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In this paper, a TSK-type neuro-fuzzy system with multi groups cooperation based symbiotic evolution
method (TNFS-MGCSE) is proposed. The TNFS-MGCSE is developed from symbiotic evolution. The sym-
biotic evolution is different from traditional GAs (genetic algorithms) that each chromosome in symbiotic
evolution represents a rule of fuzzy model. The MGCSE is different from the traditional symbiotic evolu-
tion; with a population in MGCSE is divided into several groups. Each group formed by a set of chromo-
somes represents a fuzzy rule and cooperate with other groups to generate the better chromosomes by
using the proposed cooperation based crossover strategy (CCS). In this paper, the proposed TNFS-MGCSE
is used to evaluate by numerical examples (Mackey-Glass chaotic time series and sunspot number fore-
casting). The performance of the TNFS-MGCSE achieves excellently with other existing models in the
simulations.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, a fuzzy system uses for several problems has be-
come a popular research topic (Jang, 1993; Juang & Lin, 1998; Lin &
Lee, 1996; Lin & Lin, 1997; Lin, Lin, & Shen, 2001; Mizutani & Jang,
1995; Takagi & Sugeno, 1985; Takagi, Suzuki, Koda, & Kojima,
1992; Towell & Shavlik, 1993; Wang & Mendel, 1992). The reason
is that classical control theory usually requires a mathematical
model for designing controllers. Inaccurate mathematical model-
ing of plants usually degrades the performance of the controllers,
especially for nonlinear and complex problems (Juang & Lin,
1999; Lin & Chin, 2004; Mastorocostas & Theocharis, 2002; Naren-
dra & Parthasarathy, 1990). A fuzzy system consists of a set of fuz-
zy if-then rules. Conventionally, the selection of fuzzy if-then rules
often relies on a substantial amount of heuristic observations to
express the knowledge of proper strategies. Obviously, it is difficult
for human experts to examine all the input–output data from a
complex system to find proper rules for a fuzzy system. To cope
with this difficulty, several approaches for generating if-then rules
from numerical data have been proposed (Lin & Lin, 1997; Juang &
Lin, 1998; Towell & Shavlik, 1993). These methods are developed
for supervised learning; that is, the correct ‘‘target” output values
are given for each input pattern to guide the network’s learning.

The most well-known supervised learning algorithm is back-
propagation (BP) (Jang, 1993; Juang & Lin, 1998; Lin & Lin, 1997;
ll rights reserved.
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Lin et al., 2001; Mizutani & Jang, 1995; Takagi et al., 1992). It is a
powerful training technique that can be applied to networks. Since
the steepest descent technique is used in BP training to minimize
the error function, the algorithm may reach the local minima but
never find the global solution. In addition, the performance of BP
training depends on the initial values of the system parameters,
and for different network topologies one has to derive new math-
ematical expressions for each network layer.

Considering the disadvantages mention above, one may face
with suboptimal performances, even for a suitable neural fuzzy
network topology. Hence, techniques capable of training the sys-
tem parameters and finding a global solution while optimizing
the overall structure are needed. In that respect, evolutionary algo-
rithms appear to be better candidates than backpropagation
algorithm.

Several evolutionary algorithms, such as genetic algorithm (GA)
(Goldberg, 1989), genetic programming (Koza, 1992), evolutionary
programming (Fogel, 1994), and evolution strategies (Rechenberg,
1994), have been proposed. They are parallel and global search
techniques. Because they simultaneously evaluate many points in
the search space, they are more likely to converge toward the glo-
bal solution. For this reason, an evolutionary method using for
training the fuzzy model has become an important field.

The evolutionary fuzzy model generates a fuzzy system auto-
matically by incorporating evolutionary learning procedures (Ban-
dyopadhyay, Murthy, & Pal, 2000; Belarbi & Titel, 2000; Carse,
Fogarty, & Munro, 1996; Homaifar & McCormick, 1995; Juang,
2004; Karr, 1991; Lee & Takagi, 1993; Tang, 1996; Yi-Ta Wu, Yoo
Jung An, Geller, & Yih-Tyng Wu, 2006), where the well-known
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procedure is the genetic algorithms (GAs). Several genetic fuzzy
models, that is, fuzzy models augment by a learning process based
on GAs, have been proposed (Belarbi & Titel, 2000; Homaifar &
McCormick, 1995; Juang, 2004; Lee & Takagi, 1993; Karr, 1991;
Tang, 1996). Karr (1991) applied GAs to the design of the member-
ship functions of a fuzzy controller, with the fuzzy rule set assigned
in advance. Since the membership functions and rule sets are co-
dependent, simultaneous design of these two approaches will be
a more appropriate methodology. Based on this concept, many
researchers have applied GAs to optimize both the parameters of
the membership functions and the rule sets (Belarbi & Titel,
2000; Lee & Takagi, 1993; Juang, 2004; Lee & Takagi, 1993). Tang
proposed a hierarchical genetic algorithm (HGA) (Tang, 1996). Car-
se et al.used the genetic algorithm to evolve fuzzy rule based con-
trollers (Carse et al., 1996). The hierarchical genetic algorithm
enables the optimization of the fuzzy system design for a particular
application. Bandyopadhyay et al. used the variable-length genetic
algorithm (VGA) that let the different lengths of the chromosomes
in the population (Bandyopadhyay et al., 2000). Wu et al. proposed
a data mining based GA algorithm to efficiently improve the Tradi-
tional GA by using analyzing support and confidence parameters
(Wu et al., 2006).

However, these approaches encounter one or more of the fol-
lowing major problems: (1) all the fuzzy rules are encoded into
one chromosome and (2) the population cannot evaluate each fuz-
zy rule locally.

Recently, Gomez and Schmidhuber proposed lots of work to
solve above problems (Gomez, 2003, 2005). The proposed enforced
sub-populations (ESP) used sub-populations of neurons for the fit-
ness evaluation and overall control. As shown in Gomez’s and Sch-
midhuber’s work, the sub-populations that use to evaluate the
solution locally can obtain better performance compared to sys-
tems of only one population is used to evaluate the solution.

Same with ESP, in this paper, a TSK-type neuro-fuzzy system
with multi groups cooperation based symbiotic evolution (TNFS-
MGCSE) is proposed for solving the problems that mention
above. In TNFS-MGCSE, each chromosome represents only one
fuzzy rule and an n-rules fuzzy system is constructed by select-
ing and combining n chromosomes from several groups. The
TNFS-MGCSE is developed from symbiotic evolution. The symbi-
otic evolution is different from traditional GAs (genetic
algorithms) that each chromosome in symbiotic evolution repre-
sents a rule of fuzzy model. In TNFS-MGCSE, compared with nor-
mal symbiotic evolution, there are several groups in the
population. Each group formed by a set of chromosomes repre-
sents a fuzzy rule. Compare with the ESP, for allowing the
well-performing groups of individuals cooperate to generate bet-
ter generation, a cooperation based crossover strategy (CCS) is
proposed in this paper. In CCS, each group will cooperate to per-
form the crossover steps. Therefore, the better chromosomes of
each group will be selected to perform crossover in the next gen-
eration. The TNFS-MGCSE promotes both cooperation and spe-
cialization, ensures diversity and prevents a population from
converging to suboptimal solutions.

The advantages of the proposed TNFS-MGCSE are summarized
as follows: (1) the TNFS-MGCSE uses multi groups in a population
to evaluate the fuzzy rule locally. (2) The TNFS-MGCSE uses CCS to
let the better solutions form different groups can cooperate with
each other for generating better solutions. (3) It indeed can obtain
better performance and converge more quickly than some tradi-
tional genetic methods.

This paper is organized as follows. The TSK-type neuro-fuzzy
system (TNFS) is introduced in Section 2. The group cooperation
based symbiotic evolution (GCSE) is described in Section 3. The
simulation results are presented in Section 4. The conclusions are
summarized in the last section.
2. Structure of TSK-type neuro-fuzzy system (TNFS)

A TSK-type neuro-fuzzy system (TNFS) (Lin & Lee, 1996) em-
ploys different implication and aggregation methods from a stan-
dard Mamdani fuzzy system. Instead of using fuzzy sets, the
conclusion part of a rule is a linear combination of the crisp inputs.

IF x1 is A1jðm1j;r1jÞ and x2 is A2jðm2j; r2jÞ . . . and xn is Anjðmnj;rnjÞ
THEN y0 ¼w0j þw1jx1þ �� �þwnj xn ð1Þ

The structure of a TNFS is shown in Fig. 1, where n and R are the
number of input dimensions and the number of rules, respectively.
It is a five-layer network structure. In the proposed TNFS, the firing
strength of a fuzzy rule is calculated by performing the following
‘‘AND” operation on the truth values of each variable to its corre-
sponding fuzzy sets by:

uð3Þij ¼
Yn

i¼1

exp �
uð1Þi �mij

h i2

r2
ij

0
B@

1
CA ð2Þ

where uð1Þi ¼ xi and uð3Þij are the output of 1th and 3th layers ; mij and
rij are the center and the width of the Gaussian membership func-
tion of the jth term of the ith input variable xi, respectively.

The output of a fuzzy system is computed by:

y ¼ uð5Þ ¼
PR

j¼1uð4ÞjPR
j¼1uð3Þj

¼
PR

j¼1uð3Þj ðw0j þ
Pn

i¼1wijxiÞPR
j¼1uð3Þj

ð3Þ

where uð5Þ is the output of 5th layer ; wij is the weighting value with
ith dimension and jth rule node; M is the number of fuzzy rule.

3. Multi groups cooperation based symbiotic evolution

The proposed multi groups cooperation based symbiotic evolu-
tion (MGCSE) will be introduced in this section. The MGCSE is pro-
posed for improving the symbiotic GA (Moriarty & Miikkulainen,
1996). In the proposed MGCSE, the algorithm is developed from
symbiotic evolution. The idea of symbiotic evolution was first pro-
posed in an implicit fitness-sharing algorithm that is used in an im-
mune system model (Moriarty & Miikkulainen, 1996). The authors
developed artificial antibodies to identify artificial antigens. Be-
cause each antibody can match only one antigen, a different popu-
lation of antibodies is required to effectively defend against a
variety of antigens. As shown in symbiotic evolution, partial solu-
tions can be characterized as specializations. The specialization
property ensures diversity, which prevents a population from con-
verging to suboptimal solutions. A single partial solution cannot
‘‘take over” a population since there must be other specializations
present. Unlike the standard evolutionary approach, which always
causes a given population to converge, hopefully at the global opti-
mum, but often at a local one, the symbiotic evolution find solu-
tions in different, unconverted populations (Juang, Lin, & Lin,
2000; Moriarty & Miikkulainen, 1996). In MGCSE, compared with
normal symbiotic evolution, there are several groups in the popu-
lation. Each group formed by a set of chromosomes represents a
fuzzy rule.

In MGCSE, each group represents a set of chromosomes that be-
long to a fuzzy rule. The structure of the chromosome in MGCSE is
shown in Fig. 2.

In MGCSE, the coding structure of the chromosomes must be
suitable for the concept of each chromosome represents only one
fuzzy rule. A fuzzy rule with the form introduced in Eq. (1) is de-
scribed in Fig. 3. As shown in this figure mij and rij represent a
Gaussian membership function with mean and deviation with ith
dimension and jth rule node. The coding type of MGCSE is real-va-
lue code.



Fig. 1. Structure of the TSK-type neuro-fuzzy system.
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The learning process of MGCSE in each group involves five ma-
jor operators: initialization, fitness assignment, elite-based repro-
duction strategy (ERS), cooperation based crossover strategy
(CCS), and mutation strategy. The whole learning process is de-
scribed step-by-step as follows:

(a) Initialization step:

Before the TNFS-MGCSE is designed, individuals forming several
initial groups should be generated. The initial groups of MGCSE are
generated randomly within a predefined range. The following for-
mulations show how to generate the initial chromosomes in each
group:

Deviation : Chrg;c½p� ¼ random½rmin;rmax�
where p ¼ 2;4; . . . ;2n; g ¼ 1;2; . . . ;R; c ¼ 1;2; . . . ;NC : ð4Þ
Mean : Chrg;c½p� ¼ random½mmin;mmax�
where p ¼ 1;3; . . . ;2n� 1: ð5Þ
Weight : Chrg;c½p� ¼ random½wmin;wmax�
where p ¼ 2nþ 1;2nþ 2; . . . ;2nþ ð1þ nÞ: ð6Þ

where Chrg;c represents cth chromosome in gth group; R represents
total number of groups and NC is the total number of chromosomes
in each group; p represents the pth gene in a Chrg;c; and
½rmin;rmax�; ½mmin;mmax�, and ½wmin;wmax� represent the predefined
range.

(b) Fitness assignment step:

As previously state, in MGCSE, the fitness value of a rule (an
individual) is calculated by summing up the fitness values of all
the possible combinations in the chromosomes that are selected
randomly from R groups. The details for assigning the fitness value
are described step-by-step as follows:

� Step 1: Randomly choose Nf TNFS systems with R fuzzy rules
from the R groups with size NC .

� Step 2: Evaluate every TFNS that is generated from step1 to
obtain a fitness value.

� Step 3: Divide the fitness value by R and accumulate the divided
fitness value to the selected rules with their fitness value records
that were set to zero initially

� Step 4: Repeat the above steps until each rule (individual) in
each group has been selected a sufficient number of times, and
record the number of TNFS systems in which each individual
has participated.



Fig. 2. The structure of the chromosome in the MGCSE.

Fig. 3. Coding a rule of a TNFS into a chromosome in MGCSE.
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� Step 5: Divide the accumulated fitness value of each individual
by the number of times it has been selected. The average fitness
value represents the performance of a rule. In this paper, the fit-
ness value is designed according the follow formulation:

FitnessValue ¼ 1=ð1þ Eðy; �yÞÞ; ð7Þ

where Eðy; �yÞ ¼
XN

i¼1

ðyi � �yiÞ2 ð8Þ

where yi represents the desired value of the ith output, �yi represents
the predicted value, Eðy; �yÞ is a error function and N represents a
numbers of the training data of each generation. The average fitness
value represents the performance of a rule (individual).
(c) Elites-based Reproduction Strategy (ERS):

Reproduction is a process in which individuals are copied
according to their fitness values. A fitness value is assigned to
each chromosome according to a fitness assignment step in
which high values denote a good fit. The goal of the MGCSE is
to maximize the fitness value. For keeping the stability, this
study proposes an elite-based reproduction strategy (ERS) to al-
low the best combination of chromosomes can be kept in the
next generation. In MGCSE, the chromosome with the best fit-
ness value may not be in the best combination. Therefore, every
chromosome in the best combination must be kept by applying
ERS. Other chromosomes in each group are selected under rou-
lette-wheel selection method (Cordon, Herrera, Hoffmann, &
Magdalena, 2001) – a simulated roulette is spun. The best per-
forming chromosomes in the top half of each group advance to
the next generation (Juang, Lin, & Lin, 2000). The other half is
generated by applying crossover and mutation operations on
chromosomes in the top half of the parent generation. In the
reproduction step, the top half of each group must be kept the
same number of chromosomes.

(d) Cooperation based crossover strategy (CCS):

Although the ERS operation can search for the best existing
individuals, it does not create any new individuals. In nature, an
offspring has two parents and inherits genes from both. The main
operator working on the parents is the crossover operator, the
operation of which occurs for a selected pair under a crossover
rate. In this paper, a cooperation based crossover strategy (CCS)
is proposed for allowing groups cooperates with each other. The
CCS mimics the cooperation phenomenon in society, in which indi-
viduals become more suited to the environment as they acquire
and share more knowledge of their surroundings. In CCS, the best
performing individuals in the top half of each group called elites
are used to select the parents for performing CCS. Details of CCS
are shown below.

� Step 1: The first parent used to perform the crossover operation
is selected from the original group by using the following
equations:

Fitness Ratiog;t ¼
Pt

u¼1fitnessg;uPNc

c¼1
fitnessg;c

; where t ¼ 1;2; . . . ;Nc: ð9Þ

Rand Value½g� ¼ Random½0;1�; where g ¼ 1;2; � � � ;R: ð10Þ
Parent SiteA½g� ¼ t; if
Fitness Ratiog;t�1 < Rand Value½g� 6 Fitness Ratiog;t

ð11Þ
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where Fitness Ratiog;t is a fitness ratio of tth chromosome in the
gth group; Rand Value½g� 2 ½0;1� is the random values of gth
group; Parent SiteA½g� is the site of first parent. According to
Eq. (11), if the Rand Value½g� is greater than the fitness ratio at
(t�1)th chromosome in gth group and equal to or smaller than
the fitness ratio at tth chromosome in gth group, the site of the
first parent of gth group is assigned to t.

� Step 2: After determining the first parent, the best performing
elites in every group is used to determine the second parent.
In this step, the total fitness ratio of every group is computed
according to the following equations:

Total Fitnessg ¼
XNc

c¼1
fitnessg;c; where g ¼ 1;2; . . . ;R: ð12Þ

Total Fitness Ratiow ¼
Pw

u¼1Total FitnessuPR
g¼1Total Fitnessg

; where w ¼ 1;2; . . . ;R

ð13Þ

where Total Fitnessg represents the summation of all chromo-
somes’ fitness value in gth group; Total Fitness Ratiow is a total
fitness ratio of wth group.

� Step 3: Determine the second parental group for applying cross-
over with the Parent SiteA½g�th chromosome in gth group
according to the following equations:

Group Rand Value½g� ¼ Random½0;1� where g ¼ 1;2; . . . ;R ð14Þ
Parent Group SiteB½g� ¼ w; if ð15Þ
Total Fitness Ratiow�1 < Group Rand Value½g� 6 Total Fitness Ratiow

where Group Rand Value½g� 2 ½0;1� is a random values of gth
group; Parent Group SiteB½g� represents the site of the group
where the second parent is selected from.

� Step 4: After the Parent Group SiteB½g�th group is selected, the
CCS determines the other present in the selected
Parent Group SiteB½g�th group according to the following
equations:

Fitness RatioSelected g;t ¼
Pt

u¼1fitnessSelected g;uPNc
c¼1fitnessSelected g;c

ð16Þ

where t ¼ 1;2; . . . ;Nc; Selected g ¼ Parent Group SiteB½g�
Rand Value½g� ¼ Random½0;1�; where g ¼ 1;2; . . . ;R ð17Þ
Parent SiteB½g� ¼ l; if
Fitness RatioSelected g;l�1 < Rand Value½g� 6 Fitness RatioSelected g;l

ð18Þ

where Fitness RatioSelected g;t is a fitness ratio of tth chromosome in the
Parent Group SiteB½g�th group; and Parent SiteB½g� is the site of the
second parent. The pseudo code of CCS is listed in Fig. 4.After select-
ing the parents from the gth group and Parent Group SiteB½g�th group
by CCS, the individuals (Parent SiteA½g�th chromosome and the
Parent SiteB½g�th chromosome) are crossed and separated by using
a two-point crossover (Cordon et al., 2001) in the gth group, as
shown in Fig. 5. In this figure, exchanging the site’s values between
the selected sites of parents’ individual create new individuals. After
this operation, the individuals with poor performances are replaced
by the newly produced offspring.

(e) Mutation strategy:

Although ERS and CCS would produce many new strings, they
do not introduce any new information to the population at the site
of an individual. Mutation can randomly alter the allele of a gene.
In this paper, to emphasize the capability of the CCS, the proposed
MGCSE tries to simplify the mutation operation. Therefore, a uni-
form mutation (Cordon et al., 2001) is adopted, and the mutated
gene is generated randomly from the domain of the corresponding
variable.
The aforementioned steps are done repeatedly and stopped
when the predetermined condition is achieved.
4. Illustrative examples

Four examples are discussed in this section. The first example
was run to predict the chaotic time series (Cowder, 1990) and
the second example was a sunspot number forecasting (Ling, Leu-
ng, Lam, Lee, & Tam, 2003). For the two computer simulations, the
initial parameters are given in Table 1 before training. The initial
parameters are determined by practical experimentation or trial-
and-error tests.

4.1. Prediction of the chaotic time series

The Mackey–Glass chaotic time series x(t) in consideration here
is generated from the following delay differential equation:

dxðtÞ
dt
¼ 0:2xðt � sÞ

1þ x10ðt � sÞ � 0:1xðtÞ ð19Þ

Cowder (1990) extracted 1000 input–output data pairs fx; ydg
which consisted of four past values of x(t), i.e.

½xðt � 18Þ; xðt � 12Þ; xðt � 6Þ; xðtÞ; xðt þ 6Þ� ð20Þ

where s ¼ 17 and x(0) = 1.2. There are four inputs to the RWNFS-
CEGSE, corresponding to these values of x(t), and one output repre-
senting the value xðt þ DtÞ, where Dt is a time prediction into the fu-
ture. The first 500 pairs (from x(1) to x(500)) are the training data
set, while the remaining 500 pairs (from x(501) to x(1000)) are
the testing data set that is used for validating the proposed method.
The values are floating-point numbers assigned using the MGCSE
initially. The fitness function in this example is defined in Eqs. (7)
and (8) to train TNFS. There are six fuzzy rules used to construct
TNFS. The evolution learning processed for 500 generations and is
repeated 50 times. For comparative analysis, this paper uses the
normalized root mean square error (NRMSE) 37, which is defined
as the RMSE divides by the standard deviation of the desired
output:

NRMSE ¼ 1
rt

1
Nt

XNt

l¼1

ðYlðt þ 6Þ � Yd
l ðt þ 6ÞÞ2

" #1=2

ð21Þ

where r2
t is the estimated variance of the data, Nt is the number of

the training data, Ydðt þ 6Þ ¼ xðt þ 6Þ is the desired value, and Y(t+6)
is the predicted value by the model with four inputs and one out-
put. After 50 runs, the final average NRMS error of the predicted
output approximates 0.0051. The outputs of TNFS-MGCSE in one
of 50 runs are shown in Fig. 6(a). The notation ‘‘o” represents the de-
sired output of the time series, and the notation ‘‘*” represents the
output of the six models.

In this example, in order to demonstrate the effectiveness and
efficiency of the proposed R-GCSE, the symbiotic evolution (SE)
(Moriarty & Miikkulainen, 1996), genetic algorithm (GA) (Karr,
1991), and enforce sub-population (ESP) (Gomez, 2003) are applied
to the same problem. There are six rules to construct the fuzzy
model. The parameters set for three methods are as follows: (1)
the numbers of fuzzy rules are all set for 6; (2) the population sizes
of SE and GA are 100 and 50, respectively; (4) the Nc of the SE and
ESP are both set for 50; (3) the crossover rates of SE, ESP, and GA
are 0.55, 0.34, and 0.6, respectively; (3) the mutation rate of SE,
ESP, and GA are 0.08, 0.14, and 0.12, respectively. The evolution
learning processes for 500 generations and is repeated 50 times.
After 50 runs, the final average NRMS error of the SE, ESP, and
GA outputs approximate 0.021, 0.0084, and 0.032. The outputs of
the three models in one of 50 runs are shown in Figs. 6(b)–(d).



Fig. 4. The pseudo code of CCS.
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Fig. 7(a)–(d) illustrates the error between the desired and four
methods’ outputs. As shown in Fig. 6(a)–(d) and Fig. 7(a)–(d), the
performance of the TNFS-MGCSE is better than those of others.
The learning curves of the four methods in one of 50 runs are
shown in Fig. 8. In Fig. 8, the proposed TNFS-MGCSE converges
quickly and obtains a lower rms error than others.
Table 2 lists the generalization capabilities and CPU times of
proposed method and other methods (Bandyopadhyay et al.,
2000; Gomez, 2003; Karr, 1991; Moriarty & Miikkulainen, 1996;
Tang, 1996). This experiment uses a Pentium III chip with a
400 MHz CPU, a 512 MB memory, and the visual C++ 6.0 simulation
software. A total of thirty runs were performed. Clearly, Table 2



Fig. 5. Two-point crossover.

Table 1
The initial parameters before training.

Parameters Value Parameters Value

Nf 20 ½rmin;rmax� [0,2]
Nc 50 ½mmin;mmax � [0,2]
Crossover rate 0.5 ½wmin;wmax� [�10,10]
Mutation rate 0.3

Fig. 6. The prediction results of the (a) MGC
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shows that the proposed model can obtain shorter CPU time and
NRMSE than other methods.

For demonstrating the efficiency of the proposed MGCSE, in this
example, three different methods: the proposed MGCSE without
ECCS (Type I), the SE method (Type II), and the proposed MGCSE
(Type III) are used. In the Type I method, each group performs
the two-point crossover strategy independently. In the Type II
SE, (b) ESP, (c) SE, and (d) GA methods.



Fig. 7. The prediction errors of the (a) MGCSE, (b) ESP, (c) SE, and (d) GA methods.

Fig. 8. The learning curves of the proposed method. ESP, SE, and GA.

Table 2
Performance comparison of various existing models.

Method Training cases NRMSE CPU time

Best Mean Worst

MGCSE 500 0.0038 0.0051 0.009 308.45

ESP28 500 0.0063 0.0084 0.014 306.48

VGA26 500 0.0095 0.0124 0.021 376.1

HGA24 500 0.0101 0.0185 0.029 394.66

SE30 500 0.0114 0.021 0.048 775.37

GA19 500 0.023 0.032 0.062 797.39
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method, the SE (Moriarty & Miikkulainen, 1996) is adopted. In the
Type III method, the MGCSE uses the proposed CCS to perform
crossover strategy. The performance (generalization capabilities
and CPU time) of the three types of methods is shown in Table 3.
The proposed MGCSE (Type III) performs better than other types
of methods. Comparing Type III with Type I method, it is observed
that CCS improves the performance and reduces CPU time.
4.2. Forecasting the sunspot number

The sunspot numbers from 1700 to 2004 exhibit nonlinear,
nonstationary, and non-Gaussian cycles that are difficult to predict
(Ling et al., 2003). In this example, TNFS-MGCSE is used for
forecasting the sunspot number. The inputs xi of the proposed
TNFS-MGCSE are defined as x1ðtÞ ¼ yd

1ðt � 1Þ; x2ðtÞ ¼ yd
1ðt � 2Þ, and

x3ðtÞ ¼ yd
1ðt � 3Þ where t represents the year and yd

1ðtÞ is the



Table 3
Comparison of performance for different methods.

Method Training cases NRMSE CPU time

Best Mean Worst

Type I 500 0.0058 0.0091 0.013 305.17
Type II 500 0.0114 0.021 0.048 775.37
Type III 500 0.0038 0.0051 0.009 308.45
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sunspot numbers at the tth year. In this example, the first 180
years (from 1705 to 1884) of the sunspot numbers are used to train
TNFS-MGCSE while the remaining 119 years (from 1885 to 2004)
of the sunspot numbers are used to test TNFS-MGCSE. The values
are floating-point numbers assigned using the MGCSE initially.
The fitness function in this example is defined in Eqs. (7) and (8)
to train the TNFS. There are five fuzzy rules used to construct the
TNFS. The evolution learning processes for 500 generations and is
repeated 50 times. After 50 runs, the final average rms error of
the prediction output approximates 8.21.

In this example, same with examples 1, the TNFS-MGCSE are
also compared the performance with ESP (Gomez, 2003), SE
(Moriarty & Miikkulainen, 1996), and GA (Karr, 1991). The param-
eters set for three methods are as follows: (1) the numbers of fuzzy
Fig. 9. The prediction results of the (a) MGC
rules are all set for 5; (2) the population sizes of SE and GA are 100
and 50, respectively; (4) the Nc of the SE and ESP are both set for
50; (3) the crossover rates of SE, ESP, and GA are 0.4, 0.25, and
0.35, respectively; (3) the mutation rate of SE, ESP, and GA are
0.06, 0.16, and 0.18, respectively. The evolution learning processes
for 500 generations and is repeated 50 times. After 50 runs, the fi-
nal average rms error of the SE, ESP, and GA outputs approximate
15.26, 12.12, and 17.47. The outputs of the four methods (MGCSE,
ESP, SE, and GA) are shown in Fig. 9(a)–(d). The notation ‘‘o” repre-
sents the desired output of the time series, and the notation ‘‘*”
represents the output of the six models. The errors between the de-
sired and four methods’ outputs are shown in Fig. 10(a)–(d). As
shown in Figs. 9 and 10, the TNFS-MGCSE is better than those of
others (Gomez, 2003; Karr, 1991; Moriarty & Miikkulainen,
1996). The learning curves of the four methods are shown in
Fig. 11.

Table 4 lists the generalization capabilities and CPU time of
other methods (Bandyopadhyay et al., 2000; Gomez, 2003; Karr,
1991; Moriarty & Miikkulainen, 1996; Tang, 1996). Table 5 tabu-

lates the training error (governed by
P1884

t¼1705
yd

1ðtÞ�yðtÞ1j j
180 Þ, and the fore-

casting error (governed by
P2004

t¼1885
yd

1ðtÞ�yðtÞ1j j
119 Þ. Clearly, Tables 4 and 5

show that the proposed method can obtain better CPU time, rms
error, training error, and forecasting error than other methods.
SE, (b) ESR, (c) SE, and (d) GA methods.



Fig. 10. The prediction errors of the (a) proposed method, (b) ESP (c) SE and (d) GA methods.

Fig. 11. The learning curves of MGCSK, ESP, SE, and GA.

Table 4
Performance comparison of various existing models in example 2.

Method Training cases RMSE CPU time

Best Mean Worst

MGCSE 500 7.51 8.21 12.98 202.36
ESP 500 10.33 12.12 10.33 200.98
VGA 500 11.25 13.05 14.65 249.7
HGA 500 12.93 13.68 19.21 285.2
SE 500 13.67 15.26 20.43 354.77
GA 500 14.98 17.47 24.76 402.46

Table 5
Training and forecasting error comparison of various existing models in example 2.

Method Training error Forecasting error

Best Mean Worst Best Mean Worst

MGCSE 5.23 6.75 10.32 6.24 8.31 12.44
ESP 7.35 8.75 12.51 11.25 12.35 16.02
VGA 8.02 9.01 12.98 12.85 14.28 17.76
HGA 8.43 9.32 13.34 13.12 14.92 18.42
SE 8.55 10.05 13.97 14.21 15.05 18.91
GA 10.11 12.27 18.34 16.31 19.81 25.22
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5. Conclusion

In this paper, a TSK-type neuro-fuzzy system with a multi
groups cooperation based symbiotic evolution method (TNFS-
MGCSE) is proposed. The TNFS-MGCSE is developed from symbi-
otic evolution. The TNFS-MGCSE can evaluate the fuzzy rule locally
and make groups cooperate with each other to generate the better
chromosomes by using a cooperation based crossover strategy
(CCS). The advantages of TNFS-MGCSE are summarized as follows:
(1) the TNFS-MGCSE uses multi groups in a population to evaluate
the fuzzy rule locally. (2) The TNFS-MGCSE uses CCS to let the bet-
ter solutions form different groups can cooperate with each other
for generating better solutions. (3) It indeed can obtain better per-
formance and converge more quickly than some traditional genetic
methods. Computer simulations have shown that the TNFS-MGCSE
has a better performance than the other methods.

Although TNFS-MGCSE can perform better than other methods,
there still has a limitation. The initial parameters are determined
by practical experimentation or trial-and-error tests. There is not
a systematic method to determine the initial parameters. In the fu-
ture work, how to find a well-defined method to define such
parameters can be tried.
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