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超導與超穎材料週期多層結構之光學性質探討 

 
研 究 生:陳美頌                   指導教授:楊宗哲  教授      

儒森斯坦 教授 

 

 

國立交通大學電子物理系博士班 

 

摘要 

週期性多層膜結構的光學理論已發展了一段時間，過去採用的材料主要偏向於介電

體，半導體以及金屬。近年來，許多不同於這些早期傳統的材料，例如超導體以及超穎

材料，已被陸續開發出來。我們的研究工作重點，是將超導體材料(superconductors)

及超穎材料(metamaterials)置於多層膜的結構中，探討電磁波在此週期性排列結構中

的傳播特性以及光學能帶分佈，企圖尋求其特殊性質以及可應用功能的開發。對於一維

的超導體的光子晶體，我們採用超導體的二流體模型理論來進行研究。從計算出的穿透

頻譜和光子能帶圖，發現兩者幾乎完全的吻合。我們進一步對於二維的週期性多層膜的

環型結構進行探討，採用克利提夫斯基(Kaliteevski)的計算理論，以圓柱波的轉移矩

陣計算方式分別針對超導體材料及超穎材料來進行數值分析。計算會隨著頻率改變的介

電係數(permittivity)和磁感係數(permeability)進而繪出反射頻譜，經過研究探討

後，我們發現在材料的電漿頻率處附近圓柱波與平面波有截然不同的反應，此種特殊現

象對於未來在通訊上設計濾波器或者共振器將有很大的助益。 
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ABSTRACT 
 

It has been developed for periods of time to research the optical properties of periodic 

multilayer structures. In the past years, the photonic band gap structure were mainly 

fabricated by using the usual dielectrics, semiconductor and metal as well. Recently, the new 

materials like superconductors and the metamaterials have been developed very soon. The 

main purpose of our research work is to study the optical properties of the periodic multilayer 

structures with superconductors and metamaterials. The discussions of photonic band 

structure have been made and we attempt to seek some unusual phenomena and the special 

property for application. The photonic band structure in the transversal electric mode for a 

one-dimensional superconductor-dielectric superlattice is theoretically calculated. By using 

the two-fluid model of superconductors, the band structure is shown be strongly consistent 

with the transmittance spectrum. Next, we investigate the optical properties of the annular 

Bragg reflectors containing superconductors and metamaterials. By using the transfer matrix 

method for the cylindrical waves developed by Kaliteevski et al., we calculate the reflectance 

spectra for the annular Bragg reflectors. Numerical results show that the optical properties of 

the annular Bragg reflectors are fundamentally different from those of the planar Bragg 

reflector with azimuthal mode number 1m ≥ . The special results suggest that the annular 

Bragg reflectors could be used to design a narrowband transmission filter or an annular 

resonator without introducing any physical defect layer in the structure. 
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Chapter 1 
Introduction 

 

1.1 Background 

Recently much work has been done on the computation of the photonic band 

structures of electromagnetic waves propagating in the periodic multilayer structures, 

because these periodic structures can be designed to produce the required photonic band 

structure. In the dissertation, we shall investigate the photonic band structures of the 

superconductor-dielectric superlattice and the annular periodic multilayer structure 

containing the superconducting materials, the single-negative materials or the 

double-negative materials.  

 

1.1.1 Photonic crystals 

In 1987, E. Yablonovitch and S. John provided the concept of photonic crystals 

(PCs), respectively [1-4]. In solid state physics there are electronic band diagrams for a 

crystal with the periodic arrangement of atoms or molecules. With the optical analogy it 

is known that PCs have photonic band gaps (PBGs) at which the electromagnetic waves 

cannot propagate through the periodic layered structures. When transmitting in a periodic 

media structure the light waves will interference destructively and then they are forbidden 

to propagate at special frequencies, that is, the PBGs will be formed in some frequency 

regions [5,6]. Photonic crystals can be in the one-dimensional, two-dimensional or 

three-dimensional periodic structures. (See Fig.1.1) 

For the photonic band structures in the PCs, there are many physical ideas are from 

the solid state physics, such as the reciprocal lattice space, Brillouin zone and Bloch 
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theory as well. In solid state physics the wave motion of an electron is described by the 

Schrodinger equation 

                   
2

2 ( )
2

V r E
m

ψ ψ− ∇ + = ,                          (1.1) 

where 

                ( ) ( )nV r V r R= + .                               (1.2) 

However, in the PCs the wave propagating of an photon satisfies the following wave 

equation, 

               
2 2

2
02 2( ) ( )E E r E E

c c
ω ωε ε−∇ + ∇ ∇ ⋅ − = ,                  (1.3) 

where the permittivity function is periodic, i.e., 

                    ( ) ( )lr r Rε ε= + .                               (1.4) 

Comparing these two equations, we can establish the analogous relations as follows: 

                       
2

2 ( ) ( )r V r
c
ω ε → ,                            (1.5) 

2

0 2 E
c
ωε → .                              (1.6) 

Although some similar physical meanings are in common for both the photonic crystals 

and the electrons in a solid, it should be noted that they have a fundamental difference, 

that is, the photons are bosons while the electrons are fermions. 

To investigate the photonic band structure, there are, at present, three main 

numerical methods include the transfer matrix method (TMM), plane wave expansion 

(PWE) and finite-difference-time-domain (FDTD). Because the photon-photon 

interaction force is very small, the photonic crystal is a lattice which is quite suitable to 

examine and the Bloch theory can be employed. 

For the study of a one-dimensional photonic crystal, we shall use the Abeles theory 

[7] for stratified layers to calculate the frequency-dependent transmittance, and calculate 

the band structure from the transcendental equation derived from the transfer matrix 
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method and the Bloch theorem [8]. The comparison between the transmittance spectrum 

and band structure shows excellent agreement for both methods. 

 

1.1.2 Annular Bragg reflectors 

A Bragg reflector with an annular geometric structure is shown in Fig. 1.2. With 

the advance of modern fabrication techniques the annular Bragg reflector has now been 

achievable. By creating a ring defect into the annular periodic multilayer structure, an 

annular resonator or laser has been recently reported [9,10]. Such an annular laser has a 

very important feature of vertical emission which makes it of particular use in the optical 

electronics and communication. Motivated by these facts, we shall also theoretically 

investigate the optical reflection properties of the annular Bragg reflector. In our analysis 

we use the transfer matrix method for the cylindrical waves developed by Kaliteevski et 

al. [11] to calculate the photonic band structures.  

 

1.1.3 Superconductors in periodic multilayers structures 

Kamerling Onnes discovered superconductivity in 1911, just three years after he 

had first liquefied helium. It was found in their laboratory that the resistance of Hg 

vanished at 4.2 K, the temperature of liquefied helium. For decades, a succession of 

theories on superconductivity were developed, for examples: Meissner effect, two-fluid 

model, London theory, Ginzburg-Landau (GL) theory and BCS theory.[12-15] A perfect 

diamagnetism of superconductors called the Meissner effect was found by Meissner and 

Ochsenfeld in 1933. For the electronic conduction mechanism of superconductors, Gorter 

and Casimir developed the two-fluid model in 1934. They assumed that in the 

superconductivity state there are two kinds of conduction electrons, one of which is 

normal electrons nn  and another is electrons in superfluid state sn . Based on the 

two-fluid model, famous London equations were provided in1935. Therefore the concept 
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of two-fluid model is very important and paves the way to the electrodynamics of 

superconductors. 

In 1986, a new class of high-temperature superconductors (HTS) was discovered 

by Müller and Bednorz, which was a new era for superconductors. Because the HTS have 

the low resistance as well as the electronic conduction characteristic different from the 

metallic materials, the massive manpower and the financial resource have been spent to 

research and develop the HTS technology and the HTS electronic products for many 

years. While the preparation technology of superconductor thin films is getting mature, 

the application of superconductor materials is more broadened. It is seen that 

superconductors are frequently applied for the microwave devices and communication 

system owing to good microwave characteristics and the low impedance [16,17]. 

In the earlier stage, the photonic band gap structures were mainly fabricated by 

using the usual dielectrics, semiconductors and metals as well. Recently, the properties of 

the photonic band structures in a periodic multilayer structure consisting of 

superconducting and dielectric materials have also been researched [18-22]. In this work 

the optical reflection properties of a superconductor-dielectric superlattice and a 

superconducting annular Bragg reflector (SABR) are theoretically investigated. 

Regarding the superconductors of periodic multilayers structures, we calculate the index 

of refraction on the basis of the conventional two-fluid model. 

 

1.1.4 Metamaterials in periodic multilayers structures  

The electromagnetic metamaterials with both the negative permittivity ( )0ε <  

and negative permeability ( )0µ <  first predicted by Veselago early in 1968 [23] are 

now called the double-negative (DNG) materials. A significant result coming from the 

DNG material is that its index of refraction is negative. Thus, a DNG material is 
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commonly referred to as the negative-index material (NIM). The existence of this kind 

material was respectively experimentally demonstrated by Smith et al. [24,25] and one of 

the distinctive applications of the DNG materials was presented by Pendry. [26] 

In addition to the DNG materials [27-30], the single-negative (SNG) materials also 

attract much attention recently. An SNG material means that only one of the two material 

parameters, ε  and µ , is negative [31-33]. Thus an SNG material could be the 

epsilon-negative (ENG) medium with 0ε <  and 0µ >  or the mu-negative (MNG) 

medium with 0µ <  and 0ε > . 

 

1.2 Preface of this dissertation 

In the dissertation, we present the studies of the optical properties of periodic 

multilayers structures, which include the one-dimension superlattices and the annular 

Bragg reflectors as well. The materials we investigate for periodic multilayers comprise 

superconductors, single-negative metamaterials and double-negative metamaterials.      

     The Chapter 2 depicts basic theory of this dissertation. The PBGs in the 

superconductor-dielectric superlattices are described in Chapter 3. Optical properties of 

the SABR are reported in Chapter 4. We propose the photonic band structure of the 

annular periodic multilayer structure containing the single-negative materials in Chapter 

5. Moreover, we discuss the wave properties of the annular periodic multilayer structure 

with the double-negative materials in Chapter 6. Finally, a conclusion of the results will 

be included in Chapter 7. 
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Fig. 1.1. The photonic crystal structures. 

 

 

 

 

 

 

 

Fig. 1.2. An illustration of a multilayered structure with circular cylindrical symmetry. 
The figure is imaged from [11] 
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Chapter 2 
Basic theory 

 
2.1 Abeles theory 

In order to calculate the transmittance and reflectance for a periodic multilayered 

structure, the elegant Abeles theory will be employed [7]. According to this theory, we 

must, in advance, set up the characteristic matrix corresponding to one period, with the 

result 

( ) 3 32 211 12
32

21 22
2 2 2 3 3 3

cos sincos sin

sin cos sin cos

jj
m m

ppa
m m

jp jp

β ββ β

β β β β

⎡ ⎤⎡ ⎤
⎡ ⎤ ⎢ ⎥⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

M  

3
2 3 2 3 2 3 2 3

2 3 2

2
2 2 3 3 2 3 2 3 2 3

3

cos cos sin sin cos sin sin cos

sin cos cos sin cos cos sin sin

p j j
p p p

pjp jp
p

β β β β β β β β

β β β β β β β β

⎡ ⎤− +⎢ ⎥
⎢ ⎥=
⎢ ⎥

+ −⎢ ⎥
⎣ ⎦

, (2.1.1) 

where      2 2 2 2
0

2 cosn aπβ θ
λ

= , 3 3 3 3
0

2 cosn aπβ θ
λ

= ,               (2.1.2) 

and 

0
2 2 2

0

cosp nε θ
µ

= ,  0
3 3 3

0

cosp nε θ
µ

= ,              (2.1.3) 

where 0 02 2k cλ π π ω= =  is the wavelength in free space. The angles 2θ  and 3θ , 

determined by Snell’s law of refraction, are the ray angles in layer 2 and 3, respectively. 

Having constructed the matrix in Eq. (2.1.1), the total characteristic matrix for an 

N-period structure can be obtained, that is 

( ) ( )11 12

21 22

NM M
Na a

M M
⎡ ⎤

⎡ ⎤ ⎡ ⎤= =⎢ ⎥⎣ ⎦ ⎣ ⎦
⎣ ⎦

M M  
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( ) ( ) ( )
( ) ( ) ( )

11 1 2 12 1

21 1 22 1 2

N N N

N N N

m U U m U
m U m U U
− − −

− − −

⎡ ⎤Ψ − Ψ Ψ
= ⎢ ⎥Ψ Ψ − Ψ⎣ ⎦

,      (2.1.4) 

where 

 ( )11 22
1
2

m mΨ = + ,                 (2.1.5) 

and NU  are the Chebyshev polynomials of the second kind defined by 

( )
( ) 1

2

sin 1 cos

1
N

N
U

−⎡ ⎤+ Ψ⎣ ⎦Ψ =
− Ψ

.            (2.1.6) 

Equation (2.1.4) gives the explicit expressions for matrix elements 11M , 12M , 21M , and 

22M  as follows: 

( ) ( )3
11 2 3 2 3 1 2

2

cos cos sin sin N N
pM U U
p

β β β β − −

⎛ ⎞
= − Ψ − Ψ⎜ ⎟

⎝ ⎠
 

( )12 2 3 2 3 1
3 2

1 1cos sin sin cos NM j U
p p

β β β β −

⎛ ⎞
= + Ψ⎜ ⎟

⎝ ⎠
 

( ) ( )21 2 2 3 3 2 3 1sin cos cos sin NM j p p Uβ β β β −= + Ψ  

( ) ( )2
22 2 3 2 3 1 2

3

cos cos sin sin N N
pM U U
p

β β β β − −

⎛ ⎞
= − Ψ − Ψ⎜ ⎟

⎝ ⎠
.  (2.1.7) 

The reflection and transmission coefficients can be determined and are given by [7] 

( ) ( )
( ) ( )

11 12 1 21 22

11 12 1 21 22

M M p p M M p
r

M M p p M M p
+ − +

=
+ + +

,           (2.1.8) 

and 

( ) ( )
1

11 12 1 21 22

2 pt
M M p p M M p

=
+ + +

.           (2.1.9) 

Here ( )1 0 0 1 1cosp nε µ θ=  is for the first medium, and ( )0 0 cosp nε µ θ=  is 

for the last medium. Both media here are taken to be free space. The reflectance 

(reflectivity) R, transmittance (transmissivity) T and r , t  are related by  
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2R r= ,      2

1

pT t
p

= .                (2.1.10) 

Thus, the transmittance spectrum, T versus ω, can be numerically illustrated, as will be 

seen in Section III. 

 

2.2 The Floquet (or Bloch) theorem 

In the solid state physics, the wave function of a electron which has mass m will 

satisfied the Schrödinger equation 

2
2 ( ) ( ) ( ),

2
V r r E r

m
ψ ψ

⎡ ⎤
− ∇ + =⎢ ⎥

⎣ ⎦
        (2.2.1) 

where ( )V r  is periodic electric field. If R  is lattice transfer vector, then 

( ) ( ).V r V r R= +                   (2.2.2) 

According Bloch theory [34], the solution of Eq. (2.2.1) is  

( ) ( ) exp( ),k r u r ik rψ = ⋅             (2.2.3) 

where                     ( ) ( ).u r u r R= +                 (2.2.4) 

This theory is also called Floquet theory, because Floquet is the first person to deduce the 

theory for one-dimensional case.  

For the photonic crystal structure, we use Floquet theory to do Furior expantion for 

the function u . We get that 

0

0

2

( ) ( )

( )

x

x

jk x

nj xjk x d
n

E x e P x

E x e P e
π

−

−−

=

= ∑  

0
2( )x

nj k
d

n
n

P e
π

− +
= ∑  

xnjk x
n

n
P e−= ∑  ,               (2.2.5) 
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where                             0
2

xn x
nk k
d
π

= + ,               (2.2.6) 

where d is periodic length of the lattice. 

Based on the basic assumption of translational symmetry and aided by the Floquet 

(or Bloch) theorem together with the use of transfer matrix method, one can obtain a 

transcendental equation determining the band structure, namely [5] 

( ) ( ) ( ) ( ) ( )2 3 2 3
1cos cos cos sin sin
2

x sx
sx x sx x

sx x

k kKa k a k a k a k a
k k

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
,     (2.2.7) 

where K is the Bloch wave number, 

   2
3 1sinx rk

c
ω ε θ= − ,                    (2.2.8) 

and 

  
2

2
1 2 2cossx

L

ck
c
ω θ

ω λ
= − .                 (2.2.9) 

Equation (2.2.7) can be numerically solved for ω as a function of K, yielding the 

so-called photonic band structure or dispersion relation.   

 

2.3 Theory of annular Bragg reflectors 

The structure of a SABR is shown in Fig. 1.2, in which the inner core region has a 

refractive index of n0 and a starting radius of ρ0, the layer 1 with index n1 is assumed to 

be the superconductor, and layer 2 having index n2 is the dielectric layer. In addition, the 

index of refraction of the outer region is denoted by nf. To calculate the reflectance at the 

first circular boundary, ρ = ρ0, we use the transfer matrix method in the cylindrical waves 

[11]. The cylindrical wave is assumed to be diverging from the axis of symmetry, 0ρ = , 

and then impinges normally on the first circular interface of ρ = ρ0. 

Assuming an ( )exp j tω  time dependence for the electromagnetic fields, the 
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source-free two curl Maxwell’s equations are given by 

                           E j Hωµ∇× = − ,               (2.3.1) 

                           H j Eωε∇× = .                 (2.3.2) 

In cylindrical coordinate,Eq.(2.3.1): 

ˆˆ ˆ
1 ˆˆ ˆ( )z z

z

z
j H H zH

E E E
ρ φ ρ φ

ρ φ

ρ ρφ
ωµ ρ φ

ρ
ρ

∂ ∂ ∂ = − + + ,       (2.3.3) 

leading to 

1 z EE j H
z
φ

ρωµ
ρ φ

∂∂
− = −

∂ ∂
,                 (2.3.4a) 

zE E j H
z

ρ
φωµ

ρ
∂ ∂

− = −
∂ ∂

,                    (2.3.4b) 

( )1
z

E E
j Hφ ρρ
ωµ

ρ ρ φ
∂ ∂⎡ ⎤

− = −⎢ ⎥∂ ∂⎣ ⎦
,               (2.3.4c) 

and Eq.( 2.3.2): 

ˆˆ ˆ
1 ˆˆ ˆ( )z z

z

z
j E E zE

H H H
ρ φ ρ φ

ρ φ

ρ ρφ
ωε ρ φ

ρ
ρ

∂ ∂ ∂ = + + ,     (2.3.5) 

1 z HH j E
z

φ
ρωε

ρ φ
∂∂

− =
∂ ∂

,                (2.3.6a) 

zH H j E
z

ρ
φωε

ρ
∂ ∂

− =
∂ ∂

,                   (2.3.6b) 

( )1
z

H H
j Eφ ρρ
ωε

ρ ρ φ
∂ ∂⎡ ⎤

− =⎢ ⎥∂ ∂⎣ ⎦
.            

(2.3.6c) 

In the case that the propagation of cylindrical wave diverging from or 

converging to the axis of symmetry 0ρ = , the derivatives of the fields with 

respect to z vanish and Eq.(2.3.4) can be reduced to 
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1 ,zE j Hρωµ
ρ φ

∂
= −

∂
                 (2.3.7a) 

,zE j Hφωµ
ρ

∂
=

∂
                   (2.3.7b) 

( )1
z

E E
j Hφ ρρ
ωµ

ρ ρ φ
∂ ∂⎡ ⎤

− = −⎢ ⎥∂ ∂⎣ ⎦
.        (2.3.7c) 

Eq. (2.3.6) gives in a similar way: 

                           1 zH j Eρωε
ρ φ

∂
=

∂
,                 (2.3.8a) 

                           zH j Eφωε
ρ

∂
= −

∂
,                  (2.3.8b) 

( )1
z

H H
j Eφ ρρ
ωε

ρ ρ φ
∂ ∂⎡ ⎤

− =⎢ ⎥∂ ∂⎣ ⎦
.       (2.3.8c) 

In the circular cylindrical coordinates there are two possible modes, i.e., TE and 

TM modes. For TE wave, the nonzero fields, zE , Hφ , and Hρ in each single layer 

satisfy the three equations, Eqs. (2.3.7a), (2.3.7b) and (2.3.8c). Solutions for Eqs. (2.3.7c), 

(2.3.8a) and (2.3.8b) can be obtain for TM wave, which has non-zero components 

zH  , Eφ  and Eρ . 

In the case of TE wave, the electromagnetic field ( zE , Hφ , Hρ )obeys the relations: 

1 1 zEH jρ ωµ ρ φ
∂

=
∂

,              (2.3.9a) 

1 zEH jφ ωµ ρ
∂

= −
∂

                (2.3.9b) 

( )
z

H H
j Eφ ρρ
ωερ

ρ φ
∂ ∂

− =
∂ ∂

.         (2.3.9c) 

Thus, Eq. (2.3.9c) becomes 

                 

1
1

z

z
z

Ej
Ej j E

ρ
ωµ ρ

ωερ
ρ φ ωµ ρ

⎛ ⎞∂
∂ −⎜ ⎟∂ ⎛ ⎞∂∂⎝ ⎠ − =⎜ ⎟∂ ∂ ∂⎝ ⎠

.      (2.3.10)                  
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With Eq. (2.3.3), the governing equation for tangential electric field Ez is given by 

       2 2 21 0.z z z
z

E E E Eµρ ρ ρ ω µερ
ρ ρ µ ρ ρ φ φ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂
− + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

        (2.3.11) 

The solution of Eq. (2.3.11) can be obtained the method of separation of variables. 

Substituting  ( ) ( ) ( ),zE Vρ φ ρ φ= Φ  in Eq. (2.3.7) and using Eq. (2.3.11) we obtain: 

2
2 2 2

2

1 1 1 1 0V V
V V

µρ ρ ρ ω µερ
ρ ρ µ ρ ρ φ

⎛ ⎞∂ ∂ ∂ ∂ ∂ Φ
− + + =⎜ ⎟∂ ∂ ∂ ∂ Φ ∂⎝ ⎠

,        

(2.3.12) 
2

2 2 2 2
2

1 1 1 1V V m
V V

µρ ρ ρ ω µερ
ρ ρ µ ρ ρ φ

⎛ ⎞∂ ∂ ∂ ∂ ∂ Φ
− + = − =⎜ ⎟∂ ∂ ∂ ∂ Φ ∂⎝ ⎠

.      (2.3.13) 

For the angular part: 
2

2
2 0m

φ
∂ Φ

+ Φ =
∂

.                     (2.3.14) 

For the radial part: 

2 2 2 21 1 1V V m
V V

µρ ρ ρ ω µερ
ρ ρ µ ρ ρ

⎛ ⎞∂ ∂ ∂ ∂
− + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

.       (2.3.15) 

where m  is a positive or negative integer or zero, called the azimuthal number. Then, 

we obtain: 

( ) ( ) ( ),zE Vρ φ ρ φ= Φ ,                  (2.3.16a) 

( ) jmVmH e φ
ρ

ρ
ωµ ρ

= − ,                   (2.3.16b) 

( ) ( )1 jm jmV
H e U e

j
φ φ

φ

ρ
ρ

ωµ ρ
∂

= − =
∂

,       (2.3.16c) 

where the functions ( )U ρ  and ( )V ρ  obey 

( )V j Uωµ ρ
ρ

∂
=

∂
.                    (2.3.17) 

We have  

2 2 2 0V V m Vρ ρ ω µερ
ρ ρ

⎛ ⎞∂ ∂
+ − =⎜ ⎟∂ ∂⎝ ⎠

.            (2.3.18) 

2 2 0V k V m Vρ ρ
ρ ρ

⎛ ⎞∂ ∂
+ − =⎜ ⎟∂ ∂⎝ ⎠

,                (2.3.19) 
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which is the Bessel’s differential equation with the solution 

( ) ( )m mV AJ k BY kρ ρ= + ,              (2.3.20) 

where A and B are constants, k ω µε=  is the wave number in the layer, mJ  is a 

Bessel function, and mY  is a Neumann function.  

The function ( )U ρ  can be found from Eq.( 2.3.17) as 

( ) ( ) ( )( )m m
kU AJ k BY k

j
ρ ρ ρ

ωµ
′ ′= + ,             (2.3.21) 

( ) ( ) ( )( )m mU jp AJ k BY kρ ρ ρ′ ′= − + ,              (2.3.22) 

where p ε µ=  is the intrinsic admittance of the layer, and the primes represent 

differentiation by the whole argument of the function (not just by ρ ). 

From Eqs. (2.3.16b) and (2.3.16c) we see that V  and U  determine the magnetic 

field components Hρ  and Hφ , respectively. Equations (2.3.8) and (2.3.9) enable us to 

construct a single layer matrix relating the electric and magnetic fields at its two 

interfaces. For instance, the matrix for the first layer (with refractive index 1n  and 

interfaces at 0ρ ρ=  and 1ρ ) is written as [11] 

( )
( )

( )
( )

1 0
1

1 0

V V
U U

ρ ρ
ρ ρ

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
M ,              (2.3.23) 

The element of transfer matrix can be found by considering the relations Eqs. 

(2.3.20)-(2.3.23) when the vector ( ) ( )( )0 0,V Uρ ρ  has the special values ( )1,0  and 

( )0,1 . Solving the equation with the help of the identity 

( ) ( ) ( ) ( ) 2 /m m m mJ x Y x J x Y x xπ′ ′− = ,          (2.3.24) 

thus the single layer matrix 
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11 12
1

21 22

M
m m
m m

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
,                 (2.3.25) 

has the following matrix elements 

( ) ( ) ( ) ( )11 1 0 1 0 1 1 1 0 1 12 m m m mm k Y k J k J k Y kπ ρ ρ ρ ρ ρ′ ′= −⎡ ⎤⎣ ⎦ , 

( ) ( ) ( ) ( )1
12 0 1 0 1 1 1 0 1 1

12 m m m m
km j J k Y k Y k J k
p

π ρ ρ ρ ρ ρ= −⎡ ⎤⎣ ⎦ , 

( ) ( ) ( ) ( )21 1 0 1 1 0 1 1 1 0 1 12 m m m mm j k p Y k J k J k Y kπ ρ ρ ρ ρ ρ′ ′ ′ ′= − −⎡ ⎤⎣ ⎦ , 

( ) ( ) ( ) ( )22 1 0 1 0 1 1 1 0 1 12 m m m mm k J k Y k Y k J kπ ρ ρ ρ ρ ρ′ ′= −⎡ ⎤⎣ ⎦ ,     (2.3.26) 

where 1 1 1p ε µ= . Note that the determinant of the transfer matrix in both cases is given 

by the ratio of the initial and final radii: 

11 12 0

21 22

det
M M

M
M M

ρ
ρ

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
.               (2.3.27) 

Obviously, the matrix elements are dependent on the radii of the two interfaces. 

Similarly, for ith layer the matrix can be obtained by some simple replacements, i.e., 

0 1iρ ρ −→ , 1 iρ ρ→ ,  1 i i ik k ω µ ε→ = , and 1 i i ip p ε µ→ = . In addition, with 

structure being periodic, one has 1iε ε=  if i = odd, and 2iε ε=  if i = even. For an 

N-period bilayer periodic reflector we have, in total, 2N layers and therefore there should 

be 2N matrices in order to set up the total system matrix M that relates the first and final 

interfaces as 

( )
( )

( )
( )

0

0

f

f

V V
UU

ρ ρ
ρρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ = ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

M ,             (2.3.28) 

where 
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11 12
2 2 1

21 22
N

M M
M M

⎡ ⎤
= = ⋅⋅⋅⎢ ⎥

⎣ ⎦
M M M M .         (2.3.29) 

Unlike 1DPC, the analytic expressions for the matrix elements of M for an annular BR 

cannot be obtained because the elements of each single layer matrix are functions of the 

radii of the two interfaces. It thus has to be numerically calculated.  

Consider an outgoing wave incident on the interface between 0 and 1, which we take to 

have radius 0ρ ρ= , and propagating to the medium f , which extends from fρ ρ=  to 

ρ = ∞ . The amplitudes of the electric field and magnetic fields at 0ρ  and fρ  can be 

written in terms of the amplitude reflection and transmission coefficients dr  and dt  and 

are related by the transfer matrix M  defined in Eq.(2.3.28) and subsequence discussion: 

( ) ( ) ( )
1

22 1
0 0 0 0

1 dd

f mf dm m d

tr
M

jp C tjp C jp C t
−

+ ⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−− −⎝ ⎠ ⎝ ⎠

,            (2.3.30) 

where 

1
11 12 22 211

21 22 12 11

1
TM M M M

M
M M M MM

−

− −⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 

22 12 11 12

21 11 21 22

1 M M M M
M M M MM

′ ′−⎛ ⎞ ⎛ ⎞
= ≡⎜ ⎟ ⎜ ⎟′ ′−⎝ ⎠ ⎝ ⎠

.            (2.3.31) 

Equation (2.3.30) enables us to calculate the reflection and transmission 

coefficients for multilayered structure, 

( ) ( ) ( )
11 12

22 1
21 220 0 0 0

1 dd

f mf dm m d

tr M M
M M jp C tjp C jp C t

+ ⎛ ⎞′ ′⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ −− − ⎝ ⎠⎝ ⎠ ⎝ ⎠

       (2.3.32)     

( )( )2
11 121 d f mf dr M jp C M t′ ′+ = − ,                (2.3.33) 

( ) ( ) ( )( )2 1 2
0 0 0 0 21 22m m d f mf djp C jp C r M jp C M t′ ′− − = − ,        (2.3.34) 

From Eqs. (2.3.33) and (2.2.34), we can get 
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( ) ( ) ( )

( )

22 1
21 220 0 0 0

2
11 121

f mfm m d

d f mf

M jp C Mjp C jp C r
r M jp C M

′ ′−− −
=

+ ′ ′−
.           (2.3.35) 

Hence, the reflection coefficients is given by 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

2 2 2
21 0 0 11 22 0 0 12

1 2 1
0 0 11 21 0 0 12 22

m f mf m
d

m f mf m

M jp C M jp C M jp C M
r

jp C M M jp C jp C M M

′ ′ ′ ′+ − +
=

′ ′ ′ ′− − − − −
.     (2.3.36) 

From Eqs. (2.3.33),  

( )2
11 12

1 d
d

f mf

rt
M jp C M

+
=

′ ′−
,                     (2.3.37) 

where the numerator 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

2 2 2
21 0 0 11 22 0 0 12

1 2 1
0 0 11 21 0 0 12 22

1 1
m f mf m

d
m f mf m

M jp C M jp C M jp C M
r

jp C M M jp C jp C M M

′ ′ ′ ′+ − +
+ = +

′ ′ ′ ′− − − − −
 

( ) ( )( ) ( )( )
( )( ) ( ) ( )( )

1 2 2
0 0 0 0 11 12

1 2 1
0 0 11 21 0 0 12 22

m m f mf

m f mf m

jp C jp C M jp C M

jp C M M jp C jp C M M

′ ′− + −
=

′ ′ ′ ′− − − − −
.    (2.3.38) 

Thus the transmission coefficient is given by 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
0 0

2 1 1 2 1
0 0 0 0 0 0 0 11 21 0 0 12 22

4
d

m m m f mf m

t
K H k H k jp C M M jp C jp C M M

ε µ

π ρ ρ ρ
=

⎡ ⎤′ ′ ′ ′− − − − −⎣ ⎦

,  

(2.3.39) 

where 11M ′ , 12M ′ , 21M ′  and 22M ′  are the matrix elements of the inverse matrix of M, 

0 0K ω µ ε=  is the free-space wave number, and 

( )
( ) ( )
( ) ( )

1,2
1,2

1,2
m l l

ml
m l l

H k
C

H k
ρ
ρ

′
= , 0,l f= .                (2.3.40) 

where ( )1
mH  and ( )2

mH  are the Hankel function of the first and second kind. Equations 

(2.3.36) and (2.3.39) then leads to the reflectance R and the transmittance T, i.e., 

2
dR r= ,       2

0

f
d

n
T t

n
= ,                  (2.3.41) 

where 0n  and fn  are respectively the refractive indices of the starting and the final 
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media. The results for TM wave are also obtainable by simply replacing ε µ↔ , and  

j j↔ −  in the formulas of TE wave. 

 

2.4 The two-fluid model of superconductors 

In 1934, Gorter and Casimir provided the two-fluid model for the electric 

conduction mechanism of superconductors [12,13]. When 0T >  K, the two-fluid model 

can very successfully explain the character of superconductor device under the 

condition of superconductivity conduction. According to this theory, one assumes that the 

total electron density n  can be divided into two kinds of conduction electrons, one of 

which is normal electrons nn  and another is superconducting electrons sn . That is 

                              n sn n n= + ,                  (2.4.1) 

and they have different conductivity 

                              n sσ σ σ= +  ,                (2.4.2)    

where nσ  is the conductivity of normal electrons, and sσ  is the conductivity of paired  

superconductivity electrons. From the Drude model and London equation, we get  

( )2 / 1n nn e m jσ τ τω= + ,              (2.4.3) 

( ) ( )2 2lim / 2 /s n n sn e m jn e m
τ

σ σ π δ ω ω
→∞

= = − .    (2.4.4) 

If  the relaxation time τ → ∞ , the conductivity is a complex number, so under the 

condition of 0f ≠  , we have 

                        
2

2 2

1( )
1

s
n

jne jn
m

τωσ τ
τ ω ω

−⎡ ⎤= −⎢ ⎥+⎣ ⎦
.           (2.4.5) 

In order to satisfy the approximation of the conductivity imaginary part, we assumed the 

condition is low frequency, so 
2

( ) ( ) (1 ) s
n

jne n j
m

σ ω τ τω
ω

⎡ ⎤= − −⎢ ⎥⎣ ⎦
.        (2.4.6) 

Therefore according to the two-fluid model the electromagnetic response of a 
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superconductor can be described in terms of the complex conductivity, 1 2jσ σ σ= − , 

where the real part, 1σ , indicating the loss, is contributed by the normal electrons, 

whereas the imaginary part, 2σ , is due to the superelectrons.  

Under the low temperature condition,the imaginary part is expressed as [12,13] 

                              2 2
0

1

L

σ
ωµ λ

= ,                    (2.4.7) 

where the temperature-dependent penetration depth is given by 

                        ( )
( )

0

1
L L T

f T
λλ λ= =

−
,                 (2.4.8) 

where the Gorter-Casimir expression for ( )f T  is given by 

                            ( )
4

c

Tf T
T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.                     (2.4.9) 

We shall consider the lossless case, meaning that the real part of the complex 

conductivity of the superconductor can be neglected and consequently it becomes 

2 2
0

1

L

j jσ σ
ωµ λ

= − = − .              (2.4.10) 

The conditions for a lossless superconductor are well described in Ref. [10,11]. With Eq. 

(2.4.4), the relative permittivity as well as its associated index of refraction can be 

obtained, namely 
2

2 2 21r
L

cε
ω λ

= − ,                  (2.4.11) 

and 

2

2 2 2 21r
L

cn ε
ω λ

= = − .            (2.4.12) 
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Chapter 3 
Photonic band structure for a 

superconductor-dielectric superlattice 
 

3.1 Introduction 

It is well known that photonic crystals have photonic band gaps (PBGs) in the 

photonic dispersion relation. In the PBGs, optical waves with certain frequencies are not 

allowed to propagate through the crystal [1, 2]. The PBGs are analogous to the electronic 

band gaps in a solid and their physical origin can be ascribed to the Bragg diffraction in a 

periodic multilayer structure. A simple one-dimensional photonic crystal is, in general, 

made of alternating layers of material with different permittivities, forming a superlattice 

with infinite periods. The band structure for a dielectric-dielectric photonic crystal shows 

that the PBG between the first and second bands widens considerably as the difference in 

dielectric permittivity is increased [3]. In addition, no low-frequency band gap below the 

first (lowest) band can be found. In a metallic photonic made of a normal metal and a 

dielectric, it is however found that a low-frequency (or metallicity) gap may exist. 

Contrary to a PBG, this metallicity gap which does not depend on the periodicity, is of the 

order of the plasma frequency and thus is regarded as a modified effective plasma 

frequency [35-37]. 

On the other hand, studies of photonic crystals consisting of a superconducting 

material and a dielectric have also been reported recently [10-12]. The electromagnetic 

properties of Abrkosov vortex lattice as a photonic crystal were investigated by changing 

the Ginzburg-Landau parameter and static magnetic field [18]. In addition to a 

low-frequency band gap below the first band, they also obtained the PBGs for a 
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superconductor in the presence of vortices. In fact, the issue of a superconducting photonic 

crystal was first investigated by a group in Singapore [19,20]. They considered a 

one-dimensional superconductor-dielectric superlattcie. By making use of the transfer 

matrix method accompanied by the Bloch theorem [19], a low-frequency band gap was 

seen for both transversal magnetic (TM) and transversal electric (TE) modes. This band 

gap was found to be about one third of the threshold frequency of a bulk superconducting 

material. The physical information from this work for TE mode however is quite limited 

because only the first band is given. As for the other higher bands in addition to the 

possible PBGs cannot be obtained there. In other words, a full band structure for this 

one-dimensional superconducting photonic crystal remains unavailable thus far. 

A full band structure is a basic and important means for understanding the 

fundamental physics about electromagnetic wave propagation characteristics in a photonic 

crystal. This information is not only of fundamental but also of technical use             

for a superconducting material. Motivated by this, in this dissertation we shall extend the 

work of Ref. [20]. We would like to present the full photonic band structure for TE mode 

in a superconductor-dielectric photonic crystal. Firstly, we use the Abeles theory for a 

stratified media to calculate the frequency-dependent transmittance [7]. From the 

transmittance spectrum, we can clearly learn the locations of all possible pass bands and 

stop bands. With these in hand, one is able to calculate the band structure from the 

transcendental equation based on the transfer matrix method together with the Bloch 

theorem. Then a comparison between the transmittance spectrum and full band structure 

will be made. 

The format of this work is as follows: Section II describes the theoretical 

approaches to be used in the calculation. The calculated transmittance spectrum and band 

structure will be given in Section III. Discussion on the PGBs will also be made in Section 

III. A summary will be addressed in Section 4. 
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3.2 Theory 

A one-dimensional nonmagnetic superconductor-dielectric photonic crystal will be 

modeled as a periodic superconductor-dielectric multilayer structure with a large number 

of periods, 1N >> . Such an N-period superlattice is shown in Fig. 3.1, where 

2 3a a a= +  is the spatial periodicity, where 2a  is the thickness of the superconducting 

layer and 3a  denotes the thickness of the dielectric layer. We consider that a TE wave is 

incident at an angle 1θ  from the top medium which is taken to be free space with a 

refractive index, 1 1n = . The index of refraction of the lossless dielectric is given by 

3 3rn ε= , where 3rε  is its relative permittivity. For the superconductor, the index of 

refraction can be described on the basis of the conventional two-fluid model [20]. 

According to the two-fluid model the relative permittivity as well as its associated index 

of refraction can be obtained, namely 
2

2 2 21r
L

cε
ω λ

= − ,                    (3.1) 

and 

2

2 2 2 21r
L

cn ε
ω λ

= = − .                 (3.2) 

According to the Abeles theory, the reflection and transmission coefficients can be 

determined and are given by11 

( ) ( )
( ) ( )

11 12 1 21 22

11 12 1 21 22

M M p p M M p
r

M M p p M M p
+ − +

=
+ + +

,           (3.3) 

and 

( ) ( )
1

11 12 1 21 22

2 pt
M M p p M M p

=
+ + +

.           (3.4) 

Here ( )1 0 0 1 1cosp nε µ θ=  is for the first medium, and ( )0 0 cosp nε µ θ=  is 
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for the last medium. Both media here are taken to be free space. The reflectance 

(reflectivity) R, transmittance (transmissivity) T and r , t  are related by  

2R r= ,      2

1

pT t
p

= .                (3.5) 

Next, we are going to briefly describe the method used in Ref. [20] for a direct 

calculation of the band structure in a periodic superconductor-dielectric medium. Based 

on the basic assumption of translational symmetry and aided by the Floquet (or Bloch) 

theorem together with the use of transfer matrix method, one can obtain a transcendental 

equation determining the band structure, namely [8,20] 

( ) ( ) ( ) ( ) ( )2 3 2 3
1cos cos cos sin sin
2

x sx
sx x sx x

sx x

k kKa k a k a k a k a
k k

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
,   (3.6) 

where K is the Bloch wave number, 

   2
3 1sinx rk

c
ω ε θ= − ,                   (3.7) 

and 

  
2

2
1 2 2cossx

L

ck
c
ω θ

ω λ
= − .                   (3.8) 

Equation (3.17) can be numerically solved for ω as a function of K, yielding the 

so-called photonic band structure or dispersion relation. In Ref. [20], only the first band 

is given and thus it is not sufficient to explore the whole optical properties in a photonic 

crystal. In the next section, we shall give other possible higher bands. The higher bands 

then enable us to study the PGBs. 

Before presenting the numerical results we mention that the above theoretical 

formulations are based on the flat interface model. This is legitimate and widely used to 

theoretically study the fundamental optical properties in a photonic crystal [3, 19, 20]. In 

the actual material, some interface issues such as interface roughness, lattice 

imperfection, and surface discontinuity may arise due to the process of a film growth. To 
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study surface effect on a photonic crystal, other method such as the plane-wave 

expansion may be employed and some works are available [38]. A study of interface 

effect on the photonic crystal is not our interest here. 

 

3.3 Numerical Results and Discussion 

3.3.1 Superconductor-dielectric superlattice 

Let us now present the numerical results according to the aforementioned 

equations. Two dimensionless quantities such as 2a cΩ ω π=  and 2 LaΛ πλ=  will 

be used as usual in the analysis of photonic bands. We also define the dielectric thickness 

ratio as 3r a a= . Figure 3.2 displays the calculated transmittance spectrum (right) and 

the band structure (left) for the conditions of 0
1 45θ = , 3 15rε = , 0.05Λ = , 1 3r = , 

and 500N = . It is seen that the calculated transmission spectrum is in fairly good 

agreement with that of the calculated band structure. For the sake of convenience, the 

first six cutoff frequencies (at which T = 0) are denoted by iΩ , 1, 2,3 ~ 6i = , as shown 

in Fig. 3.2. The first band gap, denoted by 1∆ , is equal to 1 0.017Ω = . The first band 

gap is referred to as the low-frequency (LF) gap [20], which is not seen in the 

dielectric-dielectric superlattice. This gap size is nearly equal to one third of the cutoff 

frequency cΩ  for a bulk superconductor which is in value of 0.05 here. Thus, its origin 

can be regarded as a combined effect of the spatial periodicity and of the addition of 

dielectric material [20]. The dimensionless bulk cutoff frequency 0.05cΩ =  is equal to 

a real frequency of 15~ 10c Lcω λ=  s-1, which is of the same order of plasma frequency 

for most alkali metals. The dispersion relation for a bulk superconductor is thus 

recognized as an analogy to the plasma dispersion in metals.8 On the other hand, 1∆  

also appears in a metallic photonic crystal but its size is near the plasma cutoff frequency, 

meaning that it does not depend on the periodicity [18]. Thus in the metallic superlattice 
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1∆  is not a real PBG, whereas it is a true PBG in the superconductor superlattice because 

1∆  is indeed related to the periodicity. 

In addition to 1∆ , along with the first band from 1 0.017Ω =  to 2 0.165Ω = , 

other higher bands as well as PBGs are also displayed in Fig. 2. The second PBG is 

denoted by 2∆  equal to 3 2 0.368 0.165 0.203Ω Ω− = − =  . That is almost twelve times 

larger than 1∆ . The second band is located from 3 0.368Ω =  to 4 0.455Ω = . The third 

PBG, 3∆ , is 5 4 0.712 0.455 0.257Ω Ω− = − =  in magnitude and is greater than 2∆  

appreciably. The third band is then above 5Ω  and under 6Ω . From the results in Fig. 2 

we can deduce that the photonic band structure for a one-dimensional superconducting 

photonic crystal is quite reminscent of the electronic band structure. Moreover, it has 

multiple PGBs, instead of having just one lowest band gap as reported in Ref. [20]. 

Figure 3.3 shows the first five cutoff frequencies and PBGs as a function of 

penetration depth at the conditions of 045θ = , 3 15rε = , 1 3r = , and 500N = . The 

first one, 1Ω ,  being equal to 1∆ , increases with increasing Λ . The dependence of 2∆  

on Λ  is similar to that of 3∆ . Both also increase as Λ  increases. The variations in 2∆  

and 3∆ , however, are not as salinet as 1∆ , especially at small values of Λ . Figure 3.4 

shows the calculated frequencies and PBGs as a function of angle of incidence at 

3 15rε = , 0.05Λ = , 1 3r = , and 500N = . It is seen that gap 1∆  essentially does not 

change with the variation in the angle of incidence, indicating an omnidirectional feature. 

In addition, 2∆  changes slightly as a function of angle of incidence. The change in the 

third gap size, 3∆  is appreciable for 1θ  smaller than 200 and becomes nearly linear 

between 200 and 600. It then approaches a saturation value of about 0.32. In Fig. 3.5, we 

have plotted the cutoff frequencies versus dielectic constant of dielectric layer for 

045θ = , 0.05Λ = , 1 3r = , and 500N = . All the cutoff frequencies, in general, 

decrease with increasing dielectric constant. The corresponding first three gap sizes are 
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depicted in Fig. 3.6, where 1∆  decreases slowly with increasing dielectric constant. A 

peak vaule in 2∆  is attained for 3 5rε = , and then decreases as the dielectric constant 

increases. As for 3∆ , it also attains a maximum when 3 10rε = , and 3∆  is equal to 1∆  

for 3 3rε = . 

In the above numerical results, the calculated frequency for a superconductor 

photonic crystal (SPC) is normalized in 01 λ , the sole material parameter of a 

superconductor involved in the formulation. This indicates that the results are valid for 

all the possible superconductors described by the two-fluid model [20]. Most high-Tc 

cuprates have a value of 0 200 300λ ≈ −  nm, corresponding to infrared region. As for 

the conventional superconductor such as a typical A15 compound superconductor with 

Tc above 10 K, 0 60 90λ ≈ −  nm, it then can work in the yellow to violet region. The 

feasibility of a SPC has been well discussed by Feng et al [39]. 

 

3.3.2 Extraordinary optical properties in near-zero-permittivity 

operation range 

Let us investigate the reflectance in the vicinity of superconductor threshold 

wavelength at various angle of incidence. To calculate the reflection response, the layer 1 

is taken to be the typical high-Tc superconductor, YBa2Cu3O7 (YBCO) with Tc = 92 K 

and 0 140λ =  nm [40], and the layer 2 is MgO with 2 10rε = . The operating 

temperature is T = 77 K in our simulation. The penetration depth Lλ  and the 

permittivity 1rε  of YBCO can be calculated according to Eqs. (3.16) and (3.17). With 

these material parameters, the threshold wavelength of YBCO is calculated to be 

thλ =1245 nm. In addition, the superconductor-dielectric superlattice is immersed in free 

space, i.e, 0n = fn =1.  

We first consider the conditions of that the thicknesses of YBCO and MgO layers 
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are set to be 1 130d =  nm and 2 80d =  nm, respectively, and the number of periods is 

10N = . Figure 3.7 depict the TM-reflectance at angle of incidence (a) 00θ = , (b) 

015θ = , (c) 030θ = , (d) 045θ =  and (e) 060θ = , respectively. It is obvious to see that 

at 0 0 015 ,30 ,45θ =  and 060  there is an additional PBG within which the threshold 

wavelength thλ  is contained. Such a PBG is referred to as a near-zero- n gap because 

within this gap the refractive index of superconductor is much less one and very close to 

zero. This gap is strongly dependent on the angle of incidence, and increases largely as 

the angle increases. This additional PBG however cannot be seen for the TE wave. This 

gap is due to the existence of radial component of the electric field, Eρ. This Eρ interacts 

with the superelectrons in the superconductor and thus a superpolariton gap is created. 

Figure 3.8 shows the calculated bandedge frequencies as a function of angle of incidence 

at the conditions of 1 130d =  nm, 2 80d =  nm and the number of periods is 10N = . It 

is seen that there is an additional PBG appears near thλ  in the oblique-incidence case. 

Except the additional PBG, the other PBG gradually disappear or appear as the angle 

increases. When the angle of incidence increases, this additional gap which is at thλ  

doesn’t disappear and increases largely.  

Next, we shall investigate the PBG which the threshold wavelength of YBCO, 

thλ =1245 nm, is located within. To reach this end, the thicknesses of YBCO and MgO 

layers are also changed to be 1 100d = mm and 2 140d = mm and the number of periods 

20N =  is taken in our calculation. In Fig. 3.9, we see that the threshold wavelength of 

YBCO thλ  is located within the PBG. We can see that there are dips near thλ  within the 

PBG at oblique incidence for TM wave. The dip in TM wave is shallower compared with 

the TE wave. The appearance of such dips in reflectance is mainly due to the field 

component Hρ  of TM wave, which, in fact, does not show up in the PBR in the 

normal-incidence case. The deep dip in TE wave enables us to design a transmission 
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narrowband filter or resonator without introducing any physical defect. Moreover, a 

multi-resonance filter is also possible because of the presence of the multiple dips in the 

reflection response.  

  

3.4 Summary 

By using the Abeles theory for a stratified medium and two-fluid model for a 

superconductor, we have calculated the TE mode transmittance spectrum for a 

superconductor-dielectric superlattice. We have also presented the photonic band 

structure based on the transfer matrix method together with the Bloch theorem. Results 

show excellent agreement for both methods. From the calculated results, some 

conclusions can be drawn as follows: For a one dimensional superconducting photonic 

crystal, the band structure shows a multiple-PBG structure, not just the first band as 

shown previously in Ref. [11]. The fundamental difference is the existence of the 

low-frequency band gap which is not shown in all-dielectric photonic crystals. This gap is 

a true PBG, whereas it is not a PBG for a metallic photonic crystal. Besides the first band 

gap, we also have investigated the second and third PBGs as a function of penetration 

depth, angle of incidence, and permittivity of dielectric. The results reveal more basic 

information for the electromagnetic response of superconductor and it could be of 

technical use in superconducting electronics. Furthermore, we find that there are an 

additional PBG or dips appear near thλ  in the oblique-incidence case. 
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Fig. 3.1. A superconductor-dielectric periodic layered structure. A transversal electric 
mode optical wave is incident obliquely from the top medium at an angle of incidence 

1θ  on the plane superconductor boundary. The media are characterized by distinct 
indices of refraction 1n , 2n , and 3n , respectively. The period is a and the thicknesses of 
superconductor and dielectric layeres are denoted by 2a , and 3a , respectively. 

 



 30

 

 

 

K a / 2π

0.0 0.1 0.2 0.3 0.4 0.5

ω
 a

 / 
2π

 c

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T

0.0 0.2 0.4 0.6 0.8 1.0

Ω1

Ω6

Ω5

Ω2

Ω3

Ω4

 

 

 

Fig. 3.2. The calculated transmittance spectrum (right) and the band structure (left). The 
horizontal dash lines mark the first six cutoff frequencies denoted by iΩ , 1, 2,3 ~ 6i = . 

Excellent agreement is achieved in both results. The conditions are 0
1 45θ = , 3 15rε = , 

0.05Λ = , 1 3r = , and 500N =  
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Fig. 3.3. Calculated five cutoff frequencies (solid lines) as well as the first three PBGs 

(dotted lines) as a function of penetration depth. The conditions are 0
1 45θ = , 3 15rε = , 

1 3r = , and 500N = . 
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Fig. 3.4. Calculated five cutoff frequencies (solid lines) as well as the first three PBGs 
(dotted lines) as a function of angle of incidence. The conditions are 3 15rε = , 0.05Λ = , 

1 3r = , and 500N = . 
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Fig. 3.5. Calculated four cutoff frequencies as a function of dielectric constant. The 

conditions are 0
1 45θ = , 0.05Λ = , 1 3r = , and 500N = . 
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Fig. 3.6. The corresponding first three PBGs as a function of dielectric constant 
calculated from Fig. 3.5 at the same conditions. 
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Fig. 3.7. Calculated TM wave reflectance spectra of a superconductor-dielectric 
superlattice at different incident angle (a) 00θ = , (b) 015θ = , (c) 030θ = , (d) 045θ =  

and (e) 060θ = , respectively, under the conditions of 1 130d = nm, 2 80d = nm and 

10N = . 
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Fig. 3.8. Calculated bandedge frequencies as a function of angle of incidence under the 
conditions of 1 130d =  nm, 2 80d =  nm and the number of periods is 10N = .  
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Fig. 3.9. Calculated TM wave reflectance spectra of a superconductor-dielectric 
superlattice for different incident angle (a) 0θ = , (b) 0.1θ = , (c) 0.2θ = , (d) 0.3θ = , 
(e) 0.4θ = , (f) 0.5θ = , (g) 0.6θ = , (h) 0.7θ = , (i) 0.8θ = , (j) 0.9θ = ,  (k) 

1.0θ =  and (l) 1.1θ = , respectively, under the conditions of 1 100d = nm, 2 140d = nm 
and 20N = . 
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Chapter 4 
Optical properties of a superconducting 

annular periodic multilayer structure 
 

4.1. Introduction 

The study of a Bragg reflector (BR) or one-dimensional photonic crystal (1DPC) 

has been the interesting subject and has attracted lots of attention in recent years. There 

have been lots of reports on the calculations of the photonic band structures in 1DPCs 

thus far [41-43]. It is known that PCs have photonic band gaps (PBGs) at which the 

electromagnetic waves cannot propagate through the layered structures. Materials with 

PBGs have been playing an important role in modern photonic science and technology. 

In the earlier stage, the PBG structures were mainly fabricated by using the usual 

dielectrics, semiconductors and metals as well. Recently, the studies of the photonic band 

structures in a periodic multilayer structure consisting of superconducting and dielectric 

materials have also been reported [18-21]. Such a superconducting planar Bragg reflector 

(SPBR) has some basic distinctions compared to an all-dielectric plane Bragg reflector. 

For example, there exists a low-frequency PBG due to the combined effects of periodicity 

and of incorporating superconducting materials [19-21]. This low-frequency PBG is 

further tunable as a function of the temperature and the applied static magnetic field as 

well. This tunable feature comes from the temperature- and field-dependent penetration 

length of a superconductor. Moreover, in the region near the threshold frequency of the 

bulk superconductor, which plays a similar role as the plasma frequency in metal, some 

extraordinary optical properties in a SPBR can be seen [41].   

A Bragg reflector with an annular geometric structure shown in Fig. 1 has now 
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been achievable with the advance of modern fabrication techniques. In our analysis we 

use the two-fluid model for the superconductor [9,10] together with the transfer matrix 

method for the cylindrical waves developed by Kaliteevski et al. [11]. With the fact that 

the field solutions of the cylindrical waves are closely related to the azimuthal mode 

number, denoted by m , for both the TE and TM waves, optical properties at different 

m-number will be examined. In this paper, we have found that an additional 

high-reflectance band or some reflection dips near the threshold wavelength of a 

superconductor can be found for the TM wave at azimuthal mode number 1m ≥ . These 

two distinct features behave like the localized passbands, which provide a feasible way of 

designing a narrowband transmission filter or an annular resonator without physically 

introducing any defect layer to break the periodicity of the structure. First we demonstrate 

that the wavelength-dependent reflectance at 0m =  is nearly identical to that of the 

planar one-dimensional superconducting BR. Second, the reflectance spectra for the TM 

wave are plotted and compared at different values of m . Finally, the role played by the 

starting radius 0ρ  in this SABR will be illustrated. 

 

4.2 Theory  

The structure of a SABR is shown in Fig. 4.1, in which the inner core region has a 

refractive index of n0 and a starting radius of ρ0, the layer 1 with index n1 is assumed to 

be the superconductor, and layer 2 having index n2 is the dielectric layer. In addition, the 

index of refraction of the outer region is denoted by nf. To calculate the reflectance at the 

first circular boundary, ρ = ρ0, we use the transfer matrix method in the cylindrical waves 

[11]. The cylindrical wave is assumed to be diverging from the axis of symmetry, 0ρ = , 

and then impinges normally on the first circular interface of ρ = ρ0. 

In our analysis we use the two-fluid model for the superconductor [12,13] together 
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with the transfer matrix method for the cylindrical waves developed by Kaliteevski et al. 

[8]. Unlike 1DPC, the analytic expressions for the matrix elements of M for an annular 

BR cannot be obtained because the elements of each single layer matrix are functions of 

the radii of the two interfaces. It thus has to be numerically calculated.  

Based on the transfer matrix method for cylindrical wave described in Chapter 2, 

the reflection and transmission coefficients can be determined through the following 

relationships [11], 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

2 2 2
21 0 0 11 22 0 0 12

1 2 1
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where 0 0 0p ε µ=  and f f fp ε µ=  are the admittances of the starting and the last 

medium for the incident wave, 11M ′ , 12M ′ , 21M ′  and 22M ′  are the matrix elements of the 

inverse matrix of M, 0 0K ω µ ε=  is the free-space wave number, and 

( )
( ) ( )
( ) ( )

1,2
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1,2
m l l

ml
m l l

H k
C

H k
ρ
ρ

′
= , 0,l f= .                (4.3) 

where ( )1
mH  and ( )2

mH  are the Hankel function of the first and second kind. The results 

for TM wave are also obtainable by simply replacing ε µ↔ , and  j j↔ −  in the 

formulas of TE wave. 

Regarding the permittivity of the superconducting layer, we shall adopt the two-fluid 

model. According to the two-fluid this model the relative permittivity and the associated 

refractive index can be obtained and are given by 

                              
2

1 2 21 ,r
L

cε
ω λ

= −                 (4.4) 
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2

1 1 2 21 ,r
L

cn ε
ω λ

= = −               (4.5) 

It is seen, from Eq. (4.7), that there is a threshold wavelength 2th Lλ πλ=  at which n1 is 

equal to zero. The threshold frequency, or the threshold wavelength, similar to the plasma 

frequency in metal characterizes the electromagnetic wave properties of a bulk 

superconductor. 

 

4.3 Numerical results and discussion 

To calculate the reflection response, the layer 1 is taken to be the typical high-Tc 

superconductor, YBa2Cu3O7 (YBCO) with Tc = 92 K and 0 140λ =  nm [40], and the 

layer 2 is MgO with 2 10rε = . The operating temperature is T = 77 K in our simulation. 

The penetration depth Lλ  and the permittivity 1rε  of YBCO can be calculated 

according to Eqs. (4.6) and (4.7). With these material parameters, the threshold 

wavelength of YBCO is calculated to be thλ =1245 nm. In addition, the SABR is 

immersed in free space, i.e, 0n = fn =1. The thicknesses of YBCO and MgO layers are set 

to be 1 130d =  nm and 2 80d =  nm, respectively, and the number of periods is 9N = .  

In Fig. 4.2, we plot the wavelength-dependent reflectance for both the SABR and 

SPBR in TE wave, where the dash curve is for SABR with 0 1000ρ = nm at the lowest 

mode, 0m = , and the solid curve is for SPBR. It is seen that both of the reflection 

spectra almost coincide. This indicates that means the effect of the curved interfaces in an 

SABR at 0m =  can be neglected compared to the SPBR. In addition, there are two 

high-reflection bands (PBGs) in Fig. 4.2. The larger bandwidth covering the range from 

the orange light to the near infrared has the two bandedges of 598 nm and 1059 nm 

(bandwidth λ∆ = 461 nm). The small bandwidth falling from the violet to the ultraviolet 

(UV) has two bandedges, 329nm and 421nm, and a bandwidth of λ∆ =92 nm. We can 
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see that the thλ =1245 nm is not located within these two PBGs in this case. 

Let us now investigate the reflectance at various values of m-number. Figure 4.3 

depict the TM-reflectance at m = 0 (a), 1 (b), 2 (c), and 3 (d), respectively, under the 

conditions of 1 130d = nm, 2 80d = nm, 0 500ρ = nm and N = 9. It is of interest to see 

that at 1m ≥  there is an additional PBG within which the threshold wavelength is 

contained. Such a PBG is referred to as a near-zero- n gap because within this gap the 

refractive index of superconductor is much less one and very close to zero. This gap is 

strongly dependent on the m-value, increasing largely as the m-value increases. This 

additional PBG however cannot be seen for the TE wave. This gap is due to the existence 

of radial component of the electric field, Eρ. This Eρ interacts with the superelectrons in 

the superconductor and thus a superpolariton gap is created. It is noted that this 

superpolariton gap seen only for the higher order azimuthal mode of the cylindrical wave 

has not been found in an SPBR in the TM wave. It also should be mentioned that here we 

do not present the results of TE wave because, in fact, at m = 0, the reflectance of TE 

wave is nearly identical to that of TM wave. Moreover, only a little distinction in 

reflectance at m = 1, 2, or 3 is seen when they are compared to that of at m = 0. 

In Fig. 4.4, we plot TM-reflectance spectra of the SABR at four different starting 

radii, 200, 700, 1200, and 2000 nm at 1m = . It is seen that the size of superpolariton gap 

is strongly affected by ρ0. The size apparently decreases as ρ0 increases. That is, a 

narrowband gap could be obtained at a larger ρ0. This feature suggests that we can control 

the superpolariton gap size by simply changing the starting radius. However, other PBGs 

are not changed pronouncedly as a function of the starting radius. 

Finally, we shall investigate the PBG at which the threshold wavelength of the 

superconductor is located within it. To reach this end, we have chosen 1 90d = nm, 

2 160d = nm, and 0 1000ρ = nm, and the TM-reflectance is plotted in Fig. 4.5. It is seen 

from Fig. 5(a) that the threshold wavelength thλ = 1245 nm is indeed falls within the 
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PBG at m = 0. It is of interest to observe that, at 1m ≥ , a sharp dip is seen in the vicinity 

of thλ , as shown in Fig. 5(b) - 5(d). In addition to the enhancement of the dip due to the 

higher mode number, the number of dips is also increased. This phenomenon only due to 

the higher order azimuthal mode of the cylindrical wave is not present in the SPBR in the 

normal incidence case, but similar dip(s) can be found in the oblique incidence in the TM 

wave [41]. The existence of such dips possibly enables us to design a circular 

transmission narrowband filter or resonator without introducing any physical defect. 

Moreover, a multi-resonance filter is also possible because of the presence of the multiple 

resonant dips. All these peculiar features are, in fact, not observed in a usual all-dielectric 

annular BR. 

 

4.4 Summary 

The photonic band structures of an SABR have been analyzed in this paper. At 

0m = , the reflectance characteristics of an SABR is similar to that of an SPBR. At 1m ≥ , 

we find that there is an additional PBG called the superpolariton gap only for the TM 

wave. We also find that there exist some dips when the wavelength of interest is near the 

threshold wavelength thλ  of a superconductor. Both these results are closely related to 

the higher order azimuthal mode of the cylindrical wave in an SABR, which are has not 

be seen in the SPBR. These special features make the SABR possible to be used to design 

a narrowband transmission filter without inserting any physical defect layer in the 

structure. 

 

 

 



 47

y

x0

n1

n0

n2

n1

n2

nf

․
․․
․ ․․․․

ρ0

ρf

y

x0

n1

n0

n2

n1

n2

nf

․
․․
․ ․․․․

ρ0

ρf

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.1. The top view of the ABR, where layer 1 and layer 2 are taken to be with indices 
n1 and n2 , respectively. The thicknesses of layer 1 and layer 2 are d1 and d2, and ρ0 is the 
starting radius. 
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Fig. 4.2. Calculated wavelength-dependent reflectance for YBCO/MgO BRs., where the 
solid curve is for the planar superconducting BR, and the dashed curve is for the SABR. 
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Fig. 4.3. Calculated reflectance spectra of TM wave at different azimuthal mode number,  
(a) 0m = , (b) 1m = , (c) 2m =  and (d) 3m = , respectively, under the conditions of 

1 130d = nm, 2 80d = nm, 0 500ρ = nm and 9N = . 
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Fig. 4.4. Calculated reflectance spectra of TM wave at 1m =  for different starting radii 
(a) 0 200ρ = nm, (b) 0 700ρ = nm, (c) 0 1200ρ = nm and (d) 0 2000ρ = nm, 
respectively, under the conditions of 1 130d = nm, 2 80d = nm and 9N = . 
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Fig. 4.5. Calculated reflectance spectra of TM wave for different azimuthal mode number 
(a) 0m = , (b) 1m = , (c) 2m =  and (d) 3m = , respectively, under the conditions of 

1 90d = nm, 2 160d = nm, 0 1000ρ = nm and 9N = . 
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Chapter 5 
Optical properties of an annular periodic 

multilayer structure containing the 
single-negative materials 

 
5.1. Introduction 

In 1968, the electromagnetic metamaterials with both the negative permittivity 

( )0ε <  and negative permeability ( )0µ <  first predicted by Veselago [23] are called 

the double-negative (DNG) materials. An SNG material means that only one of the two 

material parameters, ε  and µ , is negative [31-33]. Thus an SNG material could be the 

epsilon-negative (ENG) medium with 0ε <  and 0µ >  or the mu-negative (MNG) 

medium with 0µ <  and 0ε > . It is known that a photonic band gap (PBG) could be 

formed as a consequence of the interference of Bragg scattering in a periodical layer 

structure like a one-dimensional photonic crystals (1DPCs) and Bragg reflectors (1DBRs). 

In a usual 1DBR made of all positive-index materials, the PBG is called the Bragg gap, 

which is proven to be strongly dependent on the lattice constant and the disorder of a 

device as well. However, for the SNG materials ε  and µ  are frequency-dependent, so 

that we have 0ε <  and 0µ >  or 0µ <  and 0ε >  within a certain frequency range, 

which is called the SNG frequency range. Therefore, the PBG in the SNG frequency 

range is called the SNG gap. For a 1DBR consisting of ENG-MNG bilayers, it is known 

that the SNG gap is fundamentally different from the Bragg gap. There have been many 

reports on the 1D plane BRs (1DPBRs) containing SNG materials [42-45]. 

Besides the simple 1DPBRs or 1DPC, two-dimensional BRs (2DBRs) are also 
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important in the photonic and physical communities. A similar version 2DBR is a 

periodic bilayer structure in an annular geometry called an annular Bragg reflector (ABR). 

An ABR plays an important and useful role in modern laser system with a feature of 

vertical emission [9]. Similar device like the annular Bragg resonator is also available in 

the present [10]. 

In this paper, based on the transfer matrix method for the cylindrical Bragg waves 

developed by Kaliteevski et al. [11], we shall theoretically investigate the optical 

properties in an ABR consisting of the MNG-ENG materials. With the fact that the field 

solutions of the cylindrical Bragg waves for both TE and TM waves are dependent on the 

azimuthal mode number denoted by m , optical reflectance will be studied at different 

m-number. The frequency-dependent reflectance at 0m =  is first shown to be nearly 

identical to that of 1DPBR containing the SNG materials. Next, the reflectance spectra 

are plotted and compared at different values of m . At 1m ≥ , it is found that there exist 

some novelties compared with the usual PBR. Furthermore, we insert a defect layer in the 

periodic multilayers and conclude the property of the SNG gap for an ABR is insensitive 

to the disorder as same as the one-dimensional BR. 

 

5.2 Theory  

We first introduce an ABR consisting of the MNG/ENG double layers. The relative 

permittivity and permeability for a MNG material are given by [42, 43] 

                          ,m aε =   
2

21 ,mp
m

ω
µ

ω
= −                    (5.1) 

whereas those of an ENG material are 

                          
2

21 ,ep
e

ω
ε

ω
= −    ,e bµ =                    (5.2) 

where a and b are positive constants, and mpω  and epω  are the magnetic plasma 
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frequency and the electronic plasma frequency respectively. It is seen from Eqs. (5.1) and 

(5.2) that the SNG frequency range exist when the frequency satisfies { }min ,mp epω ω ω<  

whereas the materials will be double-positive (DPS) if { }max ,mp epω ω ω> . 

The top view of the ABR is depicted in Fig. 4.1, where ρ0 is called the starting 

radius, n1-layer is the MNG material, and n2-layer is the ENG material. The cylindrical 

wave is assumed to be radiated from the axis of symmetry, 0ρ = , and to be incident 

normally on the first interface at 0ρ ρ= . The reflectance at 0ρ ρ=  can be analytically 

analyzed by making use of the transfer matrix method in cylindrical Bragg wave [11]. 

There are two possible polarizations for the cylindrical Bragg wave, i.e., E-polarization 

(TE) and the H-polarization (TM).  

Based on the transfer matrix method for cylindrical wave described in Chapter 2, 

the matrix elements of the inverse of M denoted by 11M ′ , 12M ′ , 21M ′  and 22M ′  can be 

readily obtained and then the reflection and transmission coefficients are determined by 

the following equations [11], 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

2 2 2
21 0 0 11 22 0 0 12

1 2 1
0 0 11 21 0 0 12 22

m f mf m
d

m f mf m

M jp C M jp C M jp C M
r

jp C M M jp C jp C M M

′ ′ ′ ′+ − +
=

′ ′ ′ ′− − − − −
,        (5.3) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
0 0

2 1 1 2 1
0 0 0 0 0 0 0 11 21 0 0 12 22

4
d

m m m f mf m

t
K H k H k jp C M M jp C jp C M M

ε µ

π ρ ρ ρ
=

⎡ ⎤′ ′ ′ ′− − − − −⎣ ⎦

,  (5.4) 

where 0 0 0p ε µ=  and f f fp ε µ=  are the admittances of the starting and the last 

medium for the incident wave, 0 0K ω µ ε=  is the free-space wave number, and 

( )
( ) ( )
( ) ( )

1,2
1,2

1,2
m l l

ml
m l l

H k
C

H k
ρ
ρ

′
= , 0,l f= .             (5.5) 

where ( )1
mH  and ( )2

mH  are the Hankel function of the first and second kind. Equations 

(5.3) and (5.4) then leads to the reflectance R and the transmittance T, i.e., 
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2
dR r= ,       2

0

f
d

n
T t

n
= ,              (5.6) 

where 0n  and fn  are respectively the refractive indices of the starting and the final 

media. By simply replacing ε µ↔ , and j j↔ −  in the above formulations, the 

corresponding results for the TM wave can be readily obtained. 

In the above formulations, we have considered that the input signal is an outgoing 

cylindrical wave that is uniformly radiated at 0ρ =  and impinges normally on 0ρ ρ= . 

Our goal is to calculate the reflectance at one point on 0ρ ρ= . However, there should be 

a reflected wave at the opposite end to this point and it can be regarded as the secondary 

input signal for the considered point. This secondary signal has been assumed to be 

neglected for the convenience of formulation. Technically, this secondary source can be 

eliminated by placing a receiving antenna or a metallic absorber at 0ρ = . And the above 

formulations are thus acceptable and reasonable. 

 

5.3 Numerical results and discussion 

In what follows we will present the numerical results for the optical reflectance. We 

suppose that the ABR is immersed in free space, i.e, 0n = fn = 1. The SNG material 

parameters are 3.5a = , 1.2b = , 1010mpω = rad/s , and 101.3 10epω = × rad/s [43]. This 

indicates that the SNG frequency range exist under the condition of 1010ω <  rad/s. The 

thicknesses of the MNG and ENG layers are 1 10d = mm and 2 5d = mm, and the 

number of the periods is 21N = . 

We first investigate the geometric effect on the reflection response for both the 

ABR and PBR. In Fig. 5.1, we plot the frequency-dependent TE-reflectance, where the 

dashed curve is for ABR with 0 28ρ = mm at the lowest azimuthal mode, 0m = , and the 

gray solid curve is for PBR. It is seen that that both of the reflection spectra almost 
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coincide, indicating that at m = 0 the geometric difference due to the curved interfaces in 

ABR nearly has no effect on the reflectance compared to the PBR. In addition, there are 

two high-reflection band gaps. The narrow one at frequency lower than 1010  rad/s is 

referred to as the SNG gap. The wide band gap at frequency higher than 103 10×  rad/s 

with DPS materials is the usual Bragg gap (BG). The fundamental features between SNG 

gap and BG are well described in Refs. [42-47]. 

Because the optical properties at m = 0 for an ABR is nearly the same as the usual 

PBR, we thus study the effects due to field solutions at the higher modes. The 

TE-reflectance for m = 0 (a), 1 (b), 2 (c), and 3 (d) are plotted in Figs. 5.2, where 

0 30ρ = mm is used. It is of interest to find that at 1m ≥  an additional PBG appear near 

1010mpω =  rad/s. Such a PBG is referred to as the near-zero-n gap for the MNG material, 

because within this gap the refractive index of the MNG material is much less one and 

very close to zero, and this additional PBG is referred to as the MNG gap or the magnetic 

gap. The MNG gap is enhanced as m increases. At m = 2, this additional gap wider than 

m = 1, is not pure SNG gap but a mixed gap of SNG and MNG gap. At m = 3, a wider flat 

top mixed gap is obtained, as shown in Fig. 3(d). In Fig. 5.3, we plot the TM-reflectance 

for m = 0 (a), 1 (b), 2 (c), and 3 (d) at 0 30ρ = mm. Similar results in Fig. 3 can also be 

obtained for the TM wave. Here an additional gap is now near 101.3 10epω = ×  rad/s, and 

the additional PBG can be called the ENG gap or the electric gap. This ENG gap will 

interact with SNG gap considerably at m > 1 and then again merges as wider PBG in Fig. 

4(d). The results illustrate the effects of the higher-mode cylindrical Bragg wave. In 

addition, the values in the plasma frequencies, mpω  and epω , will determine the position 

of the additional MNG or ENG gap. It is evident that MNG gap is due to the existence of 

radial component of the magnetic field Hρ  of TE wave, and ENG gap is caused by Eρ  
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of TM wave. Moreover, the higher-order mode causes a strong interaction between the 

MNG (or ENG) gap and SNG gap, leading to a wider mixed gap. These special results 

arising from the higher order azimuthal mode of the cylindrical waves are not found in 

the usual PBR containing of SNG materials. The additional MNG and ENG gap suggest 

that the ABR could be used to design a narrowband transmission filter or an annular 

resonator without introducing any physical defect layer in the structure. 

In Figs. 5.4 and 5.5, we plot TM-reflectance spectra of the ABR for three different 

starting radii at 1m =  and 2m = , respectively. (The reflectance spectra of TM wave for 

0 30ρ = mm at both 1m =  and 2m =  are shown in Fig. 4.) It is seen that the side lobes 

near the upper bandedge of SNG gap are highly enhanced as the starting radius decreases. 

Thus, the gap near 1010 rad/s is effectively enlarged at ρ0 = 5 mm. The results suggest 

that care therefore should be taken in the choice of the starting radius for designing an 

ABR.  

Next, we shall investigate the PBG which the magnetic plasma frequency mpω  

and the electronic plasma frequency epω  are located within. To reach this end, the SNG 

material parameters are chosen as 6a = , 2.5b = , 104 10mpω = × rad/s , and 

104.5 10epω = × rad/s [29,32] and the thicknesses of MNG and ENG layers are also 

changed to be 1 6d = mm, 2 3d = mm. The starting radius, 0 22ρ = mm and number of 

periods 6N = , are taken in our calculation. In Fig.5.6 and Fig. 5.7, we see that mpω  and 

epω  are located within the PBG. Some features are to be noted. There are dips near mpω  

within the PBG at mode 1m ≥  for TE wave, whereas dips appearing near epω  in the 

PBG for TM wave. The dip in TM wave is shallower compared with the TE wave. The 

appearance of such dips in reflectance is mainly due to the higher azimuthal mode of the 
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cylindrical wave, which, in fact, does not show up in the PBR in the normal-incidence 

case. In addition, these dips in the PBG are related to the field component Hρ  of TE 

wave and Eρ  of TM wave, respectively. The deep dip in TE wave enables us to design a 

circular transmission narrowband filter or resonator without introducing any physical 

defect. Moreover, a multi-resonance filter is also possible because of the presence of the 

multiple dips in the reflection response.  

It should be noted that the SNG material parameters and the film thicknesses in 

plotting Figs. 7 and 8 are different from in Figs. 2-6. We use these because the SNG gap 

is insensitive to the lattice constant and the SNG gap midfrequency is invariant of the 

ratio of the thickness (see Ref. [43]), it is thus difficult to change the position of the SNG 

gap in the spectra. In Figs. 2-6, the magnetic plasma frequency mpω  and the electronic 

plasma frequency epω  are very close to the SNG gap. If we only change the film 

thicknesses but use the same values of the plasma frequencies as in Figs. 2-6 to achieve 

the condition that the plasma frequencies are located within the PBG, this PBG will 

approach to the SNG gap, which may lead to a confusion in the dips as well as the band 

edges. Moreover, the PBG may even overlap the SNG gap, which also makes the 

condition more complicated. 

The thickness-dependent band structure in plotted in Fig. 5.8, where we take a 

fixed thickness ratio of the two constituent layers with different lattice constants. It is 

seen that SNG gap is nearly invariant for a fixed thickness ratio, robust to the variation in 

the lattice constant. However, the Bragg gap is strongly affected by the variation in the 

lattice constant. That is, the change in the lattice constant leads to a shift in the Bragg gap. 

In addition, the gap is enhanced as the lattice constant is decreased. These features in 

SNG and Bragg gaps are also seen in the usual SNG PBR. Conclusively, the fundamental 
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optical properties are proven to be preserved even in the ABR where the boundaries are 

geometrically changed from the planar shape to the annular one. 

Finally, let us consider ABR containing a defect layer D with 1.8dε = , 1.8dµ =  

and 45dd = mm. The structure is denoted as 6 6( / ) ( / )MNG ENG D MNG ENG . Here we 

take the material parameters of MNG and ENG as 1.5a = , 1.5b = , 1010mpω = rad/s , 

and 1010epω = rad/s. For convenience of comparison, the reflectance of ABR without 

defect is first plotted in Fig. 5.9(a). The reflectance in the presence of the defect is then 

shown in Fig. 5.9(b), in which two different magnitudes of thickness, 1 24d =  mm, 

2 12d =  mm (gray solid curve), and 1 16d = mm, 2 8d = mm (dash-dotted curve) are 

taken, and the starting radius 0 30ρ = mm is used as well. When the lattice constant is 

scaled down by 2/3, the Bragg gap in the presence of the defect is obviously moved to the 

higher frequency, while it remains fixed for the SNG gap. The result again elucidates that 

the SNG gap is indeed robust to the lattice constant (with a fixed thickness ratio of the 

constituent bilayer) even in the ABR. It is also contrasted with the Bragg gap that the 

spectral position of the defect mode inside the SNG gap is nearly invariant with the 

lattice constant scaling. 

 

5.4 Summary  

The photonic band structures of an ABR containing SNG materials have been 

theoretically examined in this work. With the field solutions of the circular Bragg waves 

being dependent on the azimuthal mode number m , optical properties including the 

SNG and Bragg gaps at different m  modes are examined numerically. The conclusion 

can be drawn as follows. First, at the lowest mode, 0m = , the PBG structure in an ABR 

is nearly identical to that of a PBR. Second, At higher order azimuthal mode 1m ≥ , we 
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find that there is an additional PBG called the MNG gap and the ENG gap for the TE 

wave and TM wave, respectively. We also find that there exist some reflection dips when 

mpω  and epω  are taken in the PBG for TE and TM waves, respectively. These results are 

closely related to the higher order azimuthal mode of the cylindrical wave in an ABR, 

which are has not be seen in the PBR with SNG materials. Such special filtering responds 

make it possible to design the structure of a narrowband resonator without introducing 

any defect layer to break the periodicity. Third, the PBGs are strongly affected by the 

starting radius in addition to the m-number at m > 0. The SNG gap is robust to the lattice 

constant with a fixed thickness ratio of the constituent bilayer. Finally, for an ABR 

including a defect layer, it is found that the property of the SNG band gap is insensitive to 

the disorder. 
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Fig. 5.1. Calculated reflectance spectra for MNG/ENG Bragg reflectors, where the gray 
solid is for the PBR, and the dashed line is for the ABR.  
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Fig. 5.2. Calculated reflectance spectra of TE wave for the ABR at different azimuthal 
modes (a) 0m = , (b) 1m = , (c) 2m =  and (d) 3m = , respectively, under the conditions 

of 3.5a = , 1.2b = , 1010mpω = rad/s , 101.3 10epω = × rad/s, 1 10d = mm, 2 5d = mm, 

0 30ρ = mm and 21N = . 
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Fig. 5.3. Calculated reflectance spectra of TM wave for the ABR at different azimuthal 
mode (a) 0m = , (b) 1m = , (c) 2m =  and (d) 3m = , respectively, under the conditions 

of 3.5a = , 1.2b = , 1010mpω = rad/s , 101.3 10epω = × rad/s, 1 10d = mm, 2 5d = mm, 

0 30ρ = mm and 21N = . 
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Fig. 5.4. Calculated reflectance spectra of TM wave at azimuthal mode 1m =  for the 
ABR at different starting radii 0 5ρ = mm (a), 0 10ρ = mm (b) and 0 20ρ = mm (c), 

respectively, under the conditions of 3.5a = , 1.2b = , 1010mpω = rad/s , 

101.3 10epω = × rad/s, 1 10d = mm, 2 5d = mm and 21N = . 
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Fig. 5.5. Calculated reflectance spectra of TM wave at azimuthal mode 2m =  for the 
ABR at different starting radii 0 5ρ = mm (a), 0 10ρ = mm (b) and 0 20ρ = mm (c), 

respectively, under the conditions of 3.5a = , 1.2b = , 1010mpω = rad/s , 

101.3 10epω = × rad/s, 1 10d = mm, 2 5d = mm and 21N = . 
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Fig. 5.6. Calculated reflectance spectra of TE wave for the ABR at different azimuthal 
mode 0m =  (a), 1m = (b), 2m = (c), and 3m = (d), respectively, under the conditions 

of 6a = , 2.5b = , 104 10mpω = × rad/s , 104.5 10epω = × rad/s, 1 6d = mm, 2 3d = mm, 

0 22ρ = mm and 6N = . 
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Fig. 5.7. Calculated reflectance spectra of TM wave for the ABR at different azimuthal 
mode 0m = (a), 1m = (b), 2m = (c) and 3m = (d), respectively, under the conditions of 

6a = , 2.5b = , 104 10mpω = × rad/s , 104.5 10epω = × rad/s, 1 6d = mm, 2 3d = mm, 

0 22ρ = mm and 6N = . 
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Fig. 5.8. Calculated reflectance spectra of TE wave at azimuthal mode 2m =  for the 

ABR, under the conditions of 3.5a = , 1.2b = , 1010mpω = rad/s , 101.3 10epω = × rad/s, 

0 60ρ = mm and 21N = . The gray solid is for 1 9d = mm, 2 4.5d = mm. The dashed 
line is for 1 8d = mm, 2 4d = mm (scaled by 8 / 9 ). 
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Fig. 5.9. Calculated reflectance spectra of TE wave at 1m =  for the ABR. The material 

parameters are 1.5a = , 1.5b = , 1010mpω = rad/s , and 1010epω = rad/s. The spectrum 

with no defect is in (a), where 1 24d = mm, 2 12d = mm, 0 30ρ = mm and 13N = . The 
spectrum of structure with defect layer, is shown in (b), where the defect layer has 

1.8dε = , 1.8dµ =  and 45dd = mm. The gray solid curve is for 1 24d =  mm, 2 12d =  
mm. The dash-dotted curve is for 1 16d = mm, 2 8d = mm (scaled by 2 / 3 ). The starting 
radius 0 30ρ = mm is used. 
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Chapter 6 
Optical properties of an annular periodic 

multilayer structure containing the 
double-negative materials 

 
6.1. Introduction 

Although the concept of a DNG medium (i.e., a double-negative medium with 

0ε <  and 0µ < ) was first proposed by Veselago early in 1968 [23], it took many years 

until experimental evidence for the existence of such a medium was presented [24, 25]. 

The DNG materials are also known as left-handed materials (LHMs) because for an 

electromagnetic wave propagating in them the electric field, the magnetic field and the 

wave vector satisfy the left-handed triad contrary to the usual right-handed triad for the 

ordinary materials. It is equivalent to say that the Poynting vector is antiparallel to the 

wave vector in a DNG material. A significant result coming from the DNG material is 

that its index of refraction is negative. Thus, a DNG material is commonly referred to as 

the negative-index material (NIM). Recently, NIMs were realized by the appropriate 

combination of conductive and dielectric elements deposited on a substrate [46-51]. In 

the microwave regime, NIMs are fabricated from metallic wires and rings assembled in a 

periodic cell structure. The rings are generally referred to as split ring resonators (SRR). 

NIMs have the property that the effective permittivity ε  and permeability µ  are both 

negative. This results in an effective negative index of refraction, n ε µ= .  

During the last decade, the studies of electromagnetic properties of 

one-dimensional photonic crystals (1DPCs) and Bragg reflectors (BRs) have attracted 
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much attention. It is known that a photonic band gap (PBG) could be formed as a 

consequence of the interference of Bragg scattering in a periodical layer structure. In a 

usual BR made of all positive-index materials, the high-reflectance band or PBG is called 

the Bragg gap, which is proven to be strongly dependent on the lattice constant and the 

disorder of a device as well. However, for the DNG materials ε  and µ  are 

frequency-dependent. For a BR consisting of DNG materials, i.e., the DNG-dielectric 

bilayers, it is known to have the photonic band gap different from the Bragg gap. There 

have been many reports on the one-dimensional plane BRs (PBRs) containing DNG 

materials [52-56]. 

We shall theoretically investigate the optical properties in an annular Bragg 

reflector (ABR) consisting of the DNG-dielectric materials in this work. Based on the 

transfer matrix method for the cylindrical Bragg waves developed by Kaliteevski et al. 

[11], the photonic band structure is calculated. At first we demonstrate that the 

frequency-dependent reflectance at 0m =  is nearly identical to that of the planar 

one-dimensional BR containing the DNG materials. Next, the reflectance spectra for the 

cylindrical wave are plotted and compared at different values of m . At the azimuthal 

mode number 1m ≥ , it is found that there exist some special phenomena compared with 

the usual planar BR. In the vicinity of the magnetic plasma frequency and the electronic 

plasma frequency of the materials for TE wave and TM wave, respectively, an additional 

high-reflectance band is seen and some reflection dips exist when the plasma frequency is 

located in the PBG. These two distinct results arising from the higher order azimuthal 

mode of the cylindrical waves are not found in the PBR consisting of single-negative 

materials. Such peculiar filtering responses make it possible to adopt the structure in the 

design of a narrowband transmission filter or an annular resonator without introducing 

any physical defect layer to break the periodicity.  
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6.2 Theory  

An annular periodic multilayer structure which consists of the DNG/dielectric 

double layers is first introduced. The relative permittivity and permeability for a DNG 

material are given by [50,51,54] 

                               
2

21 ,epω
ε

ω
= −                     (6.1) 

2

21 ,mpω
µ

ω
= −                    (6.2) 

where mpω  and epω  are the magnetic plasma frequency and the electronic plasma 

frequency respectively. We can see that from Eqs. (6-1) and (6-2) the DNG materials can 

exist when the frequency satisfies { }min ,mp epω ω ω<  whereas the materials will be 

double-positive (DPS) if { }max ,mp epω ω ω> . 

The top view of the ABR containing the DNG materials is depicted in Fig. 4.1, where 

ρ0 is called the starting radius, n1-layer is the DNG material, and n2-layer is the dielectric 

material. Based on the transfer matrix method for cylindrical wave described in Chapter 2, 

the reflection and transmission coefficients are determined by the following equations [8], 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

2 2 2
21 0 0 11 22 0 0 12

1 2 1
0 0 11 21 0 0 12 22

m f mf m
d

m f mf m

M jp C M jp C M jp C M
r

jp C M M jp C jp C M M

′ ′ ′ ′+ − +
=

′ ′ ′ ′− − − − −
,      (6.3) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
0 0

2 1 1 2 1
0 0 0 0 0 0 0 11 21 0 0 12 22

4
d

m m m f mf m

t
K H k H k jp C M M jp C jp C M M

ε µ

π ρ ρ ρ
=

⎡ ⎤′ ′ ′ ′− − − − −⎣ ⎦

,    (6.4) 

where 11M ′ , 12M ′ , 21M ′  and 22M ′  are the matrix elements of the inverse of M, 

0 0 0p ε µ=  and f f fp ε µ=  are the admittances of the starting and the last 

medium for the incident wave, 0 0K ω µ ε=  is the free-space wave number, and 
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( )
( ) ( )
( ) ( )

1,2
1,2

1,2
m l l

ml
m l l

H k
C

H k
ρ
ρ

′
= , 0,l f= .             (6.5) 

where ( )1
mH  and ( )2

mH  are the Hankel function of the first and second kind. Equations 

(6.3) and (6.4) then leads to the reflectance R and the transmittance T, i.e., 

2
dR r= ,       2

0

f
d

n
T t

n
= ,             (6.6) 

where 0n  and fn  are respectively the refractive indices of the starting and the final 

media. For the TM wave the corresponding results can be readily obtained by simply 

replacing ε µ↔ , and j j↔ −  in the above formulations. 

     

6.3 Numerical Results and Discussion 

To calculate the photonic band structure, the layer 1 is taken to be the 

double-negative (DNG) materials with 92 3 10mpω π= × × rad/s and 92 5 10epω π= × ×  

rad/s [49], and the layer 2 is CaO with 2 12rε = . We assume that the SABR is immersed 

in free space, i.e, 0n = fn =1. The thicknesses of DNG and CaO layers are set to be 

1 7.75d = mm and 2 3.2d = mm, respectively, the starting radius is 0 50ρ = mm and the 

number of periods is 10N = .  

In Fig. 6.1, we investigate the frequency-dependent TE-reflectance, where the gray 

solid curve is for ABR at the lowest azimuthal mode, 0m = , and the dashed curve is for 

PBR. Because both of the reflection spectra almost coincide, it is indicated that at m = 0 

the geometric difference due to the curved interfaces in ABR nearly has no effect on the 

reflectance compared to the PBR. The band gap at frequency higher than 92 5 10π × ×  

rad/s with DPS materials is the usual Bragg gap (BG).  

In Figs. 6.2, the TE-reflectance for m = 0 (a), 1 (b), 2 (c), and 3 (d) are plotted, 
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respectively. We find that at 1m ≥  an additional PBG appear near 92 3 10mpω π= × ×  

rad/s. Because within this gap the refractive index of the DNG material is much less one 

and very close to zero, such a PBG is referred to as the near-zero-n gap for the DNG 

material, and can be called the magnetic gap. The magnetic gap is enhanced as m 

increases. At m = 2 this additional gap becomes wider than m = 1, and at m = 3, a further 

wider gap is obtained, as shown in Fig. 6.2(d). We plot the TM-reflectance for m = 0 (a), 

1 (b), 2 (c), and 3 (d) in Fig. 6.3. Similar results in Figs. 6.2 can also be obtained for the 

TM wave. At m > 1 an additional gap is now near 92 5 10epω π= × × rad/s and the 

additional PBG can be called the electric gap. The electric gap is also enhanced as m 

increases. The results illustrate the effects of the higher-mode cylindrical Bragg wave. In 

addition, the values in the plasma frequencies, epω  and mpω , will determine the position 

of the additional magnetic or electric gap. It is evident that magnetic gap is due to the 

existence of radial component of the magnetic field, Hρ , of TE wave, and electric gap is 

caused by Eρ  of TM wave. These special results arising from the higher order azimuthal 

mode of the cylindrical waves are not found in the usual PBR consist of DNG materials. 

The additional magnetic and electric gaps make it possible that the ABR could be used to 

design a narrowband transmission filter or an annular resonator without introducing any 

physical defect layer in the structure. 

Similarly to the above chapters, we shall investigate the PBG at which the 

magnetic plasma frequency mpω  and the electronic plasma frequency epω  are located 

within it. To reach this end, for TM wave we take the conditions the conditions of 

92 3 10mpω π= × × rad/s , 92 5 10epω π= × × rad/s, 2 12n = , 1 6d = mm, 2 7d = mm, 

0 70ρ = mm and 10N = . In Fig.6.4, it is shown that for TM wave epω  is located within 
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the PBG and there are dips near epω  at mode 1m ≥ . Then for TE wave 

92 3 10mpω π= × × rad/s , 92 5 10epω π= × × rad/s, 2 12n = , 1 25.5d = mm, 2 15d = mm, 

0 13ρ = mm and 11N =  are taken in our calculation. It is seen in Fig.6.5 that mpω  is 

located within the PBG and there are dips near mpω  at mode 1m ≥  for TE wave. The 

appearance of such dips in reflectance is mainly due to the higher azimuthal mode of the 

cylindrical wave, which, in fact, does not show up in the PBR in the normal-incidence 

case. In the same reason of electric and magnetic gap, these dips have relationship with 

Hρ  of TE wave and Eρ  of TM wave.  

 

6.4 Summary 

We have theoretically examined the photonic band structures of an ABR containing 

DNG materials. With the fact that the field solutions of the cylindrical Bragg waves for 

both TE and TM waves are dependent on the azimuthal mode number denoted by m , 

optical properties including the DNG and Bragg gaps at different m  modes are studied 

numerically. We make the conclusion as follows. First, at the mode 0m = , the PBG 

structure in an ABR is nearly as same as that of a PBR. Second, At higher order 

azimuthal mode 1m ≥ , it is found that there is an additional PBG called the magnetic 

gap and the electric gap for the TM wave and TE wave, respectively. We also find that 

there exist some reflection dips when mpω  and epω  are taken in the PBG for TM and 

TE waves, respectively. These unique phenomena are closely related to the higher order 

azimuthal mode of the cylindrical wave in an ABR, which are has not be seen in the PBR 

containing DNG materials. Such special filtering responds enables us to design a circular 

transmission narrowband filter or resonator without introducing any physical defect. to 
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break the periodicity.  

 

 

 

 

 

 

 

 
 

 

Fig. 6.1. Calculated reflectance spectra for DNG/dielectric Bragg reflectors, where the 
gray solid is for the ABR, and the dashed line is for the PBR.  
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Fig. 6.2. Calculated reflectance spectra of TE wave for the ABR with DNG materials at 
different azimuthal mode 0m = (a), 1m = (b), 2m = (c) and 3m = (d), respectively, 

under the conditions of 92 3 10mpω π= × × rad/s , 92 5 10epω π= × × rad/s, 2 12n = , 

1 7.75d = mm, 2 3.2d = mm, 0 50ρ = mm and 10N = . 
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Fig. 6.3. Calculated reflectance spectra of TM wave for the ABR with DNG materials at 
different azimuthal mode 0m = (a), 1m = (b), 2m = (c) and 3m = (d), respectively, 

under the conditions of 92 3 10mpω π= × × rad/s , 92 5 10epω π= × × rad/s, 2 12n = , 

1 7.75d = mm, 2 3.2d = mm, 0 50ρ = mm and 10N = . 



 79

 

 

 

 
 
Fig. 6.4. Calculated reflectance spectra of TM wave for the ABR with DNG materials at 
different azimuthal mode 0m = (a), 1m = (b), 2m = (c) and 3m = (d), respectively, 

under the conditions of 92 3 10mpω π= × × rad/s , 92 5 10epω π= × × rad/s, 2 12n = , 

1 6d = mm, 2 7d = mm, 0 70ρ = mm and 10N = . 
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Fig. 6.5. Calculated reflectance spectra of TM wave for the ABR with DNG materials at 
different azimuthal mode 0m = (a), 1m = (b) and 2m = (c), respectively, under the 

conditions of 92 3 10mpω π= × × rad/s , 92 5 10epω π= × × rad/s, 2 12n = , 1 25.5d = mm, 

2 15d = mm, 0 13ρ = mm and 11N = . 
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Chapter 7 
Conclusions 

 

In this dissertation, at the beginning the photonic band structure in the transversal 

electric mode for a one-dimensional superconductor-dielectric superlattice is theoretically 

calculated. By using the Abeles theory for a stratified medium, we first calculate the 

transmittance spectrum from which all the possible bands can be directly seen. Then we 

calculate the real photonic band structure based on the transcendental equation derived 

from the transfer matrix method and Bloch theorem. The band structure is shown be 

strongly consistent with the transmittance spectrum. Moreover, we find that there are an 

additional PBG or dips appear near thλ  in the oblique-incidence case. 

Next, we are dedicated to the annular Bragger reflectors. The optical properties of 

an annular periodic structure made of superconducting and dielectric layers are 

theoretically investigated. By using the transfer matrix method for the cylindrical waves, 

we calculate the reflectance spectra for such a superconducting annular Bragg reflectors 

(SABR). Numerical results show that the optical properties of SABR are fundamentally 

different from those of the planar Bragg reflector for the TM wave with azimuthal mode 

number 1m ≥ . First, it is found that there is an additional high-reflectance band. Second, 

there exist some reflection dips near the threshold wavelength of a superconductor. These 

two special results arising from the higher order azimuthal mode of the cylindrical waves 

are not found in the usual superconducting plane Bragg reflector (SPBR). The results 

suggest that the SABR could be used to design a narrowband transmission filter or an 

annular resonator without introducing any physical defect layer in the structure. 

The photonic band structure of an annular periodic multilayer structure containing 

metamaterials are theoretically investigated based on the transfer matrix method of the 
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cylindrical waves. At the azimuthal mode number 1m ≥  and near the magnetic plasma 

frequency and the electronic plasma frequency for the TE wave and TM wave, 

respectively, we find that there is an additional high-reflectance band and some reflection 

dips exist when the plasma frequency is located in the photonic band gap. These two 

special features arising from the higher order azimuthal mode of the cylindrical waves are 

not seen in the planar one-dimensional Bragg reflector consisting of the metamaterials. 

Such filtering responses provide a feasible way of designing a narrowband resonator 

without physically introducing any defect layer in the structure. 
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