以密閉式藻類毒性試驗評估工業常用非極性麻醉有機物之

混合毒性

學生:謝適鴻 指導教授:陳重元

國立交通大學環境工程研究所

摘要

本研究利用 BOD 瓶進行密閉式藻類 (Raphidocelis subcapitata) 毒性試驗,評估非極性麻醉有機物之毒性。

實驗中選定 DO 觀測終點所求得的毒性數據與其他物種進行迴歸分析,迴歸結果則皆呈現高度相關(R^2 值 ≥ 0.84),這可推論出藻類與其他物種的分析方法(不含 Nitrosomonas)的致毒機制有很高的相關性,且可知本試驗方法不僅敏感性高且與其他的物種且有良好的相關性可做為替代性試驗。

在 $\log K_{\text{ow}}$ 迴歸結果的部分,試驗中有機物不管以 DO、final yield 與 growth rate 迴歸皆有很高的相關性,如此顯示 Narcosis I 的毒性會隨著 $\log K_{\text{ow}}$ 愈大時而有增加的趨勢,其毒性的產生與溶解在水相與薄膜的滲透性有直接的關係,在此可由迴歸結果去預測其它工業常用的非極性麻醉型有機物的毒性。

由混合毒性結果可得知藻類對於非極性麻醉型有機物混合毒性大多以濃度相加呈現,此結果與文獻回顧記載的其它物種試驗的結論相同,實驗中發現 ρ 值皆為 1 ,這顯示非極性麻醉毒性物質容忍度分布為正相關,另外也發現 λ 值也近似於 1 ,這樣的結果代表兩有機物作用在生物受體位置相當接近。

A close-system algal test for evaluating the mixture toxicity of industrial non-polar narcotic chemicals

Student: Hsieh Shih-Hung Advisor: Dr. Chen Chung-Yuan

Institute of Environmental Engineering

Nation Chiao Tung University

ABSTRACT

In this study, we use BOD bottles to perform a close-system algal(*Raphidocelis subcapitata*) test to assess the toxicity of two kinds of non-polar narcotic chemicals.

The comparison between the obtained EC_{50} values and toxicity data from the literature points out the good agreement between the BOD bottle test (*Raphidocelis su.*) and those of nine widely used test methods, i.e., *Fathead minnow*, *Vibrio fi.*, Microtox, Polytox, Spriotox, Shk1, Activated sludge, *Daphina ma.* and *Tetrahymena*.

In this study, $\log K_{ow}$ values of narcosis I compounds (using the BOD bottle test and nine bioassays) were reported. The toxicity data in our study and other bioassay have good correlation with $\log K_{ow}$ value and also prove that there is well relationship between three endpoints. We developed a QSARs model to describe and predict the toxicity of industrial organic chemicals.

This assay is not only applicable for toxicity testing of single compounds. It can be also used for toxicity assessment of volatile fractions of environmental samples.

Our study shows that the additivity effects is the same as the literature for industrial chemical mixtures during the acute tests. A series of isobolograms were generated from this study. These diagrams were analyzed, through Multox model fitting, to determine ρ and λ . For a single-species culture of organisms, ρ was found to be always 1, despite the type of chemicals involved. For two narcosisI toxicants, λ was approximately equal to 1, indicating similar mechanisms of toxicity. The statistical analysis has provided a meaningful biological interpretation to the above model parameters.

誌 謝

能夠完成這本論文實在要感謝許多人的幫忙,尤其是恩師陳重元教授平時上課、group meeting 與 personal meeting 的教導、訓練與督促讓我可以順利如期的完成論文,也要感謝蘇銘千教授與林志高所長兩位口試委員精闢的意見,讓論文能更加完善。

兩年的時光,好似一眨眼就過去了,謝謝博士班傅學長的電腦專長,解決我很多電腦的問題方面;謝謝豆豆學長引我進入藻毒試驗的世界,讓我對實驗很快就能上手;謝謝柏逸學長教我用 HPLC,讓我可以定量芳香族;謝謝詩嵐學姐在毒物選取上的建議,利於我決定論文毒物的方向。

1896

從大學到研究所與我有緣的小博,還有那楊桃王、徽君、小杜、協志、 乾倫、肇毅、阿音與小羊羹,祝你們往後當兵或者是工作都能順心如意; 謝謝為實驗室盡心盡力的學弟國沛、丞凱與學妹素華,加油了,你們是老 闆下屆的希望;謝謝花生、魯冰花與小魚,你們豐富了我的宿舍生活。

爸、媽、大姐、哥、二姐與利雅我的家人,沒有你們的背後默默支持, 我想我這一路走來定加更為艱難,謝謝你們。

-謝謝交大的春、夏、秋、冬與松鼠,我會懷念你們的-

目錄

表:	次		頁次
中		要	
英.	文摘	要	. II
誌	謝		. III
目:	錄		. IV
表	目錄		. VIII
圖	目錄		X
符	號表		. XIII
第	一章	緒論	
	1.1	研究緣起	. 1
	1.2	研究目的	. 2
第		文獻回顧 1896	2
	2.1	常用的物種試驗	. 3
	2.2	藻類毒性試驗	. 5
		2.2.1 試驗物種和優點	. 5
		2.2.2 標準方法	. 6
		2.2.3 連續式培養與批次試驗	. 6
		2.2.4 實驗參數控制與意義	. 8
		2.2.5 觀測終點(end point)量測	12
		2.2.6 揮發性有機物實驗	. 13
	2.3	十種工業有機毒物的用途與危害	. 15
	2.4	單一毒性	. 17
		2.4.1 有機物毒性作用機制	17

	2.4.2 QSAR (Quantitative Structure-Activity Relationship)	21
2.5	混合毒性	24
	2.5.1 非交互作用(Non-interative) 及交互作用(Interative)	24
	2.5.2 Isobologram	26
	2.5.3 非反應性與非反機有機物的混合毒性	26
第三章	章 基本理論	
3.1	常用的單一毒性模式	28
3.2	模式最佳化選擇	31
3.3	NOEC 與 Cut-Off value	31
	3.3.1 判定 NOEC 和 LOEC	31
	3.3.2 平均中斷值(Cut-Off value)	32
3.4	混合毒性	33
	3.4.1 非交互作用(Non-interative)及交互作用(Interative)之模式	33
	3.4.2 交互作用混合毒性理論	34
	3.4.3 混合毒性效應參數 ρ 和 λ 值	34
3.5	複合毒性指標(Multiple Toxicity Indices)和 Isobologram	36
	3.5.1 複合毒性指標	37
	3.5.2 Isobologram	38
第四章	章 實驗設備與方法	
4.1	實驗設備材料與流程	40
4.2	試驗毒物	45
4.3	實驗前準備	49
	4.3.1 培養基質的配製	49
	4.3.2 玻璃器皿清洗與滅菌	51
	4.3.3 盤面光度之調整	51

	4.3.4 藻類之培養步驟及裝置	51
	4.3.5 ISOTON II 之配製	51
	4.3.6 COD-比色法藥品配製	53
	4.3.7 電子顆粒計數器操作方式與原理	53
	4.3.8 電子顆粒計數器操作方式與原理	54
4.4	實驗參數的控制	55
4.5	儀器操作原理、步驟與設定條件	56
	4.5.1 COD-比色法	57
	4.5.2 高效能液相層析儀	57
4.6	密閉式 BOD bottle 藻類毒性試驗步驟	60
4.7	混合方式	64
4.8	And a second sec	65
	结果與討論	66
		67
4.3.6 COD-比色法藥品配製	77	
		79
		82
		90
		94
第六章	注 結論與建議	
6.1	結論	104
6.2	建議	106

参考文獻	107
附錄一	117
附錄二	128
附錄三	203
附錄四	204
附錄五	206

表目錄

表 2.3.1	十種有機物的用途和危害的概述	15
表 2.4.1	分析描述參數的意義與適用情形	22
表 2.5.1	四種不同的共同效應	25
表 2.5.2	常見的混合毒性的名詞	25
表 2.5.3	四種常見的混合毒性效應的與其判定指標	26
表 3.1.1	Weibull、Probit 與 Logit 容忍度分布模式	30
表 3.4.1	基本四種混合效應定義	36
表 3.5.1	混合效應常見的判定法	37
表 4.2.1	有機毒物的物化性質	45
表 4.2.2	有機毒物的物化性質及 QSAR 參數值	46
表 4.2.3	有機毒物純度及購買廠商	47
表 4.3.1	藻類營養基質之巨量營養組成份	50
表 4.3.2	藻類營養基質之微量營養組成份	50
表 4.3.3	電子計數器設定之條件	55
表 4.4.1	藻類實驗參數設定	55
表 4.5.1	HPLC 相關規格及設定	58
表 4.7.1	混合毒性濃度配製	64
表 5.1.1	震盪器盤面光度調整後之分佈	66
表 5.2.1	試驗毒物之藻類毒性試驗數據	70
表 5.3.1a	毒物以 DO 觀測終點與模式的 G 值	78
表 5.3.1b	毒物以 final yield 觀測終點與模式的 G 值	78

表	5.3.1c	毒物以 growth rate 觀測終點與模式的 G 值	78
表	5.4.1	以 Dunnett's test 分析之 NOEC 值	81
表	5.4.2	兩種觀測終點之統計參數	81
表	5.5.1	本研究之毒性數據與鰷魚、弧菌之毒性毒據	83
表	5.5.2	發光菌、好氧菌與旋口蟲之毒性毒據	83
表	5.5.3	活性污泥、水蚤、梨型四膜蟲與亞硝化菌之毒性毒據	84
表	5.5.4	本試驗 R. subcapitata 與其他試驗方法的迴歸結果	89
表	5.6.1	分子描述參數及其預測值與實驗量測值之差異	91
表	5.6.2	logK _{ow} 、logS 兩參數與 log1/EC ₅₀ 的迴歸結果	93
表	5.7.1	非極性麻醉型有機物之混合毒性	96

圖目錄

圖	2.2.1	Raphidocelis subcapitata 圖鑑	5
啚	2.2.2	碳酸鹽系統與光合作用之 pH 恒定的方式	9
圖	2.4.1	有機毒物的分類	17
圖	2.4.2	非特定型反應的化學品	19
圖	2.4.3	特定型反應的化學品	20
圖	3.1.1	不同斜率的劑量反應關係	28
圖	3.4.1	兩毒性物質相關度之關係圖	35
圖	3.5.1	典型的 IsobologramES	39
圖	4.1.1	單一毒性試驗和混合毒性試驗流程圖	44
啚	4.2.1	試驗毒物配製流程	48
昌	4.3.1	藻類之培養步驟	52
圖	4.3.2	為連續式培養母槽	53
圖	4.5.1	COD-比色法操作步驟及設定	57
圖	4.5.2	本實驗 HPLC 操作步驟及設定	59
圖	4.6.1	去離子水曝氣設備	60
圖	5.1.1	調整後之盤面光度區面圖	66
啚	5.2.1	三種觀測終點下之毒性反應	71
圖	5.2.2	甲醇特殊的毒性反應	71
圖	5.2.3	兩種試驗終點下 benzene 之劑量反應曲線	72
圖	5.2.4	兩種試驗終點下 toluene 之劑量反應曲線	72
昌	5.2.5	兩種試驗終點下 chlorobenzene 之劑量反應曲線	73

圖 5.2.6	兩種試驗終點下 methanol 之劑量反應曲線	73
圖 5.2.7	兩種試驗終點下 ethnaol 之劑量反應曲線	74
圖 5.2.8	兩種試驗終點下 1-propanol 之劑量反應曲線	74
圖 5.2.9	兩種試驗終點下 2-propanol 之劑量反應曲線	75
圖 5.2.10	兩種試驗終點下 1-octanol 之劑量反應曲線	75
圖 5.2.11	兩種試驗終點下 acetone 之劑量反應曲線	76
圖 5.2.12	兩種試驗終點下 2-octanone 之劑量反應曲線	76
圖 5.5.1	不同的試驗物種在十種麻醉性有機物的敏感性比較	84
圖 5.5.2	三種觀測終點的迴歸關係	85
圖 5.5.3	R. subcapitata (base on DO)與 fathead minnow 之關係	85
圖 5.5.4	R. subcapitata (base on DO)與 Vibrio fischeri 之關係圖	86
圖 5.5.5	R. subcapitata (base on DO)與 Microtox 之關係圖	86
圖 5.5.6	R. subcapitata (base on DO)與 Polytox 之關係圖	86
圖 5.5.7	R. subcapitata (base on DO)與 Spirtox 之關係圖	87
圖 5.5.8	R. subcapitata (base on DO)與 Shk1 之關係圖	87
圖 5.5.9	R. subcapitata (base on DO)與 Activated sludge 之關係圖	87
圖 5.5.10	R. subcapitata (base on DO)與 Daphina magna 之關係圖	88
圖 5.5.11	R. subcapitata (base on DO) 與 Tetrahymena 之關係圖	88
圖 5.5.12	R. subcapitata (base on DO) 與 Nitrosomonas 之關係圖	88
圖 5.6.1	甲醇與乙醇之散佈情形	91
圖 5.6.2	8 種毒物之 $logK_{ow}$ 與 $log(1/EC_{50})$ 之線性迴歸散佈圖	92
圖 5.6.3	27 種毒物之 $logK_{ow}$ 與 $log(1/EC_{50})$ 之線性迴歸散佈圖	92
圖 5.6.4	10 物種之 logK _{ow} 與 log(1/EC ₅₀)之線性迴歸散佈	92
圖 5.6.5	8 種毒物之 logS 與 log(1/EC50)之線性迴歸散佈圖	93
圖 5.6.6	8 種毒物之 logK _{ow} 與 logS 之線性迴歸散佈圖	93
圖 5.7.1	Toluene 與 Chlorobenzene 之 isobologram	97
圖 5.7.2	Toluene 與 2-octanone 之 isobologram	98

圖 5.7.3	B Chlorobenzne 與 1-octanol	99
圖 5.7.4	Chlorobenzne 與 2-octanone 之 isobologram	
圖 5.7.5	5 1-octanol 與 2-octanone 之 isobologram	101
圖 5.7.6	6 Acetone 與 2-propanol 之 isobologram	102
圖 5.7.7	BOD bottle test base on DO (left) 與 Microtox (right)以相同毒性單位混合之柱狀圖	103

符號表

符號	英文說明	中文說明	單位
C.V.	Coefficient of Variation	變異係數	%
DO	Dissolve Oxygen	溶液中之溶氧量	mg/l
$\Delta \mathrm{DO}$	Delta Dissolve Oxygen	溶液中溶氧之增加量	mg/l
EC_x	X % Effect Concentration	引起 X % 半致死效應之濃度	mg/l
$\log K_{\text{ow}}$	n-Octanol/Water Partition Coefficient	辛醇-水係數之 log 值	-
MCV	Mean Cell Volume	藻類細胞之平均細胞體積	$\mu m^3/\text{cell}$
NOEC	No Observation Effect Concentration	對受測物種未造成明顯毒性 反應之最高濃度	mg/l