is indicated by 
the system parameters extracted from the eigenvalues of 
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Figure 9 Top-floor relative displacement under El Centro earthquake at /= 4 
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Figure 10 Top-floor relative displacement under El Centro earthquake at /= 6 

the effective system matrix of  the control system. In the 
frequency-domain analysis, the degree of vibration sup- 
pression is shown by the peaks of  the frequency response 
function of  the control system. Finally, in the time-domain 
analysis, the reduction of  the structural response is demon- 
strated by subjecting the structure to the 1940 E1 Centro 
earthquake (N-S component). 

The control effects from the eigenvalue analysis of the 
control system are listed in Table 2 while the results from 
the frequency-domain and time-domain analyses are shown 
in Figures 2-6 and 7-11, respectively. The states of  the 
structure are measured with a sampling period of 
At = 0.01 s. As the number of  delayed time steps 1 varies, 
its influences on the different control strategies are dis- 
cussed below. 
(1) When l = 0, it is the ideal control system where no 

time-delay exists. Under the action of  the control force, 

(2) 

the natural frequencies are changed from 2.24 Hz, 
6 .80Hz and l l . 49Hz  to 2.41 Hz, 7 .93Hz and 
10.52Hz, respectively, and the damping ratios are 
increased greatly from 1.61%, 0.39% and 0.16% to 
16.20%, 63.75% and 8.77%, respectively, (Table 2). 
The effectiveness of  this control case is obvious from 
the frequency-domain and time-domain analyses 
(Figures 2 and 7). In fact, this case possesses the best 
control result but it is not realistic since time-delay 
is unavoidable 
When l = 2, the time-delay is 20 ms. If time-delay is 
neglected, the control system becomes unstable as indi- 
cated by the negative damping ratio (Table 2). The 
frequency response function is not available since the 
structural response blows up and no steady-state 
response can be achieved (Figure 8). If time-delay is 
considered, the control system remains stable. The sys- 
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tem parameters, modal frequencies and damping ratios, 
extracted from the three eigenvalues with the largest 
modulus pi's are identical to those from the ideal con- 
trol system (Table 2). In other words, the parameters 
of  the three lowest modes for the real control system 
with time-delay compensation are identical to those for 
the ideal control system with no time-delay. The con- 
trol effectiveness of  the real system is close to that of  
the ideal system as observed from the frequency- 
domain and time-domain analyses (Figures 3 and 8) 

(3) When l = 4 ,  the time-delay is increased to 40 ms. If 
time-delay is neglected, the control system is unstable 
(Table 2). If time-delay is considered, the control sys- 
tem remains stable and the parameters of the three low- 
est modes are identical to those of the ideal control 
system. The control effectiveness of this case is very 
close to the case of  / -- 2 as observed from frequency- 
domain and time-domain analyses (Figures 4 and 9) 

(4) When l =  6, the time-delay is increased to 60 ms. If 
time-delay is neglected, the control system is unstable 
(Table 2). If time-delay is considered, the control sys- 
tem remains stable. In total there are 21 pairs of  com- 
plex conjugate eigenvalues and three of the pairs are 
identical to those of  the ideal system but only two out 
of  the three pairs remain in the three lowest modes 
(Table 2). The control effectiveness of  this case is very 
close to that of l = 4 as observed from the frequency- 
domain and time-domain analyses (Figures 5 and 10) 

(5) When l :  8, the time-delay is further increased to 
80 ms. If time-delay is neglected, the control system is 
unstable (Table 2). If time-delay is considered, the 
control system remains stable. In total there are 27 
pairs of  complex conjugate eigenvalues and three of 
the pairs are identical to those of  the ideal system but 
only two out of  the three pairs remain in the three low- 
est modes (Table 2). The control effectiveness of this 
case is very close to that of  1 = 6 as observed from the 
frequency-domain and time-domain analyses (Figures 
6 and 11) 

6. Conclusions 

A modified instantaneous control algorithm for the active 
control of structures is developed in discrete-time formu- 
lation which is very efficient when a digital computer is 
introduced for the real-time calculation of  control forces. 
In real-time control, time is needed for data acquisition, 
data conditioning, calculation and applications of control 
forces. If time-delay is neglected, the control system is sus- 
ceptible to dynamic instability. Therefore, it is better not 
to put any control action into the structural system before 
the time-delay is analysed and tackled properly. In this 
paper, a feedback compensation scheme is developed by 
simply modifying the feedback gain matrix of the ideal con- 
trol system with the effective system matrix. It is also 
proved that the real control system with time-delay com- 
pensation conserves the eigen-properties of the ideal con- 
trol system with no time-delay. In the presence of time- 
delay, the equation of  motion of  the discrete-time control 
system remains a set of difference equations which makes 
the eigenvalue analysis of  the control system simple and 
straightforward. It is one of  the great advantages of dis- 
crete-time formulation. The feasibility of the proposed 
algorithm is verified numerically through eigenvalue, fre- 
quency-domain and time-domain analyses. The control 
forces are simply generated from the time-delay states mul- 
tiplied by the precalculated and shift-variant modified feed- 
back gain. Such simple online calculation of the control 
forces makes the proposed control algorithm favourable for 
real implementation. With the proposed control algorithm, 
the control system is still effective in spite of  the presence 
of time-delay. 
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