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New Multiband Coupling Matrix Synthesis Technique
and Its Microstrip Implementation

Yi-Ting Kuo, Jhe-Ching Lu, Ching-Ku Liao, and Chi-Yang Chang, Member, IEEE

Abstract—In this paper, we present a novel analytical multiband
transversal coupling matrix synthesis technique. By properly
combining several single-band filtering functions, the multiband
filtering function with flexible transmission zeros and various
bandwidth are available. The transversal coupling scheme is
then transformed into a practically realizable coupling scheme.
To verify the feasibility of the proposed method, two dual-band
coupling schemes, both single-path and dual-path, are proposed
as examples of the dual-band filter design. Finally, the dual-band
filter, based on the coupling matrix corresponding to a specific
coupling scheme, can be realized using a microstrip parallel-cou-
pled structure.

Index Terms—Coupling matrix synthesis, multiband filter, mi-
crostrip parallel-coupled filter, transmission zeros.

I. INTRODUCTION

R ECENT developments in coupling matrix synthesis for
single-band filter design is very attractive. Analytical

methods for the single-band filter synthesis [1]–[4] are pro-
posed to generate a transversal coupling matrix. For other
specific coupling schemes, the coupling matrices are obtained
using matrix rotation or optimization [5], [6]. For dual-band
or multiband filters, however, a fully analytical solution for
transversal coupling matrix synthesis, is still unavailable.

To design dual-band or multiband filters, many methods were
proposed. Frequency transformation [7]–[9] was proposed to
generate the response function analytically for dual-band filters.
It was developed with governing equations of single-band fil-
ters. It was unrealizable, however, for multiband filters. Another
method was based on parallel-coupled line model [10]; this was
used to generate the dual-band performance. This method was
limited for dual-band filters, though, and could not be used for
multiband filters.

To obtain the multiband performance, an equivalent lumped-
element network [11]–[13] was introduced. This network sim-
plified the design procedure for dual-band or multiband filters
via the iterative procedure. The problems, however, such as the
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need for optimization for roots finding [11], [13] or inability to
achieve equal ripple [12], occurred while applying those equiv-
alent networks.

In filter design, the coupling matrix technique is well known
to have advantages in the hardware implementation. To take ad-
vantage of coupling matrices for dual-band or multiband filters,
optimization methods [14], [15] were proposed to generate the
coupling matrix numerically, via proper cost functions. Fully
analytical coupling matrix synthesis for dual-band or multiband
filters, however, has not been proposed yet.

In this paper, we propose a novel fully analytical method for
the synthesis of multiband transversal coupling matrix. The
response function of the multiband filter is generated via the
proper combination of single-band filtering functions; those
single-band filtering functions can be obtained using the tech-
nique in [1]. Based on our proposed method, the fully analytical
fractional expressions for two-port scattering parameters are
generated. Moreover, under proper combination, the prescribed
transmission zeros are available in multiband filters, while the
different bandwidth of each passband is also allowed. Once the
fractional forms for the scattering parameters of the dual-band
or multiband filtering function are obtained, they are converted
into the transversal coupling matrix using the method in [3].
Using the technique in [5], the transversal coupling matrix can
be transferred into a requested coupling scheme.

To verify the proposed method, the parallel-coupled filter
structure, described in [16], is chosen to realize the dual-band
filters based on the dual-band coupling matrix. For the
dual-band filter implementation, the technique in [17] has
been proposed. However, it is not easy to be implemented in
the microstrip technology. For the microstrip implementation,
single-path and dual-path dual-band coupling schemes are
discussed. Finally, we will provide two microstrip parallel-cou-
pled dual-band filters as examples and show the feasibility
of the proposed synthesis technique. Moreover, we will also
demonstrate that both single-path and dual-path dual-band
coupling schemes are useful in dual-band filter designs.

II. ANALYTICAL TRANSVERSAL COUPLING MATRIX SYNTHESIS

FOR MULTIBAND FILTER DESIGN

For a two-port lossless filter network with intercoupled
resonators, the transfer and reflection function can be expressed
as a ratio of two th degree polynomials

(1)

where is the real frequency variable, the related complex fre-
quency variable , and is a normalization constant re-
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lated to the prescribed return loss level; all polynomials have
been normalized so that their highest degree coefficients are
unity. and have a common denominator ;
the transmission zeros of the transfer function are contained in
the polynomial . Using (1) and the energy conservation
for a lossless network, can be
represented as

(2)

where

(3)

is known as the filtering function of degree . Here,
the proposed filters have the form of the generalized Chebyshev
characteristic. A filtering function for a single-band filter can be
synthesized with an efficient recursive procedure. Based on this,
the aim is now to design a filtering function for multiband filters.
The proposed multiband polynomial synthesis discussed below
will be fully analytical using single-band filtering functions.

Using the property of the generalized Chebyshev character-
istic in (3), the reciprocal of the filtering function for a dual-band
filter can be achieved by summing up the reciprocal of two fre-
quency-shifted single-band filtering functions. The value of
in the passband is much smaller than that in the out-of-band,
the reciprocal value of in the passband can then be kept
after summing up the reciprocal of the value of other in the
out-of-band. Finally, the composite filtering function can be ob-
tained as follows:

(4)

The principal advantage of this technique is that the indi-
vidual filtering functions and can be obtained ana-
lytically by the efficient recursive technique. The polynomial of
the composite filtering function can then be derived as

(5)

where , and are generated
by frequency shifting of the original filtering function through

(6)

where 1 and 2, is the central frequency for the th pass-
band, and and are all generated by the recur-
sive technology analytically [1]–[4]. In addition, the transmis-
sion zeros can be generated using those and corre-
sponding to their central frequency at each passband via (5).

To use the different bandwidths of each passband, these poly-
nomials should be modified. For the th filtering function with
frequency shift , the polynomials can be represented as

(7)

where is the denominator and is the numerator of ,
is the th root of and is the th root of , and
and are the number of roots of and . Based

on (7), the bandwidth of the scaled polynomial will be
times the bandwidth of the original one.

For the multiband filter design, suppose there are pass-
bands for a filter and that all of the filtering functions are

and , so that the composite filtering function can
then be calculated as follows:

(8)

where is the numerator and is the denominator of
. Here, each passband has the individual filter order and the

number of transmission zeros. By carefully placing the trans-
mission zeros, the requested frequency response can be obtained
under desired specifications.

The bandwidth of each passband, however, is 2 rad/s, corre-
sponding to the Chebyshev characteristic, so that the edges of
passbands are out of 1 rad/s. To normalize the edges of pass-
bands within 1 rad/s, let be the original frequency, be the
normalized frequency, be the upper edge of passbands, and

be the lower edge of passbands. The frequency transforma-
tion is

(9)

where and are the edges of passbands in the original fre-
quency domain. After the frequency transformation, the polyno-
mials derived in (8) are then transferred into the normalized fre-
quency domain. Finally, the transversal coupling matrix based
on the generated polynomials is obtained using the method in
[3].

To transfer the response to the bandpass domain, the fol-
lowing equation is used:

(10)

where is the frequency in the low-pass domain, is the
frequency in the bandpass domain, , and
are the central frequency, the upper edge of passbands, and the
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lower edge of passbands in the bandpass domain, respectively,
and is the fractional bandwidth.

In the following sections, three examples are given to demon-
strate the proposed method.

A. Symmetrical Dual-Band Bandpass Filters

In this example, the specifications of a symmetrical dual-band
bandpass filter are provided. Two passbands both have filter
order 3. The first passband has a central frequency at 2.32 GHz
and the fractional bandwidth is 5%. The second passband has
a central frequency at 2.695 GHz and the fractional bandwidth
is 5%. The transmission zeros are 2.122, 2.5, and 2.945 GHz.
Hence, the lower edge of the first passband is 2.32 1
0.05 2.262 GHz and the upper edge of the second pass-

band is 2.695 1 0.05 2.7624 GHz, so that the central
frequency is about 2.262 2.7624 2 2.5 GHz, and the
fractional bandwidth is about 2.7624 2.262 2.5 20%. To
transfer the response form the bandpass domain to the low-pass
domain using (10), the normalized central frequencies are about

0.75and 0.75 rad/s, and the normalized transmission zeros are
about 1.65 and 1.65 rad/s.

Based on the above frequencies in the normalized domain,
the requested two filtering functions are expressed as follows.
One is the third-order filtering function, which has the normal-
ized central frequency at 0.75 rad/s and the normalized trans-
mission zeros at 1.5 rad/s. The other one is the third-order
filtering function, which has the normalized central frequency
at 0.75 rad/s and the normalized transmission zeros at 1.5 rad/s.
Hence, the transmission zeros of the composite filtering function
are almost 1.65, 0, and 1.65 rad/s, which meet the requested
specifications. The in-band return loss level is 20 dB for these
two filtering functions.

To combine these two filtering functions, the frequency trans-
formation in (9) is needed first. The bandwidth of the passband
in original domain in (9) is 2 rad/s (i.e., to 1 rad/s), so that
the bandwidth between the central frequency and the edge of
passband within each passband is 1 rad/s. The requested band-
width between the normalized central frequency and the edge
of passband within each passband is rad/s.
To transfer the normalized response to the original frequency
using (9), the factor which times the normalized frequency is 4,
so that the central frequencies after the frequency transforma-
tion are 0.75 4 3 and 0.75 4 rad/s, and trans-
mission zeros are 1.5 4 6 rad/s. Finally, combining
these two filtering functions using (5) and transfer the response
into the normalized frequency domain using (9).

The transmission zeros of the composite filtering function are
slightly shifted, and this can be noted in Fig. 1(a). The frequency
shift comes from the combination of two filtering functions and
can be eliminated by careful designing these two filtering func-
tions. Fig. 1(b) shows the corresponding -parameters. In this
figure, an additional transmission zero is 0 rad/s. This is because
the phase of and is 180 degree out-of-phase around
0 rad/s, and then an additional zero is introduced, as shown in
Fig. 1. Furthermore, the transversal coupling matrix is obtained
based on the derived polynomials and is shown in Table I.

Fig. 1. (a) Filtering functions for two single-band filters of same degrees 3
(� has the transmission zero at�1.5 and the central frequency�0.75 rad/s)
and (� has the transmission zero at 1.5 rad/s and the central frequency 0.75
rad/s), and the composite dual-band filter �� ��� �. The in-band return
loss level is 20 dB in each case. (b) Corresponding � and � for the sym-
metric dual-band filter.

TABLE I
COUPLING MATRIX FOR THE FILTER IN FIG. 1

B. Asymmetrical Dual-Band Bandpass Filters

For an asymmetrical dual-band bandpass filter, the frequency
response is not symmetric about the central frequency. Two
filtering functions used to illustrate the dual-band character-
istic have following specifications. One is the third-order func-
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Fig. 2. (a) Filtering functions for two single-band filters of different degrees 3
(� has transmission zeros at �1.4242 and 0 rad/s and the central frequency
�0.6970 rad/s. Its bandwidth factor is 0.8) and 5 (� has transmission zeros
at 0 and 1.4848 rad/s and the central frequency 0.7576 rad/s), and the composite
dual-band filter �� ��� �. The in-band return loss level is 20 dB in each
case. (b) Corresponding � and � for the asymmetric dual-band filter.

TABLE II
COUPLING MATRIX FOR THE FILTER IN FIG. 2

tion, which has the normalized central frequency at 0.6970
rad/s and normalized transmission zeros at 1.4242 and 0 rad/s,
and its bandwidth factor BW in (7) is 0.8. The other one is
the fifth-order function, and it has the normalized frequency at
0.7576 rad/s and the normalized transmission zeros at 0 and
1.4848 rad/s. The corresponding responses for these two fil-
tering functions are shown in Fig. 2. After combining these two
filtering functions, the response for the asymmetric dual-band
filter is shown in Fig. 2 with the coupling matrix in Table II.

It is noted, however, that the transmission zero on the upper
stopband of the composite filtering function is seriously influ-
enced by the filtering function . Because the filtering func-
tion has a lower order, the function value at the out-of-
band is smaller than that of . To compute the composite

Fig. 3. (a) Two third-order filtering functions. Solid line: filtering function has
two finite transmission zeros at�6 and 0 rad/s, and the central frequency is�3
rad/s. Dashed line: filtering function with 3 finite transmission zeros at �6, 0
and 6 rad/s, and the central frequency is�3 rad/s. The in-band return loss level
is 20 dB in each case. (b) The corresponding � and � .

filtering function using (4), the filtering function with smaller
value will dominate the response of the composite filtering func-
tion. Hence, the transmission zero on the upper stopband of
the composite filtering function shifts inward with respect to
the transmission zero of . This can be overcome by pread-
justing the zero of to a higher frequency or by the method
described in the following paragraph.

The alternative method to overcome the zero shifting prob-
lems is to take advantage of the generalized Chebyshev charac-
teristic, that is, for an th-order filtering function, the number
of transmission zeros can be smaller than or equal to . When
the number of transmission zeros is equal to , it implies no in-
finite transmission zeros. Fig. 3 shows an example, where TZs
in the figure denotes the abbreviation of transmission zeros.

In this case, these two filtering functions with same order 3
have transmission zeros at ( 6 and 0) rad/s and ( 6, 0, and 6)
rad/s respectively, and have the central frequency at 3 rad/s, re-
spectively. The filtering function with three transmission zeros
has no infinite transmission zero, so the stopband rejection is
worse due to no infinite transmission zeros. The stopband re-
jection, however, can still be kept under an acceptable level. As
shown in Fig. 3, the filtering function with three transmission
zeros has the logarithm value close to 2.5 even the frequency up
to 60 rad/s, which is 30 dB in .
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Fig. 4. (a) Filtering functions for two single-band filters of different degrees
3 (� has transmission zeros at �1.4242, 0, and 1.4848 rad/s and the central
frequency�0.6970 rad/s. Its bandwidth factor is 0.8), and 5 (� has transmis-
sion zeros at 0 and 1.5091 rad/s and the central frequency 0.7576 rad/s), and the
composite dual-band filter �� ��� �. The in-band return loss level is 20 dB
in each case. (b) The corresponding � and � for the asymmetric dual-band
filter with adjustable upper transmission zero.

Use the above property, the example for asymmetric dual-
band filter is modified. Fig. 4 shows the modification. One third-
order filtering function has normalized transmission zeros
at 1.4242, 0, and 1.4848 rad/s, and it has the normalized cen-
tral frequency at 0.6970 rad/s. Its bandwidth factor is 0.8.
The other one is the fifth-order filtering function , which
has normalized transmission zeros at 0 and 1.5091 rad/s, and
the normalized central frequency is 0.7576 rad/s. In this case,
the transmission zero at 1.4848 rad/s of precisely locates
the transmission zero on the upper stopband for the composite
filtering function. Table III shows the corresponding coupling
matrix. Compared with the result in Fig. 2, the upper stopband
transmission zero can be precisely located.

C. Multiband Bandpass Filters

In this example a four-band filter is provided. There are
four filtering functions in this example: 1) third-order fithering
function with normalized transmission zeros at 1.2 and

0.6 rad/s and the normalized central frequency at 0.9 rad/s;

TABLE III
COUPLING MATRIX FOR THE FILTER IN FIG. 4

Fig. 5. (a) Filtering functions for four single-band filters of degree 3 (�
has transmission zeros at �1.2 and 0.6 rad/s and the central frequency at �0.9
rad/s), degree 4 (� has transmission zeros at �1.3,�0.65, and 0.01 rad/s
and the central frequency at �0.3 rad/s), degree 5 (� has transmission
zeros at �1.3,�0.6,�0.01, 0.63, and 1.3 rad/s and the central frequency at
0.3 rad/s), and degree 3 (� has transmission zeros at 0.45 and 0.9 rad/s
and the central frequency at 0.9 rad/s), and the composite quad-band filter
�� ��� ��� ��� �. The in-band return loss level is 20 dB in each
case. (b) The corresponding � and � for the quad-band filter.

2) fourth-order with normalized transmission zeros at
1.3, 0.65 and 0.01 rad/s and the normalized central fre-

quency at 0.3 rad/s; 3) fifth-order with normalized
transmission zeros at 1.3, 0.6, 0.01, 0.63, and 1.3 rad/s
and the normalized central frequency at 0.3 rad/s; and 4)
third-order with normalized transmission zeros at 0.45
and 0.9 rad/s and the normalized frequency at 0.9 rad/s. Fig. 5
shows the frequency response. In this case, the lower order
filtering functions (i.e., and ) are used to adjust the
transmission zeros to specific locations, while the other filtering
functions are used to be slightly tuned for the specific locations
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TABLE IV
COUPLING MATRIX FOR THE FILTER IN FIG. 5

Fig. 6. Frequency responses of the dual-band filter composed of the third- and
fourth-order filtering functions. Solid line: the proposed method. Dashed line:
the analytical iterative method.

of transmission zeros. Table IV shows the corresponding cou-
pling matrix. The matrix elements not listed in Table IV are all
zero.

III. COMPARISON WITH OTHER METHOD

In the coupling matrix synthesis of the dual-band or multi-
band filter, the most popular and efficient analytical method
is the analytical iterative method [13]. This method has fea-
tures of user-defined number of passbands, number of transmis-
sion zeros, return loss level, range of each passband and stop-
band, and prescribed imaginary or complex transmission zeros.
By efficient iterative procedure, the transmission zeros are ex-
tracted, and some fine tunes are needed if prescribed real trans-
mission zeros are requested. The equal-ripple levels in different
passbands are not necessarily identical but can be achieved by
run-and-try process. The difference of return loss levels in dif-
ferent passbands, however, becomes large with consideration of
different filter orders in different passbands.

Compare the proposed method to the analytical iterative
method, the above features of the iterative method are also the
features of the proposed method. Moreover, the equal-ripple
levels in different passbands are preserved. Here an example is
given to show the differences between these two methods. The
specifications are listed in Table V, and the requested return
loss is 20 dB in both passbands for this example. The frequency
responses obtained by these two methods are shown in Fig. 6.

In Fig. 6, the responses of the passband with third-order are
similar from two methods. For the passband with fourth order,

TABLE V
SPECIFICATIONS USED IN FIG. 6

due to the equal-ripple preservation in the proposed method,
the return loss level is kept to be 20 dB, while the return loss
level is 50 dB from the iterative method. Hence, the second
passband from the iterative method has wider bandwidth than
that from the proposed method if the return loss level 20 dB
is used. Hence, for the filter composed of filtering functions
with different orders, the proposed method hold the equal-ripple
property.

To check the transmission zeros from two methods, due
to the parallel addition in the proposed method, the number
of transmission zeros will increase. The transmission zeros
are 1, 3528, 0.3589, 0.3232, and 1.4496 rad/s in the it-
erative method, while they are 1, 333, 0.4151, 0.3099,
0.7936 0.5468 , and 1.4694 0.047 rad/s in the proposed
method. Although the additional complex prescribed trans-
mission zeros 0.7936 0.5468 can be added in the iterative
method to pull back the return loss level from 50 to 30 dB, but
it is difficult to know the prescribed zeros in order to pull back
the return loss.

For the filter composed of filtering functions with same filter
order, the iterative method has the advantage in the specification
assignment. The only thing the designer needs to do is to assign
the range of each passband and each stopband, number of poles
and zeros, and the return loss level, so that the corresponding
polynomials are generated. For the proposed method, the de-
signer needs to assign the locations of transmission zeros first
in order to design the characteristic of multiband filter. These
two methods, however, both can analytically generate the cou-
pling matrix for the multiband filter. For the filter composed
of filtering functions with different filter orders, the proposed
method provides an alternative way to synthesis the multiband
filter with the equal-ripple property.

IV. CROSS-COUPLING SCHEMES AND FILTER DESIGN

EXAMPLES

The planar microstrip filter with finite transmission zeros has
been proposed systematically in [16]. The method in [16] is
modified here for the dual-band filter. In this section, two types
of coupling schemes are proposed to realize dual-band filters
and simplify the complexity of the hardware implementation
in the microstrip technology. First is a single-path coupling
scheme and second is a dual-path coupling scheme.

A. Example 1: Single-Path Dual-Band Coupling Scheme

In the single-band filter design, the cross-coupling path helps
in the generation of the finite transmission zeros. The trisec-
tion and quadruplet coupling schemes are known to exhibit the
highly selective responses. To apply trisection and quadruplet to
the dual-band design in the single-path coupling scheme, finite
transmission zeros will be placed to separate two passbands. For
example, a dual-band filter is designed to have two second-order
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Fig. 7. (a) Filtering functions for two single-band filters of degree 2 (� has
the transmission zero at 0 rad/s and the central frequency at ����� rad/s, and
� has the transmission zero at 0 rad/s and the central frequency at 0.75 rad/s),
and the composite dual-band filter �� ��� � The in-band return loss level
is 20 dB in each case. (b) The corresponding � and � for the dual-band
filter in example 1.

Fig. 8. Single-path coupling scheme in example 1.

filtering functions; one has a normalized transmission zero at 0
rad/s and the normalized central frequency at 0.75 rad/s, while
the other one has a normalized transmission zero at 0 rad/s and
the normalized central frequency at 0.75 rad/s. The synthe-
sized filtering functions and corresponding -parameters are
shown in Fig. 7.

The transversal coupling matrix is shown in Table VI. Due
to two transmission zeros from each passband are used to
contribute the separation of two passbands, the quadruplet
topology is used. In order to convert the transversal coupling
matrix for the single-path coupling scheme with quadruplet
coupling scheme, the optimization procedure proposed in
[5] is used. The coupling scheme is shown in Fig. 8 and the
corresponding coupling matrix is listed in Table VII.

TABLE VI
TRANSVERSAL COUPLING MATRIX FOR THE DUAL-BAND FILTER IN EXAMPLE 1

TABLE VII
COUPLING MATRIX FOR DUAL-BAND FILTER IN EXAMPLE 1 WITH THE

COUPLING SCHEME SHOWN IN FIG. 8

Fig. 9. Layout in example 1.

TABLE VIII
DIMENSIONS IN EXAMPLE 1 (IN MILLIMETERS)

The central frequencies of the two passbands in the prac-
tical design are 2.3 and 2.7 GHz, while the fractional band-
width is 5% in each passband. For the practical implementation,
a 0.508-mm-thick Rogers RO4003 substrate with a relative di-
electric constant 3.58 and a loss tangent of 0.0021 is used. Based
on the design procedure in [16], the layout of the proposed mi-
crostrip filter is shown in Fig. 9. The dimensions are listed in
Table VIII.

B. Example 2: Dual-Path Dual-Band Coupling Scheme

For the dual-band filter design, the single-path coupling
scheme do not have an obvious relationship with the dual-band
characteristics. To relate each passband with coupling topology,
the dual-path coupling scheme is considered. For example,
there are two filtering functions; One is the 3rd order filtering
function, which has normalized transmission zero at 1.8
rad/s and normalized central frequency at 0.8 rad/s, while the
other is the 3rd order filtering function, which has normalized
transmission zero at 1.8 rad/s and normalized central frequency
at 0.8 rad/s. The synthesized filtering functions and the corre-
sponding -parameters are shown in Fig. 10. The transversal
coupling matrix in this example is listed in Table IX.
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Fig. 10. (a) Filtering functions for two single-band filters of degree 3 (�
has the transmission zero at�1.8 rad/s and the central frequency at�0.8 rad/s,
and � has the transmission zero at 1.8 rad/s and the central frequency at 0.8
rad/s), and the composite filter �� ��� �. The in-band return loss level is
20 dB in each case. (b) The corresponding � and � for the dual-band filter
in example 2.

TABLE IX
TRANSVERSAL COUPLING MATRIX FOR THE DUAL-BAND FILTER IN EXAMPLE 2

The transmission zero for the separation of two passbands
is created as demonstrated in the discussion in Section II-A.
In this case, there are three finite transmission zeros within the
entire low-pass domain; these are 1.8, 0 and 1.8 rad/s. To il-
lustrate the dual-band characteristic and let each path govern
one passband, the trisection portion of each path is used to pro-
vide one transmission zero on the stopband. Fig. 11 shows the
coupling scheme, and the corresponding coupling matrix is ro-
tated by following steps [4]. The values of diagonal elements
of the transversal matrix are categorized into two groups, which
are positive values and negative values, and then the original
matrix can be separated into two parts with values shown in
Table X. Based on these two sub-matrices, the rotation sequence
in Table XI are applied and then the matrix for the coupling
scheme in Fig. 11 are extracted with values listed in Table XII.

Fig. 11. Dual-path coupling scheme in example 2.

TABLE X
(A) TRANSVERSAL COUPLING MATRIX FOR THE UPPER PATH (M1). (B)

TRANSVERSAL COUPLING MATRIX FOR THE LOWER PATH (M2)

TABLE XI
ROTATION SEQUENCE FOR REDUCTION OF THE TRANSVERSAL MATRIX TO THE

REQUESTED MATRIX WITH THE TOPOLOGY IN FIG. 11

It can be noted that the values of diagonal elements in the ex-
tracted matrix are also categorized into two groups, which are
positive values and negative values, and corresponds to the reso-
nant frequency of each resonator. Hence, the upper path governs
the lower passband, and the trisection portion of the upper path
provides a transmission zero on the lower stopband (i.e., 1.8
rad/s). Similarly, the lower path governs the upper passband and
the trisection portion of the lower path generates a transmission
zero on the upper stopband (i.e., 1.8 rad/s). By using such a
dual-path coupling scheme, the transmission zeros on the upper
and lower stopband can be generated by the trisection portion,
while the additional transmission zero used to separate two pass-
bands is generated by out-of-phase property of and .

The central frequencies of the two passbands in the prac-
tical design are 2.2 and 2.7 GHz, while the fractional bandwidth
is 5% in each passband. For the practical implementation, a
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Fig. 12. Layout in example 2.

TABLE XII
COUPLING MATRIX FOR THE DUAL-BAND FILTER IN EXAMPLE 2 WITH THE

DUAL-PATH COUPLING SCHEME SHOWN IN FIG. 11

TABLE XIII
DIMENSIONS IN EXAMPLE 2 (IN MILLIMETERS)

0.635-mm-thick Rogers RT/Duroid 6010 substrate, with a rela-
tive dielectric constant 10.2 and a loss tangent of 0.0021, is used
to implement such a dual-band filter. The practical dual-band
microstrip parallel-coupled filter can also be implemented using
the method in [16]. The layout of the dual-band microstrip filter
is shown in Fig. 12 with the dimensions are listed in Table XIII.

V. RESULTS AND DISCUSSION

Fig. 13(a) and (b) shows the circuit photographs in example
1 and 2; Fig. 14(a) and (b) shows the individual simulated and
measured performances and corresponding group delays. The
EM simulator Sonnet is used to efficiently provide the simulated
results [18]. In these two examples, the frequency shift between
simulated and measured performances comes from the variation
of the permittivity constant of the dielectric layer, so that it leads
a difference between the practical design and simulation setup.

In exampe 1, Table VII shows that the element of cross cou-
pling is 0.6590, which is even larger than the direct couple

Fig. 13. Layout of the implemented filters in: (a) example 1 and (b) example 2.

(0.5624) along the main path. Hence, the cross couple will
be treated similarly as the direct coupled path between source
and resonator 3. Such a strong cross-coupling strength
contribute the separation of two passbands. In the practical de-
sign, the length of each coupled line section is initially set to
be a quater-wave long at 2.5 GHz; it is then optimized by ADS
optimization engine [19] to obtain the final practical length.

In the example 2, the transmission zeros within the stop-
bands are known to be governed by the trisection cross-cou-
pling paths of coupling scheme and in Fig. 11.
The corresponding element values are 0.0958 and 0.0958 in
Table XII, which are smaller than the element value along the
main path. This makes sense because the location of transmis-
sion zeros are far from the corresponding passbands. In Fig. 12,
the lengths of the two coupling lines (0.685 mm) and
(0.7112 mm) are obviously shorter than other coupled lines in
the main path. The gaps and are also wider than the gaps
of the main coupling path. Because of the dual-path schematic,
a transmission zero to separate two passbands exists inherently.
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Fig. 14. Measured and simulated performances and group delay of the dual-
band filter in: (a) example 1 and (b) example 2.

The dual-path coupling scheme also provides another advan-
tage, which is the initial length of each coupled line that can
be obtained at each resonant frequency due to each path gov-
erns one passband. After fine-tuning in ADS [19], the practical
dimension will be obtained.

VI. CONCLUSION

The novel analytical method to synthesize a dual-band or a
multiband filtering function has been successfully developed.
Based on the synthesized composite filtering function, the
transversal coupling matrix can be obtained. The transversal
coupling matrix is then transformed to a specific coupling ma-
trix, which makes it possible to implement a practical filter. The
arbitrarily located transmission zeros and various bandwidth
of each passband are available in this method. Furthermore,
the single-path and dual-path dual-band coupling schemes are
discussed to generate the transmission zeros for the dual-band
filter design. By adding the additional quadruplet and trisection
coupling scheme in the coupling scheme, the dual-band filter
with finite transmission zeros is designed and implemented.
The measured results have shown good agreement with simu-
lated results. The newly dual-band transversal coupling matrix
synthesis and proposed dual-band filter have shown properties
of flexible responses, good performance, and quick design
procedures.
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