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Abstract 

 
In this paper, we propose an image deformation 

technique using nonparametric regression to animate 
characters in a still image for multimedia applications. 
The proposed approach effectively produces a 
sequence of contiguous frames in an animation. It 
automatically generates deformed shapes by using 
elliptic radial basis functions (ERBFs) and locally 
weighted regression (LOESS). ERBFs are used for 
representing the deformed character’s shapes in 
synthesized frames. For preserving the pattern within a 
shape, LOESS is applied to fit the detail with local 
control. Furthermore, the results show the synthesized 
frames without unnatural distortion.  
 
1. Introduction 
 

In multimedia applications, deforming characters in 
a 2D image has received lots of interests. Based on 
reanimating a still picture, it has become solvable. For 
example, Chuang et al. [5] deformed pictures using 
stochastic motion textures. They animated passive 
elements which are subject to natural forces like wind. 
Hornung et al. [8] achieved the motion of 
photographed persons by projecting them to 3D 
motion data. By contrast, we would take the idea of 
creating deformations directly in image space one step 
further by making characters move. We propose a 
novel application based on image deformation to 
animate characters, such as shape deformation and 
different view generation of the character in an image. 
Then we extend our concept to create virtual humans.  

Animating the character in a comic could be carried 
out by the creation of a new view, as shown in Figure 
1. It shows two consecutive frames in the original 
comic that can be regarded as two different scenes and 
the synthesized frames from a single input frame. This 
paper involves a novel technique for building a 
nonparametric regression model for character  

   
                                              (a) 

   
                                              (b) 
Figure 1. Character deformation in a comic. (a) Two 
consecutive frames in the comic. (b) The synthesized frames 
from a single input frame. © Georges Remi (Hergé) / 
Moulinsart 

 
deformation, which is used to fit the shape and detail 
of the character between two key-poses (the input and 
its reverse) without unnatural distortion.  

Our proposed approach is based on the prediction 
abilities of both kernel regression and locally weighted 
regression [9, 13]. Kernel regression approximates the 
contours of the deformed character between two key-
poses by the prior use of a set of kernel functions. 
Previously, researchers [26] presented image morphing 
techniques using radial basis functions (RBFs) with 
spatially-limited circular Gaussian distribution 
functions for the kernel. 

In contrast, circular Gaussian is not an appropriate 
choice to fit contours, which have noncircular 
structures, as shown in Figure 2. Figure 2 (a) is the 
original image, (b) using the circular Gaussians needs 
five kernels to fit the contour of the right arm of the 
character, and (c) using the arbitrary directional elliptic 
Gaussians can fit the right arm and left leg with the 
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               (a)                         (b)                        (c) 
Figure 2. Comparison of the number of basis 
functions using Gaussians. (a) The original image. (b) 
Using RBFs to fit the contour of right arm with five kernels, 
and (c) using ERBFs to fit right arm and left leg with the 
same number of kernels. 

 
same number of kernels. Using too many circular 
Gaussians increases the learning and fitting time. In 
this paper, we develop character deformation using 
elliptic radial basis functions (ERBFs), specifically 
elliptic Gaussians, which provide less fitting time. 
Although ERBFs require more computation during 
optimization, better quality is obtained with fewer 
number of basis functions. 

Except the globally smooth shape deformation with 
contour fitting mentioned above, the local-fitting 
methodology is also applied to preserve important 
features within the contour. For example, the wood 
grain of the character in Figure 2 (a). Locally weighted 
regression, or LOESS, is used to preserve the features 
of details. LOESS is based on the minimized weighted 
sum of squared residuals. It is a way of estimating the 
regression surface through a multivariate smoothing 
procedure by fitting a function of independent 
variables locally. 

In summary, this investigation makes the following 
contributions: 

 A novel approach for deformed shape fitting 
based on ERBFs is proposed, which is suited to 
the natural shape of characters such as the 
human’s head or body. 

 By using a closed-form solution of LOESS, a 
new method for detail preserving is presented, 
which maintains features invariant during 
deformations without unnatural distortion. 

 
2. Related work 
 

Various techniques have been applied to animate 
characters in image morphing, view interpolation, and 
shape deformation. 
Image morphing. Several studies [7, 16, 22, 26] 
referred to as image morphing have been conducted. 
For example, RBF is suitable for fitting smooth 
functions and is used to warp facial expressions and 
animate images or drawings [2, 12, 18]. In contrast, 

circular Gaussian is not an appropriate choice to fit 
noncircular structures. In this paper, we adopt ERBFs 
to fit contours of characters instead of RBFs. ERBF 
has the advantage of RBF-like smoothness and is 
applicable to more general shapes than RBF. Nonlinear 
approximation of functions in general spaces with 
ERBF networks (referred to as elliptic basis function 
networks [15]) was proposed. Furthermore, a 
volumetric approximation system was developed with 
ellipsoidal Gaussian functions for 3D volumes 
(referred to as ellipsoidal basis functions [11]).  
View interpolation. Besides, several approaches for 
view interpolation can be applied to character 
deformation [4, 6, 19, 24]. Seitz and Dyer [19] 
proposed a method known as view morphing. The 
input image was prewarped with the image points 
through the fundamental matrix computed by computer 
vision or predefined. Then images were transformed 
onto the same plane such that their scan lines were 
aligned. Two views were then morphed, and the 
interpolated images were postwarped with the user-
specified parameters to achieve better morphing 
quality. However, the quality depends on the number 
of line correspondences made by users.  
Shape deformation. Recently, Alexa et al. [1] 
considered that the shape deformation of an image 
should be as rigid as possible. Such deformations 
would minimize the amount of local scaling and 
shearing. Igarashi et al. [10] triangulated the input 
image and minimized the distortion of these triangles 
in the deformation process by solving a linear system 
of equations. Furthermore, Schaefer et al. [23] 
proposed a rigid transformation method by moving 
least squares. They focused on specifying deformation 
by using user-specified handles. In order to deform the 
image, users should set the next pose by manipulating 
control vertices. Unnatural distortions would be 
generated when the range of controlling handles were 
exceeded because the locally influencing extent using 
moving least squares is limited. 
 
3. Algorithm overview 
 

Our proposed method consists of two stages: 
character extraction and morphing between two key-
poses, as shown in Figure 3. The outline below reflects 
further structure of this paper: 
a. Character extraction. In order to reduce the effects 
of the background upon deformations, we first extract 
characters from the input image. We use level-set-
based GrabCut to extract characters in Section 4. 
Similar regions are extracted by the level set method, 
as shown in Figure 3 (c). The bounding box of all 
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(a)                         (b)                 (c)                (d)                                                       (e) 

Figure 3. This example shows the picture of Mona Lisa. (a) The original input image. (b) The character is extracted, (c) 
who is described by the similar parts found by level-set-based GrabCut, and (d) the contours are applied to build the 
nonparametric regression model for contour fitting and detail preserving. After contour fitting and detail preserving, (e) shows 
several resulting frames in the synthesized Mona Lisa’s deformation. 
 
regions is then used by GrabCut [17]. The boundaries 
of regions corresponding to the matte produced 
automatically are further applied to obtain the final 
character matte, as shown in Figure 3 (d). The 
foreground and background are separated successfully. 
b. Morphing between two key-poses using 
nonparametric regression. We commence the 
character deformation process consisting two steps: the 
shape fitting and the detail fitting step. In the shape 
fitting step, the correspondences between two key-
poses is constructed first. We use kernel regression 
with ERBFs to fit the contour of deformed character in 
Section 5.3. In the detail preserving step, we fit the 
details of the character by LOESS in Section 5.5. Note 
that it is suitable for detail preserving in accordance 
with the previously fitted contour. 
 
4. Character extraction 
 

The level set method, proposed by Osher and 
Sethian [20, 21], is an approach for approximating the 
dynamics of moving curves and surfaces. Chan [3] 
developed the active contours with the level set 
method to detect objects in a given image for image 
segmentation. We adopt his method using the curve 
evolution based on the Mumford-Shah function to 
segment regions with a similar color distribution, as 
shown in Figure 3 (c). 

After image segmentation, the regions containing 
similar color distribution are obtained. GrabCut is then 
applied to segment foreground and background. 
However, it requires an initial trimap constructed by 
users which represents the seeds of the foreground and 
background in GrabCut. We construct a bounding box 
of all these regions. Instead of the initial trimap, we 
use the bounding box for GrabCut, which would 
proceed without user intervention. Note that the 
contours of the regions corresponding to the regions of 
the character matte with similar color distribution are 
extracted. The contours constrain the pixels such that 
they form either the foreground or the background 

replacing users’ refinement in GrabCut. Subsequently, 
the entire iterative energy minimization process would 
be performed again with the updated foreground and 
background distribution. The final character matte is 
shown in Figure 3 (b). 
 
5. Two key-poses morphing 
 

After extracting characters in the original image and 
its reverse, we obtain two key-poses of the character. 
To animate the character, we build a statistical model 
by using nonparametric regression. The statistical 
model consists of two phases: kernel regression with 
ERBFs for shape fitting and LOESS for detail fitting. 
First, we describe ERBFs in Section 5.1. Then, in 
Section 5.2, an initial solution to regression parameters 
is obtained. Next, we discuss the fitting of morphed 
shape of the character with ERBFs in Section 5.3. 
LOESS is introduced in Section 5.4. Finally, in Section 
5.5, the detail is preserved in the morphed shape by 
using LOESS. 
 
5.1. Elliptic radial basis functions 
 

We construct a kernel regression model for the 
prediction of deformed character contours. Because 
initial regions used to predict deformations between 
two key-poses are achieved using the level set method, 
the distribution of data values (pixels) in each region is 
assumed to be normal. RBFs are chose to fit a smooth 
surface. However, RBF, which is a circularly shaped 
basis function, has a limitation in fitting long, high-
gradient shapes such as cylindrical shapes. The radius 
might reach the shortest boundary of the area and 
might require many small RBFs to fit one long shape, 
which would be matched to the shape of a character 
such as the body or head of a human. In order to obtain 
better quality with fewer number of basis functions, we 
use arbitrary directional ERBFs instead of RBFs. Let 
ax,aaaaa be a coordinate vector and miaax,aami be a 
center vector of an elliptic Gaussian. An arbitrary 

( ),u x y= ( ),x yv μ μ=
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Figure 4. Schematic diagram of an elliptic Gaussian 
basis function (arbitrary directional ERBF). 

 
Figure 5. The major axis of the ellipse with 
arbitrary directional elliptic radial basis functions 
is aligned along the contour of the character which 
is a long diagonal data distribution (gray region). 

 
(a)                        (b)                    (c) 

Figure 6. Correspondences based on the structure 
of spatial relationship. (a) The spatial relation in the first 
key-pose. (b) The structure constructed from the first one. (c) 
The correspondences in the other key-pose using the 
structure of the spatial relation. 
 
directional ERBF can be represented in a matrix form. 
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where maanaaaaaaaaad is the covariance of  Gaussian 
along i-axis. The orientation th (the angle between the 
major axis of ellipse and i-axis) and the aspect ratio aii 
are used to transfer to an arbitrary directional ERBF, as 
shown in Figure 4. The transformation matrix ataa , 
which contains a rotation and scaling component, is 
applied for alignment along the data distribution. In 
our work, the major axis of ellipse is aligned along the 
contour of the character, as shown in Figure 5. For the 
mathematical details of Equation (1), it can be inferred 
from hyper radial basis functions [9, 25].  
 
5.2. The determination of initial values 
 

The initial guesses are important for further 
optimization convergence. Before setting the initial 
value of center and covariance, the correspondences 
with regard to feature alignment should be done. We 
choose the top five feature blocks, which are sets of 
sample points along the contours for each region 
obtained from the level set method. The criterion is 
defined as the curvature of the region boundary and the 
dissimilarity to neighbors. The structure of these five 
feature blocks is constructed to maintain the spatial 
relationship among these features, as shown in Figure 
6 (a). Subsequently, Tchebichef moments (TM) [14] of 
these blocks are used to determine the correspondences 
with the spatial constraints of the other key-pose, 
which is obtained by reversing the original input image. 
The correspondences based on the structure of the 
spatial relation are shown in Figure 6. 
 
5.3. Contour fitting with ERBFs 
 

Given n pairs of anchor points, we use arbitrary 
directional ERBFs to predict the contours by 
interpolating a smooth function. The resulting ERBF 
interpolating function is defined as a transformation 
function aaaaaaaaaaa. For m pairs of anchor points in 
input space U, F contains the radial part R and the 
affine part P as follows: 
( ) ( ) ( ) ,F u R u P u= +                                                 (3) 

( ) ( )
1

, ,
m

i i
i

R u k u vα
=

=∑                                                  (4) 

( ) ,P u Mu ε= +                                                           (5) 
where a is the corresponding weight and F(.) is the 
displacement of either the x-coordinate or the y-
coordinate between the correspondences. P(.) is a 2D 
affine transformation, where M is a 2×2 real matrix 
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iθ 2
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iα

194194



and ε is the error term. It can be computed according to 
the correspondences of anchor points in feature blocks 
and determined by a least-squares approximation 
procedure. 

After the affine component has been computed, the 
radial component satisfies the following equation: 
( ) ( ) ( ).R u F u P u= −                                                  (6) 

The estimated weight     is determined by solving the 
following linear system. 

( ) ( ) ( )( )
1

1
2

... 1 1

ˆ ˆ,...,

arg min , .
m

m

n m

i j i j j
j i

k u v F u P u
α α

α α

α
= =

= − −∑ ∑
    (7) 

This can be solved by the least-squares normal 
equations to minimize the sum of the square difference 
in the matrix form: 

( ) ( ) ( )( )1
,T TA K K K F u P u

−
= −                                (8) 

where A is the matrix form of the vector    , K is the 
matrix form of the vector             , and aaaaaaaaaaaaa  
is the matrix form of the vector                         . 

After the weights (           ) are computed in the 
initial loop, we can compute the residual for nonlinear 
optimization. Since residuals are recomputed, the 
residuals update these parameters in the next iteration, 
which are centers, covariances, and weights, with a 
gradient descent. Optimization convergence is 
achieved when the residual is sufficiently small. The 
whole process is converged completely soon after in 
several iterative loops. Then, the kernel regression 
model with ERBFs is trained. We can use the model to 
fit the complete contours of the deformed character. 

 
5.4. Locally weighted regression 
 

Like kernel regression, LOESS [13] is a procedure 
for fitting a regression surface to data through 
multivariate smoothing. LOESS uses the data from the 
neighborhood around a specific location. In other 
words, LOESS performs a linear regression on points 
in the data set, weighted by a kernel centered at that 
pre-defined location. It is much more strongly 
influenced by the data points that lie close to the 
location pre-defined according to some scaled 
Euclidean distance metric. This is achieved by 
weighting each data point according to its distance to 
the pre-defined location: a point very close to it is 
given a weight of one and a point far away is given a 
weight of zero.  

Note that the shape of the kernel is a design 
parameter for which many possible choices exist. The 
original LOESS uses the tri-cube weighting function. 

Nonetheless, we have used the Gaussian kernel. Let     
x0 be the specific location of interest.     represents the 
location of data points, where          .  The weight of 
data point   x with Gaussian weight function is 

( ) ( ) ( )( )2
0 0 0exp ,i i iw x w x x s x x= − = − −                (9) 

where                 and                           for n data points. 
s is a smoothing parameter that determines how 
quickly weights decline in value as one moves away 
from     , k is the kernel width or bandwidth. 
 
5.5. Detail preserving with LOESS 
 

To implement detail preserving, we sample the 
original image with a uniform grid (50×50). The 
vertices in the grid, which belong to the character’s 
contours, would be the specific locations (  ) controlled 
by LOESS. Let aaaaaaaaaaaaaa for aaaaaaaa be n 
measurements of p independent variables. In our work, 
axis the i-th sample point along the contours, which is 
at the coordinate aaaaaaaaa around the specific point 
aa determined by the nearest vertex in the grid. Let 
aaaaaaaaaaaaa be the measurements of the dependent 
variables representing the new position of     in the 
contours of the deformed character. 

Suppose that the target coordinate a  is generated by 
an estimated local multivariate polynomial as follows: 

( ) ( ) ( )1 1 2 2ˆ ... ,i i i M M iy t x t x t xβ β β= + + +                 (10) 
around the specific point    , where   (.) is a function 
that produces the j-th term in the polynomial, and  
mmaaaaaaaaam is a vector of parameters to be 
estimated. In our transformation model, we have 
aaaaaaaaa for aaa which is a translation coefficient and 
aaaaaaaaa for aa which is a rotation coefficient. 
Equation (10) can be written for matrix manipulation, 
which can be easily extended to datasets with many 
inputs: 

( )ˆ ,T
i iy t xβ=                                                            (11) 

where aaaaaaaaaaaaaaaaaaaaaaaaaaaaa is the vector of 
the polynomial terms. Given n pairs of        , the 
general way to estimate      is by minimizing 

( ) ( )22
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= −∑                       (12) 

where                and wi(.) is defined in Equation (9). 
The minimization can be obtained by the least-squares 
normal equations. Then a target coordinate     of a new 
sample  in details within the contours can be 
approximated from Equation (11) or directly from the 
closed-form solution as follows. For brevity, we drop 
the argument aa for ssssssss and denote the estimated 
means and covariances in the following manner: 
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                                       (a) 

 
                                           (b) 

 
                                           (c) 
Figure 7. Character deformation in a comic with 
ERBFs and LOESS. (a) The frames of the comic. (b) The 
synthesized frames from a single input frame. (c) The zoom-
in views of the results. © Georges Remi (Hergé) / Moulinsart 

 
                                       (a) 

 
                                       (b) 

 
                                           (c) 
Figure 8. Character deformation in a comic with 
ERBFs and LOESS. (a) The frames of the comic. (b) The 
synthesized frames from a single input frame. (c) The zoom-
in views of the results. © Georges Remi (Hergé) / Moulinsart 
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Then, an estimated target coordinate yj of a new 
sample   within the contours can be computed as 
follows: 

( )2
ˆ .xy

j y j x
x

y x
σ

μ μ
σ

= + −                                           (17) 

Therefore, we would reconstruct the details within 
the contours fitted with ERBFs via a simple closed-
form solution. After contour fitting and detail 
preserving, character deformation is carried out. In 
order to maintain the 3D effect of the new view, it is 
needed to combine with backward deformation by 
using color blending. 
 
6. Results 
 

The proposed nonparametric regression model was 
implemented on an Intel Pentium M 1.5 GHz processor 
that allows efficient animations of still characters for 
multimedia applications. The results could be referred 
to the accompanying video (Please refer to 
http://cg.cis.nctu.edu.tw/csa08/85_demo.zip).  

The proposed model is based on image deformation. 
The complete deformation process consists of three 
independent stages: character extraction, contour 
fitting, and detail preserving. In the contour fitting 
stage, the number of ERBFs of all examples fitting 
contours is decided by residual analysis. We found that 
an appropriate number of ERBFs is about eighteen for 
better fitting results in our experiments.  

Our experiments were performed on digitized 
images obtained from “The Adventures of TinTin: The 
Shooting Star,” which was originally produced by 
Georges Remi (Hergé) (Moulinsart owns exploitation 
rights pertaining to Hergé’s work). The results are 
presented in Figure 1, Figure 7, and Figure 8. They 
show several synthesized frames of character’s motion 
and the zoom-in views. They are only head movements. 
For fitting the contours, the second key-pose involves 
inversing the contours of the head component and 
concatenating with the other contours. The character 
would then be deformed with ERBFs and LOESS.  

ˆ jy
jx
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                     (a)                                   (b)                                  (c)                                 (d)                                  (e)  
Figure 9. Character deformation with expression synthesis. (a) The original picture of Mona Lisa. (b), (c), (d), and (e) 
are the synthesized expressions. 

 
(a)                        (b)                           (c) 

Figure 10. Comparison of the deformed result 
obtained by using RBFs and ERBFs. (a) The original 
picture of Mona Lisa. (b) The result obtained by using RBFs. 
(c) The result obtained by using ERBFs. 

  
(a)                                           (b) 

Figure 11. Comparison with view morphing [19]. (a) 
Ghost occurrence in view morphing without enough 
correspondences (red lines are specified by users). (b) The 
result created by using our method. 

 
(a)                   (b)                     (c)                    (d) 

Figure 12. Comparison with image deformation 
using moving least squares [23]. (a) The character with 
handles (red dots). (b) The results created by using moving 
least squares with distortions. (c) The undesired warp 
occurrence (moving handles exceeds the control extent). (d) 
The same pose with (b) created by using our method. 

 
Besides, we are interested in extending our 

deformations to facial expression and viseme synthesis 
for virtual human creation. With the exception of a 

novel view interpolation and shape deformation, 
several facial effects observed in character 
deformations, such as eye, nose, and mouth 
movements, could be created, as shown in Figure 9. 
Figure 9 (a) is the original picture of Mona Lisa. 
Figure 9 (b), (c), (d), and (e) are the synthesized facial 
expressions. We develop a module to record the input 
character’s facial expression and viseme. By moving 
the facial features obtained from the structure of the 
spatial relation, which we constructed before, we 
simulate the dynamics of the features to synthesize 
different expressions, such as blink, anger, or happy. 
We could enhance the expression by shaking the 
shoulders or wagging the character’s head. We would 
further retarget the expression onto another character.  

Figure 10 shows a comparison of deformed 
characters obtained by using RBFs and ERBFs 
respectively. The number of basis functions is the same. 
Ghost effects are observed in the final result using 
RBFs even though feature alignment is achieved in 
contours fitting. The quality of the final blending result 
with ERBFs is better.  

As mentioned above, previous techniques such as 
view interpolation and shape deformation may be able 
to produce good quality results. However, both 
techniques needed user intervention. Figures 11 and 12 
provide comparisons with view morphing proposed by 
Seitz and Dyer [19] and image deformation using 
moving least squares proposed by Schaefer et al. [23]. 
In view morphing, it is necessary to compute an 
additional fundamental matrix for camera calibration. 
Further, many users’ specifications are required for 
correspondences. Figure 11 (a) shows that lacked 
users’ specification would create ghost effects because 
of nonalignment (There were seventeen control lines 
on the face specified by users). A better result was 
obtained when more than thirty or forty control lines 
were specified. Besides, the method of Schaefer et al. 
preserved the details of characters, such as wood grain. 
This property may lead to an undesired result and 
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unnatural distortions when users specify the moving 
handles which exceed the control extent because of the 
constraint using moving least squares, as shown in 
Figure 12. This man-made situation or interference 
would not occur in the proposed method. Our method 
would be automatic in character deformation process. 
 
7. Conclusion 
  

We propose a novel multimedia application based 
on image deformation with a nonparametric regression 
model using ERBFs and LOESS for character 
animation and virtual human creation. By using the 
model, deformation problems that are commonly 
observed for characters in nonspherical structures 
would be solved and animated without unnatural 
distortion. We have shown visual results for the 
purpose of comparison. The prediction performance of 
our algorithm is considerably limited by the structure 
of the input image. The proposed algorithm may fail in 
case of overlapping regions such as an arm 
overlapping the body. Each region may be applied to 
deform separately with users’ interaction.  

In the future, we intend to improve the performance 
and quality of the scattered ERBFs and LOESS fitting 
algorithm and synthesize the smooth transition 
between two motions. Furthermore, we can predict the 
time series model of a moving character with the 
nonparametric model using ERBFs and LOESS. The 
time series model would be applied to retarget the 
motion onto any similar characters for advanced 
multimedia applications. 
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