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A New Strategy for Phase I Analysis in SPC
Jyh-Jen Horng Shiau∗† and Jian-Huang Sun

The Phase I analysis in statistical process control usually includes a task of filtering out out-of-control data in the
historical data set via control charting. The conventional procedure for this is an iterative procedure that first uses
all the samples to set up initial trial control limits and discards all the ‘out-of-control’ samples accordingly, and then
iteratively repeats the screening step on the remaining samples until no more ‘out-of-control’ samples are detected.
For simplicity, the ‘out-of-control’ samples here refer to the samples with their monitoring statistics exceeding the
trial control limits. It is found in this study that this procedure throws away too many useful in-control samples.
To overcome this drawback, we propose and study a new iterative procedure that discards only one ‘out-of-control’
sample (i.e. the most extreme one) at each iteration. Our simulation study, using the Shewhart X Chart for illustration,
demonstrates that the new one-at-a-time procedure reduces dramatically the occurrences of false alarms. For cost-
saving, we further suggest a new strategy on when to stop and inspect the process to look for assignable causes for
samples signaling out-of-control alarms. To determine the control limits, both the traditional method that controls
the individual false-alarm-rate and the Bonferroni method that controls the overall false-alarm-rate are considered.
The performances of the proposed schemes are evaluated and compared in terms of the false-alarm rate and the
detecting power via simulation studies. Copyright © 2009 John Wiley & Sons, Ltd.
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1. Introduction

In statistical process control (SPC), control chart applications are often distinguished into Phase I and Phase II. In Phase I
application, control charts are used off-line to determine retrospectively from a set of so-called historical data whether the
process has been in control. In Phase II application, control charts are used online mainly for continual process monitoring.

The purpose of this paper is to propose and study a new strategy for Phase I analysis.
In Phase I, process data are collected and analyzed with the goals to bring the process to a state of statistical control, and

then to model the in-control process so that reliable control limits of the control chart can be established for online process
monitoring later in Phase II. Woodall1 pointed out that significant efforts for process understanding and process improvement
are often required in the transition from Phase I to Phase II.

To construct a useful control chart for the online process monitoring, a suitable process/product quality-related monitoring
statistic is chosen and control limits are set according to its in-control distribution. Phase I control charting is usually used to
screen out out-of-control data from the data set so that a set of presumably in-control process data can be obtained to model
the distribution of the monitoring statistic.

Some estimation problems in constructing control charts are explicitly mentioned by Woodall and Montgomery2 and other
researchers. In particular, Jones and Champ3 pointed out that the decisions of being in- or out-of-control made by the X control
chart for the m samples in a Phase I data set are dependent because all the m monitoring statistics involve the same sample
mean and standard deviation estimated from the Phase I samples. Thus, in order to have a fixed overall false-alarm rate, the
control limits must be based on the joint distribution of the m charting statistics.

Assume that a set of samples, often called a historical data set, had been collected from the process. As some of these samples
may not come from the in-control process, one would need a screening procedure. The conventional practice for Phase I analysis
is an iterative procedure described below:

(i) First, use the data to set up a set of initial trial control limits for the monitoring statistic, such as X , R, or S, to identity
potential ‘out-of-control’ points. For simplicity, we only consider the charted points that exceed the control limits as the
‘out-of-control’ points in this study.
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(ii) If some samples signal ‘out-of-control’, then the operators or process engineers should investigate the process to see if
there exist any assignable causes to explain why these points are out-of-control.

(a) If indeed some assignable causes are found, then appropriate corrective actions should be taken to eliminate
the causes. If any of the corrective actions changes the nature of the process, one needs to recollect data from
the new process and restart the screening process. If eliminating assignable causes does not affect the current
process in nature, then we can simply discard the ‘out-of-control’ points and redo the control charting using the
remaining data.

(b) If no assignable causes can be found, then one can choose either to keep or to discard these ‘out-of-control’ points.
No one really knows which action is correct without further information as these points may exceed the limits simply
by chance or by some uncovered assignable causes. For being conservative, many practitioners may choose to discard
these ‘out-of-control’ points to avoid potential contamination in the data set.

(iii) Repeat the above screening steps based on the remaining data set until no more ‘out-of-control’ points can be found.

Statistically, in any control charting, there are possibilities that some in-control samples may get wrongly discarded
and some out-of-control samples may remain undetected, which are similar to committing Type I and Type II errors in
hypothesis testing, respectively. A good control chart should be able to control these two types of error rates to some
extent.

In this paper, we study this procedure and find surprisingly that the discard-all practice tends to mistakenly screen out too many
(i.e. more than expected) in-control data points. To overcome this drawback, we propose a more effective iterative procedure for
collecting in-control data by simply discarding, instead of all, but only one ‘out-of-control’ point (the most extreme one) and then
updating the trial control limits at each iteration. This procedure will be referred to as the one-at-a-time (OAAT) procedure hereafter.

It is found from the simulation study that, with control limits constructed under the same overall false-alarm rate (i.e. the
probability that at least one sample point in the data set signals ‘out-of-control’ when the process is in-control), the proposed
OAAT procedure screens out much less in-control samples than the conventional discard-all procedure and still retains about the
same power in detecting out-of-control samples.

With the proposed OAAT procedure, it is likely that there may be more iterations than the conventional procedure. To be
more cost effective, instead of stopping the process at the end of each iteration to look for assignable causes for each of the
‘out-of-control’ points as the conventional practice does, we suggest a new strategy of performing the investigation for all of the
‘out-of-control’ points detected after the whole OAAT procedure ends. Note that the final number of ‘out-of-control’ points is
most likely less than or equal to that of the conventional discard-all procedure. Thus, by reducing the frequency of investigations
and possible process adjustments, the new practice would be more cost effective. The only disadvantage of the new procedure
is very minor—it requires slightly more computing power, which is no longer an issue with the enhancing computer power
nowadays.

We remark that, even with the conventional discard-all procedure, we would also recommend applying the new strategy of
leaving all the investigation to the end when no more ‘out-of-control’ points can be detected. In this way, we only need to stop
the process once and investigate all potential problems suggested by the current data set at that time.

Another important issue we would like to address in this paper is the criteria of performance evaluation of control charts used
in Phase I analysis. Currently in the literature the evaluation is mostly based on the so-called ‘signal probability’ (e.g. Sullivan and
Woodall4), which is defined as the family-wise signal rate, the probability that at least one sample point in the data set signals
‘out-of-control’. The overall false-alarm rate mentioned above is the signal probability when the process is in control. Therefore,
the signal-probability criterion can only evaluate the effectiveness of the control schemes on judging whether the whole data
set comes from the in-control process or not.

As the signal probability does not differentiate true and false alarms for ‘out-of-control’ signals, it may not be a good measure
to compare the performances of different screening methods. To fit the purpose of Phase I analysis better, we suggest using
simultaneously the rate of correctly rejected samples and the rate of wrongly rejected samples as the comparison criteria. The
former measures the detecting power (true-alarm rate) and the latter measures the false-alarm rate.

In early days, control charts were designed based on controlling the individual false-alarm rate for each sample no matter
how many samples were tested (e.g. Hunter5, Vermaat et al.6). Recently many research works on Phase I analysis were based
on controlling the overall false-alarm rate instead. With a fixed individual false-alarm rate, the overall false-alarm rate gets
larger when the number of samples m gets larger. This is why many authors chose to adjust the individual false-alarm rate
with Bonferroni-type procedures in order to control the overall false-alarm rate at a desirable level. For example, see Borror
and Champ7, Champ and Chou8, Mahmoud and Woodall9, and Nedumaran and Pignatiello10. Nedumaran and Pignatiello11

discussed many issues in constructing retrospective X control chart limits when controlling the overall false-alarm rate at a desired
level.

For its simplicity and popularity, we use Shewhart X control chart to illustrate our new Phase I analysis
strategy.

The remainder of this paper is organized as follows. Section 2 describes the conventional method in detail and explains why
the discard-all practice has the problem of excessive false alarms. Section 3 presents the new strategy and the OAAT procedure.
Section 4 compares the conventional discard-all method and the new OAAT method under controlling the individual false-alarm
rate as well as under controlling the overall false-alarm rate by Bonferroni’s adjustment. Section 5 concludes the paper with a
brief summary and some remarks.
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2. The conventional method

Let the in-control process be a normal process with mean �0 and variance �2
0. Assume that the set of process data in Phase I

is in the form of m independent random samples of size n, {Xi1,. . . , Xin}m
i=1, taken in the order of process output. When the m

samples are all from the in-control process, Xij ’s are independent and identically distributed (i.i.d.) as N(�0,�2
0) for i=1, 2,. . . , m

and j=1, 2,. . . , n. We first estimate �0 and �2
0, and then construct the Phase I control chart accordingly as follows.

2.1. Estimating process parameters

The most commonly used estimator of �0 is

�̂0 =X = 1

mn

m∑
i=1

n∑
j=1

Xij =
1

m

m∑
i=1

X̄i

where X̄i is the sample mean of the ith sample. There are many estimators of �0 given in the literature, see, e.g. Champ and
Chou8, Nedumaran and Pignatiello11, and Champ and Jones12. The following are three variability-related statistics considered in
Champ and Chou8:

R= 1

m

m∑
i=1

Ri, S= 1

m

m∑
i=1

Si and V
1/2 =

(
1

m

m∑
i=1

S2
i

)1/2

where Ri =max(Xi1,. . . , Xin) is the sample range and Si = (�n
j=1(Xij − X̄i)

2 / (n−1))1/2 is the sample standard deviation of the ith

sample. Then by rescaling, the corresponding unbiased estimators of �0 are

R

d2
,

S

c4
and �̂0 = V

1/2

c4,m

where d2 =E(R) / �0, which can be easily found in many quality control textbooks such as Montgomery13,

c4 =
√

2�(n / 2)√
n−1�((n−1) / 2)

and c4,m =
√

2�((m(n−1)+1) / 2)√
m(n−1)�(m(n−1) / 2)

Champ and Chou8 chose V
1/2

/ c4,m as their preferred estimator of �0 among the three by showing that

Var

(
V

1/2

c4,m

)
≤Var

(
S

c4

)
≤Var

(
R

d2

)

Following their arguments, we adopt �̂0 =V
1/2

/ c4,m in this paper.

2.2. Phase I Shewhart control chart

The Phase I Shewhart X chart is constructed with the following lower control limit (LCL), center line (CL), and upper control limit
(UCL):

LCL= �̂0 −k
�̂0√

n
, CL= �̂0 and UCL= �̂0 +k

�̂0√
n

where the multiple k is chosen to obtain the desirable false-alarm rate. The usual Shewhart chart takes k as 3. The statistic X̄i (the
ith sample mean) is plotted against the sample number i. If any point falls below LCL or above UCL, it is taken as an evidence
that the corresponding sample is out-of-control.

2.3. The individual and overall false-alarm rates

For the case when the m samples are all from the in-control process, it is easy to verify that X̄i −X is distributed as N(0, (m−1)�2
0 /

(mn)) for i=1, 2,. . . , m, m(n−1)V / �2
0 is distributed as �2

m(n−1), the �2 distribution with degrees of freedom m(n−1), and, furthermore,

X̄i −X and m(n−1)V / �2
0 are independent. Therefore,

√
mn(X̄i −X)

√
(m−1)

√
V

=
√

mn(X̄i −X)√
(m−1)�2

0

/√√√√ V

�2
0
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Table I. The individual false-alarm rate, �∗, and the overall false-alarm rate, �, for various values of m
and n when k =3, assuming m tests are independent

m n c4,m �∗ �

30 5 0.9979 0.0028 0.0793
30 10 0.9991 0.0025 0.0719
30 15 0.9994 0.0024 0.0698
50 5 0.9988 0.0027 0.1278
50 10 0.9994 0.0026 0.1207
50 15 0.9996 0.0025 0.1187
100 5 0.9994 0.0027 0.2381
100 10 0.9997 0.0026 0.2318
100 15 0.9998 0.0026 0.2300

is distributed as tm(n−1), the t distribution with degrees of freedom m(n−1). As

√
mn(UCL−X)

√
(m−1)

√
V

=
√

mn(k�̂0 /
√

n)
√

(m−1)
√

V
= k

√
m

c4,m
√

m−1

the individual false-alarm rate for each sample is

�∗ =2

(
1−Ftm(n−1)

(
k
√

m

c4,m
√

m−1

))

where Ftm(n−1) is the cumulative distribution function (c.d.f.) of the tm(n−1) distribution.
If the m hypothesis tests are independent and the individual false-alarm rate of each test is �∗, then the overall false-alarm

rate �=1−(1−�∗)m. Table I lists the �∗ and the corresponding � for various m and n when k =3 by assuming that the m tests
are independent. Note that these �∗’s are not too much different. Also, the overall false-alarm rate � increases as m increases or
as n decreases as expected.

However, as described before, the independence assumption does not hold for control charts in Phase I application as all m

tests use common parameter estimators, X and V . Fortunately, the assumption violation does not have significant impact on the
false-alarm rate. Our simulation study indicates that the overall false-alarm rate for the case of m=30, n=5, and k =3 is about
0.078 (see Section 3.3), not too far from that of independent tests, 0.0793, given in Table I.

2.4. Excessive false-alarm rate

The following argument explains why the discard-all approach tends to have more than expected false alarms. Assume that the
n observations in a sample are i.i.d. Let observations from the in-control process follow N(�0,�2

0). Suppose that the historical data
set is contaminated with 100p percent of samples from an out-of-control process with process mean shifted from �0 to �1. Then
for any randomly selected sample, X is distributed as a mixture distribution with mean �= (1−p)�0 +p�1. Thus, if we mistakenly
treat all the data as from the in-control process and proceed control charting; we actually construct a control chart with the
following theoretical center line and control limits:

CL= (1−p)�0 +p�1, LCL=CL−k
�0√

n
, UCL=CL+k

�0√
n

Then, the individual false-alarm rate of a randomly selected sample is

�∗∗ = P(X̄>UCL or X̄<LCL|�=�0)

= 1−�(
√

np�+k)+�(
√

np�−k)

where �= (�1 −�0) / �0 and � is the c.d.f. of the standard normal distribution. Also, the detecting power of an individual test for
�=�1 is

1−�∗∗ = P(X̄>UCL0 or X̄<LCL0|�=�1)

= 1−�(−√
n(1−p)�+k)+�(−√

n(1−p)�−k)

For the case of k =3 and n=5, Tables II and III list the individual false-alarm rate �∗∗ and the detecting power 1−�∗∗ for various
values of the out-of-control proportion p and shift size �, respectively. When the process is in control (e.g. p=0), �∗∗ =0.0027,
the nominal false-alarm level. Note that for a fixed shift size �, as p increases from 0, the false-alarm rate �∗∗ increases from
0.0027. This explains why there are more than expected false alarms when data are contaminated. Moreover, we also observe
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Table II. The individual false-alarm rate, �∗∗, for the case of k =3 and n=5. p is the proportion of the
out-of-control process with shift size �= (�1 −�0) / �0

� p=0.1 p=0.2 p=0.3 p=0.4 p=0.5

0.4 0.002807 0.003132 0.003692 0.004511 0.005626
0.8 0.003132 0.004511 0.007085 0.011274 0.017670
1.2 0.003692 0.007085 0.014152 0.027032 0.048630
1.6 0.004511 0.011274 0.027032 0.058338 0.112921
2.0 0.005626 0.017670 0.048630 0.112921 0.222454
2.4 0.007085 0.027032 0.082262 0.196726 0.375729
2.8 0.008945 0.040260 0.130995 0.310087 0.551913
3.2 0.011274 0.058338 0.196726 0.445186 0.718270
3.6 0.014152 0.082262 0.279258 0.587040 0.847300
4.0 0.017670 0.112921 0.375729 0.718270 0.929508

Table III. The detecting power of an individual test, 1−�∗∗, for the case of k =3 and n=5. p is the
proportion of the out-of-control process with shift size �= (�1 −�0) / �0

� p=0.1 p=0.2 p=0.3 p=0.4 p=0.5

0.4 0.014152 0.011274 0.008945 0.007085 0.005626
0.8 0.082262 0.058338 0.040260 0.027032 0.017670
1.2 0.279258 0.196726 0.130995 0.082262 0.048630
1.6 0.587040 0.445186 0.310087 0.196726 0.112921
2.0 0.847300 0.718270 0.551913 0.375729 0.222454
2.4 0.966368 0.902038 0.775353 0.587040 0.375729
2.8 0.995792 0.977720 0.916621 0.775353 0.551913
3.2 0.999709 0.996778 0.977720 0.902038 0.718270
3.6 0.999989 0.999709 0.995792 0.966368 0.847300
4.0 1.000000 0.999984 0.999445 0.991023 0.929508

that the detecting power 1−�∗∗ decreases as p increases. This indicates that the conventional discard-all approach not only
has problems with the false-alarm rate but also loses its detecting power quickly as the proportion of contamination p gets
larger.

3. New strategy and the OAAT method for Phase I analysis

3.1. Criteria for performance evaluation

Consider the problem of testing each of the m Phase I samples for being in control or not. Let m0 and m1 denote the numbers of
in-control and out-of-control samples, respectively. Assume that R samples are rejected; and among them, R0 in-control samples
are falsely rejected and R1 out-of-control samples are correctly rejected.

In Phase I, one of the goals is to determine whether the process is in control. So many research works use the signal
probability described above as the performance measure to compare different control charts. However, practically, for the
purposes of bringing the process to a state of statistical control and collecting in-control data, we not only want to know if
the process is in control, but also need to know which samples are out-of-control when the answer is negative. The signal
probability can only provide a measure for the first question. Note that when the historical data set contains a mixture of
in-control and out-of-control data (i.e. when m>m1>0), then the signal probability (denoted by P) is not the overall false-
alarm rate (unless m1 =0) nor the detecting power (unless m1 =m), and out-of-control signals can be triggered by either
true or false alarms. In other words, a high signal probability can be caused by high detecting power or by high false-
alarm rate or both, without differentiation. For this reason, evaluating the performance by the signal probability is somewhat
questionable.

It seems more realistic to evaluate a control scheme in Phase I analysis based on its ability of making correct decisions
on samples—either in-control or out-of-control. Thus we propose using measures of false rejections and correct rejections
simultaneously as evaluation criteria. The former has the flavor of the Type I error in hypothesis testing and the latter measures
more or less the detecting power of the scheme.

Copyright © 2009 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2010, 26 475--486
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3.2. A new strategy on when to inspect

As mentioned before, there may be some out-of-control samples undetected at each iteration of the control chart construction,
especially when the trial control limits are calculated with a set of data contaminated by some out-of-control samples. If we inspect
the process to look for assignable causes for every alarm whenever it signals, as the current practice suggests, the frequency of
‘stop-and-inspect’ actions may be unnecessarily high. Here we suggest a new strategy: run through the whole iterative procedure
and then perform the inspection for assignable causes for all of the ‘out-of-control’ points at the end. This new strategy should
be able to reduce the frequency of stop-and-inspect actions.

3.3. An illustrative simulation study of discard-all practice

Many SPC books have recommended that 20–30 subgroups of size 4 or 5 be used for estimating the process parame-
ters (see, e.g. Montgomery13). Thus, we choose the setting of m=30, n=5, and k =3 for illustrating the behaviors of the
above criteria in our simulation study. Without loss of generality, let �0 =0 and �0 =1. Denote the shift size of the process
mean by �.

Consider m1 =0, 3, 6, 9, 12 and �=0 (0.4) 4. For each combination of m1 and �, we simulate 1 000 000 data sets, each containing
m0 =m−m1 random samples generated from N(0, 1) and m1 random samples from N(�, 1). Each data set produces its own R0
and R1 under the conventional discard-all practice. When R0 +R1>0, the alarm signals. We estimate the signal probability P by P̂,
the sample proportion of such signals among the 1 000 000 data sets. Let R̄0, the average of the 1 000 000 R0’s, be the estimate
of E(R0), and R̄1, the average of the 1 000 000 R1’s, be the estimate of E(R1).

For the 41 combinations of m1 and � considered, the standard errors of P̂ are about 0–0.00049, and the standard
errors of R̄0 and R̄1 are about 0–0.00227. Table IV shows the values of P̂, R̄0, and R̄1. We observe the following from the
table:

• For m1 =0 (i.e. the process is in control), P̂, now estimating the overall false-alarm rate, is about 0.078. On the other hand,
R̄0, the estimated false-alarm rate, is 0.0828, which is greater than P̂=0.078. The reason is that, when R0 ≥1, no matter how
many (false) alarms exist in the data set, it only counts as 1 toward estimating P.

• As expected, R̄1 increases as the size of the shift � increases. But R̄0 increases as well—this is the cost of instability.
• As the percentage of the out-of-control samples increases, the false-alarm rate (R̄0 / m0) increases.
• R̄1 moves in the same direction as P̂, and yet it contains more information than P̂. It indicates, on average, how many

true out-of-control samples the method can detect. On the other hand, R̄0 measures how many false alarms can occur on
average. As to P̂, recall that when 0<m1<m, P̂ is just the alarm-signaling rate, and alarms can be triggered by samples
from either state. Also note that P̂ reaches 1 when the shift size � gets to 2.4 while R̄0 and R̄1 are still growing as � gets
larger.

By examining the simulation results of the discard-all practice, it is noted that the number of false alarms is higher than we
would expect.

3.4. The OAAT method

To reduce the wasteful excessive false alarms as shown by the above simulation study, we propose and study a new practice—
discard only one sample at a time instead of discarding all as in the conventional method. Our simulation study shows that
this OAAT procedure can reduce the number of false alarms dramatically, which in turn would reduce the amount of time
in conducting unnecessary investigations for non-existing assignable causes and reserve more in-control data so that process
modeling would be more efficient. The main reason why this procedure works is that the most extreme point is more likely to
be an out-of-control sample than others. In contrast, the conventional method discards all the ‘out-of-control’ samples at each
iteration, thus being more vulnerable for some of the discarded samples to be in-control samples.

We describe the OAAT procedure along with the new strategy below:

Step 1. Construct the trial control limits with all collected data.
Step 2. If no ‘out-of-control’ samples are identified with the control limits, stop iterating and go to Step 4; otherwise, discard

the most extreme sample.
Step 3. Construct the trial control limits with the remaining samples; go to Step 2.
Step 4. If there is no sample discarded, claim the process is in control; otherwise collect all the samples discarded in the above

iterations and inspect the process for assignable causes.

4. The performance of the OAAT procedure

We conduct a simulation study to evaluate the performance of the new OAAT procedure. Four factors that would influence the
performance are studied, including the number of samples (m), the subgroup size (n), the proportion (p) of the samples that
are generated from the out-of-control process, and of course the size of the process shift (�). Both the individual and overall
false-alarm rates are studied.
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Table IV. P̂, R̄0, and R̄1 of the discard-all procedure based on 1 000 000 replications for various values
of m1 and � when m=30, n=5, and k =3

m1 � P̂ R̄0 / m0 R̄1 / m1

0 0 0.0780 0.0828/30 0/0
3 (10%) 0.4 0.1104 0.0769/27 0.0426/3

0.8 0.2853 0.0867/27 0.2478/3
1.2 0.6530 0.1011/27 0.8394/3
1.6 0.9336 0.1241/27 1.7609/3
2 0.9965 0.1539/27 2.5399/3
2.4 1 0.1940/27 2.8986/3
2.8 1 0.2445/27 2.9872/3
3.2 1 0.3085/27 2.9991/3
3.6 1 0.3864/27 3.0000/3
4 1 0.4820/27 3.0000/3

6 (20%) 0.4 0.1322 0.0767/24 0.0684/6
0.8 0.3651 0.1101/24 0.3512/6
1.2 0.7590 0.1726/24 1.1836/6
1.6 0.9729 0.2742/24 2.6721/6
2 0.9995 0.4276/24 4.3063/6
2.4 1 0.6549/24 5.4090/6
2.8 1 0.9736/24 5.8643/6
3.2 1 1.4109/24 5.9802/6
3.6 1 1.9864/24 5.9981/6
4 1 2.7252/24 5.9999/6

9 (30%) 0.4 0.1442 0.0784/21 0.0815/9
0.8 0.3926 0.1514/21 0.3652/9
1.2 0.7664 0.3005/21 1.1841/9
1.6 0.9715 0.5729/21 2.7942/9
2 0.9994 1.0277/21 4.9658/9
2.4 1 1.7382/21 6.9747/9
2.8 1 2.7604/21 8.2450/9
3.2 1 4.1422/21 8.7973/9
3.6 1 5.8693/21 8.9612/9
4 1 7.8960/21 8.9948/9

12 (40%) 0.4 0.1521 0.0829/18 0.0870/12
0.8 0.3979 0.2054/18 0.3276/12
1.2 0.7475 0.4906/18 0.9919/12
1.6 0.9582 1.0576/18 2.3681/12
2 0.9983 2.0402/18 4.5105/12
2.4 1 3.5516/18 7.0427/12
2.8 1 5.5863/18 9.2968/12
3.2 1 8.0168/18 10.8186/12
3.6 1 10.5676/18 11.5927/12
4 1 12.9224/18 11.8906/12

4.1. Controlling the individual false-alarm rate

Set m=30, 50, 100 and n=5, 10, 15. For each combination, consider the cases of m1 =0, 0.1m, 0.2m, 0.3m, 0.4m and �=0.4
(0.4) 4. In this subsection, we study the case when the individual false-alarm rate is controlled. For simplicity, set k =3. For each
scenario, simulate 1 000 000 data sets and calculate R̄0 and R̄1 as described in Section 3.3. The estimated standard errors of R̄0
and R̄1 are about 0–0.0069.

Table V gives the R̄0 of the two procedures (discard-all versus OAAT) when all the m samples are from the in-control process.
Note that the R̄0 of the OAAT procedure is less than that of the discard-all procedure in every case under study. This demonstrates
that the OAAT procedure does signal fewer false alarms. However, the reduction is not extensive, less than 2.1%.
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Table V. Average numbers of false alarms, R̄0, of the discard-all procedure and the OAAT procedure
when all the samples are in control for various combinations of m and n. Here k =3

m n Discard-all OAAT

30 5 0.0834 0.0818
30 10 0.075 0.0738
30 15 0.0726 0.0716
50 5 0.1384 0.1362
50 10 0.1291 0.1273
50 15 0.1271 0.1254
100 5 0.2749 0.2711
100 10 0.2651 0.2617
100 15 0.2639 0.2606

Figures 1 and 2 plot, respectively, for n=5 and 15 the simulated �1 = R̄1 / m1 and �0 = R̄0 / m0 versus � for various values of
m and m1. The case of n=10 has the results in between and is omitted to save space. The following are observed:

• The detecting power (R̄1 / m1) of the OAAT procedure is slightly better than that of the discard-all procedure in general and
the advantage is more profound as the proportion of ‘out-of-control’ samples p increases.

• The false-alarm rate (R̄0 / m0) of the OAAT procedure is uniformly smaller than that of the discard-all procedure and the
advantage is more profound as the proportion of ‘out-of-control’ samples p increases. Note that all the R̄0 / m0 curves of
the OAAT procedure lie flat on x-axis, which indicates that the new OAAT procedure seldom signals false alarms.

• We note that the improvement of the OAAT procedure over the discard-all procedure in terms of the false-alarm rate is
extremely large for many cases, especially when m, n, and/or p are large.

• As n increases, the detecting power (R̄1 / m1) of either procedure increases; the false-alarm rate (R̄0 / m0) of the discard-all
procedure increases, but that of the OAAT procedure decreases in most cases; and the advantage of the OAAT procedure
in the false-alarm rate (R̄0 / m0) is more profound.

• As to the effect of m, it is observed that the false-alarm rates (R̄0 / m0) are fairly close for various values of m when n and p
are fixed. This is because we control the individual false-alarm rate by setting k =3 for each scenario; hence, the theoretical
false-alarm rates are not much different for various m and n as seen in Table I.

In summary, the OAAT method offers a better alternative to the discard-all procedure for practical use. It is as powerful as the
discard-all procedure, but can diminish the false-alarm rate dramatically.

4.2. Controlling the overall false-alarm rate

More and more researchers/practitioners consider controlling the overall false-alarm rate in Phase I analysis. In this subsection,
we use the Bonferroni method to control the overall false-alarm rate �. Let k =√

(m−1) / mc4,mtm(n−1),�/2m where t	,� is the
100(1−�)th percentile of the t distribution with 	 degrees of freedom. Set �=0.05. It is noted that k increases as m increases or
as n decreases.

As above, consider m=30, 50, 100 and n=5, 10, 15. For each combination of m and n, consider the cases of m1 =0, 0.1m,
0.2m, 0.3m, 0.4m and �=0.4 (0.4) 4. Simulate 1 000 000 data sets for each scenario and calculate R̄0 and R̄1 for each scenario.
The standard errors of R̄0 and R̄1 are about 0–0.00998.

When all the m samples are from the in-control process, similar to the results of controlling the individual false-alarm rate
given in Section 4.1, the study indicates (not shown) that the R̄0 of the OAAT procedure is smaller than that of the discard-all
procedure in each scenario and the false-alarm reduction is small, less than 1.3%.

When some of the samples are from the out-of-control process, simulation results are similar to that in the last subsection.
To save space, we only present the case of n=5. Figure 3 plots the simulated R̄1 / m1 and R̄0 / m0 values versus � for various
values of m and m1. For the effect of m, the following are observed:

• The detecting power (R̄1 / m1) of both procedures decreases in general as m increases—this is the effect of multiplicity
control, which means that when controlling a fixed overall false-alarm rate (�) for m samples, the individual false-alarm rate
(�∗ =� / m) gets smaller as m increases. Thus the out-of-control region gets smaller, hence harder for charting points to fall
into no matter they are from in-control or out-of-control processes. Therefore, both the detecting power and the false-alarm
rate are reduced for either procedure.

• The detecting powers (R̄1 / m1) of the two procedures are about the same. But, the OAAT procedure performs much
better in terms of the false-alarm rate (R̄0 / m0) than the discard-all procedure. However, it is noted that the advan-
tage decreases as m increases. This is because, when m increases, fewer false alarms can occur for the Bonferroni
method; but the OAAT procedure already has very few false alarms; thus, the difference between the two procedures
becomes smaller. In other words, the effect of multiplicity control is more for the discard-all procedure than for the OAAT
procedure.
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Figure 1. R̄1 / m1 (�1) and R̄0 / m0 (�0) for various combinations of m and m1 (n=5) when k =3. The x-axis is the shift size �. The solid line with diamonds
corresponds to the discard-all procedure and the dashed line with triangles corresponds to the OAAT procedure. This figure is available in colour online at

www.interscience.wiley.com/journal/qre

5. Summary and concluding remarks

In this paper, we study some strategies of Phase I analysis in control charting. It is found that the conventional practice of
discarding all ‘out-of-control’ samples at each iteration in constructing control charts has a major drawback of throwing away too
many in-control samples. To overcome this drawback, we propose and study a new OAAT procedure that only discards the most
extreme sample at a time. Our simulation study demonstrates that the OAAT procedure reduces dramatically the occurrences of
false alarms and this advantage is more profound when the process is more unstable (i.e. more out-of-control samples or larger
process deviation).

We also suggest a new strategy on when to inspect the process to look for assignable causes for samples signaling out-of-
control alarms. Instead of carrying out investigations whenever an alarm signals, the new strategy is: run through the whole
iterative procedure and then perform investigations for all ‘out-of-control’ samples after the remaining samples are all in control.
This practice may save a tremendous amount of cost and time in bringing the process to the state of statistical control.
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Figure 2. R̄1 / m1 (�1) and R̄0 / m0 (�0) for various combinations of m and m1 (n=15). The x-axis is the shift size �. The solid line with diamonds
corresponds to the discard-all procedure and the dashed line with triangles corresponds to the OAAT procedure. This figure is available in colour online at

www.interscience.wiley.com/journal/qre

We study two approaches of error control: controlling the individual false-alarm rate and the overall false-alarm rate. Note
that in conventional practice, the individual false-alarm rate is kept fixed for each sample tested in all iterations; but, when using
Bonferroni’s adjustment to control the overall false-alarm rate, it becomes larger as more ‘out-of-control’ samples are removed as
the screening process progresses.

We also study two criteria for evaluating the performances of different control schemes, including the signal probability
(P(R≥1)) considered in the literature and both numbers of false and true alarms, E(R0) and E(R1) (or E(R0 / m0) and E(R1 / m1)),
suggested in this paper. The signal probability considers ‘the process’ as a whole. It only assesses the ability of judging if a
process is in control or not. It does not assess the scheme on its performance of screening out out-of-control samples and/or
keeping in-control points. With a mixture of in-control and out-of-control samples in the data set, perhaps it is more appropriate
to use simultaneously two indicators—one to assess the false-alarm rate and the other to assess the detection power, such as
E(R0) and E(R1) (or E(R0 / m0) and E(R1 / m1)).
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Figure 3. R̄1 / m1 (�1) and R̄0 / m0 (�0) for various combinations of m and m1 (n=5) when the overall false-alarm-rate � is controlled at 0.05 by

Bonferroni’s adjustment. The x-axis is the shift size �. The solid line with diamonds corresponds to the discard-all procedure and the dashed
line with triangles corresponds to the OAAT procedure. This figure is available in colour online at www.interscience.wiley.com/journal/qre

Finally, we remark that the X chart used in this paper is just for demonstration of the above ideas. The new strategy for Phase
I analysis, evaluation criteria for control schemes, and the new OAAT procedure can be applied to any other control charts.
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