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Autoregressive Modeling of Temporal/Spectral
Envelopes With Finite-Length Discrete

Trigonometric Transforms
Han-Wen Hsu and Chi-Min Liu

Abstract—The theory of autoregressive (AR) modeling, also
known as linear prediction, has been established by the Fourier
analysis of infinite discrete-time sequences or continuous-time
signals. Nevertheless, for various finite-length discrete trigono-
metric transforms (DTTs), including the discrete cosine and sine
transforms of different types, the theory is not well established.
Several DTTs have been used in current audio coding, and the
AR modeling method can be applied to reduce coding artifacts or
exploit data redundancies. This paper systematically develops the
AR modeling fundamentals of temporal and spectral envelopes
for the sixteen members of the DTTs. This paper first considers
the AR modeling in the generalized discrete Fourier transforms
(GDFTs). Then, we derive the modeling to all the DTTs by in-
troducing the analytic transforms which convert the real-valued
vectors into complex-valued ones. Through the process, we build
the compact matrix representations for the AR modeling of the
DTTs in both time domain and DTT domain. These compact
forms also illustrate that the AR modeling for the envelopes can be
performed through the Hilbert envelope and the power envelope.
These compact forms can be used to develop new coding technolo-
gies or examine the possible defects in the existing AR modeling
methods for DTTs, We apply the forms to analyze the current
temporal noise shaping (TNS) tool in MPEG-2/4 advanced audio
coding (AAC).

Index Terms—Autoregressive (AR) modeling, discrete cosine
transform (DCT), discrete trigonometric transform (DTT), gener-
alized discrete Fourier transform (GDFT), Hilbert envelope, linear
prediction, frequency-domain linear prediction, linear prediction
in spectral domain, temporal noise shaping (TNS).

I. INTRODUCTION

A UTOREGRESSIVE (AR) modeling is widely used for
power spectrum estimation [1], [2]. An order- AR

model, also referred to as linear prediction model, is defined by
, where is the data

sequence and is a random sequence of variance . The
power spectral density, or power spectrum, of the order- AR
model is given by

for
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From the aspect of filtering, an AR model describes a data se-
quence generated from an all-pole filter fed by a white excitation
sequence. As a source-filter model with low dimension parame-
ters, the AR modeling method has been successfully utilized to
model the acoustical system of speech production, which com-
prises the vocal tract and the glottal excitation, and has become
an essential method in many speech applications, such as speech
coding, speech recognition, pitch tracking, and formant estima-
tion.

The AR modeling or linear prediction has received more and
more applications in audio coding and processing. For example,
the predictive error filter is used as an inverse filter for acoustic
echo cancellation [3]. The spectral band replication (SBR)
[4], which is adopted in MPEG-4 high efficiency advanced
audio coding (HE-AAC) [5] for bandwidth extension, uses a
second-order linear predictor for inverse filtering; and MPEG-4
audio lossless coding (ALS) [6] generates residuals with a
smaller dynamic range by linear prediction. Some audio coding
approaches are based on the linear prediction performed on
a warped frequency scale [7], [8]. In addition to the applying
of AR modeling in the time domain, according to the duality
between the squared Hilbert envelope and the power spectrum
[5], AR modeling can be applied to spectral sequences for
temporal envelope estimation. Because of its ability to provide
a smooth temporal representation of signals, AR modeling is
very useful for feature extraction and classification [9], [10].
The temporal noise shaping (TNS) tool [12]–[15], which is
adopted for reducing the pre-echo artifacts [16] in MPEG-2/4
AAC [5], applies an open-loop prediction [17] across frequency
lines prior to quantization in encoder to shape the temporal
envelope of the quantization noise.

Although AR modeling is always preformed on windowed
signals in practice, its theoretical derivation was given through
the Fourier theory of infinite discrete-time sequences or contin-
uous signals in the literatures such as [1] and [2]. In [12]–[15],
Herre and Johnston explained the concept of TNS through the
duality between the squared Hilbert envelope and the power
spectrum for continuous signals. Likewise, Kumaresan et al.
[18]–[22] formulated the linear prediction in spectral domain
equations for the AR modeling of temporal envelope in the indi-
rect way. No exact derivation for finite sequences was developed
until Athineos and Ellis [11] formulated via matrix operations
the solution of the problem that finds an AR model of a dis-
crete spectrum and relates it to the temporal envelope of a finite
time-domain sequence. However, the derivation in [11] was lim-
ited in the scenario when the discrete spectrum is the odd type-I
discrete cosine transform (DCT-I) coefficients.
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In this paper, we concern the temporal and spectral AR mod-
eling of a finite sequence when one of the 16 members of the dis-
crete trigonometric transform (DTT) is used in the temporal and
spectral domains. Different from DCT-I, other DTTs have a 1/2-
sample delay in the time domain and/or a 1/2-sample advance
in the frequency domain. When considering a finite-length se-
quence as a discrete periodic signal obtained by sampling a con-
tinuous signal, we need to consider the aliasing effect in the
dual domain. We systematically establish the AR modeling fun-
damentals for the DTTs by exploiting the relationship of the
DTTs and the generalized discrete Fourier transforms (GDFTs)
[27]. We address the AR problem with GDFTs by extending
the well-known relationship between the autocorrelation and the
power spectrum to the GDFT/Inverse GDFT domains. Then we
define new finite-length analytic transforms based on GDFTs.
Through the analytic transforms, we establish the AR modeling
fundamentals for DTTs by relating the DTT spectra to the corre-
sponding GDFT spectra with appropriate symmetric extension
or zero padding operations. In addition to the temporal Hilbert
envelope, we also concern the power envelope estimation for
a real-valued sequence without introducing the Hilbert signal.
The dual results can be derived with the consistent representa-
tion in the temporal and spectral domains, i.e., both are periodic
and finite. Our formulation is expressed entirely in the discrete
finite domain in matrix form. The compact expressions not only
disclose that the AR modeling concept can hold in each DTT
domain, not limited in DCT-I domain, but also can be used for
more clearly examining the related methods based on AR mod-
eling in DTTs.

This paper is organized as follows. Section II summarizes
the definitions and properties on GDFTs and DTTs. Section III
formulates the AR modeling of temporal and spectral envelopes
in GDFTs/IGDFTs. Section IV derives the AR modeling for the
DTTs/IDTTs. Section V applies the result to analyze the TNS
in MPEG-2/4 AAC. Section VI concludes the paper.

II. PRELIMINARIES

To derive the AR modeling with the DTTs, we summarize the
essential results on the convolution-multiplication and period-
icity properties for the GDFTs. The convolution–multiplication
property sets the fundamental for modeling the temporal/spec-
tral envelopes. The periodicity property is fundamental to dis-
cuss the effect of finite-length transforms when applying to peri-
odic sequences. Then, the terms, transform formula, periodicity,
and the relation with GDFTs are summarized for the 16 DTTs.

A. Notations

Throughout this paper, we use calligraphic capital letters to
denote matrices (e.g., ) and calligraphic lower case let-
ters to denote column vectors (e.g., ). For vectors and
matrices, both row and column indices used are zero based.
We use the notations or to refer to the th entry of

. Some operation notations are described as follows. Super-
scripts , and denote the transpose, Hermitian trans-
pose, and conjugate operations, respectively. The notation
denotes the Hadamard product (i.e., the entry-wise product of
two vectors or matrices); denotes 2-norm. In terms of
linear algebra, we consider and represent a finite sequence ,

for , as a column vector of length
.

B. Generalized Discrete Fourier Transform

The generalized DFT (GDFT) [25] of a finite sequence
is defined as

for (1)

Four special forms of the GDFT arise when and take on the
values 0 or 1/2. They are classified and named as follows [27]: 1)
DFT (discrete Fourier transform): and ; 2) OTDFT
(Odd-Time DFT): and ; 3) OFDFT (Odd-Fre-
quency DFT): and ; 4) O DFT (Odd-Time
Odd-Frequency DFT): and . The last three
transforms can be regarded as the modified version of the DFT
with a 1/2-sample delay in the time domain and/or a 1/2-sample
advance in the frequency domain. The GDFT matrix is defined
by , where the row
and column indices are . Since the in-
verse GDFT (IGDFT) matrix is the scaled Hermitian transpose
of the forward GDFT matrix, the IGDFT matrix is related to the
forward matrix as

(2)

C. Generalized-Periodic Sequence, Periodic Convolution, and
GDFT

Considering the generalized-periodic sequence (GPS) by
extending a finite sequence into an infinite sequence in either
strictly periodic or anti-periodic way, Martucci summarized
the four different periodic relationships for the four special
GDFTs/IGDFTs in [27, Table I]. A sequence is said to be
anti-periodic with period if for all .
For a period- GPS, we refer to the samples in the base period
(for index ) as the representative samples
or vector.

The periodic convolution of two period- GPSs,
and , of the same type (i.e., both of them

are either strictly periodic or anti-periodic) is defined as
.

The periodic convolution is also a GPS with the same periodic
type and period. On the other hand, the circular and skew-cir-
cular convolutions of two vectors and are defined by

for (3)

for (4)

The circular and skew-circular convolutions of two length-
sequences are, respectively, equivalent to the representative vec-
tors of the periodic convolutions of the period- strictly peri-
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odic and anti-periodic sequences extended from the finite se-
quences.

D. Convolution-Multiplication Property of GDFT

The DFT has the convolution-multiplication property that the
inverse transform after entry-wise multiplication gives the same
result as the circular convolution of the original sequences.
Vernet [26] and Martucci [27] derived such properties for other
GDFTs. We summarize the results in matrix form as follows.
Let and , then the following properties
hold:

(5)

(6)

(7)

(8)

Notice that the implied periodicity of is strictly periodic and
that of is anti-periodic due to the periodicity inherence of
the periodic convolution of the original sequences represented
by and .

E. Discrete Trigonometric Transform

The family of DTTs comprises eight versions of the discrete
cosine transform (DCT) and eight versions of the discrete sine
transform (DST). Martucci formulated the DTTs through the
convolution forms as defined in [27, Appendix]. The orthog-
onal-like relations between the inverse and forward DTTs are

and

(9)

where the DTTs in both sides of each equality must be the same
in the categories of cosine or sine and even or odd, and is
and for the even and odd cases, respectively.

F. DTT and GDFT

1) Symmetric-Extension Operator: Just as the special forms
of the GDFT provide representations for GPSs, the symmetry
and periodicity of the basis functions of the DTTs establish a
one-to-one correspondence between the DTTs and the 16 sym-
metric-periodic sequences (SPSs) that are summarized in [27,
Fig. 2]. Since these SPSs are also generalized-periodic, the SPS
extended from a DTT of a finite sequence can be produced from
the corresponding GDFT of that sequence after having been
symmetrically extended to a base period. Therefore, each DTT
can be directly constructed in terms of its corresponding GDFT
by cascading an appropriate symmetric-extension operator as
defined in Table I, where the subscripts are in terms of Mar-
tucci’s naming rules, including whole-sample symmetry (WS),
whole-sample anti-symmetry (WA), half-sample symmetry
(HS), and half-sample anti-symmetry (HA). The notations

and mean the identity matrix and reversal matrix of
order . A reversal matrix is a square matrix whose nonzero
entries are ones on the antidiagonal. For example, we have

TABLE I
MATRIX FORMS FOR SYMMETRIC EXTENSION OPERATOR

, where is
is is is is ,
and positive integer determines how long the output SPS is
captured.

2) Zero-Padding and Selective Matrices: For capturing the
standard index range of the DTT output, the transposed zero-
padding matrix is introduced. The zero-padding
matrix is defined as . The name “zero-
padding” comes from the fact that left-multiplying a length-
column vector by is equivalent to padding to the up
and down by and zeros, respectively. On the contrary, left-
multiplying a length- column vector by is
equivalent to selecting for . For instance,

. Hence, we name
the transposed zero-padding matrix as the “selective” matrix.

3) Relationship of DTT and GDFT: By using the selective
matrix and symmetric-extension operator defined above, we
can express the relation between a DTT matrix and its corre-
sponding GDFT matrix as

(10)

where denotes the DTT matrix, denotes the GDFT
matrix, denotes the selective matrix, denotes the sym-
metric- extension operator, and subscript indicates the type
of DTT, which takes on I, II, III, and IV. Alternatively, by
left-multiplying the DTT matrix by a symmetric-extension
operator to obtain another half of samples in the base period
of the corresponding GDFT, we can define the correspondent
symmetric-extension operator through the following rela-
tion:

(11)
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TABLE II
DEFINITIONS OF RELATED MATRICES FOR DTT

4) Relationship of IDTT and IGDFT: The dual formula re-
lated to (11) is derived as follows:

(12)

Note that and are interchanged in (11) and (12). Taking
conjugate of (12) and using the properties (2) and (9) lead to

, and hence , where sub-
script indicates the pair type according to (9) (i.e.,

, and ). On the
other hand, by (2) and (9), the dual formula related to (10) is
derived as follows:

(13)

Since is real-valued, the conjugate operation can be ap-
plied in the second equality. In the above generic formulas, the
specific definitions of the related matrices are given in the first
six columns of Tables II and III. As an example, according to
(10) and Table II, the relation between the odd DST-II of length

and the OTDFT of length that equals is given
by , where

and
. According to (11) and Table II, another relation is ex-

pressed by . Moreover, in
[28], Britanak and Rao presented the sparse matrix factoriza-
tions of GDFTs to DCTs and DSTs. These factorizations are

useful to visually understand how the relationship of DTTs and
GDFTs hold.

III. AUTOREGRESSIVE MODELING AND GDFT

In this section, we first establish the time–frequency relation
between the periodic autocorrelation and power spectrum in the
GDFT frequency domain. Then we show that, like the tradi-
tional approach, the Yule–Walker equations consisting of peri-
odic autocorrelations are derived in the least square error sense
for evaluating the AR parameters in the finite length problems
with GDFTs.

Before proceeding, we show a general property of two GPSs
with period , which will be heavily used in later derivation.

Lemma 1: Given two GPSs, and , which are ei-
ther strictly periodic or anti-periodic with period . Then any
summation over successive terms of their product is equal to
the summation over the base period from 0 to . That is,

, for any integer .
Proof: Since , the product

is a strictly periodic sequence with period . Thus,
any summation over successive terms of their product has the
same result.

A. Autocorrelation and Power Spectrum in GDFT

The periodic correlation of two period- GPSs
and of the same type is defined as

. Note that the periodic cor-
relation is also a period- GPS that has the same periodic
type as the input GPSs. Similarly, to distinguish the strictly
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TABLE III
DEFINITIONS OF RELATED MATRICES FOR IDTT

periodic and anti-periodic cases, the circular and skew-circular
correlations of two length- vectors and are defined as

for (14)

for (15)

The circular and skew-circular correlations of two length-
vectors are, respectively, equivalent to the representative vectors
of the periodic correlations of the period- strictly periodic and
anti-periodic sequences extended from the finite vectors.

To express a periodic correlation in terms of a periodic con-
volution, the flip operation on a GPS is introduced and defined
as . The flip operation (also referred to
as time or frequency reversal) can also preserve the periodicity
of the input GPS. For finite sequences of length , the strict-flip
and anti-flip operations are defined in matrix form as

and

(16)

The strict-flip and anti-flip operations of a length- vector
are equivalent to the representative vectors of the flip operations

of the period- strictly periodic and anti-periodic sequences ex-
tended from the finite vector. For instance, let ,
then and .

Theorem 1: Given two period- GPSs, and , of
the same periodic type. Then,

Proof: Since both and for any fixed
are either strictly periodic or anti-periodic with period , by
Lemma 1, we have

Corollary 1: For two column vectors and of length ,
the following properties hold:

and

(17)

Like the conjugate relation between the DFTs of a vector and
its strict-flipped conjugate [29], we extend without proof such
properties for other GDFTs in the next lemma.

Lemma 2: Consider a column vectors of length .
1) The DFT and OTDFT of the strict-flipped conjugated can

be evaluated by

for and (18)
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2) The OFDFT and O DFT of the anti-flipped conjugated
can be evaluated by

for and (19)

The periodic autocorrelation of a GPS with period is
defined as

(20)

For a vector of length , the circular and skew-circular auto-
correlations are defined as and . It is well
known that the DFT of the circular autocorrelation of a vector
equals the DFT power spectrum of the vector. We extend such
important relations for other GDFTs and GPSs.

Theorem 2: Consider a column vector of length .
1) The relation between the circular autocorrelation and DFT/

OTDFT power spectra is given by

(21)

2) The relation between the skew-circular autocorrelation and
OFDFT/O DFT power spectra is given by

(22)

Proof: We first consider the case of skew-circular au-
tocorrelation and OFDFT in part 2). By Corollary 1, we
have . Thus, using (5) yields

. Then,

by Lemma 2 2), we obtain
. Due to , part

2) is proved completely. Similarly, part 1) can be proved by the
same method and using (7).

Corollary 2: Consider a column vector of length .
1) The relation between the skew-circular autocorrelation and

IOTDFT/IO DFT power spectra is given by

(23)

2) The relation between the circular autocorrelation and
IDFT/IOFDFT power spectra is given by

(24)

Proof: We first represent (21) and (22) in Theorem 2 in
generic form as

(25)

By taking conjugate of both sides of (25) and using the property
(2), we have

(26)

Letting be in (26) yields .
Since in both circular and skew-circular autocorrela-
tions, the proof is accomplished.

Thus far, the relation between the periodic autocorrelation
and GDFT power spectra has been connected in Theorem 2 and
Corollary 2. These results are the theoretical fundamental of AR
modeling of GDFT spectra in later derivation.

B. AR Modeling With GDFT

An order- AR model for a period- GPS with param-
eters is defined as

(27)

where is a generalized-periodic excitation sequence, which
is regarded as residuals in linear prediction sense. The residual
term can be written as

where

and for . The periodic type
of that is the GPS extended from

, must be the same as that of to make the periodic convolu-
tion computable. Let denote the representative vectors for

, and , respectively. Then, by the convolution-
multiplication properties (5)–(8), can be transformed into the
GDFT frequency domain as , where

and take on the values 0 or 1/2 depending on the periodicity
type of and the GDFT type used. Hence, by viewing
as a white noise, the power spectrum of the order- AR model
is given by

for (28)

To evaluate the AR parameters, the Yule–Walker equations
can be derived through the least square error (LSE) approach
for the GDFT family. We present the result without proof.

Theorem 3: For a GPS with period , the pa-
rameters for the order- AR modeling in the LSE crite-
rion (i.e., minimize can be obtained by
solving the Yule–Walker equations consisting of the pe-
riodic autocorrelations: ,
for . Furthermore, the LSE is given by

.
Remarkable, in both strictly periodic and anti-periodic cases,

the Yule–Walker equations can be expressed in terms of a
Toeplitz matrix, and hence the Levinson–Durbin algorithm [1]
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can be used for efficiently computing AR parameters. Also,
according to the next theorem, only periodic autocorre-
lation entries, , are required to comprise
the Yule–Walker equations.

Theorem 4: Let be a GPS with period . Then its pe-
riodic autocorrelation has the conjugate-symmetric property as

.
Proof: Applying Lemma 1 to and leads

to

The next theorem describes the well-known Parseval’s The-
orem [29] for GDFTs.

Theorem 5: Let be a column vector of length . Then
for .

To summarize, like the traditional AR modeling method, the
Yule–Walker equations in Theorem 3 can be solved to yield AR
parameters in finite length problems. Then can be
estimated by . By Theorem 5, we have

. Also, .
Thus, when viewing in the strictly periodic sense, we can ap-
proximate its DFT and OTDFT power spectra by

Oppositely, when viewing in the anti-periodic sense, we can
approximate its OFDFT and O DFT power spectra by

Likewise, for the frequency-domain AR modeling, we can esti-
mate the squared temporal envelope by

where or 1/2 depending on the forward GDFT used, and
. As an instance, Fig. 1

illustrates the spectral power envelopes of a speech segment of
2048 samples at 44.1 kHz. The power spectra obtained from its
DFT and OFDFT are shown in Fig. 1(b) and (c), where the spec-
tral power envelopes of order-24 AR modeling are obtained by
solving the Yule–Walker equations consisting of the circular and
skew-circular autocorrelations, respectively. The two spectral
power envelopes are depicted together in Fig. 1(d) to compare
their difference. In the low-frequency part, the two envelopes
are almost identical, whereas the major deviation occurs in the
high-frequency part and reveals the difference of the circular
and skew-circular autocorrelations.

Fig. 1. Comparison of spectral power envelopes (i.e., squared envelope). (a)
The time-domain speech segments of 2048 points at 44.1 kHz. (b) The DFT
power spectrum and the spectral power envelope. (c) The OFDFT power spec-
trum and the spectral power envelope. Both the power envelopes are obtained
by order-24 AR modeling, for which the Yule–Walker equations are comprised
by the circular and skew-circular autocorrelations in (b) and in (c), respectively.
(d) The comparison of the two power envelopes.

Fig. 2. Comparison of squared spectral envelopes. (a) The time-domain audio
segment of 1024 samples at 44.1 kHz. (b) The squared analytic transform of the
odd DST-IV spectrum and the squared Hilbert envelope through AR modeling.
(c) The squared odd DST-IV spectrum and the power envelope. (d) The power.

IV. AUTOREGRESSIVE MODELING AND DTT

In this section, we derive the theorems for the AR modeling
in DTTs. First, associated with GDFTs, we derive the analytic
transform matrices which convert real-valued vectors into ana-
lytic vectors. Then, based on the analytic vectors in DTT/IDTT,
we derive the close form between DTT/IDTT with the GDFT/
IGDFT. Combing the AR modeling in last section with the close
form, we derive the AR modeling formulation with the DTTs in
both temporal and spectral domains.

A. Analytic Transform Based on GDFT and IGDFT

Marple has proposed a DFT-based method for computing the
analytic signal corresponding to a finite real-valued sequence
of an even length [30]. The analytic transform matrix
converting a real-valued vector into a complex-valued analytic
vector is decomposed in matrix product form

(29)
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TABLE IV
DEFINITIONS OF RELATED MATRICES FOR ANALYTIC TRANSFORM

where denotes the DFT matrix, denotes the zero-padding
matrix , and is the weighting matrix

of order . As can be seen, the
analytic transform proposed by Marple discards the negative
DFT frequencies. With the appropriate weighting by , the
analytic vector can have two desired properties. First, the real
part of exactly equals the original vector

for (30)

Second, the real and imaginary parts of are orthogonal:

(31)

As the fundamental for establishing the analytic transform via
the GDFT, we show without proof the generalized symmetry of
the GDFT of a real-valued input.

Lemma 3: Given a column vector of length , and
. Then is real-valued if and only if the following conju-

gate symmetric/anti-symmetric property of holds.
1) For DFT and OTDFT, i.e.,

for (32)

2) For OFDFT and O DFT, i.e.,

for (33)

where when and when .
Based on the generalized symmetry of GDFTs, we can con-

struct other analytic transform matrices as shown in the next
theorem.

Theorem 6: Via each GDFT, we can define the analytic trans-
form matrix, which satisfies both the properties (30) and (31),
in the generic form

(34)

where is the analytic transform matrix,
is the GDFT matrix, is the zero-padding ma-

trix, and is the weighting matrix. The specific ma-
trices are tabulated in Table IV, where belongs to
one of the following diagonal matrices of order or

denoted as subscripts:

and .
Proof: In the same approach in [30], we can construct the

analytic vector by defining the conjugate symmetric and anti-
symmetric functions. For example, we consider the construction
of odd . Let and
for a real-valued vector of length , where and
denote the real and imaginary parts of . Let and denote
the OFDFTs of and , respectively. For the condition
(30), we must define to have . On the other
hand, we define

(35)

Note that adding to not only eliminates the neg-
ative spectrum but also leads to the definition of as

of order . The definition (35)
indeed implies that is purely real-valued
since the conjugate symmetric property (33) holds; thus, the
condition (30) is satisfied. The orthogonal property (31) can be
confirmed as follows:

In the last step, the conjugate symmetric property of is used.
Other analytic transform matrices can be constructed in the
same way.

In the next corollary, we show the dual formula of (34).
Corollary 3: Let , and

. We can define the analytic transform matrix which con-
verts a real-valued spectral vector into a spectral analytic vector
as

(36)

Proof: We take conjugate of (34) and use the property (2)
to have . Then replacing

by yields .
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Take for example, let , we have
and

B. DTT and Analytic Transform

The next theorem illustrates the interpretation of DTT spectra
as the GDFT spectra of analytic vectors.

Theorem 7: Given a temporal column vector and .
Then the IGDFT of the zero-padded and scaled DTT equals the
analytic transform of the symmetrized temporal vector, that is,

(37)

where the related matrices are defined in Table II.
Proof: To relate the DTT and the analytic transform, we

combine the generic formulas (10) and (34) into the form

In the second step, the purpose of zero-padding matrix is
to gather the inherent zero output at the boundary indices of
to make up the total output length of or . The matrix
product can be rewritten as , where
is obtained from by removing the boundary diagonal terms
and reducing the order if necessary. Also, can pad the
DTT output to fill the lengths and for the even and
odd cases, respectively; hence, equals , and the last
step is arrived.

Remarkably, when combined with DST, the matrices and
associated with should be scaled by and , and the

derivation above has no affection. In the dual manner, the next
corollary illustrates the interpretation of temporal vectors as the
IGDFT of DTT-domain analytic vectors.

Corollary 4: Given a spectral column vector and
. Then the GDFT of the zero-padded and scaled temporal

vector equals the analytic transform of the symmetrized DTT
vector. That is,

(38)

where the related matrices are defined in Table III.
Proof: By Theorem 7 and the properties

and , we have

. Then, by taking conjugate again
and using the property due to ,
the dual formula for IDTT is derived as

.
The dual formulas (37) and (38) describe how a vector is

related to its DTT and IDTT in the sense of analytic trans-
form through appropriate symmetrization, zero-padding and
weighting operations.

C. Autocorrelation and Squared Hilbert Envelope

Thanks to Corollary 2, we have linked the GDFT-domain pe-
riodic autocorrelation with the IGDFT-domain (temporal) enve-
lope. Combining the corollary with Theorem 7, we can immedi-
ately obtain the time–frequency relation between the DTT-do-
main periodic autocorrelation and the Hilbert envelope (i.e., the
magnitude envelope of the analytic signal) for a time-domain
finite sequence.

Theorem 8: Given a temporal real-valued vector and
. Let , then

, where is the circular or skew-circular auto-
correlation of depending on the type of that is a DFT or
OTDFT matrix. (The specific types of transform and autocorre-
lation are defined in Table II, where notations (c) and (s) denote
the circular and skew-circular autocorrelations, respectively.)

Proof: From Theorem 7, we have ; by
Corollary 2, the proof is accomplished.

The next theorem gives the dual formulation for estimating
the spectral Hilbert envelope.

Theorem 9: Given a spectral real-valued vector
and . Let , then

, where is the cir-
cular or skew-circular autocorrelation of depending on the
type of that is a IDFT or IOFDFT matrix; and the scale
factor is the length of . (The specific types of transform
and autocorrelation are defined in Table III.)

Proof: From Corollary 4, we have ; by
Theorem 2, the proof is accomplished.

Theorems 8 and 9 permit to model the squared temporal or
spectral Hilbert envelope of the symmetrized time-domain or
DTT-domain vector by fitting an AR model to the zero-padded
and weighted vector in the dual domain. The AR parameters
obtained by the Yule–Walker equations should be zero-padded
to length and transformed by and , respectively, for
the spectral and temporal envelope estimation.

D. Autocorrelation and DTT Power Envelope

Rather than the squared Hilbert envelope, modeling the
squared DTT spectrum (i.e., evaluating the DTT power en-
velope) is another choice. This can be analyzed by applying
the periodic autocorrelation analysis to the symmetrized data
vector, instead of the zero-padded and scaled data vector.

Theorem 10: Given a spectral real-valued vector and
. Let , then ,

where is the circular or skew-circular autocorrelation of
depending on the type of ; and is the length of . (The
specific types of transform and autocorrelation are defined in
Table III.)

Proof: From (11), it implies ; by
Theorem 2, the proof is accomplished.

Oppositely, the next theorem provides the fundamental for
estimating the temporal power envelope.

Theorem 11: Given a temporal real-valued vector and
. Let , then , where is

the circular or skew-circular autocorrelation of depending on
the type of . (The specific types of transform and autocorre-
lation are defined in Table II.)
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Proof: From (12), it implies ;
by Corollary 2, the proof is accomplished.

The dual formulas in Theorems 10 and 11 permit to estimate
the temporal or spectral power envelope of the symmetrized
time-domain or DTT-domain vector by fitting an AR model to
the symmetrized vector in the dual domain.

E. Remarks and Examples

We notice that the periodic autocorrelation of the zero-padded
samples is equivalent to the linear autocorrelation used in the au-
tocorrelation method [2] for linear prediction. Therefore, the tra-
ditional autocorrelation method with scaling can be interpreted
as the Hilbert envelope estimation for DTT/IDTT spectra as il-
lustrated in Theorems 8 and 9. However, looking at the time-do-
main AR modeling in Theorems 9 and 10, the spectral squared
Hilbert and power envelopes will be close when the temporal
input signal is steady and the AR order is much smaller than
the length of the input segment. The phenomenon can be inter-
preted by the approximate results of periodic autocorrelations

and in that condition. Likewise, when a windowing oper-
ation, such as sine windowing, is applied to the input samples,
the effect of the aliasing part of periodic autocorrelation atten-
uates; hence, the resultant spectral Hilbert or power envelopes
of all DTTs have no significant difference. Oppositely, the dif-
ferences of the two kinds of envelopes are easier to be observed
in the frequency-domain AR modeling because the DTT coef-
ficients are usually unsteady and have large energy variation in
the low-frequency part. Moreover, we can expect the temporal
Hilbert envelop should be more smooth due to the imaginary
part added by the analytic transform, while the power envelope
can fit the temporal samples better in the LSE sense.

In the following, some examples are provided to illustrate the
remarks. Fig. 2 compares spectral envelopes estimated by the
two approaches on a time-domain audio segment of 1024 sam-
ples at 44.1 kHz. For the symmetrized odd DST-IV spectrum, in
Fig. 2(b) the skew-circular autocorrelations of the zero-padded
and scaled time-domain samples are used to evaluate its spec-
tral Hilbert envelope, while in Fig. 2(c) the skew-circular auto-
correlations of the symmetrized time-domain samples are used
to evaluate its spectral power envelope. In the two cases, the
AR order is 24, and the squared envelopes are computed by
squaring the length-2048 O DFT (or OFDFT) of the AR pa-
rameters. For comparison, Fig. 2(d) depicts the two squared en-
velopes together with the squared odd DST-IV spectrum. Since

, the estimated Hilbert envelope should have
energy alignment by 1/2 when compared with the squared DTT
spectrum. As can be seen, the envelopes associated with (b) and
(c) are highly close. The observation can be interpreted from
the approximation of the two skew-circular autocorrelations, es-
pecially when the AR order is much smaller than the sample
number.

Fig. 3(b) and (c) show the temporal squared Hilbert and power
envelopes of a length-1024 even DCT-IV spectrum in the fre-
quency-domain AR modeling of order 24. In addition to the two
envelopes in Fig. 3, Fig. 4 depicts the two kinds of temporal
envelope evaluated from the odd DCT-I spectrum of the same
time-domain segment. Here, the estimated Hilbert envelopes

Fig. 3. Comparison of squared temporal envelopes. (a) The even DCT-IV co-
efficients of an audio segment of 1024 samples at 44.1 kHz. (b) The squared
analytic transform of the symmetrized time-domain samples and the squared
temporal Hilbert envelope through AR modeling. (c) The squared symmetrized
time-domain samples and the temporal power envelope. (d) The time-domain
samples and the two (non-squared) envelopes depicted in linear scale. The two
squared temporal envelopes are obtained by order-24 AR modeling. The sym-
metrized parts are not depicted in (b)–(d).

Fig. 4. Comparison of temporal envelopes evaluated from even DCT-IV and
odd DCT-I coefficients, where the two (non-squared) envelopes and the mag-
nitude of the time-domain samples in Fig. 3 are depicted in linear scale. Fur-
thermore, the two envelopes evaluated from odd DCT-I coefficients are shown
for comparison. Note that the two envelopes corresponding to the squared sym-
metrized time-domain samples are too close to distinguish.

have energy alignment by 1/2. The temporal envelopes are eval-
uated from the length-2048IO DFT (or IOTDFT) of the AR pa-
rameters for even DCT-IV and from the length-2048 IDFT (or
IOFDFT) of the AR parameters for odd DCT-I, respectively.
As can be seen, the two Hilbert envelopes have minor devia-
tion since the corresponding analytic signals are similar but dif-
ferent in magnitude, while the other two envelopes are too close
to distinguish because they are corresponding to the squared
time-domain samples which are symmetrized by and

, respectively, and only differ by one zero sample. We
note that the temporal power envelope can fit well the temporal
audio segment in the LSE sense and fit the valley better than
the Hilbert envelope. Fig. 5 illustrates another instance, where
an even DCT-IV spectrum of length 2048, which has strong
low-frequency sinusoid component, is analyzed by the order-50
AR modeling. In Fig. 5(d), the Hilbert envelope without en-
ergy alignment fits the magnitude peaks of the sinusoid compo-
nent, while the square-root power envelope leads to a sawtooth
response. Since ,
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Fig. 5. Comparison of squared temporal envelopes. (a) The even DCT-IV co-
efficients of an audio segment of 2048 samples at 44.1 kHz. (b) The squared
analytic transform of the symmetrized time-domain samples and the squared
temporal Hilbert envelope through AR modeling. (c) The squared symmetrized
time-domain samples and the temporal power envelope. (d) The time-domain
samples, its magnitude, the square-root power envelopes (thick line), and the
Hilbert envelope without energy alignment are depicted in linear scale. The two
temporal envelopes are obtained by order-50 AR modeling.

the ratio of the energy and the squared amplitude of a sinusoid
is 1/2; hence, the Hilbert envelope without energy alignment in
this example can well fit the peaks of the sinusoid component.

V. FORMULATION OF TEMPORAL NOISE SHAPING

WITH FINITE-LENGTH DTTS

TNS aims to shape the temporal envelope of the quantiza-
tion noise by incorporating an open-loop predictive filter [17]
across frequency lines in audio encoders/decoders. In terms of

-transform, the principle of TNS can be explained as follows.
As depicted in Fig. 6, and denote the input and pre-
dictive residual signals in frequency domain in the analysis part,
whereas and denote the reconstructed signals re-
lated to and , respectively, in the synthesis part. The re-
lation between the reconstruction error , i.e., ,
and the quantization noise , i.e., , is expressed
in -transform as , where and

are the -transforms of and . If the magnitude
response of the inverse filter can approximate the
temporal envelope of the frequency-domain input signal ,
the quantization noise (in time domain) can be ampli-
fied or attenuated with the temporal shape.

Herre and Johnston have proposed the TNS predictive filter
by the duality between the squared temporal Hilbert envelope
and the power spectrum for continuous-time signals [12]–[15].
Since there is no derivation for the finite sequences in DTT fre-
quency domain in the literature, this section analyzes the funda-
mental of the TNS in DTTs based on the AR modeling of finite
sequences in last section. Both the temporal Hilbert-envelope
method used in standard and the power-envelope method will
be analyzed.

A. Evaluation and Representation of the Whitening Filter

Let denote the data vector and . Depending on
the kind of temporal envelope, we can have either the squared

Hilbert envelope or power envelope for shaping the reconstruc-
tion noise. As defined in Theorems 8 and 11, and con-
sist of either the circular and skew-circular autocorrelation of
and , respectively, where

and . Sub-
sequently, the parameters of the whitening filter are obtained by
solving the Yule–Walker equations. Since the relations in Theo-
rems 8 and 11 are based on length instead of , we assume
that the whitening filter is applied to covering in our deriva-
tion.

The whitening filter can be represented as a circulant or skew-
circulant matrix [31] for the case of the circular or skew-circular
convolution. By taking conjugate of both sides of (5)–(8) and
assuming that the operands and are real-valued, we have the
alternative relations

(39)

According to (39), the matrix representation for the
whitening filter can be decomposed as

(40)

where , where
is 0 or 1/2 depending on the convolution type.
In the MPEG standard, the TNS predictive error filter is per-

formed through the linear convolution (filtering) in transform
domain. In matrix form, the linear convolution which is lower
triangular is the same as the periodic convolution except for
the upper triangular entries. Thus, by padding the input data with
suitable zeros, the periodic convolution equals the linear convo-
lution. However, to reconstruct , all residuals are necessary
to be transmitted to the decoder to perform the periodic decon-
volution , while only the residuals corresponding to are
required for the linear deconvolution for it is still lower
triangular. Interestingly, if and for

, then . Hence,
and are equivalent to and on and the related

residuals, respectively, and we can develop the TNS formulation
on in the periodic convolution/deconvolution manner.

B. Formulation of Temporal Noise Shaping

The shaping effect of TNS can be formulated as follows. First,
the dequantized residual is given by

(41)

where is the original residual, and is the additive quantization
noise. After deconvolution, the reconstructed spectral vector
is given by . In other words,
the quantization noise can be shaped by the periodic decon-
volution in transform domain. Notice that only the part of

corresponding to is quantized and transmitted from the en-
coder to the decoder. We assume that the zero-padded part is
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Fig. 6. Open-loop prediction coding scheme in TNS.

perfectly reconstructed and the reconstruction noise exists only
for the non-zero-padded samples of . Based on the assump-
tion, we can confirm the equivalency of and on and
have , where is the zero-padding ma-
trix corresponding to , and denotes the reconstruction noise
related to . This assumption implies that some “virtual”
quantization noise should be imposed on the samples after
to correct the noise propagation in the open-loop prediction. To
check the temporal shaping effect, is applied to the part of

related to , i.e., , to yield the reconstructed
temporal vector , where is multiplied for removing
the weighting of on . Before formulating , we consider
another relation between IDTT and IGDFT as follows. For an
arbitrary vector , (37) can be rewritten as

(42)

Thus, by the property that the real part of the analytic transform
exactly equals the original sequence, for a real-valued vector ,
we have

(43)

Hence, by letting be in (43), the reconstructed
symmetrized temporal sequence is given by

(44)

Substituting into (44) leads to

(45)

In the last step in (45), the property (43) is used, and the
product can be removed due to . Then sub-
stituting (40) to (45) yields

(46)

where column vectors and are defined by
and for . Hence,
results in the temporal shaping effect. Furthermore, due to ,
the imaginary part of is also involved in the reconstruction
noise.

Fig. 7. TNS analysis. (a) The even DCT-IV coefficients of an audio segment
of 64 samples at 8 kHz. (b) The predictive residuals by the order-12 whitening
filter corresponding to temporal Hilbert envelope. (c) The quantization noise on
the residuals indexed 0–63, and the virtual quantization noise indexed 64–75.
(d) The original time-domain signal and the reconstruction time-domain noise.

C. Remarks and Examples

Fig. 7 illustrates an order-12 TNS analysis result on the even
DCT-IV coefficients of 64 audio samples at 8 kHz. As shown
in Fig. 7(c), although only 64 quantization noise samples are
applied to the 64 residual samples transmitted, the 12 “virtual”
quantization noise samples indexed from 64 to 75 occur when
analyzed with the skew-circular convolution. In Fig. 7(d), the
original time-domain signal and the reconstruction noise are de-
picted to show the shaping effect. Also notice that the TNS pro-
cessing is applied to a data segment of length 64, but is analyzed
in the O DFT domain of length 128. Because of symmetry,
only one side is shown in this illustration. Fig. 8 illustrates the
noise shaping effect for the Hilbert-envelope and power-enve-
lope methods, where the two order-12 AR modeling methods
are applied to a transient audio segment of 2048 samples at
44.1 kHz. The inverted magnitude responses of the two skew-
circular predictors corresponding to the Hilbert and power en-
velopes are aligned in energy and depicted in Fig. 8(c). The
quantization noise on the residual samples is simulated by a
white random sequence shown in Fig. 8(d). The reconstructed
temporal noises by the two predictors are shown in Fig. 8(e)
and (f). As shown in Fig. 8(c), the magnitude response of the
predictor corresponding to the power envelope is sharper than
that corresponding to the Hilbert envelope at the silence seg-
ment. Therefore, the pre-echo artifact in Fig. 8(f) has higher
attenuation than that in Fig. 8(e). The major difference of the
two methods comes from the envelope estimation of the low-fre-
quency lines due to the contribution of the low-frequency lines
in the skew-circular autocorrelations. The Hilbert envelope can
avoid the smoothing effect by removing the low-frequency lines
in the calculation of the filter coefficients while applying the
noise shaping to all the frequency lines to achieve similar as the
power envelope method.

Another remark in above analysis is that the AAC employs
the MDCT as the time-frequency mapping tool. The
MDCT matrix can be factorized into the product of the “time-
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Fig. 8. Comparison of TNS effect by the order-12 predictors corresponding to
the Hilbert and power envelopes. (a) A transient audio segment of 2048 samples
at 44.1 kHz. (b) The even DCT-IV coefficients. (c) The energy-aligned inverted
magnitude responses of the two skew-circular predictors corresponding to the
Hilbert and power envelopes. (d) The simulated quantization noise. (e) The re-
construction temporal noises by the predictor corresponding to the Hilbert en-
velope. (f) The reconstruction temporal noise by the predictor corresponding to
the power envelope.

domain aliasing” matrix and the even DCT-IV matrix
[24], [32]

(47)

Accordingly, our formula associated with the even DCT-IV of
length should apply to the aliased time-domain segment. The
impact on the aliased time-domain segment has led to the time-
domain aliasing artifact [12], [16] which is another issue for the
design of the whitening filter design, but the issue should not
affect the comparison remarks on the Hilbert-envelope TNS and
power-envelope TNS.

VI. CONCLUSION

This paper has established the compact forms for the AR
modeling of both the temporal and spectral envelopes with fi-
nite-length DTTs. In the first part, we have developed the AR
modeling forms with GDFTs which are highly related to DTTs
with GPSs. In this part, we first represented the periodic correla-
tion as the periodic convolution (see Theorem 1) to exploit the
existing convolution theorems for GDFTs. Then the compact
forms (see Theorem 2 and Corollary 2) between the periodic
autocorrelation and power spectrum have been established. We
have shown that the AR parameters can be obtained by solving
the Yule–Walker equations consisting of periodic autocorrela-
tions (see Theorems 3-5). The result is consistent with the tra-
ditional AR modeling method for DFTs. In the second part,
we have considered the AR modeling with DTTs. The analytic
transforms (see Theorem 6 and Corollary 3) based on GDFTs
have been introduced for evaluating the analytic finite sequence
corresponding to a real-valued finite sequence. Then the DTT
spectra are represented as the GDFT spectra of the analytic vec-
tors to exploit the AR modeling forms with GDFTs (see The-
orem 7). The dual result for the IDTT spectra was also derived
(see Corollary 4). Subsequently, the compact forms (see The-

orems 8 and 9) between the periodic autocorrelation and the
squared Hilbert envelope have been established. The compact
forms (see Theorems 10 and 11) between the periodic auto-
correlation and the power envelope have also been established.
Based on these forms, the periodic autocorrelations of a zero-
padded or symmetrized sequence can be used to comprise the
Yule–Walker equations depending on the desired envelope es-
timation. The theorems have been applied to analyze the TNS
tool in the MPEG-2/4 AAC audio coding scheme.
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