圖表目錄

圖 2-1 ITO 的晶體結構	5
圖 2-2 The X-ray spectrometer	9
圖 2-3 Bragg's Law	10
圖 2-4 P 型半導體中的霍爾效應	11
圖 2-5 金屬(左)及 P 型半導體(右)的能帶圖	13
圖 2-6 金屬和 P 型半導體間的理想金屬半導體接觸位能圖	14
圖 2-7 延展的金屬半導體介面模型	16
圖 2-8 金屬半導體接觸形成的有效功函數模型圖解說明	16
圖 2-9 金屬半導體間的電流傳導機制	17
圖 2-10 (a) TLM 圖形 (b) TLM 量測方法 :由總電阻與間距的關係圖求得	20
圖 2-11 (a)CTLM 圖形(b) 修正因子	21
圖 3-1 濺鍍機系統示意圖	30
圖 3-2 入射功率與片電阻的變化	31
圖 3-3 薄膜成長機制示意圖	32
圖 3-4 a) ITO 膜厚對穿透光譜的影響	33
圖 3-4 b) ITO 膜厚與片電阻的變化	33
圖 3-5 不同氧通量濺鍍的 ITO 薄膜與片電阻的關係	34
圖 3-6 改變通氧量的穿透光譜	34
圖 3-7 不通氧濺鍍 ITO 薄膜的 EDS	35
圖 3-8 通氧 1sccm 濺鍍 ITO 薄膜的 EDS	35
圖 3-9 (a) 空氣環境下退火與片電阻的關係	36
圖 3-9 (b) 空氣環境下不同溫度退火後的穿透光譜	36
圖 3-10 (a) 氧氣環境下退火溫度與片電阻的關係	37
圖 3-10 (b) 氧氣環境下 200℃ 溫度延長時間退火的片電阻	37
圖 3-11(a) 氮氣環境下不同溫度退火後的 ITO 片電阻	38
圖 3-11(b) 氮氣環境延長時間對 ITO 片電阻的影響	38
圖 3-12(a) forming gas 環境下不同溫度對 ITO 片電阻的關係	39
圖 3-12(b) forming gas 環境 200°C 改變時間退火對片電阻的影響	39
圖 3-13 ITO 濺鍍成膜與氮氣及空氣環境退火 XRD	41
圖 3-14 空氣與氧氣退火的 XRD	42
圖 3-15 (a) 氧氣與氦氣環境下退火的電阻率	43
圖 3-15 (b) 氧氣與氮氣環境下退火的載子遷移率	43
圖 3-15 (c) 氧氣與氦氣環境下退火的載子濃度變化	43
圖 3-16 氮氣環境退火下的吸收端往短波長移動	44
圖 3-17 Burstein-Moss (BM) shift	44
圖 4-1 光子的自發放射過程	52
圖 4-2 發光二極體中各種形式的複合過程	53

圖 4-3	氮化鎵材料中各種光激發的躍遷過程	53
圖 4-4 ไ	Ni/Au 金屬膜退火後的透光度比較	54
圖 4-5	ITO 對 Ni/Au 透光率的比較	54
圖 4-6	ITO 與 P 型氮化鎵接觸示意圖	55
圖 4-7	500℃ RTA 後的 I-V 曲線	56
圖 4-86	500℃ RTA 後的 I-V 曲線	56
圖 4-9	使用 Ni 為介層在空氣與氦氣下退火的 I-V 曲線	57
圖 4-10	NiO/ITO 及 Ni/Au 與 P 型氮化鎵接觸的 I-V 曲線	57
圖 4-11	CTLM 量測結果	58
圖 4-12	氮化鎵 LED 試片磊晶結構圖	58
圖 4-13	NiO/ITO 透明電極 LED 製作流程	59
圖 4-14	光學量測系統	60
圖 4-15	Ni/Au LED 發光圖片	61
圖 4-16	NiO/ITO LED 發光圖片	61
圖 4-17	不同透明電極 LED 的 I-V 曲線	62
圖 4-18	不同透明電極的 L-I 曲線	62
圖 4-19	不同透明電極 LED 發光光譜圖	63
圖 4-20	低溫成長 P 型氮化鎵表面 SEM 圖	64
圖 4-21	蝕刻後的 ITO 薄膜表面 SEM 圖	64
	1896	
	3 3	
	and the second second	
表 2-1	理想的金屬-半導體接觸特性	15

表 3-1	不同氣體環境退火後的穿透光譜比較	40
表 4-1	晶片清洗流程	59

VI