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Application of Model-Matching Techniques to
Feedforward Active Noise Controller Design

Jwu-Sheng Hu, Shiang-Hwua Yu, and Cheng-Shiang Hsieh

Abstract—In this paper, three digital model-matching tech-
niques in H2, H1, and l1 performance measures are applied to
design digital feedforward controllers for active noise cancellation
in ducts. Different measures account for different optimization
objectives in terms of physical signals. The distributed nature
and high-bandwidth requirements of the control system result
in a large set of parameters in plant description and these
design techniques proved to be useful in solving the controllers
numerically. Experiments were conducted using a floating-point
digital signal processor that produced broad-band noise reduc-
tion. Design variations and noise reduction effects in terms
of human perception are also discussed. It is experimentally
proved that using model-matching designs, the causality principle
originally raised by Paul Lueg does not have to be satisfied in
order to actively reduce the noise level.

Index Terms—Acoustic noise, active noise cancellation, digital
filters, digital signal processors,H-infinity optimization, model
matching methods.

I. INTRODUCTION

M ODEL-MATCHING techniques are fundamental to a
wide variety of linear control systems design problems

[6], [17], [33]. While many feedback control problems can
ultimately be formulated as model-matching problems, the
most straightforward application is to design feedforward
controllers [11], [18], [28]–[30], [35]. Generally speaking, a
feedforward controller has to invert the plant in a certain
way, i.e., making the signal path from reference input to
output as close to identity as possible. To characterize the
word “close,” several mathematical indexes such as the-
norm (maximum amplitude of a transfer function) or2-
norm (energy of the impulse response) fit naturally into the
picture. As a result, model-matching techniques based on these
measures have become very useful in designing feedforward
controllers [31].

Basically, optimization of various error measures is the
key to these techniques. However, there are two different
approaches to deal with the design problem. When reference
or disturbance signal types are known, e.g., step or sinusoidal
functions, it is necessary to include the signal in the error
measure. Usually this is accomplished by directly optimizing
the error signal in different time-domain measures [15]. For
unknown signal types (e.g., random or nonstationary), the
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optimal solutions are obtained by considering worst case
scenarios. Consequently, instead of minimizing error signals,
deviation of signal paths from identity is optimized.

This paper describes the application of model-matching
techniques to designing digital feedforward active noise con-
trollers. As an effective way of reducing low-frequency noise,
active noise control methods have drawn much attention in
recent years [12], [23]. Perhaps the most popular controller-
design approach is based on the least mean square (LMS)
algorithm originally developed by Widrow [36]. Although
many modifications of this algorithm have been developed
[7], [8], the basic controller structure applied to active noise
cancellation is as shown in Fig. 1.

The dotted line in Fig. 1 represents the controller’s tuning
path. Several modifications are done when ’s measure-
ment contains the influence of acoustic feedback from the
control speaker. From this figure, it is quite clear that for
persistently-excited noise inputs, LMS actually tries to solve
the model-matching problem on-line with respect to the least-
mean-square measure. The ideal controller(a perfect match)
must fulfill

(1)

or

(2)

In most cases (2) cannot be satisfied due to nonminimum phase
zeros and delay steps (which correspond to zeros at infinity).
Attempts have been made to approximate the inverse by curve-
fitting the spectrum of using an FIR filter [27]. In that
case, only the and spectra are required.

From the discussion in the preceding paragraph, it is clear
that selecting (Fig. 1) off-line can be cast as a model-
matching problem. Further, from the design standpoint, this is
almost identical to a tracking design problem. Recent progress
in tracking control shows the value of using preview steps in
designing feedforward controllers [1], [13], [22], [25], [31],
[32]. Preview steps are necessary to minimize the effect of
nonminimum phase zeros which are common in sample-data
systems when both sampling rates and relative degrees are
high [2]. In order to use preview steps, future information on
reference or disturbance signals is required. For active noise
control systems, the hardware configuration is usually arranged
such that the noise transmission path is longer than the control
sound transmission path (see Fig. 1). In other words,has
more delay steps than in the sense that a signal is injected
simultaneously into both paths. The difference in delay steps
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Fig. 1. The controller structure using LMS algorithms.

is therefore equivalent to preview steps when formulated as a
tracking problem. Other than the effect of nonminimum phase
zeros, preview steps are also required to satisfy the causality
principle first raised by Lueg [20]:

“An acoustic wave with a specific frequency has a
relatively much lower speed than an electrical signal of
the same frequency. This implies that, while a sound
wave is traveling from a point where it is detected to
a point where it is to be attenuated, there is enough
time available within the electronic circuit to process
the signal and activate the control elements, to a greater
or lesser degree, depending on the frequency, type of
noise, and physical extent of the system.”

While the description provides a clear explanation of an
active noise cancellation mechanism, an interesting question
arises: can noise levels be actively reduced when the causality
principle is violated? As explained and experimentally proved
later, through model-matching techniques, the answer is “yes.”

Three model-matching techniques in the digital single in-
put/single output (SISO) domain are applied in this paper (2,

, and 1 norm). All these techniques assume that the type of
noise is unknown (i.e., worst case optimization). A common
application of the theory is to design the controller in the
continuous-time domain and implement it using high-speed
digital processors. But for some complicated high-bandwidth
systems, the limited computation power of microprocessors
may result in less than truly continuous-time control laws.
Therefore, it is vital in these cases to begin with digital
design techniques [4]–[6], [10], [33]. The formulation and
design procedure shown in Sections II and III of this paper
are essentially the same as in [31] where a more complete
treatment of the theory could be found.

Experiments were conducted on a rectangular duct, and
control algorithms were implemented on a TMS320c30 based
DSP system. In addition to objective evaluations of various
design approaches (e.g., noise spectrum dB reduction), sub-
jective evaluations were also conducted by measurement with
a weighted sound level meter (e.g., A-weighting). Like most
feedforward-types of LMS algorithms, the model-matching
approach requires to measure the noise signal with a min-
imum effect of acoustic feedback. Since the controller is
designed off-line, it cannot accommodate possible changes of
the dynamics ( and in Fig. 1). However, it offers the
optimal solution and does not have any parameter convergence
problems. As a result, the method can be used as a bench

Fig. 2. Model-matching block diagram.

TABLE I

mark to check the performance of an adaptive algorithm in
broad-band noise reduction. Second, the simple controllers
architecture (a single filter and no error microphone) can be
used in some cases where the cost is of primary concern.

II. M ODEL-MATCHING PROBLEMS

Model-matching problems can be stated as follows.
Given linear time-invariant, proper, stable systemsand
(see Fig. 2), design a proper stable controllersuch that

the response to exogenous inputs is minimized; that is

(3)

where denotes the set of proper, stable, and real-rational
transfer functions.

The configuration shown in Fig. 2 is sometimes called the
one-block problem. We might get different optimal solutions
according to different cost measures (e.g.,2, , and 1

norm). For more explanations of these norms, please refer
to [6], [10], [31], and [35]. These measures are concerned
with the least upper bound of the output response subject to
a certain group of input signals (see Table I). For example,
when inputs are modeled as bounded-energy signals and the
response is measured in terms of energy, this leads to an
model-matching problem.
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TABLE II
OPTIMAL MODEL MATCHING SOLUTIONS TO T2(z�1) = G(z�1)(1� az�1) WHERE G(z�1) IS A UNIT IN RH1 AND 1 > jaj > 1

Fig. 3. The structure of a preview model-matching problem (N : number of
preview steps).

If is minimum phase and its relative degree is zero
(i.e., no zeros at infinity), the optimal solution is trivial
( ) and the infimal cost is zero. In the remaining
discussion, it is assumed that is nonminimum phase and it
has no zeros on the unit circle. Solutions to (3) for the three
commonly used norms can be found in [31].

If the future signal of (Fig. 2) is available, it is desirable
to allow the controller be noncausal (or nonproper) to obtain a
better response. This leads to the so-called preview model-
matching problem (also see [31]). Denoting as the -
transform variable, the equivalent block diagram can be shown
as Fig. 3 where the constraint on the controller now becomes

.
Further, depending on applications, performance on a par-

ticular frequency range might need to be emphasized. This is
usually achieved by incorporating a weighting function in (3).
As a result, the optimization problem is written as

(4)

where denotes a weighting function.
Consider a simple example in which the plant has only

one real unstable zero at and no zeros on the unit circle;
that is

where

is a unit in and

Let and weighting function . With preview
steps, the optimal ’s can be solved for and corresponding
minimum error norms that result are shown in Table II.

It is not surprising that the and 1 optimizations in this
case are the same (see [1] and [35]); but the results reveal
an interesting phenomenon, e.g., the presence of a truncated
Laurent series of at every point inside the region
of convergence, i.e.,

(5)

If we define as the truncation of Laurent series to the
th order term, the and 1 optimizations in this case are

simply . Furthermore, Table II shows
that the 2 optimization also contains the truncated series as

optimal (6)

Equation (6) is also a general solution where
and is the number of unstable zeros. The fol-

lowing remarks list some further observations.
Remark 2.1:All solutions in Table II converge to

as approaches infinity. That is to say, whenis
large, the difference among solutions may not be significant.

Remark 2.2:The error norms in Table II decrease drasti-
cally as increases if . However, the coefficients of
higher order terms in the truncated series become too small to
have significant influence on performance in practical applica-
tions. This agrees with the experimental results presented by
Alter and Tsao [1] which show that increasingprovides no
benefit after a certain preview length. Moreover, when ,
the improvement is not significant unless a very largeis
selected.

Remark 2.3:When the preview length is zero, it can be
seen from Table II that zero is the solution to both and
1 optimizations. In fact, this solution applies to general cases

(more than one unstable zero). In , the reason is quite
simple since the Pick matrix reduces to zero [33]. Since the
error norm in 1 is no smaller than the corresponding norm in

, its optimal value is one also. Through simple deduction,
the optimal controller is identical to zero.

Remark 2.4:The message given by the analysis in Remark
2.3, is that one has to resort to suboptimal designs in and
1 when equal performance measures in all frequency bands

are desired [ in (4)] and no preview step is
allowed. But this is not true in the 2 context where a causal
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Fig. 4. Configuration of the experimental setup.

Fig. 5. Frequency response of the transfer functionsT1 and T2.

solution is [see (6)]

optimal, no preview (7)

where

III. EXPERIMENTAL SETUP

Referred to Fig. 4, the experiments were conducted using
a rectangular duct made of plastic glass. One end of the
duct was left open and a control speaker (speaker A) was
mounted on the other end to generate the cancellation signal.
Another speaker (speaker B) was mounted on the side of the

duct to simulate noise source. It was assumed that the signal
[ in Fig. 4] driving speaker B was available and could be
previewed. An error microphone and a sound level meter were
placed at the open end of the duct to measure the error signal
and the weighted average decibel reduction. The measurement
of the error signal was filtered by a fourth-order Bessel filter
with a cutoff frequency around 1 kHz. This frequency was
arbitrarily selected but below the cutoff frequency of the
duct (about 1153 Hz). Readers without extensive acoustic
background may refer to the book by Pierce [24] for a better
understanding of the term “duct’s cutoff frequency.” The
feedforward control law was implemented by a TMS320C30-
based DSP system equipped with 16-bit AD/DA channels. The
DSP system was hosted by a 486-based PC-AT that stored data



HU et al.: APPLICATION OF MODEL-MATCHING TECHNIQUES 37

TABLE III
POLES AND ZEROS OF TRANSFER FUNCTIONS T1 AND T2

and provided a man-machine interface. Sampling rate of the
control system was set at 6 kHz.

The meaning of signals , and are identical
to those used in Fig. 1. Furthermore, the transfer functions
and also comprised of dynamic models of various electronic
components and the duct. The noise signal was generated
by measuring the fan noise and broadcasted through speaker
B. Notice that by simultaneously exciting both speakers, the
sound produced by speaker A lagged behind the sound from
speaker B by about 0.36 ms (at 25C, the speed of sound in
air is about 346 m/s) which corresponds to about 2.2 samples
in the digital domain. This was deliberately arranged to obtain
results that violated the causality principle.

The plants and were identified by injecting pseudo-
random signals into both speakers and measuring output
responses at error microphone. The time-domain least square
algorithm was applied to obtain their coefficients. Table III
shows the results in pole/zero form.

The frequency responses (Fig. 5) show the various resonant
frequencies of the duct. If plane-wave approximation is con-
sidered, the boundary conditions of the duct can be assumed
to be pressure-released (at the open end, see [24, p. 350]) and
hard-walled (at speaker A). Its resonant frequencies are (see
[16])

speed of sound, duct length

or

Hz.

These frequencies do not match very well with the identifica-
tion (see Fig. 5). One of the reasons is due to an inaccurate

Fig. 6. Frequency response of error functionE = T1 � T2C by theH2
design without weighting.

description of the boundary conditions. For example, as the
driving frequency is increased, more energy leaks out of the
open end and the pressure-released condition is no longer
true. Second, since the duct length is rather short, the nonuni-
form pressure distribution (on the cross-section) induced by
both ends may still have strong effect on the measurement.
Hence, the physical mechanism of sound cancellation of this
experiment might contain higher-dimensional interactions, not
necessary a one-dimensional (1-D) phenomenon only (e.g.,
plane waves).
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Fig. 7. Frequency response of error functionE = T1 � T2C by theH1
design without weighting.

Fig. 8. Frequency response of error functionE = T1 � T2C by the l2
design without weighting.

Second, the plant going through speaker B () has a
transmission zero close to the unit circle (around 700 Hz). This
is usually called antiresonance and the frequency is related to
the characteristic length (dimensions) of the duct.

IV. EXPERIMENTAL RESULTS

The algorithms described Section II were applied to design
various feedforward controllers according to the measurement
in (3). Two weighting functions were considered in the exper-
iments: (no weighting) and

(8)

Fig. 9. Noise reduction by theH2-designed feedforward control without
weighting.

Fig. 10. Noise reduction by theH1-designed feedforward control without
weighting.

The latter was a low-pass filter with cutoff frequency 1 kHz.
The purpose is to emphasize the effect of cancellation for
the frequency range up to 1 kHz. Other than the weighting
function, preview steps 0), 2), and 4) are considered separately.
The controller parameters are not shown here since the listing
is quite lengthy. Interested readers can consult reference [34]
for more details. For the cases without a weighting function,
the corresponding error functions are plotted in Figs. 6–8 in
which several interesting phenomena are observed.

(O1) The averaging nature of the2 method can be seen
by comparing the curves in these figures.
Furthermore, when causality is violated ( ), The

2 method seems to exhibit better high-frequency
performance.
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Fig. 11. Noise reduction by thel1-designed feedforward control without
weighting.

Fig. 12. Frequency response of error functionE = T1 � T2C by theH2
design with weighting.

(O2) The spike shown in the1 design is located at the first
resonance frequency of the duct system (around 187
Hz, see Fig. 5). Most interestingly, while the other
two methods showed significant reduction in relative
error around this frequency when preview steps were
increased, the reduction by the1 design was lim-
ited. However, this phenomenon is not repeated at
the second resonance frequency (around 475 Hz). A
careful examination of Fig. 5 reveals that the peak
level of (noise transmission path) is greater than
that of (control signal transmission path) at the
first resonance and vice versa at the second resonance.
This shows that designers must be careful in applying
the 1 design method to flexible systems.

Fig. 13. Frequency response of error functionE = T1 � T2C by theH1
design with weighting.

Fig. 14. Frequency response of error functionE = T1 � T2C by the l1
design with weighting.

(O3) When , the control signal led the noise signal
by two digital steps. However, the improvement in
error was not significant compared with
because the noncausal part of the stable inverse of
(i.e., its Laurent series) did not have much influence
on the performance.

The steady-state noise reductions achieved by implementing
these design methods are plotted in Figs. 9–11. These figures
show the difference of spectrum magnitude measured by the
error microphone (Fig. 4) before and after the controller is
turned on. The results lead to the following observations.

(O4) Although the causality principle was violated when
, noise level was still reduced. Without loss

of generality, assume that the noise transmission
path ( , see Fig. 1) has no delay and the control



40 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 1, JANUARY 1998

Fig. 15. Noise reduction by theH2-designed feedforward control with
weighting.

Fig. 16. Noise reduction by theH1-designed feedforward control with
weighting.

sound transmission path (including the controller,
) has -step delay. Further, assume that the

impulse response of be and be
, the resulting variance of the error

subject to a zero-mean white noise (variance
) is

Therefore, as long as the error signal produced
through depends on the noise signal in the past
(i.e., for in the above equation), it is
possible to reduce the variance of by a proper
design of . Similar analysis can be conducted if we

Fig. 17. Noise reduction by thel1-designed feedforward control with weight-
ing.

look at the magnitude of . Considering the noise
cancellation in free space where is characterized
by pure delay, it is easy to see that it is impossible
to reduce the error variance or magnitude unless the
causality principle is observed. In a confined-space
problem, since noise bounces back and forth among
boundaries, the dependency of current noise signal
in any point and past noise source signal could be
strong. Therefore, it is still possible to reduce the
noise level even if the causality principle is violated.

(O5) Observation (O2.) is verified by comparing the noise
reductions around 187 Hz of Figs. 9–11. The1 design
does have inferior performance at resonance.

Experimental results from the controllers designed with
weighting are depicted in Figs. 12–17. Figs. 12–14 clearly
show that performance in the low-frequency range is enhanced,
so as the noise reduction in experiments (Figs. 15–17). Notice
that the reduction levels in the range between 0–50 Hz
were worse than the no-weighting cases. Although this is
unimportant since sound in this range is hardly audible, the
phenomenon is worth further investigation. One possibility
might be that the speakers produce sound nonlinearly at very
low frequencies (e.g., harmonic distortion).

The analyzes presented thus far are based on objective
evaluations. However, the ultimate goal of noise reduction is
human comfort. Thus, subjective evaluations are very impor-
tant. While many psychoacoustic indexes are available (such
as annoyance, see [26]), we use A-weighting, C-weighting and
linear weighting (no weight) to measure the differences among
the design methods [24]. A-weighting is intended to be such
that sounds of different frequencies giving the same decibel
reading with this weighting could be equally loud. As a result,
less emphasis is placed around low (less than 1000 Hz) and
high (greater than 6000 Hz) frequency range. C-weighting is
different from A-weighting by emphasizing a larger frequency
range (about 100–4000 Hz) and a smaller roll-off rate among
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TABLE IV
FREQUENCY-WEIGHTED-AVERAGE REDUCTION OF NOISE (NO-WEIGHTING CASES)

TABLE V
FREQUENCY-WEIGHTED-AVERAGE REDUCTION OF NOISE (WEIGHTED CASES)

lower frequencies. Hence, C-weighting is usually used in a
low-frequency noise environment. The measurements were
taken with a B&K sound-level meter (Fig. 4) and results are
recorded in Tables IV and V. These figures do not show
much difference among the design methods. Moreover, adding
the proposed weighting function (8) in optimization does not
improve the performance. Most of the differences are less than
1 dB which is likely to be a measurement error.

V. CONCLUSION

Model-matching techniques are useful tools for design-
ing feedforward controllers, especially when a broad-band
performance is required. This paper applies digital model-
matching techniques using 2, , and 1 measures to
design feedforward controllers for active noise cancellation in
ducts. From a signal-processing standpoint, these techniques
provide a systematic way of approximating the inverse of a
nonminimum phase filter in stable domain. It has been shown
that the performance (values of error norms) can be enhanced
if future inputs are available. A simple example demonstrates
that with preview action, the inverse of a nonminimum phase
zero is simply given as its truncated Laurent series in the

corresponding convergence domain (the anticausal part). Ex-
perimental results show significant broad-band reduction of
noise. They also prove that by applying the concept of model-
matching, it is not necessary to observe the causality principle
in order to achieve active noise reduction.
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