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ABSTRACT

iPARTS is an improved web server for aligning two
RNA 3D structures based on a structural alphabet
(SA)-based approach. In particular, we first derive a
Ramachandran-like diagram of RNAs by plotting nu-
cleotides on a 2D axis using their two pseudo-
torsion angles n and 0. Next, we apply the affinity
propagation clustering algorithm to this n-0 plot to
obtain an SA of 23-nt conformations. We finally use
this SA to transform RNA 3D structures into
1D sequences of SA letters and continue to utilize
classical sequence alignment methods to compare
these 1D SA-encoded sequences and determine
their structural similarities. iPARTS takes as input
two RNA 3D structures in the PDB format and
outputs their global alignment (for determining
overall structural similarity), semiglobal alignments
(for detecting structural motifs or substructures),
local alignments (for finding locally similar substruc-
tures) and normalized local structural alignments
(for identifying more similar local substructures
without non-similar internal fragments), with graph-
ical display that allows the user to visually view,
rotate and enlarge the superposition of aligned
RNA 3D structures. iPARTS is now available online
at http://bioalgorithm.life.nctu.edu.tw/iPARTS/.

INTRODUCTION

As both the number and the size of RNA tertiary 3D
structures deposited in the database continue to grow,
the techniques of RNA structure comparison have
become an increasingly crucial bioinformatics tool
because structures of molecules evolve more slowly than
their sequences and, therefore, their structural comparison
can bring more significant insights into their functions and

even evolutionary relationships that would not be detected
by analyzing sequence information alone. Basically, de-
tecting structural similarities in two RNA 3D molecules
is not an easy problem because it has been shown to be
computationally intractable (1). Due to this reason, cur-
rently available software tools for comparing two RNA
3D structures, such as ARTS (2,3), DIAL (4), PARTS (5),
SARA (6,7) and LalJolla (8), are all based on some heur-
istic approaches.

ARTS is a web server for detecting maximum common
substructures between two given RNA 3D structures,
which was implemented by Dror et al. (2,3) based on a
heuristic algorithm of cubic running time. By representing
each RNA 3D structure by a set of its phosphate atoms,
ARTS identifies all structurally similar quadrats (i.e. four
phosphate atoms located on two successive base pairs)
between the two input RNA 3D structures and continues
to extend them by using a greedy method for including
additional coincident base pairs and unpaired nucleotides.
ARTS is a good tool for detecting RNA structural motifs,
but it is still time-consuming for ARTS to compare large
RNA molecules (e.g. ribosomal RNAs) because of its
cubic time complexity and, as was pointed out in (4), the
structural alignments produced by ARTS may be incor-
rect sometimes. Later on, to overcome the inaccurate
problems caused by ARTS, Ferré et al. (4) implemented
DIAL, a web server for aligning two RNA 3D structures,
by using a dynamic programming algorithm of quadratic
running time based on a scoring function that combines
similarities of nucleotide sequences, base pairs,
pseudo-torsion (or pseudo-dihedral) and torsion (or
dihedral) angles. DIAL is a versatile web server by
providing the user three types of alignments: (i) global
alignment, (i1) local alignment and (iii) an extension of
global-semiglobal alignment [i.e. a global alignment of a
motif 4 consisting of one or more contiguous segments is
aligned to a contiguous sequence B; while gap penalties
apply throughout for 4 (global alignment), gaps at the end
of B as well as between portions aligned to contiguous
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Figure 1. (a) Six standard backbone torsion angles of a, B, v, 8, € and { and (b) two backbone pseudo-torsion angles of n and 6 for a nucleotide
(denoted by ), where n is defined by the atoms C4,_;, P,. C4, and P,,, while 0 is defined by P,, C4,, P, and C4,_,.

n—1>

segments of A4 are not penalized (so-called middle gaps)].
Next, we developed PARTS (5) for pairwise alignments of
RNA tertiary structures based on a structural alphabet
(SA)-based algorithm. Its basic idea is to reduce input
RNA 3D structures to 1D sequences of SA letters using
backbone torsion angles of constituent residues and
continue to use algorithms of classical sequence align-
ments (including global, local, semiglobal and normalized
local alignments) to compare these 1D SA-encoded se-
quences for determining their structural similaritics. As
was demonstrated in (5), the structural alignments by
PARTS were comparable to those by DIAL, but the
running time of PARTS was generally faster than that
of DIAL. Recently, Capriotti and Marti-Renom (6) have
proposed a new web server, called SARA, for globally
aligning two RNA 3D structures based on the unit-vector
approach and have further shown its ability in function
assignment of RNA structures (7). For each input RNA
3D structure, SARA first identifies an atom trace that
consists of all contiguous atoms of user-defined type and
also calculates all unit-vectors between any two consecu-
tive atoms along this trace. For each nucleotide of an
input RNA structure, it then groups a set of k consecutive
unit-vectors starting from this nucleotide and places these
k unit-vectors at the origin of a unit-sphere, where k is a
user-defined positive integer. Finally, SARA applies a
dynamic programming algorithm without penalizing end
gaps to the two sequences of unit-spheres to find an
optimal semiglobal alignment between them. More
recently, Bauer et al. (8) have used a hashing algorithm
to develop a tool, called LaJolla, which can perform struc-
tural alignment of two RNA 3D structures. LaJolla first
translates each of input RNA 3D structures into a 1D
sequence of characters according to backbone pseudo-
torsion angles of constituent residues, with one of these
two 1D sequences being considered as query RNA and the
other as target RNA. Next, it stores all n-grams (i.c.

substrings of length n) of the target RNA in a hash
table and searches each of all n-grams of the query
RNA against the hash table for its occurrences in the
target RNA. Finally, all corresponding n-grams between
the query and target RNAs are aligned to determine their
anchors and a superposition of these anchors are then
performed.

For proteins, two torsion angles (¢ and ) are sufficient
to describe the backbone conformation of each amino
acid. In contrast, RNA molecules have much higher
dimensionality, since six standard torsion angles (o, B, v,
d, € and { as shown in Figure 1a) are needed to specify the
backbone conformation of a single nucleotide. This leads
the analysis and classification of nucleotide conformation
to be a high-dimensional problem that is computationally
intractable and cannot be evaluated visually. In addition,
it is difficult to use these standard torsion angles to distin-
guish important nucleotide conformations in RNA struc-
tural motifs, because the so-called ‘crankshaft effect’, in
which large changes in individual torsion angles are
compensated by changes in other torsion angles, usually
leads to a result that different combinations of standard
torsion angles can describe identical nucleotide conform-
ations (9). In fact, as was suggested by Duarte and Pyle
(10), the pseudo-torsion angles (n and 0 as illustrated in
Figure 1b) are at least as sensitive as standard torsion
angles and even may be superior when specifying the
backbone conformation of an individual nucleotide.
Particularly, by representing the n and 6 pseudo-torsion
angles of nucleotides on a 2D plot, one can obtain a
Ramachandran-like diagram in which clusters of nucleo-
tides appear at discrete regions and nucleotides in the
same cluster have similar conformation (9,10).
Therefore, in this study, we aim to develop a novel SA
for RNA 3D structures using their n-60 plot of
pseudo-torsion angles, rather than using four standard
torsion angles (o, v, & and {) as done in our previous
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work of PARTS (5) that was motivated from the works by
Hershkovitz et al. (11,12). For this purpose, we utilize a
recently introduced clustering algorithm, called affinity
propagation (13), to classify the nucleotides in the 2D
Nn-0 plot, instead of using the vector quantization (VQ)
approach as used in PARTS (5). Like k-means clustering
approaches, the VQ methods suffer from local optimality
and are sensitive to outliers and noise (14). Moreover, for
the VQ clustering methods, the identified centers in their
clusters may be virtual nucleotides that cannot be
evaluated visually. The so-called ‘affinity propagation’
(AP) algorithm, first proposed by Frey and Dueck (13),
basically is an exemplar-based clustering method that con-
siders all data points as potential exemplars (or centers)
and exchanges messages (of how proper a data point
serves as the exemplar of another one or of how proper
a data point chooses another one as its exemplar) between
data points until a good set of exemplars and clusters
emerges (13). More importantly, Frey and Dueck (13)
have shown that the AP algorithm can obtain better so-
lutions than other frequently used methods, such as
K-centers clustering and hierarchical agglomerative clus-
tering algorithms.

In this study, we have derived a new SA of RNA nu-
cleotide conformations using their n and 6 pseudo-torsion
angles and the AP algorithm. Based on this newly
designed SA, we have re-implemented our previous tool
PARTS as iPARTS (short for improved PARTS) to make
its structural alignments of two RNA molecules more
accurate. Our experimental results on some data sets
have finally shown that our iPARTS outperforms its
previous version PARTS, as well as ARTS and LalJolla,
on accuracy of aligning two RNA 3D structures without
compromising the computational efficiency and also out-
performs SARA on the function assignment of RNA
structures. Basically, the main differences between
iPARTS and PARTS are 2-fold. First, iPARTS uses the
AP algorithm to construct the SA according to two
pseudo-torsion angles of n and 6, while PARTS uses the
VQ method to construct it based on four standard torsion
angles of a, v, 6 and {. Second, iPARTS uses two data sets,
one of highly identical RNA structure pairs from the
DARTS database (15) and the other of structurally
similar RNA motif pairs from the SCOR database
(16,17), to construct the BLOSUM-like substitution
matrix, while PARTS uses only a data set of structurally
similar RNA motif pairs from the SCOR database to con-
struct it.

METHODS

The basic idea of our iPARTS algorithm is to reduce input
RNA 3D structures to 1D sequences of SA letters and
continue to use algorithms of classical sequence align-
ments to compare these 1D SA-encoded sequences and
determine their structural similarities. As mentioned
before, the 2D n-0 plot is a Ramachandran-like diagram
that can provide us a graphic representation of quantita-
tively distinct structural features for analyzing and

modeling RNA 3D structures (9,10). To depict this 1-0
plot, we prepared a data set that includes non-redundant
crystal structures with minimum resolution of 3.0 A
from the PDB database (18). This data set finally
contains 117 crystal RNA structures with 9527 nt in
total. Next, we used the AMIGOS program developed
by Duarte and Pyle (10) to calculate the m and 6
pseudo-torsion angles for all non-terminal nucleotides
(9267 nt in total) from all RNA molecules in the above
data set and plotted these calculated pseudo-torsion angles
on the axes of a 2D plot (refer to Supplementary Data for
the derived n-0 plot). We then continued to use the AP
clustering algorithm (13) to classify all the non-terminal
nucleotides in the n-6 plot into 23 conformation clusters,
each of which was further assigned a letter. We used the
set of these 23 letters as an SA and encoded RNA 3D
structures as 1D sequences of SA letters using the
so-called ‘nearest neighbor rule’, by which each nucleotide
in an RNA molecule is assigned with the letter whose
corresponding exemplar (or center) is nearest to the nu-
cleotide to be encoded. Next, we derived a log-odds matrix
for SA-letter substitutions using the statistical method that
was proposed by Henikoff and Henikoff (19). Finally,
we utilized classical sequence alignment algorithms,
such as global (20), semiglobal (21), local (22) and
normalized local (23) alignments, to compare two 1D
SA-encoded sequences for determining the similarities of
their corresponding RNA 3D structures. Notice that a
grid-like search procedure was performed to optimize
the parameters of open and extension gap penalties by
varying the open gap penalty from —15 to —1 in steps
of 1 and the extension gap penalty from —3 to —0.5 in
steps of 0.5. The reader is referred to Supplementary Data
for the details of above procedures. It is worth mentioning
here that the Smith-Waterman algorithm (22) for the local
alignment was originally designed to remove
non-similar initial and terminal fragments but not non-
similar internal fragments in a sequence alignment, result-
ing in a so-called ‘mosaic effect’ by including poor internal
fragments in a local alignment (23). Such a mosaic ef-
fect still can be observed in local alignments of two
RNA 3D structures, as demonstrated on the help page
of our iIPARTS server. To eliminate this mosaic effect,
we implemented the algorithm proposed by Arslan et al.
(23) to solve the so-called ‘normalized local alignment
problem’, which aims to find the subsequences, say 7
and J, of two given sequences that maximizes S(/, J)/
(I+\J) among all subsequences I and J with I+J/> T,
where S(Z,J) is the alignment score between / and J, and
T is a threshold for the minimal overall length of 7 and J.
Usually, an alignment should be sufficiently long to be
biologically meaningful. Therefore, the above length con-
straint of [I+J/> T is necessary, since length normaliza-
tion in the normalized local alignment problem favors
short local alignments. The user can vary the value of
T to control the result of optimal normalized local align-
ment. If 7"is small, the optimal normalized local alignment
tends to be short; otherwise, it tends to be a long local
alignment that may contain some non-similar internal
fragments.



USAGE OF iPARTS

The kernel programs of iPARTS, as well as its web inter-
face, were written in PHP. The server of iPARTS is cur-
rently installed on IBM PC with 2.8 GHz processor and 3
GB RAM under Linux system. iPARTS provides an in-
tuitive and easy-to-operate interface that can be freely
accessed at http://bioalgorithm.life.nctu.edu.tw/iPARTS/.
It provides four types of alignments to compare two RNA
3D structures: (i) global alignment that is suitable to align
two RNA 3D structures that have overall structural simi-
larity, (i) semiglobal alignment that can be used to detect
known structural motifs with a single contiguous segment
or substructures in an RNA 3D structure, (iii) local align-
ment that is to find common similar substructures between
two RNA 3D structures, and (iv) normalized local align-
ment that can identify more similar local substructures
without non-similar internal fragments. iPARTS takes as
input two RNA 3D structures, each of which can be either
a PDB/NDB ID or a PDB file uploaded by the user, and
their chain IDs if they have multiple chains and optionally
the starting and ending residue numbers of substructures
to be aligned. If needed, the default settings of all the
parameters can be modified by the user, including align-
ment method (whose default is semiglobal alignment), gap
open and extension penalties (whose default values are —6
and —1, respectively), number of suboptimal semiglobal,
local or normalized local alignments (at least one) and
threshold of 7 (whose default value is 8) for controlling
normalization degree of normalized local alignments.
Notice that iPARTS currently is limited to align RNA
3D structures of length up to 1900nt due to limited
memory availability. In the output page, iIPARTS first
displays the information about input RNA molecules
and user-specified parameters. In this display, the user
can further review the details of the input RNA molecules
annotated in the PDB database, as well as standard
torsion and pseudo-torsion angles of nucleotides
calculated by iPARTS, just by clicking their associated
hyperlinks. Next, iPARTS shows the result of its
pairwise RNA structural alignments in detail, including
alignment score, number of aligned residues, RMSD
(root mean square deviation), and resulting alignment of
SA-encoded sequences and its corresponding RNA
sequence alignment and RNA structural superposition.
In the display of RNA structural superposition, the user
can visually view, rotate and enlarge 3D structures of
input RNA molecules and their structural superposition
in a Jmol (an open-source Java viewer for chemical struc-
tures in 3D whose web site is at http://www.jmol.org/)
window. Notably, in the top panel of this Jmol window,
iPARTS provides the user some useful functions for dis-
playing RNA molecules. For example, the user can choose
either black or white (default) as window background
color, spin RNA molecules or not (default no), display
RNA molecules in a scheme of either ribbon, cartoon
(default), wirefare or trace, and determine whether to
display nucleotide IDs or not (default no). In addition,
the user can click the hyperlink of PDB file to download
a PDB file containing the superposition of aligned RNA
3D structures. Notice that if the number of suboptimal
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alignments is set to >1, then the user needs to click the
associated hyperlink to display the structural superpos-
ition of each suboptimal alignment. We refer the user to
the help page of iPARTS for the step-by-step guide of its
detailed usage and examples to illustrate the applicability
of its provided structural alignments.

EXPERIMENTAL RESULTS

To demonstrate the accuracy improvement of iPARTS
over PARTS, as well as other tools, we conducted an ex-
periment on a filtered and non-redundant data set (named
data set #1, consisting of 34 families of 100 RNA struc-
tures) we newly prepared in this study as follows. Initially,
we collected a total of 544 PDB files with 869 RNA chains
from the SCOR database (16,17). We then prepared a
temporary data set from this collection by removing
sequence redundancy at 95% identity. Finally, we
obtained data set #1 by further partitioning each RNA
family in the temporary data set into several sub-families
according to the structural similarity of its constituent
RNAs. For the purpose of comparison, we calculated
the receiver operating characteristic (ROC) curves of
PARTS and iPARTS, as well as stand-alone programs
of other tools at the time (i.e. ARTS and Lalolla), on
data set #1 based on native alignment score and a geomet-
ric match measure, called structural alignment score (SAS)
(24,25), where SAS = 100x RMSD/(number of aligned
residues). The ROC curve is to depict the trade-off
between true-positive rate (i.e. sensitivity) and false-
positive rate (i.e. 1 — specificity). The ROC curve for
each experiment in this study was obtained as follows.
First, the alignments of all pairs of RNA structures are
sorted by their native alignment or SAS score. A threshold
is then varied between the maximum and minimum of the
sorted alignment/SAS scores for producing the points of
the ROC curve. For a fixed threshold, all pairs of aligned
RNA structures whose alignment/SAS scores are above
the threshold are assumed positive and all below it
negative. Moreover, the pairs assumed positive are
counted as true positives (TP) if they belong to the same
family (i.e. they are structurally similar) and false positives
(FP) otherwise (i.e. they are not structurally similar); the
pairs assume negative are counted as true negatives (TN)
if they do not belong to the same family and false nega-
tives (FN) otherwise. Then a point of the ROC curve cor-
responding to this fixed threshold is produced by plotting
its true positive rate on the y-axis and its false positive rate
on the x-axis, where the ‘true positive rate’ is defined as
TP/(TP+FN) and the ‘false positive rate” as FP/(FP+TN).

In the experimental results obtained by testing iPARTS
and PARTS on data set #1, as shown in Figure 2a, the
semiglobal alignment of iPARTS performed much better
than that of PARTS, because the AUC (area under ROC
curve) of the former ROC curve based on native align-
ment score is 0.87, while the AUC of the latter is just
0.81. On the other hand, the ROC curve of iPARTS
based on SAS score is still better than that of PARTS,
because the AUC values of iPARTS and PARTS are
0.86 and 0.85, respectively, as illustrated in Figure 2b.
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Figure 2. The ROC curves of iPARTS and PARTS on data set #1 based on (a) native alignment score, where the AUC values of iPARTS
and PARTS are 0.87 and 0.81, respectively, and (b) based on SAS score, where the AUC values of iPARTS and PARTS are 0.86 and 0.85,

respectively.

However, when testing ARTS and LalJolla on data set #1,
we found that not all pairs of RNA structures can be
aligned to successfully yield their common substructures.
Two RNA structures can be aligned by ARTS only when
each of them possess at least two successive base pairs.
For instance, ARTS cannot find a common substructure
between two RNA loop structures even though they are
similar structurally. LaJolla may also fail to identify a
common substructure shared by two RNA structures,
when the size of the used n-gram is too large so that no
exactly matching n-gram can be found between query and
target RNAs. Among 4950 possible pairs of RNA struc-
tures within data set #1, there are only 613 and 4251 pairs
whose common substructures can be successfully
identified by ARTS and LaJolla (using a n-gram size of
3 bp), respectively. To fairly compare the alignment results
from ARTS, Lalolla and iPARTS, we calculated their
ROC curves based on native alignment score and SAS
score using the 613 pairs of RNA structures that can be
aligned by ARTS. When sorting the structural alignments
by their native alignment score, the comparison of ROC
curves in Figure 3a suggest that iPARTS is the best tool.
When sorting the structural alignments by their SAS
score, IPARTS is still best, as illustrated in Figure 3b.
Notice that if we use the 4251 pairs of RNA structures
that can be aligned by LaJolla to calculate the ROC curves
of LalJolla, then its AUC values based on native alignment
and SAS scores are 0.82 and 0.79, respectively.

Next, we tested our iPARTS for its capability of RNA
function assignment on three data sets (called FSCOR,
R-FSCOR and T-FSCOR, respectively) that were
prepared by Capriotti and Marti-Renom (7) from the
SCOR database on their recent study of SARA. We,
here, did not evaluate the accuracies of ARTS and
LaJolla in the RNA function assignment because, as ex-
plained previously, they were not able to successfully

return the common substructures between all pairs of
RNA structures in these data sets and hence it is impos-
sible now to make a fair comparison of these two tools
with SARA and iPARTS. The FSCOR data set includes
419 RNA chains that were classified into 192 classes, the
R-FSCOR data set contains the representative structures
of 192 classes in the FSCOR data set and the T-FSCOR
data set has all structures of the FSCOR data set not
present in the R-SCOR data set. In the study by
Capriotti and Marti-Renom (7), two RNA structures
have a ‘geodesic distance’ d = 0 if they were annotated
with the same function in the SCOR database, and d <2
if the number of edges between their SCOR function an-
notations, which are organized in a directed acyclic graph,
is <2. The evaluation of structure-based function assign-
ment was usually done by searching with a query RNA
structure against a representative data set of annotated
RNA structures and predicting the function of the query
as the annotated function of the top hit RNA structure.
For this purpose, Capriotti and Marti-Renom (7) per-
formed two different tests using their SARA tool: (i) a
leave-one-out test using the FSCOR data set and (ii) a
test using each structure in the T-SCOR data set as the
query and searching it against the R-FSCOR data set. As
described in (7), SARA resulted in an AUC of 0.61 and
0.83 for d = 0 and d < 2, respectively, on the leave-one-out
test and an AUC of 0.58 and 0.85 for d =0 and d<2,
respectively, on the other test. Here, we repeated these two
experiments using our iPARTS tool. Consequently, the
AUC values obtained by iPARTS on the leave-one-out
test are 0.72 and 0.92 for d =0 and d <2, respectively
(see Figure 4a for their ROC curves) and 0.77 and 0.90
for d =0 and d<2, respectively, on the second test
(Figure 4b), suggesting that our iPARTS performs better
than SARA on the function assignment of RNA 3D
structures.
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Figure 3. (a) ROC curves based on native alignment score, where the AUC values of ARTS, LaJolla and iPARTS are 0.65, 0.74 and 0.91,
respectively. (b) ROC curves based on SAS score, where the AUC values of ARTS, LaJolla and iPARTS are 0.83, 0.83 and 0.91, respectively.
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Figure 4. The ROC curves when testing our iPARTS for its capability of function assignment using (a) the FSCOR data set, where the AUC values
for d =0 and d <2 are 0.72 and 0.92, respectively, and (b) the R-FSCOR and T-FSCOR data sets, where the AUC values for d = 0 and d <2 are

0.77 and 0.90, respectively.

Finally, we tested iPARTS on two 16S rRNA 3D struc-
tures of Thermus thermophilus (PDB ID: 1J5E; NDB ID:
RRO0052, chain ID: A, length: 1513bp) and Escherichia
coli (PDB ID: 2AVY; NDB ID: RR0123, chain ID: A,
length: 1530 bp) to demonstrate its capability for
aligning large RNAs, which still remains a challenge to
date due to their large size. Consequently, as shown in
Figure 5, our iPARTS returned the global alignment of
these two 16S rRNAs in 172.5s with an RMSD of 7.491
A. In Table 1, we show a comparison of average CPU time
for RNA structural alignment tools of ARTS, PARTS,
SARA, Lalolla and iPARTS. For the purpose of this
comparison, we chose four data sets that contain RNA
3D structures at different scale of length: (i) five tRNAs
(1IEHZ:A, 1H3E:B, 119V:A, 2TRA:A and 1YFG:A) with

Figure 5. Superposition display of iPARTS global alignment between
two 16S rRNA 3D structures of 7. thermophilus (PDB ID: 1JSE, chain
ID: A, length: 1513 bp) colored green and E. coli (PDB ID: 2AVY, chain
ID: A, length: 1530 bp) colored orange with an RMSD of 7.491 A.
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Table 1. Comparison of average CPU time for various RNA structural alignment tools

Data set ARTS PARTS SARA LaJolla iPARTS
tRNA 38.7s 2.8s Ss I.ls ls
Ribozyme P4-P6 domain 52.4s 5.5s 12.9s 52s 2.8s
Domain V of 23S rRNA 79.8s 22.1s N/A 119s 17.7s
16S rRNA 3.4 min 2.3 min N/A 5 h 9min 2.9 min

Notice that LaJolla was performed using its stand-alone program (because it currently provides no web server for public access), while other tools
were performed via their web servers. All these tools were tested using their default parameters. At the time of our testing, the SARA web server

cannot deal with domain V of 23S rRNA as well as 16S rRNA.

an average structure length of 76 bp, (ii) three ribozyme
P4-P6 domains (1GID:A, ITHR2:A and 1L8V:A) with an
average structure length of 157 bp, (iii) two domains V of
23S rRNA (1FFZ:A and 1FGO0:A) with an average struc-
ture length of 496 bp, and (iv) two 16S rRNAs (1J5E:A
and 2AVY:A) with an average structure length of 1522 bp.
An all-against-all comparison within each data set was
then performed using all the tools mentioned above with
their default parameters. Notice that LaJolla was per-
formed using its stand-alone program with a default
n-gram size of 7bp (because it currently provides no web
server for public access), while other tools were performed
via their web servers. As indicated in Table 1, for the RNA
structures with moderate length of <160bp, all tools,
except ARTS, can finish their job within several seconds.
However, for the RNA structures with length >490 bp,
our iPARTS and PARTS are the fastest tools.

In (26), Murray et al. proposed the concept of
sugar-to-sugar suite unit and used it to define 42 RNA
backbone rotamers, each of which is represented by two
letters, according to the distributions of multi-dimensional
backbone torsion angles. Recently, Richardson et al. (27)
further refined and updated this work by proposing 46
RNA backbone rotamers. It will be interesting to
further study whether the SA consisting of such 46 RNA
backbone rotamers can be used to produce more accurate
alignments between RNA 3D structures, when compared
to the one we used in this study.

SUMMARY

In this study, we have developed a web-based tool
iPARTS that allows the user quickly and accurately to
perform global, semiglobal, local and normalized local
alignments of two (large-scale) RNA 3D structures. We
have also demonstrated that iPARTS outperforms
PARTS, as well as ARTS and LalJolla, on the pairwise
RNA structural alignments and also outperforms SARA
on the function assignment of RNA tertiary structures.
Therefore, we believe that iPARTS can serve as a useful
tool in the study of structural and functional biology.
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