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We investigate contradirectional two-wave mixing with partially coherent waves in photorefractive crystals.
By use of a statistical theory on linear systems, a general formulation of the problem in the space and fre-

quency domain is derived and implemented numerically.
The results on the enhancement of mutual coherence are compared with previous theoretical re-
sults on simpler cases and with experimental measurements.

coherence.

sults also indicate that the effective interaction length can be significantly longer than the coherence length of
the waves. © 1997 Optical Society of America [S0740-3224(97)01906-1]

1. INTRODUCTION

Two-wave mixing in photorefractive crystals has been in-
vestigated extensively for many applications including
image amplification, laser-beam cleanup, spatial light
modulators, thresholding, and power-limiting devices.>?
Most of the theoretical works in this area are based on
wave-mixing with mutually coherent waves.'?> However,
in some applications, such as self-pumped and mutually
pumped phase-conjugate mirrors3>® and photorefractive
filters,” the effect of partial temporal coherence in a two-
wave-mixing process cannot be ignored. Two-wave mix-
ing with partially coherent waves has been studied previ-
ously for the case of transmission-grating interaction.®
In the case of transmission-grating interaction the optical
path difference between the two interacting waves re-
mains approximately the same as the two waves propa-
gating codirectionally through the photorefractive me-
dium, especially when the incident angles of the two
waves are close to each other.” In the case of reflection-
grating interaction the optical path difference between
the two interacting waves varies significantly as the two
waves propagate contradirectionally through the photore-
fractive medium. Thus for the case of transmission-
grating interaction, only one free variable for the position
is needed to describe in a self-consistent way the second-
order statistical properties of the two optical waves, i.e.,
their intensities and mutual coherence, while at least two
free variables, one for the position and one for the optical
path difference, will be needed for the case of reflection-
grating interaction. Another difficulty in studying the
reflection-grating interaction of partially coherent waves
is to find a way to incorporate the complete boundary con-
ditions into the theoretical formulation as a result of the
two-point boundary-value problem. In such a problem a
complete set of boundary conditions includes both the
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We obtain results on beam intensity and mutual
Excellent agreements are achieved. The re-
second-order self-statistical properties (e.g., self-

coherence) of each wave at its entrance boundary and the
second-order mutual statistical properties (e.g., mutual
coherence) of the two waves at their respective entrance
boundaries. In a recent work we provided a theoretical
formulation of the problem in the space and time domain
for the reflection-grating interaction in the nondepleted-
pump regime.’ By using the nondepleted-pump approxi-
mation, we reduced the two-point boundary-value prob-
lem to an initial value problem. In this paper we present
a general formulation of the problem in the space and fre-
quency domain based on the standard statistical theory
on linear systems. The general formulation is also
implemented numerically. Specifically, we investigate
the signal-intensity gain and the mutual coherence in the
contradirectional wave mixing of two partially coherent
waves. Contrary to conventional belief, we discover that
the effective interaction length (or grating length) can be
significantly longer than the coherence length of the inci-
dent waves. The results are also compared with previous
theoretical results on simpler cases and with experimen-
tal measurements.

2. THEORETICAL MODEL

Photorefractive two-wave mixing is a nonlinear optical
process. Because of the mutual coherence of the two
waves, a dynamic holographic grating is formed in the
medium. Its position and index profile are nearly sta-
tionary under the condition of a cw illumination. Both
waves are scattered into each other by the presence of
this index grating. Scattering of partially coherent
waves by a stationary grating can be modeled with a sta-
tistical theory on linear systems.'® An iterative proce-
dure can subsequently be devised to obtain the final pho-
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torefractive grating profile from an initially arbitrary
grating profile.

As is shown in Fig. 1, two counter propagating waves
with partial coherence enter a photorefractive medium at
z = 0 and z = L, respectively. The electric field in the
photorefractive medium can be written as

E(z, t) = Ei(z, t)exp(—iwgt + iKkyz)
+ Ey(z, t)exp(—iwot — ikyz), (1)

where w, is the center frequency of the two partially co-
herent waves, ky = nw,/c is the corresponding wave vec-
tor, and n is the refractive index of the photorefractive
medium. Reflecting the partial coherence, E(z, ¢) and
E,(z, t) are stationary random variables. They repre-
sent the random fluctuation of the amplitudes of the two
waves. For the convenience of our later discussion we
will now briefly describe some notations and definitions
for the second-order statistical properties of the two opti-
cal waves. Let I'y1(z, 7) = (Ei(z, t1))E*(z, t)) and
Too(z, 7) = (Eo(z, t1)Es* (2, £5))  denote the  self-
coherence functions of E (z, ¢;) and E(z, t;), respec-
tively, and T'i5(z, 7) = (Ei(z, t))Ey*(z, t3)) be the
mutual-coherence function between E;(z, ¢;) and
Ey(z, ty), where 7= t; — t5 is the time delay and ()
means ensemble average. Let Eji(z, Aw) and
Eyy(z, Aw) denote the self-spectral-density functions of
E (z, t) and Es(z, t), respectively, and E5(z;, 29, Aw)
be the cross-spectral-density function between E(zq, ¢)
and Ey(z,9, t). The spectral-density functions and the
corresponding coherence functions are Fourier-transform
pairs, i.e.,

'z, 7 = fEu(Z, Aw)exp(—iAwr)dAw, (2)

Tys(z, 7) = fEQZ(z, Aw)exp(—iAw7)dAw,

3)

Tz, 7) = fElz(z, z, Aw)exp(—iAw7r)dAw,
4)

E1(z=0,t)
_— ) —s Hii(z,0)
Signal Hiazw) = pume
L H2i(z,0) Ea(z=L,t)
Hoo(z,0) -——————
z=0 z=L

4

Fig. 1. Two-wave mixing in photorefractive crystals modeled as
a linear system with the signal-wave entrance plane and the
pump-wave entrance plane as two input planes and any arbi-
trary plane inbetween as the output plane.
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where Aw = v — wy, with o being a general frequency
component of the waves. With the above notations and
relations the intensity of the two waves can be expressed
as

I,(z) =T(z, 0) = J Eyi(z, Aw)dAw, (5)

Iy(z) = I'go(2, 0) = f Eg(z, Aw)dAw, (6)

and the mutual coherence of the two waves can be ex-
pressed as

Tia(z, 0) = fElz(z, z, Aw)dAw. 7

With these equations the intensity of the waves as well as
the mutual coherence can be obtained as soon as the
spectral-density functions are obtained. In what follows
we will derive the spectral-density functions by using the
statistical approach.

Using the above notations and definitions, we now be-
gin our discussion on the photorefractive interaction. In-
side the photorefractive medium, a dynamic index grating
is generated. It can be written as

.Y ¢ |Q(z, t)

K AN

exp(2ikyz) + c.c.|, (8)
where Q(z, ¢) is a measure of the index grating, y is the
intensity coupling coefficient, and Iy(z) = I1,(z) + I5(z) is
the total intensity at position z. For the purpose of our
discussion we will call E; the signal wave and E, the
pump wave. Thus for a photorefractive grating with a
positive v, the signal wave E; can be amplified. If the
photorefractive effect is based purely on carrier diffusion
(e.g., BaTiOg,) the dynamics of the index grating is de-
scribed by the following equation:
dQ(z, t)

Toh o + Q(z, t) = Ei(z, t)Eo* (2, t), 9
where 7, is the relaxation-time constant. By virtue of
photoexcitations, photorefractive processes are usually
slow at low intensities. It is reasonable to assume that
the coherence time Sw™! of the two partially coherent
waves is much smaller than the relaxation time 7, of the
photorefractive medium, i.e., dw7,, > 1. Since E,(z, )
and E,(z, ¢) are stationary random variables, we can
make the following approximation (see Appendix A)S:

In other words, two partially coherent waves with their
complex amplitudes fluctuating randomly with time can
actually write a stationary grating in a photorefractive
medium under the appropriate conditions. For simplic-
ity we will denote Q(z, ¢) with Q(z) from now on. Note
that Q(z) is also the mutual coherence of the two waves
at position z. We note that the approximation is also
valid when o7y, < 1.

Given arbitrary functions of Q(z) and I,(z), Eq. (8)
yields an index grating. The propagation of a monochro-
matic wave through such an index grating can be de-
scribed by the coupled wave equations. The coupled
monochromatic waves can be written as
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E = Ei(z, o)exp(—iot + ikz)
+ Ey(z, w)exp(—iwt — ikz), (11)

where ]~31 and Eg are the amplitudes of the monochro-
matic components, o is the optical wave frequency, and
k = nw/c is the optical wave vector. The coupled wave
equations can be written as

(;El(29 (1)) _ Y E iA
oz - 210(2) Q(Z) 2(27 w)exp(_ZL kZ)
a ~
- 5E1(29 w)7 (12)
oz, ©)  y

0z 21,(2) Q*(z)ﬁl(z, w)exp(2iAkz)

a~
+ §E2(2, w), (13)

where Ak = k — k; is the phase mismatch between the
optical waves and the index grating and « is the intensity
absorption coefficient. With sufficient boundary condi-
tions, Egs. (12) and (13) can be solved either analytically
in some special cases or numfrically in general. VZhen
the boundary conditions are E;(z = 0, ) = 1 and Ey(z
= L, w) = 0, the solutiogs (output) are denoted as
E (z, w) = Hy (2, ») and Ey(z, 0) = Hyy(z, w). When
the boundary conditions are E;(z = 0, ) = 0 and Ey(z
= L, w) =1, the solutiorls (output) are denoted as
E (z, w) = Hy(z, w) and Ey(z, ) = Hyy(z, w). As a
linear system, the general solutions are linear combina-
tions of Hll 5 H12 N H21 5 and HZZ .

In each of the iterations an arbitrary stationary index
grating can be considered as a linear system. Referring
to Fig. 1, we consider a given stationary index grating in
the photorefractive medium as a linear system with the
optical waves at the boundary planesz = 0 andz = L as
the input and the optical waves at an arbitrary plane z as
the output. According to the theory on the statistical
properties of linear systems, the second-order statistical
properties of the optical waves at the output plane can be
expressed in terms of the second-order statistical proper-
ties of the optical waves at the input planes and the fre-
quency response of the linear system. To be specific, the
input at the z = 0 plane is E;(z = 0, ¢), the input at
z = L plane is Ey(z = L, ¢), and the outputs at the z
plane are E{(z, ¢) and Ey(z, ¢). The frequency response
of this linear system can be expressed in terms of the so-
lutions of Eqs. (12) and (13). With the notations de-
scribed in the previous paragraph, the frequency re-
sponses from the input E;(z = 0,¢) to the outputs
E (z, t) and Ey(z, t) are

Hyy'(z, ) = Hyy(z, w)exp(idke), (14)

Hyy'(z, ) = Hyg(z, w)exp(—ilAkz),
(15)

respectively. Similarly, the frequency responses from
the input Es(z = L, ¢) to the outputs E;(z, t) and
Ey(z, t) are

H,, (2, w) = Hy(z, w)exp(iAkL)exp(iAkz),  (16)
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Hy,'(z, ) = Hyy(z, w)exp(iAkL)exp(—iAkz), (17)

respectively. The additional phase terms in Egs. (14)—
(17) account for the difference Ak = k — k, owing to a fi-
nite Aw = w — wy. With these spectral-response func-
tions we can express the spectral-density functions of the
two outputs E (z, ¢) and Ey(z, ¢) in terms of the spectral-
density functions of the two inputs E;(z = 0, ¢) and
Ey(z = L, ¢t). Thus, according to their definitions and
Eqgs. (14)—(17), we obtain

Ei(z, Aw) = Hyi(z, 0)Hyj1* (2, 0)Ep(z = 0, Aw)
+ Hy(z, 0)Hy* (2, 0)Egy(z = L, Aw)
+ Hy(z, ) Hy* (2, o)
X Ei9(z = 0,z = L, Aw)exp(—iAKL)
+ Hyi(z, ) Hy* (2, o)
X [Eqp(z = 0,2 = L, Aw)
X exp(—iAKL)T*, (18)
Eg(z, Aw) = Hyg(z, w)Hyp* (2, 0)Eqy(z = 0, Aw)
+ Hyy(2, 0)Hy* (2, w)Egy(z = L, Aw)
+ His(2z, 0)Hy* (2, o)
X Ej9(z = 0,z = L, Aw)exp(—iAKL)
+ Hyy(z, 0)Hyp* (2, w)
X [Epp(z = 0,2 =L, Aw)
x exp(—iAKL)]*, (19)
Eis(z, z, Aw) = exp(i2Akz){H;y(2, 0)Hy* (2, 0)
X Ep(z = 0, Aw)
+ Hyi(z, 0)Hy*(z, w)
X Egy(z = L, Aw)
+ Hy(z, 0)Hyy* (2, o)
X E9(z =0,z =L, Aw)
X exp(—iAKL) + Hy(z, w)Hio* (2, o)
X [Eyp(z =0,z =L, Aw)
X exp(—iAKL)]*}. (20)

Note that the spectral-density functions E{;(z = 0, Aw),
Eop(z = L, Aw), and Ej4(z; = 0, z9 = L, Aw) of the two
inputs E;(z = 0,¢) and Eq(z = L, t) are given as the
boundary conditions.

Two physical processes happen simultaneously during
two-wave mixing in a photorefractive medium. First, the
two optical waves propagate through the photorefractive
medium while being scattered into each other by the in-
dex grating. Second, the scattered waves modify the in-
dex grating through the photorefractive effect until a
steady state is reached. We have provided above a math-
ematical model that describes these two physical pro-
cesses separately. A steady state of the two-wave mixing
in the photorefractive medium is reached when the two
optical waves scattered by the photorefractive grating can
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exactly sustain the same photorefractive grating. A
steady-state solution of the two-wave mixing in a photo-
refractive medium can thus be obtained by use of the
mathematical model described above through an iterative
procedure. The procedure is outlined as follows:

Step 1: Give an initial guess on the function
Q(2)/1y(2).

Step 2: Solve Egs. (12) and (13) for the functions
H;;(z, ») (i, j = 1,2) with the function Q(2)/I(z) pro-
vided in the last step.

Step 3: Obtain the spectral-density functions
E(z, Aw), Egs(z, Aw), and E (2, z, Aw) by use of Eqgs.
(18)-(20).

Step 4: Obtain I,(z), I5(z), Q(z), and Q(z)/I,(z) by
use of Eqgs. (5), (6), (7), and (10).

Step 5: Compare the new version of the index grating
Q(z)/I,(z) and the previous version. If they are close
within a certain accuracy requirement, the solution has
been obtained. Otherwise, the iteration continues by use
of the new version of the index grating.

To determine the boundary conditions, we assume that
both the input optical waves are derived from the same
laser source. If the source laser wave has a Gaussian
line shape with a FWHM linewidth of éw, then the nor-
malized spectral-density function of the source laser wave
can be written as

4(7 In 2)2 2

—5(0 exp{ -

A
E.(Aw) = 2(In 2)12 6—2}

(21)

Taking B as the incident-intensity ratio I,(z = 0)/I5(z
= L) of the two optical waves at their respective en-
trance boundary planes, we obtain the boundary condi-
tions as

E;(z = 0, Aw) = BE(Aw), (22)
Ez(z = 0, Aw) = E(Aw), (23)

Epp(z1 = 0,25 = L, Aw) = BE(Aw)exp(—ikoL)
X exp(—iwty), (24)

where ¢; is the time delay between the optical waves
when they reach their respective entrance planes. In de-
riving the above boundary conditions, we have assumed
that the laser source has a Gaussian line shape. There is
no loss of generality in this assumption. Similar results
can be obtained with a different line shape.

This completes the general formulation to model con-
tradirectional two-wave mixing in photorefractive crys-
tals.

3. DISCUSSIONS AND SIMULATIONS

To clarify the complicated formulation described above,
we consider some simple cases first before presenting the
numerical and experimental results.

In the absence of coupling (y = 0) in a lossless medium
(a = 0) with B8 = 1 the above formulation describes the
interference of two counterpropagating optical waves in a
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dielectric medium. In this case it takes only one itera-
tion to obtain the solution, which is

ElZ(Z) 2, AL()) = Ess(Aw)eXp(_LkL)
X exp(—iwty)exp(2iAkz). (25)

Fourier transforming the above equation over w and tak-
ing into account the extra phase term exp(2ikjyz) resulted
from the definition of E{(z, ¢) and Ey(z, ¢) in Eq. (1), we
obtain the mutual coherence of the two waves as a func-
tion of position z,

nL — 2nz

Tz, ) =T, 7+ t4 + exp(—iwgty),

(26)

where I';(7) is the normalized self-coherence function of
the source laser wave and n is the index of refraction of
the medium. The result has been well established in the
literature. This example can also help us see more
clearly the subtle contribution of the phase terms in the
above formulation. In our definition, t; = 0 ifz = L/21is
the plane of zero path difference.

When the coherence time dw ! is much larger than the
time delay involved in the above formulation, i.e., dwt,
< 1 and dwnL/c < 1, the normalized spectral-density
function of the source laser wave can be written as
E (w) = 8(w — wy). From the above formulation we
can obtain the set of equations governing the intensities
of the two optical waves,

d 1,1,

&l = @)
d 1,1,
5112711_’_[24-0(11. (28)

These two equations are exactly the same as those ob-
tained for two-wave mixing of monochromatic waves.
We note that dwt; < 1 is a condition for partially coher-
ent waves to be treated as monochromatic waves in con-
tradirectional two-wave mixing in a photorefractive me-
dium. We also recall that the upper limit on the
coherence time, i.e., o7y, > 1, still needs to be satisfied
to reach Egs. (27) and (28) from the above general formu-
lation. This is the main difference between the results of
Egs. (27) and (28) in this paper and those obtained di-
rectly for monochromatic waves. Note that we did not
use the iterative procedure in obtaining Egs. (27) and
(28). The complete boundary conditions for Egs. (27) and
(28) are simply I,(z = 0) and I4(z = L).

We now use the above general formulation to obtain
the solution in the nondepleted-pump regime (for
vy # 0), which has been obtained previously by a different
method. Using Egs. (12) and (13) and the following three
definitions,

Eyi(z, Aw) = (Ei(2, 0©)E*(z, ), (29)
Eg(z, Aw) = <I~§2(Z, w)ﬁz*(Z, )), (30)

En(z, 2, Ao) = (E(z, 0)Ey* (2, ))exp(2iAkz),
31)

we can obtain a set of equations governing the propaga-
tion of the spectral-density functions as
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JEy(z, Aw) vy .
oz - 210(2) [Q(Z)E12 (2, Z, A(l))
+ Q*(2)Eps(z, z, Aw)]
— aEq(z, Aw), (32)
IEgy(z, Aw)  y N
Jz - 210(2) [Q(Z)EIZ (Z’ Z, Aw)
+ Q*(2)Es(z, 2, Aw)]
+ aE22(2, Aw), (33)
(9E12(Z, 2, Aw) . Y
— = 2i1AKE 5(z, z, Aw) + m Q(z)
X [E11(27 A(,!)) + E22(Z, A(x))]
- aElz(Z, z, A(D). (34)

El(z, ) and I~<]2(z, ) in Egs. (29)—(31) are related to the
Fourier-transform coefficients of the two optical waves as
defined in Eq. (11). Strictly speaking, a stationary ran-
dom process cannot be Fourier transformed over the time
variable . However, we can truncate it into a finite du-
ration T and Fourier transform the truncated process.
After that, we can first obtain a set of equations similar to
Eqgs. (32)—(34) for the truncated process, then let T' go to
infinity to obtain Eqs. (32)—(34). This is a standard pro-
cedure in statistical optics.'® Fourier transforming the
above relation over Aw, we obtain a set of equations gov-
erning the propagation of the self and mutual coherence
of the two optical waves as

yg(z, 1) 2n dlyp(z, 1) y I'ia(z, 0)
dz - c ar 2 I, + 1,
X [T11(z, 7) + Taalz, 7], (35)
al(z, 7) v I'1a(2, 0) N
oz 2T +L e E D
y " (2, 0)
§er2(z’ 7)
- ar11(27 T): (36)
(2, 7) v I'1a(2, 0) .
oz 21, +1, T2 (2, =7)
y " (2, 0)
+ §WF12(Z, 7)
+ aF22(z, ’T). (37)

When there is no absorption in the photorefractive me-
dium (i.e., « = 0), we can obtain, from Eqs. (36) and (37),

J
— [Tz, 7) = Tge2z, 7] = 0. (38)
0z
Further, letting 7 = 0 in Eq. (38), we obtain
J
o [I1(z) — I4(z)] = O. (39

Equation (39) shows that, when there is no absorption in
the photorefractive medium, the intensity difference be-
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tween the signal wave and the pump wave is a constant of
integration (conservation of power flow).

Note that, although Eqgs. (35)—(37) are general and self-
consistent, they contain only the mutual coherence of the
two optical waves at the same locations. They are not
compatible with the kind of boundary conditions as given
by Eq. (24), which gives the mutual statistical properties
of the two waves at two different points in space. There-
fore they are useful only in the nondepleted-pump regime,
where we can assume that the pump wave passes through
the photorefractive medium without changing its statisti-
cal properties. Under this assumption we can obtain
from Eqgs. (22)—(24) the self- and mutual-coherence func-
tions of the two waves at the signal-wave entrance bound-
ary plane (z = 0) as

oz = 0, 7) = VB (7 + St)exp(—iwydt), (40)
1—‘11(‘2" = 05 T) = BFSS(T)? (41)
F22(Z = 05 T) = Fss( T)’ (42)

where 6t = t; + nL/c is the time delay between the two
optical waves at the signal-wave entrance plane and

2
] (43)

is the coherence function of the source laser wave. We
can use Eqgs. (40)—(42) as the boundary conditions and in-
tegrate Eqgs. (35)—(37).

Equations (35)—(37) are simple not only in the sense
that they can be implemented easily numerically, but also
that they can be used to obtain approximate analytical so-
lutions to some special cases within the nondepleted re-
gime. One such case is that the coherence length of the
source laser wave is much longer than the two-wave-
mixing interaction length and the coupling constant is
large. This occurs when we use a multimode argon laser
and a KNbOj3:Co crystal for the two-wave-mixing experi-
ment. In this case we can neglect the term that contains
the partial derivative on 7in Eq. (35) and reduce the set of
partial differential equations, i.e., Egs. (35)—(37), to a set
of ordinary differential equations that can be solved ana-
lytically under the nondepleted-pump approximation.
Remember that Eq. (35) is derived directly from Eq. (34).
We can see from Eq. (34) that the approximation of ne-
glecting the term that contains the partial derivative on 7
in Eq. (35) implies that the wave-vector difference Ak of
the different frequency components of the two partially
coherent waves are negligible with respect to the thick-
ness of the photorefractive medium (G.e., AKL < 1).
Similar approximation has been made previously by Sax-
ena et al. in the study of multiple-beam interaction by
transmission gratings in the photorefractive media.!?1?
Therefore under the nondepleted-pump approximation
and the approximation of AKL < 1 the signal-wave inten-
sity gain and the normalized mutual coherence of the two
waves can be obtained as

SwT

4(In 2)12

F(7) = exp[ -

I(z) _ I'1(z, 0) _ I'19(0, 0)T'12* (0, 0)
1,(0)  T'11(0,0) I'11(0, 0)T'55(0, 0)

X [exp(yz) — llexp(—az) + exp(—az), (44)
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Ta(2, 0)

1

Y12(2) = =

[T11(z, 0)T'99(z, 0)]1/2 I'15*(0, 0)

I'15(0, 0)

In most photorefractive crystals with exp[(y — a)z] > 1
the signal-intensity gain is affected primarily by
(y — @). We also note that the normalized mutual co-
herence of the two waves is affected only by the photore-
fractive coupling constant 1.

As a comparison of the general formulation, the simpli-
fied formulation and the approximate analytical solu-
tions, we show in Figs. 2 and 3 the signal-intensity gain
and the normalized mutual coherence of the two waves at
the signal-wave exit plane (z = L) as a function of the op-
tical path difference between the two optical waves at the
signal-wave entrance plane (z = 0). The parameters
are y=30cm !, a=00cm !, n =23, L =0.72 cm,
and 6w = 27 X 1.8 GHz, and 8 = 107*. These are typi-
cal parameters in our experiment when we use a multi-
mode argon laser and a KNbO;:Co crystal to implement
the two-wave-mixing experiment. In this case the coher-
ence length of the source laser wave is much longer than
the thickness of the photorefractive medium. The gen-
eral formulation and the simplified formulation produce
the same results within the numerical accuracy in the
nondepleted regime. The results of these two formula-
tions are represented by the dashed curves in Figs. 2 and
3. We notice that the approximate analytical solution re-
tains the major characteristics of the exact solution and
provides a good understanding of the interaction. The
results of the approximate analytical solution are repre-
sented by the solid curves in the figures. Note that the
curves obtained from the approximate analytical solution
are symmetric about z, = 0 owing to the approximation
of neglecting the partial derivative over 7 in Eq. (35),
while the curves obtained from the general formulation
are shifted to the right side (see Figs. 2 and 3). Here,
z, is defined as the path difference. The difference be-
tween the results of the approximate analytical solution
and those of the general formulation will decrease as the
ratio between the coherence length of two waves and the
thickness of the photorefractive medium increases.

Now let us consider the case of the depleted pump.
Numerical simulation with the general formulation is the
only means to analyze this case. We first consider the
case in which the coherence length of the source laser
wave is finite but much longer than the thickness of the
photorefractive medium. Again, we use the following set
of parameters: y=30cm ™!, a=00cm !, n =23,
L=072cm, and 6w =27 X 1.8 GHz. @ The solid
curves in Fig. 4 show the signal intensity /,(z), the pump
intensity I,(z), and the normalized mutual coherence
y(z) = T15(z, 0)/[T11(z, 0)T99(z, 0)]1¥2 as functions of the
position z in the photorefractive medium. The optical
path difference between the signal wave and the pump
wave at the signal-wave entrance boundary (z = 0) is
chosen to be zero. The incidence intensity ratio 8 of the
two waves is chosen to be one. We also show in Fig. 4
with dashed curves the signal intensity I;(z) and the

[1 — exp(—yz)] +

. 4
I'11(0, 0)I"55(0, 0) 7z (45)

exp(—yz)
I'15%(0, 0)

pump intensity I5(z) for two-wave mixing with monochro-
matic waves for the purpose of comparison. We notice
that the results of two-wave mixing with partially coher-
ent waves are very close to those of two-wave mixing with

10 :

=
signal intensity gain

-10 10

-5 0 5
optical path difference (cm)

Fig. 2. Signal-wave intensity gain as a function of the optical-
path difference at the signal-wave entrance plane in the
nondepleted-pump regime. The dashed curve is the numerical
solution. The solid curve is the approximate analytical solution.
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Fig. 3. Mutual coherence of the two waves at the signal-wave
exit plane as a function of the optical path difference at the
signal-wave entrance plane in the nondepleted-pump regime.
The dashed curve is the numerical solution. The solid curve is
the approximate analytical solution.
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Fig. 4. Signal intensity, pump intensity, and the normalized
mutual coherence as a function of position z in the photorefrac-
tive medium for partially coherent waves (solid curves) and
monochromatic waves (dashed curves).
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monochromatic waves when the optical path difference of
the two waves is small compared with the coherence
length of the source laser wave. The effect of partial co-
herence of the two waves in this case is significant only
for a large optical path difference of the two waves. We
show the signal-intensity gain in Fig. 5(a) and the mutual
coherence between the signal wave and the pump wave at
the pump-wave entrance plane (z = L) in Fig. 5(b) both
as functions of the optical path difference between the two
waves at the signal-wave entrance plane (z = 0) for vari-
ous intensity ratios 8. Figure 5(a) shows that the signal-
intensity gain decreases as the optical path difference of
the two waves increases until there is no coupling be-
tween the two waves when the optical path difference of
the two waves exceeds the coherent length of the source
laser wave. The same figure also shows that the signal-
intensity gain increases as the intensity ratio 8 decreases
until the signal-intensity gain saturates as the
nondepleted-pump regime is reached. Figure 5(b) shows
that the normalized mutual coherence of the two waves at
the pump-wave entrance plane (z = L) decreases as the
intensity ratio B of the two waves increases. When B is
much larger than one, the signal wave will pass through
the photorefractive medium with its statistical properties
almost unchanged by coupling. In this limit the normal-
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Fig. 5. (a) Signal-intensity gain and (b) the normalized mutual
coherence of the two waves at the pump-wave entrance plane
(z = L) as functions of the optical path difference at the signal-
wave entrance plane (z = 0) for a coupling constant vy
= 3 cm ! and various intensity ratios between the signal wave
and the pump wave. Note that the curve for a coupling constant
y = 38cm land B > 1 is the same as that for a coupling constant
y = 0cm ! and an arbitrary 8.
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ized mutual coherence of the two waves at the pump-wave
entrance plane (z = L) with coupling will be the same as
that for an arbitrary B but without coupling. We note
that the normalized mutual coherence of the two waves at
the pump-wave entrance plane (z = L) is enhanced by
coupling. Figure 5(b) also shows that the normalized
mutual coherence decreases quickly as the optical path
difference gets close to and larger than the coherence
length of the source laser wave.

Second, we consider the case that the coherence length
of the source laser wave is shorter than the thickness of
the photorefractive medium. The following parameters
are chosen in the simulation: « = 0.0 cm™!, n = 2.3,
L =20cm, v =27 X 18 GHz, and ¢t; = —nL/c. t4
= —nL/c implies that the optical path difference be-
tween the signal wave and the pump wave is zero at the
signal-wave entrance plane (z = 0). Since the spectral
line shape of the source laser wave is assumed to be
Gaussian, the coherence length of the source laser wave
inside the photorefractive medium is L,= 27
X 0.664c/(ndéw) = 0.48 cm. In Fig. 6 we show the sig-
nal intensity I;(z) and the grating profile Q(z)/Iy(z) as
functions of the position z inside the photorefractive me-
dium for an incident intensity ratio 8 = 1 and a coupling
constant y = 20 cm™!. We note that the length of the
photorefractive grating is limited by the partial coherence
of the two interacting waves and that the pump depletion
is moderate even for a very large coupling constant. In
Figs. 7(a) and 7(b) we show the signal intensity 7;(z) and
the grating profile Q(z)/Iy(z) as functions of the position
z inside the photorefractive medium for an incident inten-
sity ratio 8 = 10™* and coupling constants y = 10 cm ™!
and y = 20 cm ™}, respectively. We note that the length
of the photorefractive grating is increased but still prima-
rily limited by the partial coherence of the two interacting
waves for a small incident intensity ratio and a small cou-
pling constant. Figure 7(b) shows that the length of the
photorefractive grating is no longer limited by the partial
coherence of the two interacting waves for a small inci-
dent intensity ratio and a large coupling constant. The
length of the photorefractive grating in this case is lim-
ited by the length of the photorefractive medium, which is
much longer than the coherence length of the interacting
waves. The photorefractive grating is a temporally sta-
tionary index grating. When the incident intensity ratio
is small, the amplified signal wave at its exit plane (z
= L) is primarily the incident pump wave reflected by
the photorefractive grating, and the depleted pump wave
at its exit plane (z = 0) is primarily the incident pump
wave transmitted through the photorefractive grating.
When the length of the photorefractive grating is compa-
rable to or longer than the coherence length of the source
laser wave inside the photorefractive medium, the output
waves E;(L) and E5(0) may have spectra different from
those of the input waves E;(0) and Ey(L) owing to the
presence of the photorefractive grating, which acts as a
spectral filter. In Figs. 8(a) and 8(b) we show the nor-
malized spectra of the amplified signal wave and the de-
pleted pump wave at their respective exit planes, using
the same sets of parameters as those used to obtain Figs.
7(a) and 7(b), respectively. We note that the amplified
signal wave has a bandwidth narrower than that of the
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Fig. 6. Signal intensity I;(z) (solid curve) and the grating pro-
file Q(z)/1y(z) (dashed curve) as functions of the position z inside
the photorefractive medium for an incident intensity ratio B

= 1 and a coupling constant y = 20 cm™ 1.
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Fig. 7. Signal intensity 7;(z) (solid curve) and the grating pro-
file Q(z)/1y(z) (dashed curve) as functions of the position z inside
the photorefractive medium for an incident intensity ratio B
= 107* and coupling constants (a) y = 10cm ' and (b) y
= 20cm L

incident pump wave. Furthermore, the bandwidth of the
amplified signal wave decreases as the length of the pho-
torefractive grating increases. In Fig. 8(a), since the cou-
pling constant is small, the pump-wave depletion is small
(y = 10 cm™ 1) and the spectrum of the transmitted pump
wave is almost the same as that of the incident pump
wave. In Fig. 8(b), since the coupling constant is large
(y =20cm™Y), the pump depletion is significant. The
central part of the incident pump-wave spectrum is de-
pleted most significantly, and therefore the transmitted
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pump wave has a different spectrum from the incident
pump wave. According to the spectra shown in Fig. 8,
the case considered in Fig. 7(a) and Fig. 8(a) is in the
nondepleted-pump regime, and the case considered in
Fig. 7(b) and Fig. 8(b) is in the depleted-pump regime, al-
though both cases seem to be in the nondepleted-pump re-
gime when we look only at the signal intensity. In Figs.
9(a) and 9(b) we show with solid curves the normalized
mutual coherence of the two waves as a function of posi-
tion z, again using the same sets of parameters as those
used to obtain Figs. 7(a) and 7(b), respectively. For com-
parison we show in these two figures with dashed curves
the normalized mutual coherence of the two waves as a
function of position z without coupling. In Fig. 9(a) the
normalized mutual coherence of the two waves is the
same with coupling as that without coupling in the region
z < 0 and is increased in the region z > L owing to cou-
pling; in Fig. 9(b) the normalized mutual coherence of the
two waves is decreased in the region close to plane
z = 0. The increase of mutual coherence in both Figs.
9(a) and 9(b) can be attributed to the reflection of the
strong pump wave in the direction of the weak signal
wave by the stationary photorefractive index grating.
The decrease of mutual coherence in Fig. 9(b) can be at-
tributed to the spectral-filtering effect of the photorefrac-
tive index grating on the pump wave. There is no de-
crease of mutual coherence in the region close to plane z
= 0 in Fig. 9(a) because pump depletion and therefore
the spectral-filtering effect on the pump wave are negli-
gible in this case.

Third, when a laser beam enters a photorefractive crys-
tal, scattering occurs because of surface pits, imperfec-
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Fig. 8. Normalized spectra of the amplified signal wave (solid
curve) and the depleted pump wave (dashed curve) at their re-

spective exit planes for an incident intensity ratio 8 = 10™* and
coupling constants (a) y = 10 cm™! and (b) y = 20 cm™ 1.
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Fig. 10. Phase-conjugation reflectivity as a function of the co-
herence length of the incident beam for various value of the cou-
pling constant .

tion, and defects in the crystal. The scattered light over-
laps with the incident beam and they undergo two-wave
mixing. Under the appropriate condition the scattered
light can be amplified, leading to phenomena such as fan-
ning and stimulated backscattering. In a manner very
similar to stimulated Brillouin scattering the stimulated
backward scattering in photorefractive media is a pos-
sible mechanism for self-pumped phase conjugation.'*1?
The general formulation developed in this paper can be
employed to investigate the effect of coherence on self-
pumped phase conjugation by 2k gratings. We show in
Fig. 10 the phase-conjugation reflectivity as a function of
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the coherence length of the incident beams for various
value of the coupling constant y. The parameters in this
simulation are n = 2.3, L = 0.72 cm, a = 0.0 cm ™, and
B =1.0X 1075 The time delay of the two waves is as-
sumed to be zero at the signal-wave entrance plane
(z = 0). The coherence length of the incident beams is
related to the bandwidth as L, = 27 X 0.664c/éw. We
note that the phase-conjugation reflectivity increases as
the coherence length of the incident beam increases and
reaches to a constant when the coherence length of the in-
cident beam is much longer than the thickness of the pho-
torefractive medium. We also note that the phase-
conjugation reflectivity increases as the coupling constant
increases.

4. EXPERIMENTS

The above theory is validated experimentally. The ex-
perimental setup is shown in Fig. 11. We utilized a 45°-
cut KNbO;3:Co crystal (the ¢ axis is in the horizontal
plane leaning toward the z = 0 face of the crystal, and
the b axis is in the vertical direction). The measured pa-
rameters of the crystal are y = 3.3 cm ™}, a = 0.5 cm™},
n=23,and L = 0.72 cm. A multimode argon laser op-
erating at 514 nm is used as the laser source with a mea-
sured FWHM bandwidth of 1.83 GHz. The extraordi-
nary polarization of the laser wave is used in the
experiment. As illustrated in Fig. 11, the signal wave
and the pump wave, obtained by splitting the argon laser
wave, propagate contradirectionally into the KNbO;:Co
crystal. The incident intensity ratio of the two waves is
B = 0.00151. The power of the pump wave is main-
tained at ~50 mW. The optical path difference of the
two waves at the signal-wave incident plane z = 0 is de-
noted as AL = Ly — L;. To monitor the mutual coher-
ence between the signal wave and the pump wave at the
output plane z = L, we employed another reference wave
(Eqep) that was split from the pump wave E;. The opti-
cal path difference of E; and E,,.; waves was adjusted to
be the same as that of E; and E, waves at the output
plane z = L. By a simple homodyne technique, the in-

Beam Splitter

- . = Mirror
Argon Laser L
(A=514.5nm)
Yy i
L
Photorefractive Be_a m
Crystal Splitter
y /
E; E;
Mirror Mirror
E+Ezref
z=0 z=L
CCD

Fig. 11. Experimental setup. The distances L, and L, are the
optical path length of the signal wave and the pump wave from
laser source to the signal-wave incident plane z = 0, respec-
tively. Lo, is the optical path length of reference wave E, ¢
from the laser source to the signal output plane z = L.
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(b)

Fig. 12. Interference pattern of the signal wave and the refer-
ence wave at the output plane P1 (a) without photorefractive cou-
pling and (b) with photorefractive coupling. Note the increase of
fringe visibility that is due to the coupling.
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Fig. 13. Signal-intensity gain as a function of the optical path
difference of the two waves at the signal-wave entrance plane
(z = 0). The dots are experimental data, and the solid curve is
the theoretical data.

terference fringes generated by E; and E,,.; waves were
observed by a CCD camera at the output plane P1. The
normalized mutual coherence y;5(L) can be estimated as
I max — Imin)T4UI1I)Y?], where (Iax — L) is the ampli-
tude of the fringes. In our experiment we monitored the
interference pattern with and without pump beam E,.
Figure 12 shows the interference patterns with a normal-
ized mutual coherence I'{5(0,0) ~ 0.43 at z = 0 (AL
= 4 cm). The measured normalized mutual coherence
increases from 0.19 to 0.7 at z = L. The intensity gain
of the signal wave was also measured. Figure 13 shows
the measurement of the intensity gain (dots) of the signal
wave at the z = L plane as a function of the optical path
difference AL. Along with the data is the theoretical
curve for the same parameters. An excellent agreement
between theory and experiment was achieved.

5. CONCLUSIONS

In conclusion, we have investigated theoretically contra-
directional two-wave mixing with partially coherent
waves in photorefractive crystals. A general formulation
based on the theory of statistical properties of linear sys-
tems is provided.!® Previous results on several simpli-
fied cases are rederived as special cases of the general for-
mulation so that we can get more insight into the general
formulation as well as into the simplified cases. Results
of numerical implementation of the general formulation
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are also provided for various coupling constants and vari-
ous incident intensity ratios between the signal wave and
the pump wave. We found that the mutual coherence be-
tween the signal wave and the pump wave can be both in-
creased and decreased owing to coupling. We also found
that both the strength and the length of the
photorefractive-index grating increases as the coupling
constant increases. A photorefractive index grating
much longer than the coherence length of the incident
waves can be formed when the coupling constant is large
and the incident intensity ratio is small. Owing to the
spectral-filtering effect of the photorefractive-index grat-
ing, the spectra of the two interacting waves will be al-
tered as they pass through the photorefractive medium.
The general formulation is further used to model the ef-
fect of partial coherence on self-pumped phase conjuga-
tion by a 2k grating. The theoretical predictions are in
excellent agreement with experimental measurements.

APPENDIX A: ERGODICITY PROPERTY

In this appendix we provide the derivation of Eq. (10).
Equation (9) gives the dynamics of the photorefractive in-
dex grating. It can be rewritten into an integration form
as

’

.
(A1)

Note that 1/7,[ t exp[t’ — t)/7p]dt" = 1. According to
Eq. (A1), the grating amplitude Q(z, t) is approximately
the average value of E{(z, t')Es*(z, t') over a time pe-
riod 7y,

Since the optical wave amplitudes E;(z, t) and
Ey(z, t) are stationary random processes, the ensemble
average (E (z, t)Ey*(z, t)) is independent of the time
variable t. Taking the ensemble average of Eq. (A1), we
can obtain

<Q(Z, t)) = <E1(27 t)EZ*(Z> t)) = F12(25 O) (A2)

Equation (A2) shows that the ensemble average of the
grating amplitude Q(z, ¢) is equal to the mutual coher-
ence of the two waves.

In general, the grating amplitude Q(z, ¢) is also a ran-
dom variable. It fluctuates around its ensemble average.
The mean square value of this random fluctuation, also
called the variance of the random variable Q(z, #), can be
written as

(1QGz, ) = (Qz, 1))I*) = (1Q(=, D)) — KQ(z, 1)[*.
(A3)

1 ¢ ¢
Q(Z’ t) = f El(z’ t’)Eg*(Z, t,)exp(
Tph J - Tph

By using Eq. (A1), we can write the first term on the right
side of Eq. (A3) explicitly as

1 t t
(1Q, )*) = —; f f (F(z, t")F*(z, "))
Tph —o0J —

t' —t t" —t
X exp exp d¢'de”,
Tph Tph

(A4)
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where F(z, t) = E (z, t)Ey*(z, t) is a shorthand nota-
tion. Since the optical wave amplitudes E(z, ¢t) and
E,(z, t) are stationary random processes, F(z, t) is also a
stationary random process. Therefore the ensemble av-
erage (F(z, t')F*(z, ¢")) is a function of only two vari-
ables z and ¢ —¢". We define R(z, t' —¢")
= (F(z, t')F*(z, t")) as a shorthand notation. With
this relation we can change the integration arguments in
Eq. (A4) from ¢’ and t”" tot; =t +t" — 2t and 5 = ¢’
— t" and rewrite Eq. (A4) as

1 0 tl —t
) f dtl exp| — f dtzR(Z, t2)
2 Tph —o Tph tq
(A5)

Note that 1/(27,,2)[%.dt; exp(¢,/7,,) I “4t, = 1. Sub-

stituting Eqgs. (A2) and (A5) into Eq. (A3), we can rewrite
the variance of the grating amplitude Q(z, ¢) as

(1Q(z, t) = (Q(z, 1))%)

1 0 tl -t
= d¢,exp - dto[R(z, ts)
e t

- 2
2 Tph ph

(1Q(z, *) =

— [T1sz, 071 (A6)

Remember that F(z, ¢) is a stationary random process.
Let At be the minimum time delay that is necessary for
F(z, t) and F(z, t = At) to be uncorrelated. For |¢o]
= At, R(z, ty) — |T'19(2, 0)|? is equal to zero. For |ty
< At, Rz, ty) — |[T19(z, 0)|2 is a function of ¢,. Since
both R(z, t;) and |Tis(z, 0)]2 are of the order of
I,(2)I4(2), the upper bound of R(z, t5) — |I'15(z, 0)]% can
be written as m1,(z)I5(z), where m is a constant factor of
the order of unity. With these estimations we can obtain
from Eq. (A6)

At
(1Qz, ) = (Qlz, D)) < mIy@)y(z) —. (AT
p

According to relation (A7), the fluctuation of the grating
amplitude Q(z, ¢) decreases as the ratio A¢/ 7y, decreases.
When At¢/7,, < 1, we can neglect the fluctuation of the
grating amplitude Q(z, ¢) and obtain Eq. (10), i.e.,

Q(z, t) ~ (Q(z, t)) = I'1y(z, 0). (A8)

Usually At is of the order of the coherence time (Sw) ! of
the incident waves. In this case the condition for Eq.
(A8) can also be written as dw 7y, > 1.

In this appendix we have shown that the time average
of the random variable E,(z, t)E, (2, ¢) is equal to the
ensemble average of the random  variable

Yi et al.

E (z, t)Ey*(z, t). This type of property is referred to as
ergodicity in statistics.
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