
Chapter 3  1D PBG SIMULATION 

 

Fig. 3-1  Illustration of 1D photonic crystal 

 

In this Chapter, we will use the Eqs. (2.27), (2.28), (2.29) and (2.30) to calculate 

the photonic band gap of one-dimensional photonic crystal. The structure we consider 

is illustrated by Figure 3-1. There are several points important in Figure 3-1: 

a.    ,x y→ ±∞ → ±∞  

b. Media with 1ε  and 2ε  are lossless( 0σ = ) 

c. Normal Incident 

 

3-1  The Calculation Flow  

 

The fundamental idea of calculation is described by Figure 3-2. We generate a 

Dirac-delta function pulse at the start-grid and let it incident into the 1D photonic 

crystal from the left-hand side. The pulse will propagate in the 1D photonic crystal 

and go out from the right-hand side of the 1D photonic crystal. We collect the output 

wave with the receive-grid that is at the rear surface of 1D photonic crystal. We 

calculate the Fourier transform of both the incident pulse and the output pulse, and we 

can get two values for every frequency: FAmpi[f] and FAmp[f], where FAmpi[f] is the  
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Fig. 3-2  The idea of calculation for 1D photonic crystal in this work. 

 

Fourier amplitude of the incident pulse at frequency f and FAmp[f] is the Fourier 

amplitude of the output pulse at frequency f. And then, we can get the transmission 

coefficient of every frequency, which we call Trans[f], by calculating the ratio of 

FAmp[f] and FAmpi[f]: 

 [ ][ ]
[ ]

FAmp fTrans f
FAmpi f

=  (3.1) 

Fig. 3-3 is a flow chart of calculation used in this work: 

1. Input the parameters of the photonic crystal: 

b/a, 1ε , 2ε , total layer and time-steps.  

2. Define the number of total grids (ME) and the structure of photonic crystal (PS 

and PE). 

3. Start from T=0, generate a pulse at the start-grid (mc). Note that mc has more 20 

grids than at m=0. The reason for this will be explained later. And than, let the 

pulse incident into the photonic crystal from left side. At the same time, we do 

Fourier transform of the input pulse in a specific time period (TE) to get the 

Fourier amplitude of every frequency (Ampi[f]). 

4. Calculate every physic quantity of every grid: , ,x xD E H y . Here, we use the Eqs. 

(2.27), (2.28), (2.29) and (2.30). Apply the Mur’s ABCs on the both ends of 

computation region. 

5. Do the Fourier transform of transmissible wave at the receive grid (m=PE+50) 
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and get the Fourier amplitude of every frequency (Amp[f]). We just want to check 

more output wave data, so we set the receive point is 50 grids after the End of 

photonic crystal to see more output pulse.  

6. Use Eq. (3.1) to calculate the transmission coefficient of every frequency, and find 

the location of photonic band gap.. 

7. Go back to the 4th step until T< time-steps, and repeat step 3 to step 6. 
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Fig. 3-3  This is the flow chart of the calculation in our program. 
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3-2  Several Important Points 

 

In this simulation, we have to consider several important problems:  

1. Source function 

We use a Gaussian function to simulate a delta function.  
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mc is the grid where pulse generated. 

For a perfect delta function, the Fourier amplitude of every frequency is 1. When 

, the Fourier Amplitude is 1 at every frequency. So, we can choose the below 

function to be our source function 
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2. Normalization 
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When we do Fourier transform:  

 
0

( ) ( ) exp( )Tt
x xE f E t j tω= −∫ dt . (3.4) 

In Eq. (3.4), we need to normalize ω : 
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where ω′  is the normalized frequency. First we rewrite tω  into the difference form 

 t n tω ω= ⋅ ∆ . (3.6) 

From Eq. (2.15) we can get 

 2 zt f n
uc

ω π ∆= ⋅ ⋅ . (3.7) 

Since we let the lattice constant 

 a a z′= ⋅ ∆ , (3.8) 
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the Eq.(3.7) can be rearranged: 
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Therefore, we can rewrite Eq. (3.4) into difference form: 
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3-3 Simulation Result 

 

In this section we will show several cases in this work including the perfect and 

defective photonic band gap structure. All the simulation in this section is normal 

incident. Because the final goal of this work is to design a band pass filter on the Si 

substrate, most of the materials of photonic crystal in this section are Si and Air.  

 

3-3.1  Perfect Photonic Band Gap Structure 

We consider a 1D photonic crystal structure with two materials Si/AIR. The 

relative dielectric constant contrast is 1 2/ε ε . Fist, we discuss that the ratio of silicon 

and air layer in a unit cell is 1:1 and there are 5 unit cells of this photonic crystal. 

 

 

 
 
 
Fig. 3-4  
The transmission spectra 
of a 1D photonic crystal 
with , /b a = 0.5

1 11 .9ε = , and 2 1ε = . 
The multilayer has 5 
layers. The abscissa is 
the normalized frequency. 

H

 

ere, we choose the lattice constant a=40, and we will explain why we choose a=40 

later. Figure 3-4 is the transmission spectra of this photonic crystal. In Figure 3-4, 

there are two photonic band gaps. One is between 0.401 (2 / )c aπ  and 0.486 (2 / )c aπ  

[ 0 .058(2 / )c aω π∆ = ], and another is between 0.662 (2 / )c aπ  and 0.712 (2 / )c aπ  
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[ 0 .05(2 / )c aω π∆ = ]. From Figure 3-4, we can find that there may be other two 

photonic band gaps around 0.1 (2 / )c aπ  and 0.9 (2 / )c aπ . So, we consider the same 

structure ( , / 0.5b a = 1 11 .9ε = , and 2 1ε = ) with 10 layers. Figure 3-5 shows the 

transmission spectra of a photonic crystal with 10 layers. 

 

 

 
 
Fig. 3-5  

The transmission 
spectra of a 1D photonic 
crystal with / 0 .5b a = , 

1 11 .9ε = , and 2 1ε = . 
The  has 10 
layers. The abscissa is 
the normalized 
frequency. 

multilayer

 

 

In Figure 3-5, the photonic crystal band gaps locate between 0.164~0.255 

[ 0 .091(2 / )c aω π∆ = ], 0.372~0.517 [ 0 .145(2 / )c aω π∆ = ], 0.621~0.748 

[ 0 .127(2 / )c aω π∆ = ] and 0.884~0.926 [ 0 .042(2 / )c aω π∆ = ] respectively. As we 

know, the range of the photonic band gap will increase with the increasing of the 

layers. But the photonic band gap can’t increase infinitely, it will converge to a value, 

which is the photonic band gap with infinite periodic layers. In our simulation, we 

can’t calculate the photonic crystal with infinite layers, but we still use a large and 

finite number of layers to approach the infinite layers. Table 3-1 illustrates the 

photonic band gap with several different numbers of layers, and all the data in Table 

3-1 is normalized frequency. When we define the range of photonic band gap, we 
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choose the normalized frequency at that the attenuation is more than 40dB. Since the 

Fourier amplitude of the every normalized frequency of the incident pulse is 1, the 

Fourier amplitude of the transmissible wave, which’s attenuation is more than 40 dB, 

will small than  

 
40
2010 0.01

−
=   

We think that it is very small than the Fourier amplitude of the input wave, and can 

treat it as 0.  

 

 

 

 

Fig. 3-6   
Transmission spectra for 
the crystal with 5 layers, 
and the spectra of the 
crystal 10 layers is also 
shown for comparison. 
The ordinate is the 
attenuation in dB. 

 

 

Figure 3-6 shows the attenuation of the transmitted wave. As can be seen in Figure 

3-6, the attenuation increases with increasing the number of the layer, and the range of 

the band gap also increases. We can check the result by doing more calculation with 

other number of layers. In Table 3-1, each of the photonic band gaps converge to a 

specific value as the layers of photonic crystal are larger than 35 layers. So, we can 

say that we find the photonic band gap of the photonic crystal with infinite multilayer 

of the Si/Air materials.  
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 5 10 20 30 35 40

1st X 0.164~0.255 0.159~0.264 0.158~0.265 0.158~0.265 0.158~0.265

2nd 0.401~0.486 0.372~0.517 0.368~0.522 0.367~0.522 0.367~0.522 0.367~0.522

3rd 0.662~0.712 0.621~0.748 0.615~0.752 0.614~0.752 0.614~0.752 0.614~0.752

4th X X 0.878~0.927 0.876~0.928 0.875~0.929 0.875~0.929

Layers 
band gap 

 
Table 3-1 The photonic band gap with several different numbers of the layer.  

The unit of the data in Table 3-1 is normalized frequency ( / 2a c)ω π . 

 

And then, we will take a look at the simulation of other photonic crystal structure 

(other ratio of  or /b a 1 2/ε ε ):  

1. 1 2/ 11 .9 /1ε ε =  (Si/Air) and / 0.1 ~ 0.9b a = . 

(a) 

 0.1 0.2 0.3 0.4 0.5

1st 0.271~0.495 0.212~0.458 0.184~0.385 0.168~0.316 0.158~0.265

2nd 0.667~0.952 0.646~0.694 0.522~0.640 0.425~0.597 0.367~0.522

3rd 0.883~ 0.793~0.916 0.735~0.787 0.614~0.752

4th 0.937~ 0.875~0.929

ratio
band gap 

 

(b) 

0.6 0.7 0.8 0.9

1st 0.152~0.227 0.148~0.198 0.147~0.175 0.147~0.156

2nd 0.331~0.453 0.309~0.398 0.296~0.353 0.291~0.317

3rd 0.535~0.673 0.483~0.595 0.452~0.530 0.437~0.476

4th 0.752~0.879 0.668~0.788 0.613~0.705 0.584~0.634

5th 0.972~ 0.857~0.977 0.777~0.878 0.731~0.791

6th 0.942~ 0.878~0.947

band gap 
ratio

 
Table 3-2 The list of photonic band gaps of 9 photonic crystals with 

different b/a. The ratio of b and a is from 0.1 to 0.9, and the 
range of the ratio is from 0.1 to 0.5 in Table 3-3(a) and from 0.6 
to 0.9 in Table 3-3(b). Each ratio is calculated with 40 layers. 
The unit of all the data in Table 3-1 is normalized 
frequency ( / 2a c)ω π , and the normalized frequency range in 
this table is between 0 and 1. 
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2. 1 2/ 13 /1ε ε =  (GaAs/Air) and / 0.1 ~ 0.9b a = . 

(a) 

 0.1 0.2 0.3 0.4 0.5

1st 0.262~0.494 0.203~0.453 0.176~0.375 0.161~0.306 0.151~0.256

2nd 0.657~0.945 0.641~0.67 0.502~0.632 0.408~0.582 0.352~0.504

3rd 0.857~ 0.778~0.884 0.705~0.773 0.589~0.731

4th 0.915~ 0.838~0.909

ratio
band gap 

 

(b) 

0.6 0.7 0.8 0.9

1st 0.145~0.219 0.142~0.19 0.14~0.168 0.141~0.149

2nd 0.317~0.436 0.295~0.382 0.283~0.339 0.279~0.303

3rd 0.513~0.648 0.463~0.571 0.432~0.508 0.418~0.456

4th 0.72~0.849 0.639~0.757 0.586~0.675 0.559~0.607

5th 0.932~ 0.82~0.939 0.743~0.841 0.699~0.758

6th 0.902~ 0.841~0.907

band gap 
ratio

 
Table 3-3 The list of photonic band gaps of 9 photonic crystals with 

different b/a. The ratio of b and a is from 0.1 to 0.9, and the 
range of the ratio is from 0.1 to 0.5 in Table 3-3(a) and from 0.6 
to 0.9 in Table 3-3(b).  Each ratio is calculated with 40 layers. 
The unit of all the data in Table 3-1 is normalized 
frequency ( / 2a c)ω π , and the normalized frequency range in 
this table is between 0 and 1. 
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3-3.2  The Smallest Ratio 

We have found the photonic band gap, but we are curious that what is the 

smallest ratio of 1ε  and 2ε , at that the photonic crystal band gap will exist. In this 

calculation, air is the fixed material ( 2 1ε = ), and we change the value of 1ε . The 

ratio of b and a is fixed at 0.5, and each of the photonic crystal has 40 layers. Fist, we 

change the value of 1ε  from 1 to 11.5 every 0.5 increment, and find that the photonic 

crystal band gap vanish as the value of 1ε  is between 1 and 1.5(Table 3-5).  

(a) 

 10.5 9.5 8.5 7.5 6.5

1st 0.168~0.279 0.177~0.291 0.186~0.304 0.198~0.318 0.213~0.335

2nd 0.390~0.548 0.409~0.568 0.431~0.591 0.457~0.616 0.489~0.643

3rd 0.651~0.782 0.683~0.805 0.719~0.829 0.761~0.857 0.813~0.887

2ε
band gap 

 

(b) 

5.5 4.5 3.5 2.5 1.5

1st 0.230~0.355 0.254~0.378 0.286~0.405 0.336~0.437 0.427~0.472

2nd 0.528~0.675 0.578~0.711 0.645~0.754 0.743~0.810 X

3rd 0.876~0.923 X X X X

band gap 
2ε

 

(c) 

10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5

1st 0.111 0.114 0.118 0.120 0.122 0.125 0.124 0.119 0.101 0.045

2nd 0.158 0.159 0.160 0.159 0.154 0.147 0.133 0.109 0.058 0.000

3rd 0.131 0.122 0.110 0.096 0.074 0.047 0.000 0.000 0.000 0.000

2ε
gap range 

 

Table 3-4 (a) and (b) are the table of photonic band gaps for different 2ε . 1ε  is fixed 
in this table, and there are 40 layers for every multilayer. (c) is the table of 
gap range for each 2ε  in table (a) and (b). 

 

From Table 3-4, we can find that the range of the band gap decreases as the value of 

2ε  decreases, and the band gap vanishes finally. The position of the band gap shifts 

to higher frequency as the value of 2ε  decreases. For each band gap, the value of  
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Fig. 3-7 The range of the band gap decreases as 2ε  decreases. The abscissa is the 

value of 2ε . The ordinate is the normalized frequency range of the band 
gap. 

 

2ε  at that band gap vanishes is different. In Figure 3-7, the band gap at the higher 

frequency decay to 0 at the higher 2ε  (the third band gap decay 0 between 

2 4 .5ε =  and 2 5 .5ε = , and the second band gap decay to 0 between 2 1 .5ε =  and 

2 2 .5ε = ). Our purpose is to find the smallest 2ε  that “No” band gaps exist. So, we 

need to find the value of 2ε  between 1 and 1.5, at that the first band gap decay to 0. 

We do the simulation every 0.1 increment from 2 1ε =  to 2 1 .5ε = , and find that 

the band gap vanish between 1.3 and 1.4. We continue to do the simulation for every 

0.01 increment from 1.31 to 1.39, and find that no photonic band gap exists as 

2 1 .305ε ≤ . We show these results in Table 3-5 and Figure 3-8. 

(a) 

 1.39 1.38 1.37 1.36 1.35 1.34

1st 0.444~0.474 0.446~0.474 0.448~0.473 0.450~0.473 0.452~0.473 0.454~0.473

2ε
band gap band gap 

 

 

 

 25



(b) 

 1.33 1.32 1.31 1.309 1.308 1.307

1st 0.457~0.472 0.459~0.471 0.463~0.469 0.464~0.469 0.464~0.469 0.465~0.468

2ε
band gap band gap 

 

(c) 

 1.306 1.305 1.304 1.303 1.302 1.301

1st 0.465~0.468 0 0 0 0 0

2ε
band gap band gap 

Table 3-5 The range of the band gap of every 2ε from 1.390 to 1.301. 

 

 
 
Fig.3-8 The range of the band gap decrease as 2ε  decreases. The band gap vanishes 
at 2 1 .306ε = . The abscissa is the value of 2ε . The ordinate is the normalized 
frequency range of the band gap.
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3-3.3  The Behavior of the Light in the Photonic Crystal 

In the previous sections, we discuss the property of the photonic crystal in 

frequency domain. In this section, we want to discuss the property of the photonic 

crystal in time domain. We want to know how the light propagates in the photonic 

crystal. We use the photonic crystal with / 0.3b a =  and 1 2/ 11 .9 /1ε ε =  to be our 

example.  

Normalized Frequency
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Fig.3-9   

The transmission 
spectrum of the photonic 
crystal with b a , / 0.3=

/11 2/ 11.9ε ε = , and 10 
layers. The abscissa is the 
normalized frequency. 
 

 

 

Figure 3-9 is the transmission spectrum of the photonic crystal with 5 layers. In 

Figure 3-9, we can find that there are 3 photonic band gaps for this structure. They are 

locate between 0.191~0.377, 0.539~ 0.63, and 0.802~0.901 respectively. In the 

previous simulation, we use the Gaussian pulse as the incident wave source. Now, we 

want to switch it to a sinusoidal wave source, and to watch the behavior of the light in 

the photonic crystal. First, we choose a sinusoidal wave with the normalized 

frequency 0.3, which is in the photonic crystal band gap. In Figure 3-10, we find that 

the wave decay to 0.01 about the 6th layer and 0.1 about the 3rd layer. It’s obvious that 

this wave can’t pass the photonic crystal. Next, we choose a sinusoidal wave with the 

normalized frequency 0.5. Figure 3-11 shows the behavior of the wave propagating in  
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Fig. 3-10  
This is the behavior of a 
sinusoidal wave with the 
normalized frequency 0.3 
which propagates in a photonic 
crystal (b/a=0.3, 1 2/ε ε =11.9/1, 
and 10 layers). The abscissa is 
the space, and this plot is at 
T=10000 steps. 
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Fig. 3-11 
This shows the behavior of a 
sinusoidal wave with the 
normalized frequency 0.5. The 
parameters of the photonic 
crystal are the same with Fig. 
3-11. This plot is at T=10000 
steps. 

 

the photonic crystal. This wave can pass the photonic crystal, and the waveform of the 

wave propagating in the photonic crystal is symmetry. And then, we show the plots 

(Figure 3-13 and Figure 3-14) of several sinusoidal waves with different normalized 

frequency, which are in the stop band or in the transmission band, and the plots of the 

other ratio of b and a is 0.5. In Figure 3-12 and 3-13, the position that wave decays to 

0 changes with different normalized frequency. This property is important for us to 

use the defect to design a optical device. We will do more discussion in the next 

section. 
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Fig. 3-12 This are the behavior of the light with normalized frequency 0.6, 0.7, 0.82 

and 0.95 in the photonic crystal. The normalized frequency 0.6 and 0.82 are 
in the stop band, and 0.7 and 0.95 are in the transmission band. 
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Fig. 3-13 These are the behavior of the light with ω = 0.1, 0.2, 0.3, 0.4, 0.55, 0.7, 0.8 

and 0.85 in the photonic crystal (b/a=0.5, 1 2/ 11 .9 /1ε ε =  and 10 layers). 
The normalized frequency 0.1, 0.3, 0.55 and 0.8 are in the stop band, and 
0.2, 0.4, 0.7 and 0.85 are in the transmission band. 
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3-3.4 Defect Mode 

 

One of the most important properties of photonic crystals is the emergence of 

localized defect mode in the gap frequency region when a disorder is introduced to 

their periodic dielectric structure. In this section, we will present our simulation of the 

defect mode of the multilayer. 

Figure 3-14 shows an example of a defect in the case of 5 layers, where as the 

defect layer ratio b/a in the 4th layer is different from the normal layer. From Figure 

3-5, the photonic band gaps locate between 0.158~0.265, 0.367~ 0.522, 0.614~0.752 

and 0.875~0.929. If we insert a defect layer, the transmission coefficient of some 

frequency, which is in the range of photonic band gap, should not be small than 0.01, 

by which we define the band gap. Therefore, we do the simulation of the structure 

illustrated in Figure 3-14. First, we insert the defect layer in the 4th layer. 

 
Fig. 3-14 
This is the illustration of the photonic crystal 
with a defect layer. The 1st, 2nd ,3rd and 5th layer 
are the normal layer with and the 4/ 0b a = .5 , 

3

th 
layer is the defect layer with  / 0 .b a =

 

sert the defect layer in the 3rd layer, and insert the defect layer in the 2nd layer finally. 

We should note that there is only one defect layer be inserted into the photonic. We 

don’t insert the defect layer into the photonic, since they are not the defect layer for 

the photonic crystal. We will show the simulation results to verify our consideration. 

Figure 3-15 shows the simulation results of the defect mode. Compare Figure 3-5 with 

Figure 3-15, and we can find that there is almost no defect mode when the defect 

layer is in the 1st and 5th layer and the defect mode is very easy to be identified out 

when the defect mode is in the 2nd and 3rd layer. And, in Figure 3-15(b), the defect  
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Fig. 3-15 The transmittance of the defect mode: (a) The 2nd layer is the defect layer 

with , and others are the normal layer with . (b) The 3/ 0.b a = 3 5

3

/ 0.b a =
rd 

layer is the defect layer with / 0 .b a = , and others are the normal layer with 
. (c) the 4/ 0.b a = 5 3th layer is the defect layer with / 0 .b a = , and others are 

the normal layer with / 0 .b a 5= . (d) The defect layer is in the 1st or 5th layer 
with , and others are the normal layer with / 0 .b a = 3 5/ 0.b a = . 

 

mode locates around 0.459 is very narrow and sharp, and the transmission coefficient 

of the center frequency attain to 1. Those characters are very suitable to design a 

“band pass filter”. Before we discuss the possibility of designing a filter with the 

defect multilayer, we need to discuss the behavior of the wave in the defect 

multilayer.  

In the discussion below, we use the wave with normalized frequency 0.459 for 

example. From the discussion in the previous stage, we know that the wave, whose 

frequency is in the photonic band gap, will “inject” into the multilayer for a little 
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layers (we can call them “skin layers”). The number of the skin layers is different for 

every frequency in the photonic band gap. As we know, the existence of the photonic 

band gap is resulted from the destructive diffraction caused by the perfect periodic 

structure. Therefore, the multilayer is not a perfect periodic structure for some 

frequencies, when we introduce a disorder to the periodic structure. If the defect layer 

locates among the skin layers, some inner layer disturbs wave propagating more than 

the layers mear the boundary. The wave could pass the skin layer. Figure 3-16 shows 

the comparison of the behaviors of the waves in perfect and defect multilayer. From  

 

 

Fig. 3-16 The frequency of the incident waves in (a) and (b) are both 0.459. (a) This is 
the behavior of the wave in the perfect multilayer with  for each 
layer.(b) This is the behavior of the wave in the defect multilayer with 

for the defect layer and 

/ 0.b a = 5

3 5/ 0.b a = / 0.b a =  for the normal layer. 

 

Figure 3-16(a), the wave decays to zero around the 3rd or 4th layer. We insert the 

defect layer in the 3rd layer, and the wave, which has the same frequency with the 

incident wave in Figure 3-16(a), decays as it propagates through the 1st and 2nd layer, 

but “grows up” in the 3rd layer. So, we can watch the transmitting wave in the back 

side of the defect multilayer. However, we only talk about the multilayer with 5 layers 

up to now, and the bottom of the picks is not “clear”. If we want to use the defect 
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multilayer to be a “band pass filter”, the peak should be very sharp and we need the 

bandwidth smaller.  

What can and what should we do to modify the result? First, we need to find the 

simplest structure that has the defect mode, and the defect mode should be suitable for 

the design of band pass filter. Take a look at Figure 3-16 (a) and (b). In the two 

figures, there are both two peaks in the band gaps separately. Therefore, we need to 

compare the difference between these two defect modes and between the two 

structures. The difference of the structures between Figure 3-16 (a) and (b) is the 

position of the defect layer. In Figure 3-16 (a), the defect layer is at the 2nd one, and, 

in Figure 3-16 (b), the defect layer is at the 3rd one. In order to let the wave, in the 

defect mode, passes the multilayer, we need to repeat the defect layer for every fixed 

number of layers.  

 

Fig. 3-17 (a) The defect layer is at the 8th layer. (b) The defect layer is at the 3rd layer. 
There are both 10 layers totally in the (a) and (b). This figure illustrates that 
we should insert more than one defect layer into the multilayer. Both of the 
normalized frequency in (a) and (b) is 0.459.  

 

For example, we consider the multilayer with 10 layers totally and defect layer. 

If we only insert one defect layer, no matter at the head or the tail of the structure, 

there may be no defect mode. Since the wave will decay to zero in the region of three 

or four perfect layers, we need to insert a defect layer for every two or three layers at 
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least. Figure 3-17 verify our consideration. In Figure 3-17 (a), we can find that the 

wave decays to zero as it doesn’t arrive the defect layer yet. In Figure 3-17(b), the 

wave decays to zero around the 7th layer even though it grows up again around the 

defect layer. From the discussion above, we want to define the “sub-lattice” which is 

the simplest structure with the defect mode, and just need to repeat the sub-lattice to 

construct the multilayer. Since the wave will decay as it passes through the one or two 

perfect layer and “grows up” at the perfect layer, we have two kinds of the sub-lattice. 

One is that the defect layer begin at the 2nd layer, another is that the defect layer 

begin at the 3rd layer. And, for both of these two choices, we define three kinds 

structure of the sub-lattice. Figure 3-18 illustrates our considerations above. Then, we  

 
Fig. 3-18 (a), (b) and (c) are the sub-lattices with the defect layer at the 2nd one. (d), (e) 

and (f) are the sub-lattices with the defect layer at the 3rd one. We can repeat 
the sub-lattice to construct the multilayer. 

 

do the simulations of these six sub-lattices. Figure 3-19 and 3-20 illustrate our 

simulation results. In Figure 3-19, we use five sub-lattices for every kind of 

sub-lattice, and six sub-lattices for every kind of sub-lattice in Figure 3-20. The 

reason why we do two kinds of simulation is that, for each kind of sub-lattice, the 

transmission spectrums are different for a multilayer with odd or even sub-lattices. If 

we want to find the suitable structure to fabricate a device, all possibilities should be 

tried. 
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Fig. 3-19 (a), (b) and (c) are the transmission spectrums of the defect modes, and the 

defect layers begin at the 2nd layer for these three sub-lattices. (a), (b) and (c) 
are the transmission spectrums of the defect modes, and the defect layers 
begin at the 3rd layer for these three sub-lattices. For these six calculations, 
there are five sub-lattices in the multilayer. 

 

In Figure 3-19, the most suitable structure to design a band pass filter, whose 

center frequency is at 0.706 (2 / )c aπ , should be constructed by the sub-lattice 

illustrated in Figure 3-19(c), and the most suitable sub-lattice for the band pass filter, 
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Fig. 3-20 (a), (b) and (c) are the transmission spectrums of the defect modes, and the 

defect layers begin at the 2nd layer for these three sub-lattices. (a), (b) and (c) 
are the transmission spectrums of the defect modes, and the defect layers 
begin at the 3rd layer for these three sub-lattices. For these six calculations, 
there are six sub-lattices in the multilayer. 

 

whose center frequency is at 0.459 (2 / )c aπ , is illustrated in Figure 3-18(f). In Figure 

3-20, there are four kinds of sub-lattice, illustrated in Figure 3-19 (c), (d), (e) and (f), 

suitable to construct the multilayer for a band pass filter, whose center frequency is at 
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0.459 (2 / )c aπ , and the sub-lattice, illustrated in Figure 3-18(c), is suitable for the 

band pass filter with the 0.706 (2 / )c aπ  center frequency. In the calculation above, 

we divide the normalized frequency into 1000 parts, and the normalized frequency 

interval is 0.001. Now, we want to get the more precise data, so, in the next 

calculation, the normalized frequency region are from 0.450 to 0.470 and 0.690 to 

0.710 and we divide these region into 2000 parts, the normalized frequency interval is 

1×10-5.  

 

 
 
 
 
 
 
 
 
Fig. 3-21  
These are the transmission 
spectrums of the defect mode 
around 0.459. (1), (2), (3) 
and (4) are the multilayer 
with 6 layers, and (5) with 5 
layers. The abscissa is 
normalized frequency, and 
the ordinate is transmission 
coefficient. 

 

Figure 3-21 and 3-22 show the simulation results. In Figure 3-21, we can find 

that (4) and (5) seem more suitable for a band pass filter. The center frequency of 

Figure 3-21(4) and (5) are both 0.45904 (2 / )c aπ , and if we want to design a filter 

with 1.55 mµ  wavelength, the bandwidth of Figure 3-21(4) is  Hz and 

3-21(5) is  Hz. In Figure 3-22, the center frequency of (1) is 0.705135  

113 .29 10×

113 .20 10×
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Fig. 3-22 
These are the transmission 
spectrums of the defect mode 
around 0.706. (1) is the 
multilayer with 5 sub-lattices 
and (2) with 6 sub-lattices. 
The abscissa is normalized 
frequency, and the ordinate is 
transmission coefficient. 

 

and (2) is 0.705015. Similarly, for a filter with 1.55 mµ  wavelength, the bandwidth 

of Figure 3-22(1) is  Hz, and (2) is 118 .20 10× 119 .03 10×  Hz, and the performance 

of  Figure 3-22(1) is better than (2). Compare the results in Figure 3-21 with 3-20. 

The bandwidths of 3-21 are smaller than 3-22 in substance, and the size of each layer 

in structure of 3-22 is bigger than 3-21. Table 3-7 shows the parameters that we get 

from this calculation for a 1.55 mµ  filter.  

 

center wavelength bandwidth perfect layer

size (0.5a)

defect layer

size (0.3a)

Figure 3-20(4) 1.55 2.235 1.341

Figure 3-20(5) 1.55 2.235 1.341

Figure 3-21(1) 1.55 3.435 2.061

Figure 3-21(2) 1.55 3.435 2.061

( )mµ ( )Hz

118.20 10×

113.20 10×

113.29 10×

119.03 10×  
Table 3-7 The parameters of a band pass filter with the sub-lattice illustrated in Figure 

3-19 and 3-20.  
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