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A Dynamic Subspace Method for Hyperspectral
Image Classification

Jinn-Min Yang, Bor-Chen Kuo, Pao-Ta Yu, Member, IEEE, and Chun-Hsiang Chuang

Abstract—Many studies have demonstrated that multiple classi-
fier systems, such as the random subspace method (RSM), obtain
more outstanding and robust results than a single classifier on
extensive pattern recognition issues. In this paper, we propose a
novel subspace selection mechanism, named the dynamic subspace
method (DSM), to improve RSM on automatically determining
dimensionality and selecting component dimensions for diverse
subspaces. Two importance distributions are proposed to impose
on the process of constructing ensemble classifiers. One is the
distribution of subspace dimensionality, and the other is the dis-
tribution of band weights. Based on the two distributions, DSM
becomes an automatic, dynamic, and adaptive ensemble. The real
data experimental results show that the proposed DSM obtains
sound performances than RSM, and that the classification maps
remarkably produce fewer speckles.

Index Terms—Kernel smoothing (KS), random subspace
method (RSM), small sample size (SSS) classification.

I. INTRODUCTION

N hyperspectral imaging, data from the new generation

sensors consist of a large number of spectral bands that
provide the potential to improve the discrimination of objects.
However, one of the difficulties for supervised classification
inhibiting this potential is the constraint of training sample size
because the ground truth is generally expensive and difficult to
acquire. Therefore, we have to face the small sample size (SSS)
problem, that is, the number of available training samples is
much smaller than the dimensionality. Under this circumstance,
the generalization ability of the resulting classifier is weak,
and the variances of its classification results are large [1], [2].
In other words, the classifier suffers from the well-known
Hughes phenomenon [3] or the curse of dimensionality [4] in
classification results.

The random subspace method (RSM) proposed by Ho [5],
[6] is one of the multiple classifier systems, providing a way
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of alleviating sample size and high-dimensionality concerns.
It is a general technique that can be used with any type of
base classifier [7]-[12]. Moreover, much research [13]-[15]
has demonstrated its validness for hyperspectral image clas-
sification. In RSM, each weak classifier is constructed in a
subspace with bands randomly selected from the original ones,
and the subspace dimensionality is usually predefined. Then, a
final decision rule of weak classifiers is obtained by a simple
majority vote. However, there are two inadequacies in RSM.
One is that the dimensionality of subspace is not clearly de-
fined, and the other is its random rule for selecting bands.

Ho suggests that desirable results are obtained by setting
the dimensionality of subspace to approximately half of the
dimensionality of original space [5], [16]. This result is based
on the decision tree classifier, but it may not be extended to all
kinds of classifiers. For instance, the suitable dimensionality of
subspaces for a maximum likelihood (ML) classifier depends
on the size of the training samples. The question of how to
choose a suitable subspace size for the employed classifier will
then arise. In addition, the random strategy assumes that the
selected probability of each band to form a subspace is the
same, but the discriminating power of each band is actually
different.

In this paper, we propose the dynamic subspace method
(DSM) for constructing component classifiers with adaptive
subspaces to adjust the shortcomings of RSM. DSM works on
the basis of two major distributions, namely, W and R, denoting
the distributions of band weights and subspace dimensionality,
respectively. The component bands to form the subspace are
selected with the probability based on the W distribution, and
the number of selected bands is automatically determined based
on the R distribution. In fact, the R distribution records the
importance of all possible subspace size, which is estimated
by the kernel density estimation technique [17], [18] on some
resubstitution performances of partial dimensionalities. Most
importantly, it would be updated in the training process of
constructing DSM. Comparing to a heuristic search or man-
ual method, this scheme shows its dynamic selection manner
for deciding the applicable dimensionality with respect to the
employed classifiers.

Recently, the classification technique integrating both spec-
tral and spatial information has rapidly developed for the hy-
perspectral image classification [19]-[22], where the Markov
random field (MRF) is one of the popular models to exploit
the spatial context between neighboring pixels in an image. In
this study, an MRF-based contextual classification [23] is also
applied to the proposed DSM as the base learner because it
suffers from the SSS problems.
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Fig. 2. Famework of producing ensemble classifiers by DSM, where the update process is to estimate the resubstitution accuracy of h;g as the feedback to update

the R distribution.

The rest of this paper is organized as follows. A brief review
of the RSM will be described in Section II. New methods will
be derived in Section III. For evaluating the performance of the
proposed method, real hyperspectral image data experiments
are designed in Section IV, and the experimental results are
reported in Section V. Section VI contains some comments and
conclusions.

II. RSM

The RSM proposed by Ho [5], [6] is an ensemble tech-
nique based on random band selection (RBS). Let D =
{(x4,¢;)|1 <i < N} represent the original p-dimensional data
set that is composed of N training samples, where x; € R”
with class label ¢; € C' ={1,2,...,L}, and L is the total
number of classes. In RSM, given a predefined subspace
dimensionality r < p, the RBS process randomly selects r
bands from the original p-dimensional space such that D
reduces to D = RBS(D,r) = {(X;,¢;)|1 <i < N}, where
x; € R"; then, D returns as an input to the learning algo-
rithm W, which outputs a classifier & = W(D). This process
will repeat B times to construct ensemble classifiers H =
{h1,ha,...,hp}. In the classification procedure, diverse class
labels of a test sample Y are obtained by these classifiers and
then combined together by simple majority voting to obtain a
final decision F' = argmaxcc(y o,....1} card(k|hy(Y) = ¢,k =
1,2,...,B), where card(A) denotes the cardinality of the set
A. The framework of RSM is shown in Fig. 1, where ﬁk
denotes the kth reduced-dimensional data set of the original
data set D.

The RSM has been theoretically and experimentally proven
to be beneficial for the SSS problem, but there are still two
prominent weaknesses that need to be improved. One is that

the dimensionality of subspace is fixed and needs to be pre-
defined, generally selected by the trial-and-error method; the
other is that its randomized band selection mechanism makes
the equally selected probabilities of informative and noninfor-
mative bands. In Section III, a novel method of the multiple
classifier system, named DSM, will be proposed to overcome
these weaknesses of RSM.

1. DSM

In this section, DSM is introduced, and how the drawbacks of
RSM are overcome is shown. The design of DSM is displayed
in Fig. 2, where two innovative distributions, namely, W and R,
are imposed in the process of subspace selection. In addition,
D, and ), represent the kth reduced-dimensional data set of D
and its corresponding dimensionality, respectively. Compared
to RSM, the contributions of bands are assumed differently,
that is, band selection is no longer according to the uniform
distribution. We propose the importance distribution of band
weight W to model the probability of bands being selected. Im-
portantly, the subspace dimensionality is neither predefined nor
a fixed number but is drawn from the importance distribution
of subspace dimensionality R. An update process for R is also
proposed in each overproduction. DSM constructs D) with 7/,
bands based on W and R distributions. The algorithm of DSM
is summarized in Algorithm 1.

In the following, W and R distributions are defined, respec-
tively, and the DSM algorithm is explained.

A. W Distribution

The design of W distribution is based on the principle that
beneficial bands carry larger probabilities to be selected, and
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Fig. 3. Initial procedure for estimating the R distribution.

smaller probabilities are given to the futile ones. A class-
based band selection for creating an ensemble of classifiers
was proposed in [24]. It is time consuming and not suitable
for our DSM. Hence, two simple and multiclass-based band
selection methods are proposed for DSM. The band selection
processes are based on two W distributions, Wacc(w) and
Wripa, where the subindices ACC(¥) and LDA represent
the resubstitution accuracy by applying the classifier U and
the class separability of Fisher’s linear discriminate analysis
(LDA) [25], respectively. Note that the histogram approach
[18] is utilized for density estimation of both distributions. The
following are their formulations, and the procedure of selecting
bands based on the W distribution is also introduced.

1) Wacc(w) Distribution: The Waccy) distribution is
built according to the so-called resubstitution accuracy [25],
which is the classification accuracy of training data. In this
paper, the resubstitution accuracy is obtained by applying
the base classifier ¥ to each individual band. Assume that
Wacc(w) is a random variable with a probability mass
function (pmf) given by a probability vector fiw,q ) =

(fWACC(\II) (1)7 fWACC(\I/) (2), LR fWACC(\I') (p))’ where

fWACC(\I/)(j): s j=12,...,p. (D

P
> b
=1

¢; denotes the resubstitution classification accuracy by ap-
plying the base classifier ¥ to the jth band only.

2) Wipa Distribution: Another measurement used to as-
sign weight to individual bands in this study is based on the
class separability of Fisher’s LDA [25], which is referred to the
power of discrimination and is measured by J = tr(S,,1S;).
The value of J, computed by the trace of the inverse of
the within-class scatter matrix (S,,) times the between-class
scatter matrix (Sp), should be large to the beneficial bands
but small to the futile ones. Assume that W pa is a random
variable with pmf given by a probability vector fy,,, =

(fWLDA(1)7 fWLDA (2)7 B fWLDA (p))’ where

. J;j _ .
fWLDA(-]): pJ ) J]:tr(Sw]leJ), j:1a27"'ap'
> Ik
k=1
(2)

Dimensionality of Subspace

Note that .J; denotes the discrimination power of the jth
spectral band.

3) Band Selection Based on the W Distribution: The foun-
dation of the band selection algorithm based on the W dis-
tribution (Wacc, Wrpa, or the uniform distribution) is the
theory of pseudorandom number generation [26]. The inversion
method of the pseudorandom number generation is used to im-
plement the algorithm for selecting the desired bands. Assume
that there are r bands that need to be selected; the steps of
selecting these bands are described as follows.

1) Generate a uniform random number v on [0, 1].

2) Select the kth band if Fyy (k — 1) < v < Fy (k), where
Fy denotes the cumulate density function of the W
distribution, and 1 < k < p.

3) Setthe f (k) = 0 and renormalize the W distribution.

4) Go back to Step 1 until » bands have been selected.

Finally, a reduced-dimensional data set D=
WBS(D,r,W) is obtained, where “WBS” denotes the
acronym of W -based band selection.

B. R Distribution

The function of R distribution is to indicate how many
dimensions are suitable for the employed base classifier. The
procedure to establish R distribution includes two steps. First,
we build Ry, an initial distribution of R, by applying ¥
to b different dimensional data sets with dimensionalities
ri,...,7y. Second, the kernel smoothing (KS) density estima-
tion [17], [18] (or “Parzen density estimation” [25]) is utilized
to smoothen R, making it a continuous one. Fig. 3 illustrates
the aforementioned procedure. KS is an important and popular
nonparametric technique for which prior knowledge about the
functional form of the conditional probability distributions is
not available or is not used explicitly [27].

As shown from the left plot in Fig. 3, the b training data
set for building Ry is generated based on W, ie., D; =
WBS(D,ry, W), t =1,2,...,b, where the dimensionality 7,
is given by

(r—1)

3

Next, we need to compute the~resubstituti0n classification
accuracy ¢(h;) by applying ¥ to D;. Then, the R distribution
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TABLE 1
DESCRIPTION OF ALGORITHMS USED FOR COMPARISON
Algorithm Description
Single Classifier | Using only a single classifier without any dimension reduction

RSM Original RSM using half of the original space size for subspace

DSM Dynamic subspace method with random band selection
DSMw1 DSM with the re-substitution accuracy as the band weights
DSMw2 DSM with the separability of Fisher’s LDA as the band weights

is built. Finally, we get the continuous Ry distribution by KS by

[Zaﬁht ( )]

r=1,2,...

fr(r) = 47—
3 oo
YN C))

where K is the kernel function, and o is the smoothing parame-
ter called bandwidth.

The subspace dimensionality is drawn from the R distribu-
tion in this study. Again, the inversion method of the theory
of pseudorandom number generation is used to implement the
algorithm for determining the subspace dimensionality based
on R.

1) Generate a uniform random number v on [0, 1].

2) Determine the subspace dimensionality is r if Fr(r —
1) < v < Fg(r), where F denotes the cumulate density
function of R distribution, and 1 < r < p.

The R distribution will be updated during the construction of

the B classifiers in the ensemble, and the updating process is
described in Section ITI-C.

C. DSM

After estimating the W distribution and the Ry distribution,
the classifiers in the ensemble start being constructed. The R
distribution can be automatically updated by the performance
of subsequent classifier. The steps of the proposed DSM are
described as follows, and the algorithm of DSM is presented in
Algorithm 1.

Let B be the number of classifiers in the ensemble and the
index k =1,2,...,B.

1) Draw a new subspace dimensionality ), from Rj_;

distribution. N
2) Obtain a reduced-dimensional data set by D) =
WBS(D,r),, W).

3) Obtain the kth component classifier of the ensemble by

hy, = v(Dy,).

4) Estimate the resubstitution accuracy ¢(h},) as the feed-

back to obtain an updating R, distribution by

B 1
fR(r)@lcﬁ(hf) o)
x[;mmK(T )+;¢(h’ (T_TZ)] 5)

5) Back to Step 1 until B classifiers have been trained.

Algorithm 1. The algorithm of DSM

Input:
The training data set D
The test sample Y’
A learning algorithm (classifier) ¥
The ensemble size B
The band selection based on W, WBS
Output:
Final hypothesis F': Y — c € {1,2,...,
the ensemble H = {h, hb, ..., K5}
A. Training procedure
Begin
Estimate the W distribution.
Estimate the R distribution.
fork=1,2,...,B
Draw a subspace dimensionality ), from Rj_;.
D, = WBS(D, 7}, W)

L} computed by

nj, = (D})
Obtain Ry, distribution by the formula (5).
end
End

B. Classification procedure
F = argmaxce(y o,... 1} card(k|hi,(Y)) =
1,2,...,B.

¢), where k =

.....

IV. EXPERIMENTAL DESIGN
A. Methods

For investigating the multiclass classification performances
of the proposed methods, there are five different algorithms
used for comparison. All algorithms and their descriptions
are listed in Table I. The value of b for building the initial
R distribution (Rp) is set to 5, and the ensemble size B
is set to 20 in RSM and DSMs. In RSM and DSMs, the
simple majority voting is used for the fusion of all ensemble
classifiers.

In DSMs, the kernel function K used in the R distribution is
taken to be a Gaussian function as

t 1 1(t)2
K(2) = *5(?) . 6
( ) \/27T(726 ©

From [17], if o is large, then the R distribution is flatter, and
the difference of selecting probabilities of bands is small. The
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bandwidth o suggested by [17] is set as
o =0.9An"1/? (7)

where A = min(standard deviation, interquartile range/1.34),
and n is the cardinality of the subspace dimensionalities that
have been input.

B. Base Classifiers

To explore the performances of RSM and DSM on differ-
ent base classifiers, we employ Gaussian ML classifier [25],
k-nearest-neighbor classifier (kNN, k& = 1) [25], support vector
machine (SVM) [28] using a radial basis function (RBF) as
a kernel, and Bayesian contextual classifier (BCC) [23] into
all algorithms. The following explains why we select these
classifiers as the base learners. Here, we give the term “weak
classifier” a general definition that refers to a classifier that
does not have a good enough performance on hyperspec-
tral image classification with insufficient training data. We
try to apply DSM with these classifiers to obtain a better
performance.

The most widely used statistical classifier, namely the ML
classifier, belongs to the parametric model that is made up of
mean vector and covariance matrix for a normal distribution
[25]. However, the covariance matrix of ML may be singular
or near-singular (i.e., noninvertible) and leads to inaccurate
estimation when the data dimensionality exceeds the number
of training samples [29]. Consequently, the classifier performs
poorly.

The kNN classifier is a simple and appealing approach,
which assigns an unknown point to the class most common
among its k nearest neighbors. However, high-dimensional
bands obstacle to the generation of kNN since nearest neigh-
bors of a point can be very far away, causing bias and degrading
the performance of the rule [30]. Since £NN is sensitive to
input bands [31], DSM generates a diverse set of kNN ensemble
to overcome the mentioned problem in a reduced-dimensional
space. In this study, PRTools [32] is used to implement kNN
classifier.

The SVM, a successful learning algorithm commonly used
for classification and regression issues, is designed by solving
a constrained optimization problem. Geometrically, the SVM
aims at finding a linear discriminate function with the max-
imal margin in the potentially very high-dimensional space.
Given a training data set D = {(x;,¢;)}, where x; € R", ¢; €
{+1,—1}, and i = 1,2,..., N. The goal for SVM is to find
the separating hyperplane w’¢(x) that maximizes the mar-
gin, and it requires the solution of the following optimization
problem:

subjectto ¢; (chp(xi) + b) >1—-¢&and& >0 (8)

where C' and £ are penalty parameters and slack variables,
respectively, for the soft-margin SVM. Using the so-called
Kuhn—-Tucker theorem [33] the optimization of (8) can then be
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reformulated as the following dual problem with respect to the
Lagrange multipliers a;; > 0:

N 1NN
min l:zl a5 Z:ZU; Q0GR (X4, X5)
N
subject to Z%‘Ci =0 and 0<; <C
i=1
Vi=1,2,...,N )
where k(x;,x;) is called the kernel function. In this study, an
RBF kernel is used as follows:
K(Xi,X;j) = exp (—’y |Ix; — Xsz) . (10)

The LIBSVM [34] is used to implement the SVM classifier.
Here, we use the fivefold cross-validation and the grid search to
find the best C' within the given set {275,273, ... 21°} and the
best y within the given set {2715,2713 . 23} (suggested by
Hsu et al. [35]) of parameters.

Although SVM has been found to provide better classifica-
tion results than other widely used classifiers in hyperspectral
image classification [36], [37], the band-reduction procedure
combined with SVM for classification also proves its validness
for obtaining higher accuracies [38], [39]. Hence, we include
SVM as the base learner for investigating the effectiveness for
the ensemble method.

The MRF-based BCC [23] is also applied as a base classifier.
Let (4, j) denote a field that contains the classification of a
pixel at the ¢th row and the jth column in an image X, where

u € {1,2,...,L}. According to [23], a decision rule is derived
as follows:
u(i,j) = argmax [— In > 1+ (X (i) = )

}

u={1,2,...,L w

X3, (X (4, 5) = p) + 2m 3 + const.} (11)

where >, and p, are the covariance matrix and mean vector
of class u, respectively. The coefficient 3 emphasizing the
significance of interaction among adjacent pixels inside a clique
is empirically set to 30, and m is the total number of occur-
rences of the class different from (4, j) in all cliques, where
MRFs are used to model the context-dependent information.
The 4-neighborhood system and the corresponding cliques of
order 2 are used in this study. Additionally, [23] also provides
a recursive process for adaptively estimating the statistics of
mean vectors and covariance matrices. In this study, we omit
this step for saving the computational time.

Although the BCC can achieve satisfactory classification
results [19], [23], [40], [41], it still suffers from the singular
or near-singular problem in the estimation of the inverse of
the covariance matrix, which makes the classifier weak and has
poor classification performances. In this study, we apply BCC
into the proposed DSM as the base classifier to try to overcome
this problem. Additionally, we also want to investigate the
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0 Grass M Path [l Tree Il Water [l Roof

Road I Shadow

Fig. 4. (a) Test image of a portion of Washington, DC Mall data set with a size of 205 x 307 pixels. Bands 63, 52, and 36 of 191 bands were used for this image
space presentation. (b) Corresponding labeled field map.
TABLE 1I
NUMBERS OF PIXELS IN THE WASHINGTON, DC MALL DATA SET
Class Roof Road Trail Grass Tree Water | Shadow | Total
#of pixels | 3614 1982 624 2898 1446 1156 840 12560
#of
training N; N; N; N; N; N; N
pixels
# of test
pixels 300 300 300 300 300 300 300 2100
[l Soybeans-min
B Soybeans-notill

Fig. 5.
field map.

mutual effect on the behavior of selecting subspaces when using
both spectral and spatial information.

C. Data Sets

In this study, two hyperspectral image data sets are applied
to compare the performances of five algorithms described in
Table 1. They are the urban site over Washington, DC Mall,
U.S. [42] and the mixed forest/agricultural site over northwest
Indiana’s Indian Pines site, U.S. [43]. The first data set is a Hy-
perspectral Digital Imagery Collection Experiment (HYDICE)
airborne hyperspectral-data flightline over Washington, DC
Mall with an original size of 1280 x 307 pixels, and we
use a size of 205 x 307 in our study. Two hundred and ten
bands are collected in the 0.4-2.4 pum region of the visible
and infrared spectrum. Some water absorption channels are
discarded, resulting in 191 channels. In the experiment, seven
information classes, namely, Roof, Road, Trail, Grass, Tree,
Water, and Shadow, are selected by using MultiSpec [42],
which is shown in Fig. 4(b), and the number of samples of each
class is displayed in Table II.

For exploring the effects of the training sample size to the
dimensions, three different cases, namely, N; =20 < N <p

[ Soybeans-clean
[ Grass/Pasture
I Corn-min
Corn-notill
Hay-windrowed
B Woods

(a) Test image of the Indian Pines data set. Bands 50, 27, and 17 of 220 bands were used for this image space presentation. (b) Corresponding labeled

(case 1: ill-posed problem), N; = 40 < p < N (case 2: poorly
posed problem), and p < N; = 300 < N (case 3: well-posed
problem), are investigated. For test sample size, we use a
fixed size of 300 pixels for each class of the Washington
DC Mall data set. In the Indian Pines data set, 37.24% of
the labeled samples of each class is used as test samples
because in training sample size N; = 300 case, the maxi-
mum available test samples of the Hay-windrowed class is
178, which is 37.24% of the labeled samples. This way,
smaller classes will be tested with a smaller number of pixels,
and larger classes will have a larger number of samples. In
each experiment, ten spatially disjointed training and test data
sets are randomly assembled for estimating the parameters
and computing the overall classification accuracy of the test
data sets.

The Indian Pines data set is gathered by a sensor known as
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).
These data are obtained from an aircraft flown at 19812 m
altitude and operated by the National Aeronautics and Space
Administration/Jet Propulsion Laboratory, with a size of 145 x
145 pixels and 220 spectral bands measuring approximately
20 m across on the ground. The test image is shown in Fig. 5.
From the 16 different land-cover classes available in the
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TABLE III
NUMBERS OF PIXELS IN THE INDIAN PINES DATA SET
Corn- | Corn- | Grass/ Hay- Soybeans- | Soybeans- | Soybeans-
Class notill min Pasture | windrowed notill min clean Wood | Total
#of pixels | 1428 | 830 483 478 972 2455 593 1265 | 8504
# of
waining | N, | N | N N, N, N, N, | N | N
pixels
foftest | 537 | 309 | 179 178 361 914 220 | 471 | 3163
pixels
$ 5 4 4 4
g4 o3 53 3
333 X X X
&3 =2 =2 =2
i 5 E \/\/\ i :
NG c 1 =] c 9
s <1 @ ) )
5 0o e 0 ~— ° o
= 1 48 96 143 191 1 48 96 143 191 01 48 96 143 191 1 48 96 143 191
Dimensionality Dimensionality Dimensionality Dimensionality
(@ (b) (©) @
_ 4 _ 4 _4 _ 4
Ts T e e L
= = = =
>2 22 >2 22
g1 51 51 g
a a o a
01 48 96 143 191 C'1 48 96 143 191 G1 48 96 143 191 01 48 96 143 191
Dimensionality Dimensionality Dimensionality Dimensionality
(e ® (g) ()

Fig. 6. Update process of the R distribution using DSMw2 with ML classifier on the Washington, DC dataset (case 3). (a) Initialize Ro. (b) KS (Rp).
(c) Iteration 1 (R1). (d) Iteration 2 (Rz2). (e) Iteration 5 (Rs). (f) Iteration 10 (R10). (g) Iteration 15 (R15). (h) Iteration 20 (R20).

TABLE 1V
AVERAGE CLASSIFICATION ACCURACY £ STANDARD DEVIATION AND KAPPA STATISTIC = STANDARD
DEVIATION OF TEN TEST DATA ON THE WASHINGTON, DC MALL DATA SET (IN PERCENT)

Base N, =20 N, =40 N, =300

Algoribm classifier accuracytstandard deviation (kappa statistictstandard deviation)
Single ML N/A N/A 81.740.3 (79.911.0)
RSM (r=95) N/A N/A 93.410.4 (90.910.3)
DSM ML 89.610.2 (88.4+1.3) 92.6%1.7 (89.5+1.4) 94.5+0.3 (92.710.5)
DSMw1 91.140.5 (90.8+1.2) 94.110.7 (92.710.5) 94.410.4 (95.110.7)
DSMw2 92.110.6 (91.5%2.5) 93.910.6 (91.5£0.4) 95.240.9 (92.910.9)
Single ANN 79.2%1.5 (78.612.0) 82.310.7 (82.010.5) 92.1£0.7 (91.610.7)
RSM (r=95) 80.4£1.3 (77.411.6) 84.410.9 (82.7£1.7) 92.5%1.2 (90.7£1.4)
DSM NN 80.5+1.2 (77.8%0.6) 82.810.4 (81.910.4) 92.0%1.0 (89.6£1.0)
DSMw1 81.6+1.5 (78.3£1.2) 83.410.4 (82.610.3) 92.1£1.9 (90.9£1.3)
DSMw2 86.812.2 (86.411.6) 88.410.7 (87.7£1.0) 95.9+1.2 (95.710.7)
Single SVM 79.910.5 (76.9£1.6) 85.111.3 (82.112.0) 91.710.4 (88.8%0.3)
RSM (r=95) 79.012.1 (78.211.6) 83.611.6 (82.110.8) 92.0£0.9 (89.1£1.6)
DSM SVM 79.2£1.0 (76.510.8) 84.0£1.5 (81.5£1.2) 91.4%0.1 (88.9£0.4)
DSMwl 81.9£1.5 (78.1%1.6) 84.611.5 (81.911.6) 92.510.6 (89.7£0.8)
DSMw2 87.810.3 (85.310.1) 92.510.7 (90.3%1.1) 94.510.2 (92.110.4)
Single BCC N/A N/A 96.310.4 (94.510.4)
RSM (r=95) N/A N/A 95.611.2 (94.1£0.9)
DSM BCC 90.9+0.5 (88.510.3) 93.4%1.2 (90.7£0.5) 96.210.4 (94.7£0.8)
DSMw1 93.240.3 (90.910.4) 95.610.6 (94.81£0.7) 96.410.6 (95.7£1.0)
DSMw2 94.411.4 (93.411.3) 95.410.7 (93.911.3) 97.010.6 (95.810.7)
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AVERAGE CLASSIFICATION ACCURACY = STANDARD DEVIATION AND KAPPA STATISTIC 4= STANDARD

TABLE V

DEVIATION OF TEN TEST DATA ON THE INDIAN PINES DATA SET (IN PERCENT)

Bage N, =20 N; =40 N,; =300

Algorithm classifier accuracytstandard deviation (kappa statistictstandard deviation)
Single ML N/A N/A 71.240.7 (66.0+0.7)
RSM (r=110) N/A N/A 84.214.5 (81.245.3)
DSM ML 67.613.4 (62.7£3.7) 72.710.9 (67.9£1.1) 86.911.3 (84.411.6)
DSMwl 66.742.8 (60.813.0) | 74.742.0 (70.02.3) | 85.8%3.4 (83.24.0)
DSMw2 68.713.0 (63.213.3) 75.4%11.7 (71.0%1.9) 87.210.8 (84.810.9)
Single ANN 59.742.6 (52.712.9) 66.5+1.1 (60.7+1.1) 83.010.6 (79.810.7)
RSM (r=110) 60.6+1.5 (53.6£1.6) | 65.6+1.7(59.741.9) | 84.4+0.8 (81.9+0.9)
DSM kNN 60.411.5 (53.611.6) 66.211.1 (60.4+1.1) 83.940.7 (80.9+10.9)
DSMwl1 60.311.5 (53.7£1.4) 66.2+1.5 (60.4+1.7) 83.810.6 (80.8%0.7)
DSMw2 60.8£0.9 (54.00.9) | 66.4%12(60.6t13) | 85.010.5 (82.240.6)
Single SVM 74.112.1 (69.412.5) 77.3+1.4 (73.311.6) 82.810.7 (79.610.8)
RSM (r=110) 76.611.6 (72.4£1.9) 81.411.6 (78.0£1.9) 89.610.3 (87.6£0.4)
DSM SVM 76.412.1 (72.212.4) 81.5%1.7 (78.2+2.0) 90.210.7 (88.310.9)
DSMwl 76917 (72.742.0) | 819416 (78.6t1.9) | 89.9+1.1 (88.0£12)
DSMw2 77.1%1.8 (73.012.0) 81.8%1.5(78.4%1.8) 89.510.8 (87.510.9)
Single BCC N/A N/A 83.3%1.0 (80.2%1.1)
RSM (r=110) N/A N/A 93.142.4 (91.82.8)
DSM BCC 72.2+3.9 (67.214.6) 80.4%1.6 (76.8%1.8) 94.6+1.6 (93.511.9)
DSMwl1 71.413.0 (66.413.3) 80.112.4 (76.612.7) 93.313.3 (92.012.0)
DSMw2 73.144.1 (68.244.6) | 78.0t1.4 (74.11.6) | 96.2%0.5 (95.520.6)
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original ground truth [42], eight are discarded due to the
constraint of three sample sizes. The eight classes, namely,
Corn-notill, Corn-min, Grass/Pasture, Hay-windrowed,
Soybeans-notill, Soybeans-min, Soybean-clean, and Wood, are
selected for the experiments, and the number of samples of
each class is displayed in Table III.

V. EXPERIMENT RESULTS

Fig. 5 demonstrates the update process of R distribution
using DSMw2 with ML classifier on the Washington DC data
set. Initially, R starts from five specific subspace sizes, namely,
1, 48, 96, 143, and 191, with approximately equal intervals
as Fig. 6(a), and then, kernel density estimation is introduced
to form Ry as the first guide to select the first subspace size
as Fig. 6(c)—(h) shows the change of R distribution and the
corresponding subspace size selection are based on these dis-
tributions. Through several times of updates, the R distribution
for subspace size selection tends to be stable.

Tables IV and V display the classification accuracies of test-
ing data with cases 1, 2, and 3 on the Washington, DC Mall and
Indian Pines data sets, respectively. Note that the shaded parts
indicate the best accuracy of each case, and the best accuracy
of each applied classifier among all algorithms is written in
bold type in accordance to each case. Figs. 7—12 are three types
of W distributions and corresponding R distributions of two

data sets. Note that all R distributions are the final result over
20 iterations. The following are some findings based on these
results.

A. Washington, DC Mall Data Set

1) In the Washington, DC data set, the highest accuracies
among all methods are 94.4%, 95.4%, and 97.0% in
cases 1, 2, and 3, respectively, and all occur in DSMw2
with BCC. Additionally, as the training sample size in-
creases, the accuracies also represent ascending tenden-
cies in all combinations.

2) In terms of each classifier, the best accuracies occur
mostly when applying DSMw?2 among three cases. Addi-
tionally, the proposed methods, namely, DSM, DSMw1,
and DSMw?2, are better than single classifiers and RSM
disregarding any base classifier applied.

3) The W distribution in Fig. 9 is significantly different from
those in Figs. 7 and 8, possibly giving sound results of
DSMw?2. This shows that using the LDA separability as
the band weights is a better choice to select component
bands of subspaces.

4) The W distribution of kNN in Fig. 8(a) shows a different
behavior with respect to the three others and is closer to
a uniform distribution. It is possible to be the result of
the similar classification accuracies between DSM and
DSMw1.



2848

Fig. 7.

Fig. 8.

5)

0)

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 7, JULY 2010

Density (x10?)
N w

-

0 < r 5 g
1 48 96 143 191
Band
(@)
(W distribution is a uniform distribution)
' [*ML o kNN —SVM -- BCC
3.

Density (x107?)

143

1 48 96
Dimensionality

©

Density (x107?)

Density (x107?)

[XML o \NN —SVM-- BCC

Dimensionality

(b)

[XML o kNN —SVM--BCC

Dimensionality

(d

191

(a) W distribution and (b)—(d) corresponding R distributions of DSM using ML, kNN, SVM, and BCC, respectively, on the Washington, DC Mall dataset:
(a) RBS (W distribution is a uniform distribution); (b) case 1 (IV; = 20 < N < p); (¢) case 2 (N; =40 < N < p); and (d) case 3 (p < N; = 300 < N).

o

2 -] 2 —iNN
> 1 =1
2 M %
8 2 Y ye——
8 of 8o
1 48 96 143 191 1 48 96 143 191
Band Band
g2 —m 5 =
g sw] 2 BCC
> 1 >1
2 R VY SV gy
& ol 8 o
148 96 143 191 1 48 96 143 191
Band Band
(a)

[*ML o sANN—=SVM-- BCC

Density (x10?)

Dimensionality

(©

[*ML o kNN —SVM-- BCC

96 191
Dimensionality

(b)

[*ML o sNN =SVM - BCC]

Dimensionality

(©)

(a) W4 distribution and (b)—(d) corresponding R distributions of DSMw1 using ML, kNN, SVM, and BCC, respectively, on the Washington, DC
Mall dataset: (a) W4 ¢ distributions; (b) case 1 (N; =20 < N < p); (c) case 2 (N; =40 < N < p);and (d) case 3 (p < N; = 300 < N).

RSM is mostly better than single classifiers. ML and
BCC do not work in cases 1 and 2 under RSM due to
the singularity problem. DSM can reduce the singularity
problem.

From R distributions of Figs. 7-9, the proposed method
will automatically estimate I? distributions for different
base classifiers. Based on the dimensionality of sub-
space, lower dimensionality is suitable for ML and BCC,
whereas higher dimensionality is suitable for kNN and
SVM. Furthermore, due to applying additional spatial
information, BCC definitively uses less dimensionality
than ML.

B. Indian Pines Data Set

b

2)

The highest accuracies among all methods are 77.1%
(DSMw2 with SVM), 81.9% (DSMw1 with BCC), and
96.2% (DSMw2 with BCC) in cases 1, 2, and 3,
respectively.

The best accuracies are distributed over DSM, DSMw 1,
and DSMw2 when using SVM and BCC. For kNN and
SVM classifiers, the performances of three DSMs seem
to be similar to that of RSM, which means that half of
the original space size is suitable for RSM with kNN
and SVM classifiers. The R distributions in Figs. 10-12
support this claim; more importantly, they demonstrate
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3)

4)

that the suitable subspace size for kNN and SVM clas-
sifiers is close to half of the original space size, which
matches Ho’s suggestion. Additionally, these R distribu-
tions reveal that BCC uses less dimensionality than other
classifiers.

In cases 1 and 2, ML and BCC suffer from the singular
problem when the dimensionality of subspace exceeds
the training sample size. The proposed dynamic selection
scheme can avoid this situation.

In Figs. 7-9, the W distributions are dissimilar; there-
fore, the performances of DSM, DSMw1, and DSMw2
are different as well. In Figs. 10-12, the W distributions

are flat and similar; therefore, the performances of DSM,
DSMw1, and DSMw?2 are close as well.

Due to length constraints, only some classified images are
shown for comparison and three methods (single classifier,
RSM, and DSMw2) are selected to generate the classified
images under case 3. Figs. 13—15 are the classification results
of the area of Fig. 4 using single classifier, RSM and DSMw?2
with ML, kNN, SVM, and BCC, respectively. Generally, we
can find that all single classifiers do not perform well compared
to RSM and DSMw2. In Fig. 13, although BCC shows less
speckle error than other classifiers, there are many pixels from
roads that are incorrectly identified as roofs. Compared to the
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Fig. 13. Thematic maps resulting from the classification of Fig. 4 in case 3: (a)—(d) are the results of the single classifier. (a) ML. (b) kKNN. (c) SVM.
(d) BCC.
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Fig. 14. Thematic maps resulting from the classification of Fig. 4 in case 3: (a)-(d) are the results of using RSM. (a) ML. (b) ENN. (c) SVM.

(d) BCC.
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Thematic maps resulting from the classification of Fig. 4 in case 3: (a)—(d) are the results of using DSMw?2. (a) ML. (b) kNN. (c) SVM. (d) BCC.
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Fig. 16. Thematic maps resulting from the classification of Fig. 5 in case 3: (a)—(d) are the results of the single classifier. (a) ML. (b) kNN. (c) SVM. (d) BCC.
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Fig. 17. Thematic maps resulting from the classification of Fig. 5 in case 3: (a)—(d) are the results of using RSM. (a) ML. (b) kNN. (c) SVM. (d) BCC.

single classifier method, RSM and DSMw2 both obtain im-
provement in roofs; DSMw2 with kNN and SVM significantly
outperform the single classifier method and RSM in grass. The
best classification result occurs in Fig. 15(d) by using DSMw?2
with BCC.

Figs. 16-18 are the classification results of the area of
Fig. 5 using single classifier, RSM and DSMw2 with ML,
kNN, SVM, and BCC, respectively. Compared to the ground
truth in Fig. 5(b), we can observe that the classification re-
sults of RSM and DSMw?2 are better than those of the single
classifiers, particularly in Soybeans-min, Soybeans-notill, and
Corn-notill, which are the most difficult parts to accurately

classify; additionally, RSM and DSMw2 have similar perfor-
mances when using ML, £NN, and SVM. The best classi-
fication result occurs in Fig. 18(d) by using DSMw2 with
BCC, which performs much better than RSM with BCC in
Soybeans-min.

VI. CONCLUSION AND COMMENTS

In this paper, a new multiple classifiers system named DSM
has been proposed for classifying hyperspectral image data,
and we have investigated the effects of using four different
base classifiers and three training sample sizes. Compared to
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Fig. 18.

original RSM, DSM shows its statistical foundation for select-
ing better subspaces and their sizes, at the same time having
the robust ability to accommodate every situation within this
study.

In the original RSM, the probability of each band being
selected is based on uniform distribution, whereas it is replaced
by W distribution in DSM. Two criteria, namely, the resub-
stitution accuracy and the separability of Fisher’s LDA, are
used to model the density of W distribution. Two “dynamic”
strategies are carried in the R distribution. One is that the R
distribution is enabled to automatically select suitable subspace
sizes, which are usually troublesome to preprocess. The other
one is the updating technique, which makes the R distribution
change progressively toward a stable status. Experimental re-
sults show that these modifications have the ability to improve
the classification accuracy.

There are two theoretical drawbacks to the proposed DSM.
The first one is that in the estimation of the W distribution, the
accuracy of the resubstitution classifications is actually evalu-
ated using only a single band. Theoretically, this approach does
not precisely measure the importance of each band mentioned
previously because there is cross-information between bands.
In terms of algorithm, once the dimensionality of subspace
has been estimated, the importance of each band should be
evaluated statistically by trying different sets with the dimen-
sionality estimated and including the band to be estimated.
However, there are many combinations of band sets; therefore,
the computation load will increase to obtain a better W.

The second drawback is that in the estimation of R distri-
bution, the classification performances of b classifiers built in
b different-dimensional spaces (71, ...,7,) are adopted, which
means that for each r; dimensional space, only one classifier
is trained. The results could be unstable because the data set
extracted may be unrepresentative. The methods to alleviate this
problem are to create many sets with identical dimensionality
and perform the single classifier on each set, then averaging the
results, or to use a sort of k-fold validation.

As the two approaches are applied to W and R, they may
yield better results but may greatly increase the computational
load. However, we have experimentally found that the pro-
posed DSM, indeed, yields better results when B is smaller
than 15, but the results of the two approaches tend to be
similar when B is bigger than 15. By using the proposed
method, computation time is reduced and yields similar re-
sults. Due to length constraints, experimental results are not
presented.
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Thematic maps resulting from the classification of Fig. 5 in case 3. (a)—(d) Results of using DSMw?2. (a) ML. (b) kNN. (¢) SVM. (d) BCC.

In conclusion, the proposed DSM fixes the inadequacies of
RSM by employing two importance distributions in the process
of subspace selection, and furthermore, it not only alleviates
the Hughes effect but also obtains sound results in classification
performance. The experimental results also show that DSMw?2
with BCC has the best performance in accuracy and classifica-
tion map. An interesting finding from the R distribution shows
that BCC performs well in a much smaller dimensional space.
Comparing the performances of DSM with ML and BCC, we
find that the spatial information does, in fact, improve DSM.
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