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Abstract

We in this paper present an computational intelligence technique to extract semiconductor device model parameters. This solution
methodology is based on a genetic algorithm (GA) with an exponential type weight function, renew operator, and adaptive sampling
scheme. The proposed approach automatically extracts a set of complete parameters with respect to a specified compact model, such
as a BSIM model for deep-submicron and nanoscale complementary metal-oxide-semiconductor (CMOS) devices. Compared with con-
ventional artificial step-by-step fitting approaches, the proposed extraction methodology automatically tracks the shape variation of cur-
rent–voltage (I–V) curves and examines the first derivative of I–V curves; therefore, highly accurate results can be obtained directly.
Applying the renew operator will keep the evolutionary trend improving by removing the individuals without mainly features. The sam-
pling strategy will speed up the evolution process and still maintain the extraction accuracy in a reasonable range. A developed prototype
is successfully applied to extract model parameter of N- and P-metal-oxide-semiconductor field effect transistors (MOSFETs). This opti-
mization method shows good physical accuracy and computational performance, and provides an alternative for optimal device mod-
eling and circuit design in nanodevice era. Genetic algorithm based automatic model parameter extraction bridges the communities
between circuit design and chip fabrication; in particular, it will significantly benefits design of system-on-a-chip.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Using technology computer aided design (TCAD) and
electronic CAD (ECAD) tools to investigate VLSI device’s
characteristics currently plays a central role in academic
research and industry applications [1–16]. Genetic algo-
rithm is a self-adaptive optimization strategy that mimics
a living system [17]. This global optimal strategy has been
of great interest for a wide range of applications [18–27].
In particular, in microelectronics it has been applied for
various VLSI physical designs, such as cell placement,
channel routing, test pattern generation, and design for
test.
0167-9317/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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For nanoscale CMOS devices and VLSI circuit design, a
designer defines a target set of I–V curves on a designed
device firstly, and finds out the corresponding parameters
manually. This procedure is time-consuming and low per-
formance task in modern microelectronic industry. Com-
bined with the Newton-liked techniques some
optimization approaches, such as the direct and numerical
methods have been proposed in solving such problems.
However, these local methods often require accurate initial
guesses to start the iteration and apparently encountered
seriously convergent problem in practical CAD implemen-
tation. In semiconductor industry, a foundry will produce
different size of devices at one time and it is necessary to
find a set of parameters to represent the electrical charac-
teristics for all devices. For example, there are 4 families
of I–V curves to be optimized for a given MOSFET, each
I–V family contains 5 I–V curves, and each I–V curve has

mailto:ymli@faculty.nctu.edu.tw


Bulk

Gate

DrainSource

C
gd

C
bd

Q
d

I
bd

Q
b

I
ds

C
gb

I
bs

C
bs

C
gs

Q
s

R
ds

+

V
G

V
D

V
B

V
S -

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Fig. 1. A schematic diagram of the BSIM3v3 equivalent circuit for
advanced MOSFETs.
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more than 80 I–V points. To extract parameters from var-
ious devices with different geometries is even more difficult
and time-consuming task. Therefore, any improved evolu-
tion strategies for intelligent optimization will significantly
reduce the dependency of computing resource.

In this work combining with an optimization technique
we applied the GA in optimal I–V curves characterization,
optimization, and parameter extraction for deep-submi-
cron and nanoscale MOSFETs. Our GA methodology is
based on a floating-point operator and a renew operator.
The floating-point operator is suitable for solving this
numerical optimization problem, and the renew operator
reveals good evolving behaviors to skip over local optimal
conditions. In addition, an exponential type weight func-
tion is applied to mimic many sets of I–V curves precisely.
For a specified stopping criterion, this unified intelligent
computing technique can automatically extract parameter
from a single as well as multiple VLSI devices. Application
of our optimization technique to extract parameter of N-
and P-MOSFETs with different channel length and width
is successfully obtained in terms of model accuracy and
computational efficiency. This paper is organized as fol-
lows. Taking a BSIM model as an example, Section 2 states
the role of compact models for VLSI devices. Section 3 dis-
cusses the proposed extraction and optimization technique.
Section 4 shows our results for deep-submicron and nano-
scale MOSFETs. Section 5 draws conclusions and suggests
future works.

2. Equivalent circuit model for VLSI devices

In semiconductor fabrication and microelectronics
industry, various compact models, such as BSIM, EKV,
MOS models for VLSI devices have been widely applied
to device characterization and optimization, circuit design
and simulation, and system verification [18,19]. These mod-
els for solving physical phenomena of devices are through
applying multiple physical-based approximations. A set
of well-defined parameters plays a significant role to the
simulated results. Finding out a set of optimal parameters
for a specific device characterization is a very tedious and
complicated task. This process, known as parameter
extraction, is not only laborious but also requires extensive
expertise to achieve the meaningful parameter. Among
well-known compact models, Berkeley short-channel
Table 1
A partial list of BSIM3v3 model parameters

Name Range Res. Unit

Vth0 �1.0 to 1.5 1e�3 V
k2 �0.1 to 0.1 1e�4 –
Dvt0 0.0 to 2.0 1e�3 –
Dvt2 �0.15 to 0.0 1e�4 1/V
Dvt1w �0.2 to 0.2 1e�3 1/m
Nlx �0.2 to 0.2 1e�3 m
Vsat 0.0 to 2e5 1e3 m/s
Ub 0.0 to 8e�18 1e�20 (m/V)2
IGFET model (BSIM) is one of physics-based deep-submi-
cron MOSFET models for digital and analog circuit
designs [18,19]. Nowadays, it is widely used by many
research organizations, semiconductor fabrication, and
integrated circuit design companies.

For advanced CMOS devices and VLSI circuit simula-
tion, without loss of generality, we focus here on the
BSIM3v3 model parameter extraction with the developed
GA-based CAD prototype. We note that our solution
methodology can be applied to different compact models,
such as BSIM4, MOS, SP, EKV, HiSIM, and diverse
macro models. Completely equations of the BSIM3 model
are more than 50 nonlinear algebraic equations. As shown
in Fig. 1 MOSFET typically has four control sources: VD,
VG, VS, and VB. Fig. 1 shows a typical DC base band
equivalent circuit of the BSIM3v3 model for a correspond-
ing MOSFET. In the BSIM3v3 model, there are several
hundreds of parameter for a complete DC/AC simulation
and characterization. For DC simulation, there are about
80 parameters have to be extracted, and these parameters
can be grouped into five categories which include general
parameters, threshold voltage parameters, mobility param-
eters, sub-threshold current parameters, and rout parame-
ters. Table 1 partially shows the model parameters and
possible numerical range to be extracted [19]. Grouping
the parameters into various sets gives us suggestions in
designing encoding methodology and choosing proper
cross over behavior in this work.
Name Range Res. Unit

k1 0.0 to 1.5 1e�3 V1/2

k3 �5.0 to 0.0 1e�3 –
Dvt1 0.0 to 1.5 1e�3 –
Dvt0w �0.03 to 0.0 1e�5 1/m
Dvt2w �0.2 to 0.4 1e�3 1/V
K3b 0.0 to 0.4 1e�4 1/V
Ua �3e�9 to 3e�9 1e�11 (m/V)2

Uc 0.0 to 8e�10 1e�13 m/V2
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Due to the inconsistently manufacturing techniques,
devices may have different electrical behaviors even though
they are produced with the same process. However, the
foundry still tries to find a set of featured parameters which
can fit all device’s behaviors. For examples, Figs. 2 and 3
demonstrate our examination for the continuity property
of the BSIM3v3 model with respect to different device
channel length and device width. We note that channel
Fig. 2. A continuity analysis of the BSIM3v3 model with respect to device
channel length, where device width is fixed at 10 lm.

Fig. 3. A continuity analysis of the BSIM3v3 model with respect to device
width, where device channel length is fixed at 0.18 lm.
length and device width are the most important parameters
in the BSIM3v3 compact model. With this continuity prop-
erty, we can apply the adaptive sampling to accelerate the
parameter extraction procedure.

3. Intelligent computing technique

Genetic algorithm is developed to solve the multiobjective
optimization task above. We apply the engineering- and
physical-based GA procedures with two special operators,
floating-point operator and renew operator, to perform the
model parameter extraction [23]. Implementation of the pro-
posed GA is described as follows.

The GA-based parameter extraction

procedure

Begin

Problem definition
For i = 1 To number of parameters

GeneEncode(Parameter[i])
End For
Sampling()
While ErrorNorm > Stop Criteria

Fitness()
Reproduction()
If the diversity of the population decreasing

Renew()
End If
CalculateErrorNorm()

End While
End The GA-based parameter extraction

procedure

3.1. Problem definition

To perform the parameter extraction systematically, we
first write the function in terms of the input variables. The
relationship between model input parameters (VD, VS, VB,
VG), and simulated output result, for example ID can be
expressed mathematically as follows:

f ðV D; V S; V B; V G;~pÞ ¼ ID; ð1Þ
where the function f can be regarded as the BSIM3’s ID–VD

current equation, and the vector ~P contains all parameters
to be extracted. All ID–VD and ID–VG points form a family
set of I–V curves. The goal of evolution is to minimize the
difference between a set of measured targets and simulated
I–V curves, and then eventually find out their correspond-
ing model parameter for all dimension of devices.

3.2. Encoding method

The design of gene encoding strategy strongly depends
on the property of the problem. For a DC MOSFET cir-
cuit, there are typically about 100 parameters. All
unknowns to be extracted are floating-point numbers. We
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transform these continuous floating-point numbers into
discrete steps (Psteps) through step function as shown in
Eq. (2) instead of real numbers, and we encode the discrete
steps as genes on chromosomes. The discrete steps show
the strongly combinatorial properties, and we have found
this representation not only has better results in crossover
and mutation but also is suitable for the MOSFET param-
eter extraction,

P value ¼ P min þ P steps

P max � P min

Resolution

ð2Þ
3.3. Sampling strategy

As shown in Fig. 4 the typical I–V curves can be sepa-
rated in two parts: the linear region and the saturation
region at least. The linear region is rather sensitive, while
the saturation region appears more flat. We use exponen-
tial type weight function to put significantly emphasize
on the linear region. Moreover, reducing the problem’s
complexity is rather important in this investigation. After
analyzing the properties of the BSIM3v3 model in the Sec-
tion 2, the correct continuous quality suggests us to fit
some candidate devices and I–V points. First, we choose
some characteristic devices to fit, and for each selected
device, we put densely sampling points on the linear region,
and less sampling points on the saturation region. The sam-
pling step determines total points to be fitted in the linear
and saturation regions, and the determination function is
given by

Sampling Point ¼ Total Point=Sampling Step ð3Þ
3.4. Fitness function

We consider the fitness function F as follows:

F ¼ W �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIDr � IDSÞ2

q
; ð4Þ
Fig. 4. An illustration of the relationship between the I–V curves and the
proposed weight function.
where W is the weight function, shown in Fig. 4. IDr and
IDs are the sets of target and simulated I–V points, respec-
tively. The linear region of the I–V curves is rather sensi-
tive, so we define a physical-based weight function to
emphasize correlation relationship for all I–V points. It de-
creases as the applied voltage increases. This exponential-
liked weight function plays an important role in tracking
device’s I–V curves. We evaluate the discrepancy for the
two I–V sets with the proposed weight function.

3.5. Reproduction

We adopt the tournament selection with floating-point
operator as our selection strategy. This hybrid strategy
not only selects better chromosomes but also keeps weak
ones for few generations to achieve higher population
diversity. For the crossover scheme, in the BSIM3v3 com-
pact model, all parameters to be optimized can be classified
into five categories which represent different numerical con-
straints. We take a uniform crossover scheme [8]; and
based on our simulation experience, it is more effective than
single and two-point cuts crossover schemes. Intuitionally,
it is meaningless to crossover the genes of different catego-
ries of a chromosome into the offspring. Therefore, we
choose uniform crossover corresponding to the five catego-
ries. Finally, the mutation strategy changes the mutation
rate dynamically to keep the population diversity. When
the evolutionary trend appears to be saturated, we increase
the mutation rate to achieve larger population diversity for
breaching current bottleneck.

3.6. Renew operator

Even though GA shows interesting performance for var-
ious problems, it is easily trapped into local optimal in such
multiobjective problems. We introduce a renew operator
which ensures the evolvement of GA escaping from local
optimal results. After certain generations, the population
is filled with old individuals. These individuals have similar
Fig. 5. Plot of IDS–VDS curves, where the maximum error < 2%).
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features in their genes hence decrease the diversity of the
population. The renew operator will save some featured
chromosomes which include better, and/or worse chromo-
somes to keep the mainly features of the evolutionary
trend, and flush the population pool, then restart the evo-
lution process.

4. Results and discussion

In this section, we first demonstrate the accuracy of sim-
ulated results compared with measured data from a realis-
Fig. 6. Plot of IDS–VGS curves, where the maximum error < 2%.

Fig. 7. An investigation of efficiency of the weight function.

Table 2
A comparison of score and time cost vs different population sizes

Population size Elapsed time-1 Score-1 Elapsed time-2 Score-2

25 201 0.254634 401 0.254581
50 407 0.215359 806 0.207444
75 663 0.185788 1291 0.182184

100 949 0.179823 1748 0.156866

Time-1 and score-1 are for 1000 generations, and time-2 and score-2 are
for 2000 generations.

Fig. 8. A plot of score convergence vs the number of generations with
respect to different mutation rates.

Fig. 9. A plot of score convergence vs the number of generations with
respect to different survival rates.

Fig. 10. A plot of time cost vs different sampling steps.



Fig. 11. A plot of score convergence vs the number of generations with
and without renew operator.

Fig. 12. A logo of the developed extraction prototype.
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tic fabricated N-MOSFET. Secondly, a series of examina-
tions will be given to show the achieved effect upon the evo-
lutionary trend with varying different genetic factors, and
the influence of each factor will be discussed later. All dem-
onstrated results are with average results of 10 experiments.

Figs. 5 and 6 show the evolutionary accuracy. We per-
form a parameter extraction for 10 different dimensions
of devices, and these two figures are the results of one
device (the device length and width are 0.25 and 10 lm)
Fig. 13. The first generatio
among the ten. The solid lines are measured data and the
dot lines are the simulated results which are simulated with
the BSIM3v3 model together with our extracted parame-
ters. It is obvious that simulated results match the mea-
sured data approximately. Both two figures show the
accuracy of the developed extraction prototype for deep-
submicron MOSFETs.

As shown in the Fig. 7, it shows a comparison between
multiple I–V curves evolution with and without applying
weight function after 300 generations. The evolutionary
n of extraction process.



Fig. 14. The 100th generation of extraction process.

Fig. 15. The final evolution to reach the global result.
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I–V curves with applying weight function achieve the target
I–V curves rapidly, and it has a good evolution behavior.
The importance of weight function introduced here not
only redirects the evolution trend to better direction but
also reduces the searching space in this multiobjective evo-
lution problem, where the efficiency can be obtained.

Table 2 lists a comparison of score and time cost with
respect to the different population sizes. In the comparison,
the other parameters are fixed and the number of genera-
tions is equal to 1000 and 2000. We find out that the score
convergence behavior cannot be improved anymore if the
population size is too small. On the other hand, the result
shows that the huge population size does not significantly
affect the score even the extra time elapsed. In our simula-
tion, a population size equals to 75 is suggested for the
Table 3
A list of the extracted BSIM3v3 parameters for the P-MOSFET with L/
W = 0.24/4.54 [lm/lm]

Name Value Name Value

Vth0 �0.54966545 k1 0.622128342
k2 �0.0649642599 k3 0
Dvt0 0 Dvt1 0
Dvt2 �0.032 Dvt0w 0
Dvt1w 0 Dvt2w �0.032
Nlx 0 K3b 0
Vsat 94,750.9048 Ua �2.8465687e-010
Ub 2.63994867e-018 Uc 4.01068575e-011

Fig. 16. The first generatio
model parameter extraction of advanced CMOS devices.
Because it maintains better evolutionary tendency and does
not increase the time cost significantly.

In addition, Fig. 8 shows the fitness score convergence
behavior for multiple I–V curves evolution with different
mutation rates, where the survival rate used in this testing
is equal to 0.5. We note that generations increase, the
results suggest that the high mutation rate which equals
to 0.5 keeps the population diversity and finally has better
evolutionary results. Fig. 9 is the fitness score convergence
behavior vs the number of generations with respect to dif-
ferent survival rates for each chromosome, where the muta-
tion rate is equal to 0.5. The survival rate indicates how
many chromosomes should be preserved to next genera-
tion. Our results suggest that less survival rate has better
convergence behavior. According to our experience, most
chromosomes that have good fitness score are generated
from mutation. For a deep-submicron N-MOSFET, there
are more than 4 different sets of families of I–V curves
should be characterized, we further develop an adaptive
sampling scheme to accelerate the simulation process and
extracted procedure.

Fig. 10 demonstrates our examination for the effect of
applying sampling strategy. We compare the time that
the average error reached 5% for different sampling steps.
The sampling steps equal to 1 means no sampling strategy
is applied. This figure shows that the sampling strategy pro-
n of extraction process.



Fig. 17. The 100th generation of extraction process.

Fig. 18. The final evolution to reach the global result.
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Fig. 19. The first generation of extraction process.

Fig. 20. The 100th generation of extraction process.
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Fig. 21. The final evolution to reach the global result.

Table 4
A list of the extracted BSIM3v3 parameters for the N-MOSFET with L/
W = 0.13/10 [lm/lm]

Name Value Name Value

Vth0 0.342369724 k1 0.334546475
k2 0.000124829272 k3 0
Dvt0 0 Dvt1 0
Dvt2 �0.032 Dvt0w 0
Dvt1w 0 Dvt2w �0.032
Nlx 0 K3b 0
Vsat 98,840.4986 Ua 1.23289835e-009
Ub 1.66640106e-018 Uc 2.29199308e-010

Table 5
A list of the extracted BSIM3v3 parameters for the N-MOSFET with L/
W = 0.078/9.01 [lm/lm]

Name Value Name Value

Vth0 0.357405144 k1 0.436230858
k2 �0.0743034512 k3 0
Dvt0 0 Dvt1 0
Dvt2 �0.032 Dvt0w 0
Dvt1w 0 Dvt2w �0.032
Nlx 0 K3b 0
Vsat 95,364.9514 Ua �7.91330757e-010
Ub 7.042222e-018 Uc 5.15594885e-010
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vides a way to reduce the evolution time. Fig. 11 shows a
comparison of evolutionary behaviors with and without
applying renew operator. Mathematically, parameter
extraction of the BSIM3v3 model is a multi-dimensional
optimization problem. Existence and uniqueness of solu-
tion is still an open problem. It is difficult to find the global
solution using GA without applying special genetic opera-
tors. As shown in Fig. 11, the renew operator will be trig-
gered while evolutionary trend was trapped into local
optimal, and better evolutionary results can be obtained
eventually. All settings are with the best conditions when
we perform the tests as shown in Figs. 10 and 11,
respectively.

As shown in the following figures, we apply our devel-
oped extraction prototype, shown in Fig. 12), to extract
the parameter for the fabricated P-MOSFET with L/
W = 0.24/4.54 [lm/lm] and N-MOSFET with L/
W = 0.13/10 and 0.078/9.01 [lm/lm], respectively. The
extraction is tested on a personal computer (Pentium IV
2.5 G CPU with 512 MB RAM) running with the Linux
operation system. Fig. 13 shows the first generation of
the extraction in the P-MOSFET. Figs. 14 and 15 are the
generations of the 100 and the final evolution process.
Table 3 partially lists extracted BSIM3v3 parameters for
a global model of the 0.24 lm P-MOSFET, where the nota-
tion is the same with the BSIM3v3 [19]. Similarly, the Figs.
16–21 show the extraction process of the 0.24, 0.13, and
0.078 lm N-MOSFETs, respectively. Tables 4 and 5 par-
tially list extracted BSIM3v3 parameters. The CPU time
taking on these extractions is less than 300 second. We note
that this computational technique has been tested success-



Fig. 22. A comparison of score convergence with and without preprocess
for different VLSI devices.
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fully with more than 20 nanoscale MOSFETs to perform a
complete global parameter extraction. To explore the glo-
bal parameter of nanoscale MOSFETs, the simulation
model has also been extended to include more advanced
the BSIM4 model. The extraction capability has been ver-
ified with the 90 and 65 nm MOSFETs. Fig. 22 shows the
fitness score convergence behavior for multiple I–V curves
evolution with or without preprocess and all settings are
with the best conditions in this test. From engineering
point of view, preprocess finds out some physical quantities
that can be derived from measured data such as Vth, gm,
etc. GA can take these quantities into consideration when
examining the physical meanings of the extracted parame-
ter. As shown in Fig. 22, GA with preprocess has better
convergence behavior. However, the difference becomes
small when evolution increases.

5. Conclusions

In this paper, we have proposed an intelligent parameter
extraction technique for advanced VLSI device modeling.
Based on the exponential type weight function, the renew
operator, and the adaptive sampling strategy, this auto-
matic optimization approach for deep-submicron and
nanoscale MOSFET devices have successfully been devel-
oped and implemented. The integrated parameter extrac-
tion prototype is mainly relied on the intelligence of
floating points based GA method. Numerical results, fit-
ness score, and convergent behavior for different deep-sub-
micron and nanoscale CMOS devices have
comprehensively been presented to show the accuracy
and efficiency of the method. This GA-based computa-
tional method for advanced VLSI device characterization
can be generalized to perform, such as thin-film transistor
parameter extraction, and optimization of analog and high
frequency circuits [22]. By a concept of model re-use, our
approach benefits optimal design of system-on-a-chip. Par-
allel computation on a PC-based Linux cluster is under
implemented for an acceleration of the evolution. Integra-
tion of this pure GA approach with other optimization
methods, such as numerical optimization technique and
neural network algorithm becomes more challenge task.
Such hybrid methodology may provide more flexible
approach to advanced CMOS model parameter extraction.
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