
Chapter 2   THEORY AND METHODOLOGY 
  

The finite-difference time-domain method was first presented by K. S. Yee in 

1966[12]. Yee’s insight was to choose a geometric relation for his spatial sampling of 

the vector components of the electric and magnetic fields that robustly represents both 

the differential and integral forms of Maxwell’s equations. Therefore, the structure 

that we want to discuss need to be divide into many small regions, which is called 

“cell”. This can be showed with Figure 2-1. 

 

 
Fig. 2-1 The illustration of Yee’s FDTD method. 

 

2-1  One-Dimensional Free Space Formulations  

The propagation of light was controlled by the four Maxwell equations. Here, we 

just need the two curl equations: 

 D H
t

∂ = ∇×
∂

 (2.1) 
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 0( ) ( )rD ω ε ω Eε ∗= ⋅ ⋅  (2.3) 
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where D is the electric flux density, E is the electric field, H is the magnetic field, 0ε  

is the dielectric constant in free space and ( )rε ω∗  is the relative dielectric constant. 

We will assume we are dealing with a lossy dielectric medium of the form  

 
0

( )r r
j
σε ω ε
ωε

∗ = +  (2.4) 

Here, Eq.(2.4) is written in frequency domain since we may need to simulate 

frequency-dependent material. For the simplicity in the formulations, we will 

normalize the Maxwell equations. Let 

 0

0
E ε

µ
′ E= ⋅  (2.5) 

 
0 0

1D = D
ε µ

′ ⋅  (2.6) 

here we can find that the E field and the H field will have the same order of 

magnitude. This system is called Gaussian units. Then, we can rewrite Eqs.(2.1), (2.2) 

and (2.3): 
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1D H
t ε µ
′∂ = ∇×

∂
 (2.7) 
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t ε µ

∂ ′= −
∂

 (2.8) 

 ( ) ( ) ( )rD Eω ε ω ω∗′ ′= ⋅  (2.9) 

Now, Eqs. (2.7) and (2.8) can be derived to the simple finite difference equations. In 

general, the FDTD method uses the first order difference. If we need the higher order 

of accuracy, we can use the high order difference approximation. But, the high order 

difference approximation is more complex and unstable. So, we use the first order 

difference here. The first order difference has three types: front difference 

approximation, back difference approximation and central difference approximation. 

Both of the error range of front and back difference approximation are ∆z , and the 

error range of central difference approximation is (∆z )2. So, the FDTD method 
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usually uses the central difference method for higher accuracy.  

If we consider a plane wave travels in the z direction with E field oriented in the 

x direction and the H field oriented in the y direction, the central difference 

approximation for temporal and spatial derivatives of Eqs. (2.7) and (2.8) gives 
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+ − + − −−
= −

∆ ∆
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 (2.10) 
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t zε µ

+ + ++ − + + −
= −

∆ ∆
)  (2.11) 

(here, we let E E′ =  and  for simplicity)where the superscripts “n” means a 

time t= ．n and the subscripts “m” means the distance z=∆z．m. i.e, the term “n+1” 

means one time step later than “n”, and the term “m+1” means one distance step next 

to “m”. We should keep in mind that every parameter of formulations was needed to 

be distributed into the computer.  

D D′ =

t∆

 

 
Fig. 2-2 Interleaving of the E and H fields in space and time in the FDTD 

formulation. 

 

The formulation of Eq. (2.10) and (2.11) assumes that the D and H fields are 
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interleaved in both space and time. The subscripts “m+1/2” and “m-1/2” of H field 

mean that the H field values are assumed to be located on the both sides of the D field 

value with subscript “m” . Similarly, the superscripts “n+1/2” or “n-1/2” of D field 

value means that D field value is assumed to occur slightly after or before the H field 

value with superscript “n”. This is illustrated in Fiq.2-2.  

    Rearrange Eqs. (2.10) and (2.11) in an iterative algorithm: 

 1/ 2 1/ 2

0 0

1( ) ( ) [ ( 1/ 2) ( 1/ 2)]n n n n
x x y y

tD m D m H m H m
zε µ

+ − ∆= − + − −
∆

 (2.12) 

 1 1/ 2

0 0

1( 1/ 2) ( 1/ 2) [ ( 1) ( )] .n n n n
y y x x

t 1/ 2H m H m E m E
zε µ

+ + m+∆+ = + − + −
∆

 (2.13) 

We can find that the calculations are interleaved in both space and time. For example, 

in Eq. (2.12) the current Dx is calculated from previous value of Dx and the most 

recent values of Hy.  

Now, we should determine the time step- t∆ . Since the speed of an 

electromagnetic wave propagating in free space isn’t faster than the speed of light, we 

should have a relation between x∆  and t∆ . This relation is the well-know “Courant 

Condition”[13][14]: 

 
0

zt
n c
∆∆ ≤
⋅

 (2.14) 

where n is the dimension of the simulation and c0 is the speed of light in free space.. 

From this condition, once the cell size z∆  is chosen, the time step  is 

determined by  

t∆

 
0

zt
u c
∆∆ =
⋅

, (2.15) 

where u is a constant dependent on the source that we choose. Therefore,  

 
00 0 0 0

1 1 1t
z z u cε µ ε µ

1z
u

∆ ∆= ⋅ ⋅ =
∆ ∆ ⋅

 (2.16) 

and rewriting Eqs. (2.12) and (2.13) : 
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 1/ 2 1/ 2 1( ) ( ) [ ( 1/ 2) ( 1/ 2)]n n n n
x x y yD m D m H m H m

u
+ −= − + − −  (2.17) 

 1 1/ 21( 1/ 2) ( 1/ 2) [ ( 1) ( )].n n n n
y y x xH m H m E m E m

u
+ ++ = + − + − 1/ 2+  (2.18) 

And then, we need to get Eq.(2.3) into a time domain difference equation for 

implementation into FDTD method. We substitute Eq.(2.4) into Eq.(2.3) 

 
0

r( ) ( ) ( ) .D E E
j
σω ε ω ω
ωε

= ⋅ +  (2.19) 

Since the first term on the right hand side is simple multiplication, we take it into the 

time domain directly. In the second term on the right hand side, we know that 1/jω in 

the frequency domain is integration in the time domain from the Fourier theory, so 

Eq.(2.19) becomes 

 r
00

( ) ( ) ( ) .
t

D t E t E t dtσε
ε

′ ′ ′ ′= ⋅ + ⋅∫  (2.20) 

Since we need to go to the sampled time domain, the integral will be approximated as 

a summation over the time steps ∆t: 

 r
0 0

.
n

n n

i

tD E σε
ε =

⋅ ∆= ⋅ + iE∑  (2.21) 

In Eq.(2.21), the E and D are specified at time t = n．∆t. We can find that we need to 

solve En given the value Dn, but the value En is needed in the calculation of the 

summation. So, we separate the En from the rest of the summation: 

 
1

r
0 0 0

.
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n n n

i

t tD E Eσ σε
ε ε

−

=

⋅ ∆ ⋅ ∆= ⋅ + + iE∑  (2.22) 

And then, 
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ε
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ε

−

=

⋅ ∆−
=

⋅ ∆+

∑
 (2.23) 

Now, we can calculate the value E of the current time step from the value D of the 

current step and the value E of the previous time step. It is convenient to define a new 

parameter in the calculation 
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1

0 0

n
n

i

t iI Eσ
ε

−

=

⋅ ∆= ∑  (2.24) 

and then, we can reformulate Eq.(2.23) with two equations: 

 
1

r
0

n n
n D IE

tσε
ε

−−=
⋅ ∆+

 (2.25) 

 1

0

n n t nI I Eσ
ε

− ⋅ ∆= +  (2.26) 

So, we can summarize the equations we will use in C++ computer code and arrange 

them in sequence of C++ computer code: 

1/ 2 1/ 2 1( ) ( ) [ ( 1/ 2) ( 1/ 2)]n n n n
x x y yD m D m H m H m

u
+ −= − + − −  (2.27) 

 
1

r
0

n n
n D IE

tσε
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 (2.28) 

 1

0
              n n t nI I Eσ

ε
− ⋅ ∆= +  (2.29) 

 1 1/ 21( 1/ 2) ( 1/ 2) [ ( 1) ( )].n n n n
y y x xH m H m E m E m

u
+ ++ = + − + − 1/ 2+  (2.30) 

 

2-2  Absorbing Boundary Condition 

 

When we solve the electromagnetic wave interaction problems with the FDTD 

method, many geometries of interest are defined in “open” regions. The spatial 

domain of the computed field is unbounded in one or more coordinate directions, but 

no computer can store an unlimited amount of data. Therefore, we need to limit the 

computation region in size. The computation region must enclose the structure of 

interest, and a suitable boundary condition on the outer perimeter of the domain must 

be used to simulate its extension to infinity.  

     For example, we consider that a pulse propagates in the free space in one 

dimension, and a FDTD computation region has 200 grids. If the pulse is generated at 
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the grid 100, the pulse will propagate toward both right and left side. When the pulse 

hits the both ends of the computation region, the pulse will reflect back into the 

problem space (Figure 2-3). This is wrong! Since we know that there are no sources 

outside the problem space and the fields at the edge must be propagating outward.  

 
Fig.2-3 1D pulse simulation without ABCs. 

 

Therefore, a boundary condition was needed to permit all outward-propagating waves 

to exit the both ends of computation region as if the simulation were performed on a 

computational domain of infinite extent. In the process, the outer-boundary condition 

must suppress spurious reflections of the outgoing waves to an acceptable level, 

permitting the FDTD solution to remain valid for all time-steps, especially after the 

reflected waves return to the vicinity if the modeled structure. The outer-boundary 

conditions of this type have been called absorbing boundary conditions (ABCs). 

There are several types of ABCs. Here, we use the Mur’s ABCs to be the 

outer-boundary condition in the 1D-PC simulation. 

    Suppose that there is a plane wave which propagates in the z-direction and 
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incidents into the absorbing boundary at z=0. The E field is in x-direction and the H 

field is in the y-direction. The propagating speed of the plane wave is v. So, the 

expression of Ex is  

 (x xE E z vt)= +  (2.31) 

and Eq. (2.31) need to satisfy the differential equation  

 1 0 .x xE E
z v t

∂ ∂− =
∂ ∂

 (2.32) 

Since the absorbing boundary make no reflection at z=0, the Ex propagates with the 

shape of Eq. (2.31) and satisfies the Eq. (2.32) at z<0. ie. no waves propagate in the 

+z-direction. So, Eq. (2.32) can be treated as the simplest one-way wave equation. We 

derive the Eq. (2.32) to the finite difference and use the Yee’s algorithm: 

 
1 1/ 2(1/ 2) (1/ 2) (1) (0)n n n n

x x x xE E E Ev
t z

− − −−
=

∆ ∆

1/ 2−  (2.33) 

where n is the index of time and just like the time-index of the equations that we 

derived before. Since the on the left-hand side of Eq. (2.33) and the  

on the right-hand side of Eq. (2.33) are not on the point of the grid of FDTD, we can 

get the approximate value from the average value of the points on the both sides of 

time and spatial domain: 

(1/ 2)n
xE 1/ 2n

xE −

 (0) (1)(1/ 2)
2

n n
x xn

x
E EE +

=  (2.34) 

 
1

1/ 2 (1) (1)(1)
2

n n
x xn

x
E EE

−
− −

=  (2.35) 

Substitute Eqs. (2.34) and (2.35) into Eq. (2.33) and get the solution of : (0)n
xE

 1 1(0) (1) [ (0) (1)]n n n n
x x x x

v t zE E E E
v t z

− −∆ − ∆= − −
∆ + ∆

 (2.36) 

Similarly, the solution of n
xE  on another end of computation region (ME): 

 1 1( ) ( 1) [ ( ) ( 1)n n n n
x x x x

v t zE ME E ME E ME E ME
v t z

− − ]∆ − ∆= − − −
∆ + ∆

−  (2.37) 

We can simplify Eqs. (2.36) and (2.37) by substituting Eq. (2.15) into this two 
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equations 

 1
1

zv z
v t z z u z uu v

zv t z z u z uv z
u v

∆⋅ − ∆
∆ − ∆ ∆ − ⋅ ∆ −⋅= = =

∆∆ + ∆ ∆ + ⋅ ∆ +⋅ + ∆
⋅

 (2.38) 

 

and we can rewriting the Eqs. (2.37) and (2.38): 

 1 11(0) (1) [ (0) (1)]
1

n n n n
x x x x

uE E E E
u

− −−= − −
+

 (2.39) 

 1 11( ) ( 1) [ ( ) ( 1
1

n n n n
x x x x

uE ME E ME E ME E ME
u

− − )]−= − − −
+

−  (2.40) 

For 1D-PC, we can apply Eqs. (2.39) and (2.40) on the both ends of computation 

region, and the reflect waves will vanish (Figure 2-4). 

 

Fig. 2-4 1D Pulse simulation with ABCs. 
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