

Ⅲ-族氮化物表層缺陷研究

Investigation of interfacial defects in Ⅲ-nitride

> 研究生: 黃國欽 指導教授: 黃凱風

中華民國 九十八年六月

Ⅲ-族氮化物表層缺陷研究 Investigation of interfacial defects in Ⅲ-nitride

研究生: 黃國欽 Student: Kuo-Chin Huang 指導教授: 黃凱風 Advisor: Kai Feng Huang

國立交通大學

A Dissertation Submitted to Institute of Electrophysics College of Science National Chiao Tung University in partial fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrophysics June 2009 Hsinchu, Taiwan, Republic of China

中華民國 九十八年六月

Ⅲ-族氮化物表層缺陷研究

黄國欽¹⁾ 黃凱風²⁾

國立交通大學電子物理所

摘要

在本論文中,我們研究表面缺陷特性以氮化鎵材料為主並藉由蕭 特基元件在不同表面處理的條件下探討電流轉換機制及缺陷密度,並 利用特徵電阻(Specific contact resistance)、理想因子(Ideality factor)及特性參數(characteristic energy)作分析。另外為了研究 表面缺陷對元件的光電性影響,光檢測器的製作與元件特性經由不同 表面處理及熱穩定性也將在論文中一一探討。其中元件在沒有經由電 漿式耦合蝕刻(ICP)的條件下,電流轉換機制由熱激發式(Thermionic emission;TE)來主導,另一方面,當元件經由電漿式耦合蝕刻(ICP) 的處理後,其電流轉換機制將由熱激發式轉而變成場發式 (Field emission;FE)來主導,其原因主要是由於元件使用電漿式耦合蝕刻 (ICP)後會在元件表面產生表面缺陷而改變其電流轉換機制 , 而這些 由電漿式耦合蝕刻(ICP)產生的表面缺陷可以經由在高溫 600℃氮氣 或 500℃氫氣下減少並使電流的轉換機制由場發式轉而變成熱激發 式,以改善元件的特性。

另外我們使用了電容 對頻率(Capacitance-frequency; C-f)的方

法去分析元件經由電漿式耦合蝕刻(ICP)後所產生的表面缺陷形式, 約可分為 s-type、m-type 及 f-type。其中 s-type 的表面缺陷主要 是來自於元件經由電漿式耦合蝕刻(ICP)處理後所產生的缺陷並可藉 由在高溫 600℃氮氣或 500℃氫氣下減少,另外 m-type 及 f-type 的 表面缺陷是來自於元件本身的磊晶成長缺陷並亦可利用在 高溫氮氣 或氫氣下降低缺陷密度。

另一方面光檢測器利用電漿式耦合蝕刻 (ICP)後所產生的表面缺 陷及高溫處理後,將可產生較高的光響應及內部增益,其中光檢測器 光響應藉由在氮氣高溫合金 400℃、500℃及 600℃下各別為 3.95A/W、 0.72A/W 及 1.85A/W 與內部增益在氮氣高溫合金 400℃、500℃及 600 ℃下各別為 195、36 及 84。較高的光響應及內部增益主要是由於光 檢測器利用電漿式耦合蝕刻 (ICP)後所產生的表面缺陷及高溫處理後 在其元件的材料特性中,有較多的電洞或電子被補捉,當元件操作在 高電場及照光下將藉由這些電洞或電子被補捉與增加碰撞機率產生 更多的光電子。

1) 作者

2) 指導教授

Investigation of interfacial defects in III-nitride Kuo-Chin Huang¹⁾ Kai Feng Huang²⁾

Abstract

The interfacial defects properties of GaN-based Schottky diodes have been investigated and fabricated by utilized current voltage temperature (I-V-T) and capacitance-frequency (C-f)methods. Surface effects of states metal-semiconductor-metal (MSM) photodetectors (PDs) and p-i-n PDs is applied high reverse electrical field in illumination to confirm the relationship between ICP-induced defects and optoelectric devices characteristics in this dissertation. The current transport mechanisms are analyzed in terms of specific contact resistance (ρ_c), characteristic energy (E_{00}) and ideality factor (η) under different annealing 40000 temperatures. The current transport mechanisms of non-treated *n*-type GaN was TE and was FE based on the finding that the sample by using ICP etching processes. However, the current transport mechanisms can be changed from FE to TE by annealing at 600°C in N₂ ambient or 500°C in H₂ ambient, that is, the current transport mechanism dominates TE or between TE and FE. These results showed that the ICP damages were reduced to a low level and the Schottky diodes characteristics recovered by annealing 600°C in N_2 ambient or 500°C in H_2 ambient. In this dissertation, we have found that the current transport mechanisms are directly

dependent on the surface treated conditions, and annealing processes are an effective step in eliminating these defects, and characterize ICP-induced defects such as *s*-type, *m*-type and *f*-type interfacial defects by capacitance-frequency (*C*-*f*) methods. The *s*-type interfacial defects can be reduced by annealing temperature increasing to 600° C in N₂ ambient or 500° C in H₂ ambient. The *m*-type interfacial defects can be recovered to non-treated *n*-type GaN by annealing at high temperature in N₂ ambient or in H₂ ambient. In *f*-type interfacial defects, annealing in N₂ ambient is more effective than that in H₂ ambient. The interfacial defects of the Schottky diode with ICP induced defect is dominant *s*-type, and non-treated sample is dominant *f*-type. The interfacial defects is *f*-type indicating the ICP induced defects nearly recovered to non-treated sample, this is the defects result from epitaxial growth such as dislocation or the others.

On the other hand, the higher responsivity and internal gain for metal semiconductor metal photodetectors (MSM-PDs) with different surface treatment have been fabricated. The responsivity of MSM-PDs with annealing at 400°C, 500°C and 600°C in N₂ ambient by applying reverse bias -1Volt is 3.95A/W, 0.72A/W and 1.85A/W, respectively. The internal gain of MSM-PDs with annealing at 400°C, 500°C and 600°C in N₂ ambient at a photon energy of 3.35eV by applying reverse bias -1Volt is 195, 36 and 84, respectively. The higher responsivity and internal gain characteristics for MSM-PDs with ICP etching process and annealing in N₂ ambient at different temperatures are clearly observed. This result may attribute to interfacial

states such as holes traps what capture or emit electrons or hole as applied high reverse electrical field and illumination. The persistent photoconductivity effects (PPC) in MSM-PDs with interfacial states by annealing treatment have been studied to confirm the ICP-induced defects exist. Photocurrent gradually increased and the dark current decreased with measured time is observed. These results may also attribute to the presence of holes trap or acceptor-type trap states.

- 1) Author, Department of Electrophysics, National Chiao Tung University
- 2) Advisor, Department of Electrophysics, National Chiao Tung University

(Acknowledgements)

學習除了靠自己的努力外,更需要好的環境,在博士求學的階段 由衷感謝交通大學給我一個多元化、資源充足的浩然圖書館及修課環 境,感謝電子物理所的教授們在學業與物理上的教導,其中更加感謝 我的指導老師黃凱風教授及高雄大學藍文厚教授這七年來的鼓勵與 指導,在討論的過程中總能帶給我無限的啟發與求知的動力,使我能 一路順利的完成學業。另外,感謝陳永富教授及實驗室的學弟妹們、 蘇冠緯博士、黃仕璋博士、江建勳、王偉立...等人的幫忙。

特別感謝中山科學研究院從我碩士到完成博士學歷的這九年期 間提供了我一個認識光電半導體領域及學習如何與人相處的環境,讓 我從大學畢業對光電、對物理了解不多的新鮮人,到今日可以略知物 理的本質與開啟對物理的興趣,其中感謝林文仁博士、程一誠博士、 張國仁博士、李大青博士、張善寬、林科均及學長林家慶博士、柯文 政博士、陳文瑞博士、陳一塵博士、柯誌欣博士、官大明博士的鼓勵 與協助及多年來在實驗上幫忙的學弟們郭武吉、林季範、黃鍾億、黃 皆智、林義峯、藍志學、劉文宏及李漢誠...等人。

另外特別感謝璨圓光電董事長簡奉任博士及研發處處長潘錫明博士,在修業博士的求學生涯裡提供了一個良好的學習環境與工作上

的包容,讓我可以學以致用在工作上,將工作與學習融為一體,並能 從中獲得對物理原理的探討與知識,並感謝這七年來一路陪我走過來 的璨圓光電同事們,謝謝你們平時的相處與鼓勵,豐富了我的生命與 生活,有你們的日子裡讓我感受到朋友的真諦。

感謝口試委員藍文厚教授、陳振芳教授、陳永富教授、簡奉任董事長、林文仁博士及李晉東博士對本論文的指導與建議。

最後感謝我的父母親及家人們平時對我的包容與關心,從高中時 期到今日在外求學總是聚少離多,隨著時間的增長離家越遠回家越 少,在此我想告訴我的爸爸媽媽:你們辛苦了,雖然我花了不少時間 才完成學業,但我把你們沒有讀的書與夢想完成了。另外在修讀博士 期間,特別感謝李卓燕多年來的鼓勵與支持,在課業之餘充實我的精 神生活與陶冶心靈,豐富了我的生命與生活,為我的人生寫下值得回 憶的樂章。

Contents

Abstract (Chine	ese) ·		i
Abstract (Engli	sh) ·		iii
Acknowledgme	nts •		vi
Contents · · ·	•••	· · · · · · · · · · · · · · · · · · ·	viii
Table captions	••••		xi
Figure captions	; • • •		xii
Chapter 1 Int	roductio	n · · · · · · · · · · · · · · · · · · ·	1
1.1 The rese	arch bacl	$\operatorname{cground}$ on $\operatorname{GaN} \cdot \cdot$	1
1.2 Overview	w of the o	our studies · · · · · · · · · · · · · · · · · · ·	2
Chapter 2 Fou	indation	al Theory and physics • • • • • • • • • •	7
2.1 Physical	and elec	trical characteristics of metal semiconductor rectifi	es
2.1.1	Introduct	ion \cdot · · · · · · · · · · · · · · · · · · ·	7
2.1.2	Theory o	f current transport mechanisms for Schottky contacts ·	8
	2.1.2.1	Thermionic emission (TE) • • • • • • • •	10
	2.1.2.2	Field emission (FE) • • • • • • • • • • • • • • • • • • •	11
	2.1.2.3	Thermionic-field emission (TFE) • • • • •	11
2.1.3	Current-	voltage characteristics of Schottky contacts \cdot ·	12
	2.1.3.1	Current-voltage $(I-V)$ characteristics by thermioni	с
		emission (TE) theory $\cdot \cdot \cdot$	12

	2.1.3.2 Current-voltage (<i>I-V</i>) characteristics by	
	thermionic-field emission (TFE) theory \cdot · ·	· 13
	2.1.3.3 Current-voltage-temperature (<i>I-V-T</i>) characterist	tics
	by thermionic emission (TE) theory $\cdot \cdot \cdot \cdot$	15
	2.1.3.4 Current-voltage characteristics with series resist	ance
	by thermionic emission (TE) theory $\cdot \cdot \cdot \cdot$	16
2.1.4	Capacitance-voltage $(C-V)$ characteristics of Schottky	
	contact · · · · · · · · · · · · · · · · · · ·	• 17
2.1.5	Capacitance-frequency (C-f) characteristics of Schottky	
	contact with interfacial states · · · · · · · · · · ·	19
2.2 Theory	nd physical characteristics of photodetector \cdots \cdots	20
2.2.1	Introduction	20
2.2.2	Metal-semiconductor-metal photodetectors (MSM-PDs)	
	2.2.2.1 Geometrical structure and physical characteristic	cs 20
	2.2.2.2 Responsivity and quantum efficiency $\cdot \cdot \cdot$	· 25
	2.2.2.3 Shockley-Read-Hall Theory of recombination as	nd
	internal gain $\cdot \cdot \cdot$	27
2.2.3	<i>p-i-n</i> junction photodetector $\cdot \cdot \cdot$	33
Chapter 3 Int	erfacial states effects and characteristics for Schott	ky
dio	les · · · · · · · · · · · · · · · · · · ·	· 48
3.1 Introduct	on · · · · · · · · · · · · · · · · · · ·	48

3.2 Schottky diodes with annealing nitride and hydrogen effects $\cdot \cdot \cdot 49$
3.2.1 Current voltage characteristics • • • • • • • • • • • • • • • • • • •
3.2.2 Current temperature characteristics $\cdot \cdot \cdot$
3.2.3 Capacitance frequency characteristics • • • • • • • • 58
3.2.4 Summary • • • • • • • • • • • • • • • • • • •
Chaper 4 Investigation of interfacial states for
metal-semiconductor-metal photodetectors (MSM-PDs)
4.1 Introduction $\cdot \cdot \cdot$
4.2 Surface treatment by annealing in N ₂ or H ₂ ambient $\cdot \cdot \cdot \cdot \cdot \cdot 96$
4.2.1 Internal gain effects for MSM-PDs by surface treatment \cdot 96
4.2.2 Persistent photoconductivity effects (PPC) for MSM-PDs with
interfacial states · · · · · · · · · · · · · · · · · · ·
4.3 Summary · · · · · · · · · · · · · · · · · · ·
Chapter 5 Application of interfacial states for <i>p-i-n</i> -photodiodes \cdot 117
Chapter 6 Conclusions and Future prospects · · · · · · · · · · · · · · · · · · ·
Appendix A References · · · · · · · · · · · · · · · · · · ·
Appendix BNotation · · · · · · · · · · · · · · · · · · ·
Appendix C Detailed experimental discussion · · · · · · · · · · · · · · · · · · ·
C.1 Epitaxial growth for GaN · · · · · · · · · · · · · · · · · · ·
C.1.1 Schottky diodes and metal-semiconductor-metal photodetector

	$(MSM-PDs) \cdot \cdot$
C.1.2	p- i - n -photodiodes · · · · · · · · · · · · · · · · · · ·
B.2 Process	procedure and conditions $\cdots \cdots \cdots$
C.2.1	Inductively coupled plasma reactive ion etching (ICP-RIE)
C.2.2	Schottky diodes by ICP-RIE etching processes $\cdot \cdot \cdot \cdot \cdot \cdot 151$
C.2.3	AlGaN-based <i>p-i-n</i> photodiodes with different surface
	treatment \cdot
Appendix D	Current voltage characteristics analysis and
	simulation by C language tool · · · · · · · · 158
Appendix E.	Publications

Table captions

Table 2-1	Experimental Richardson constant A^* data $\cdots \cdots \cdots$
Table 3-1	Different surface treatment process conditions $\cdot \cdot \cdot \cdot \cdot \cdot 66$
Table 3-2	Current voltage characteristics of Schottky diodes by annealing at
	different temperature in N_2 or H_2 ambient $\cdot \cdot 66$
Table 3-3	Current temperature characteristics of Schottky diodes by
	annealing at different temperature in N_2 or H_2 ambient $\cdot \cdot \cdot 67$
Table 3-4	Summary of the interfacial states characteristics for Schottky
	contact with/without by annealing in N_2 or H_2 ambient. $\cdot \cdot \cdot 67$
Table 3-5	Barrier height for sample with different annealing treatment is
	extracted by different methods
Table 3-6	Dominant type of defects for <i>n</i> -GaN Schottky diodes by different
	surface treatment $\cdot \cdot \cdot$
Table 4-1	The detailed process conditions for measured PPC effects $\cdot \cdot 112$

Figure captions

Figure 2-1	Schematic energy band diagram of metal-semiconductor
	junction \cdot · · · · · · · · · · · · · · · · · · ·
Figure. 2-2	Barrier height is depicted as a function of the metal work
	function and surface treatment. The results of this work are
	compared to that of other authors. $\cdot \cdot 38$
Figure 2-3(a)	Schematic description of the thermionic emission mechanism
	in <i>n</i> -type semiconductor $\cdots \cdots 39$
Figure 2-3(b)	Schematic description of the tunneling mechanisms in <i>n</i> -type
	semiconductor
Figure 2-4	Schematic structure of different type photodetectors $\cdot \cdot \cdot 41$
Figure 2-5	MSM-PDs with interdigitated electrodes by planar structures 42
Figure 2-6	Equivalent metal-semiconductor-metal photodetectors
	$(MSM-PDs) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $
Figure 2-7	Optical absorption processes in direct band-gap semiconductor.
	(a) band to band, (b) acceptor level to conduction band, (c)
	valence band to donor level, (d) acceptor level to donor level,
	(e) donor level to conduction level and (f) valence band to
	acceptor level. \cdot · · · · · · · · · · · · · · · 43

Figure 2-8	Schematic photoexcitation processes $\cdot \cdot \cdot$
Figure 2-9	Absorption coefficient for $Al_xGa_{1-x}N$ -based material $\cdot \cdot \cdot 44$
Figure 2-10	Electrical characteristics for <i>p-i-n</i> photodetectors under
	reverse bias · · · · · · · · · · · · · · · · · · ·
Figure 2-11	(a) Schematic structure (b) band diagram (c) absorption
	process of photodetectors under operated reverse bias \cdot · 46
Figure 2-12	A photoconductive detector with an electrical field is applied
	to the semiconductor, and the photo-carriers are generated in
	response to the applied bias voltage. $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 47$
Figure 2-13	Generation process of photodetectors under reverse bias
	voltage · · · · · · · · · · · · · · · · · · ·
Figure 3-1	Reverse current voltage characteristics of <i>n</i> -GaN Schottky
	diodes by annealing at different temperatures in $N_{\rm 2}$ ambient
	for 30 min · · · · · · · · · · · · · · · 69
Figure 3-2	Reverse breakdown voltage characteristics of Schottky diodes
	by different surface treatments $\cdot \cdot 69$
Figure 3-3	Forward current voltage characteristics of n-GaN Schottky
	diodes by annealing at different temperatures in N_2 ambient
	for 30 min $\cdot \cdot \cdot$
Figure 3-4	Current voltage characteristics of n-GaN Schottky diodes

without ICP etching treatment are fitting and analyzed by Eq.

- Figure 3-6 Reverse current-voltage (I-V) characteristics of the Schottky diodes by annealing at different temperatures in H₂ ambient · 📑 **.** 72 Reverse breakdown voltage characteristics of the Schottky Figure 3-7 411111 annealing at different temperatures in H₂ diodes by ambient \cdot 72 Figure 3-8 Forward current voltage characteristics of Schottky diodes by Figure 3-9 Ideality factor and barrier height of Schottky diodes are analyzed by annealing at different temperatures in H₂ ambient. The solid shape donates Schottky diodes without ICP

treatment (R1 sample), in contrast the void shape donates

	Schottky diodes with ICP treatment (R2 sample) by annealing
	at different temperatures. $\cdot \cdot \cdot$
Figure 3-10	Current-voltage temperature characteristics of Schottky diodes
	without ICP treatment (R1 sample) by measuring at different
	temperatures $\cdot \cdot \cdot$
Figure 3-11	Current-voltage temperature characteristics of Schottky diodes
	with ICP treatment (R2 sample) $\cdot \cdot 75$
Figure 3-12	Current-voltage temperature characteristics of Schottky diodes
	with annealing at 400°C in N ₂ ambient (A1 sample) $\cdot \cdot \cdot 76$
Figure 3-13	Current-voltage temperature characteristics of Schottky diodes
	with annealing at 500°C in N ₂ ambient (A2 sample) $\cdot \cdot \cdot 76$
Figure 3-14	Current-voltage temperature characteristics of Schottky diodes
	with annealing at 600 $^\circ C$ in N_2 ambient (A3 sample) $~\cdot~~\cdot~77$
Figure 3-15	Current-voltage temperature characteristics of Schottky diodes
	with annealing at 700 $^\circ C$ in N_2 ambient (A4 sample) $~\cdot~~\cdot~77$
Figure 3-16	Ideality factor is extracted by measuring at different
	temperatures for Schottky diodes with annealing in $N_{\rm 2}$
	ambient. • • • • • • • • • • • • • • • • • • •
Figure 3-17	Barrier height is extracted by measuring at different
	temperatures for Schottky diodes with annealing in N_2
	ambient. • • • • • • • • • • • • • • • • • • •

Figure 3-18	Specific contact resistance of Schottky diodes with different
	surface treatment in N_2 ambient is indicated as a function of
	temperature. · · · · · · · · · · · · · · · · · · 79
Figure 3-19	Richardson plot of the Schottky diodes with different surface
	treatments in N_2 ambient. $\cdot \cdot 79$
Figure 3-20	Current-voltage temperature characteristics of Schottky diodes
	with annealing at 400 $^\circ\!\mathrm{C}$ in H_2 ambient (B1 sample) $~\cdot~\cdot~80$
Figure 3-21	Current-voltage temperature characteristics of Schottky diodes
	with annealing at 500°C in H ₂ ambient (B2 sample) $\cdot \cdot \cdot 81$
Figure 3-22	Current-voltage temperature characteristics of Schottky diodes
	with annealing at 600°C in H ₂ ambient (B3 sample) $\cdot \cdot \cdot 81$
Figure 3-23	Current-voltage temperature characteristics of Schottky diodes
	with annealing at 700°C in H ₂ ambient (B4 sample) $\cdot \cdot \cdot 82$
Figure 3-24	Ideality factor is extracted by measuring at different
	temperatures for Schottky diodes with annealing in H_{2}
	ambient. • • • • • • • • • • • • • • • • • • •
Figure 3-25	Barrier height is extracted by measuring at different
	temperatures for Schottky diodes with annealing in H_{2}
	ambient. • • • • • • • • • • • • • • • • • • •
Figure 3-26	Specific contact resistance of Schottky diodes with different

	surface treatment in H_2 ambient is shown as a function of
	temperature. · · · · · · · · · · · · · · · · · 83
Figure 3-27	Richardson plot of the Schottky diodes with different surface
	treatments in H_2 ambient. $\cdot \cdot 84$
Figure 3-28	Frequency dependence of the interfacial states capacitance of
	the Schottky diodes for non-treated sample (R1) and
	non-annealed ICP-treated sample (R2). The dot line curve
	represents the fitting result of the experimental data. \cdot · 84
Figure 3-29	Frequency dependence of the C _p results of the Schottky diodes
	with annealing at 400°C in N_2 ambient after ICP etching
	process. The dot line curve represents the fitting results. \cdot 85
Figure 3-30	Frequency dependence of the C_p results of the Schottky diodes
	with annealing at 500 $^\circ\!\mathrm{C}$ in N_2 ambient after ICP etching
	process. The dot line curve represents the fitting results. \cdot 85
Figure 3-31	Frequency dependence of the C _p results of the Schottky diodes
	with annealing at 600 $^\circ\!\mathrm{C}$ in N_2 ambient after ICP etching
	process. The dot line curve represents the fitting results. \cdot 86
Figure 3-32	Compared with different types of interfacial states by
	annealing in N_2 ambient, the interfacial states density as a

function of temperature is observed. \cdot · · · · · 87

Figure 3-33	Frequency dependence of the C_p results of the Schottky diodes
	with annealing at 400 $^\circ\!\mathrm{C}$ in H_2 ambient after ICP etching
	process. The dot line curve represents the fitting results. \cdot 87
Figure 3-34	Interfacial state capacitance of A1 and B1 sample by
	annealing at 400° C · · · · · · · · · · · · · · 88
Figure 3-35	Interfacial state capacitance of B1 and B2 sample by
	annealing in H_2 ambient $\cdot \cdot 88$
Figure 3-36	Frequency dependence of the C _p results of the Schottky diodes
	with annealing at 600°C in H_2 ambient after ICP etching
	process. The dot line curve represents the fitting results. \cdot 89
Figure 3-37	Compared with different types of interfacial states by
	annealing in H_2 ambient, the interfacial states density as a
	function of temperature is observed. $\cdot \cdot \cdot \cdot \cdot \cdot \cdot 89$
Figure 3-38	Capacitance voltage characteristics of Schottky diodes
	with/without ICP treatment. The dot line represents fitting
	data. • • • • • • • • • • • • • • • • • • •
Figure 3-39	Capacitance voltage characteristics of Schottky diodes with
	annealing in N_2 ambient at a frequency $1MHz \cdot \cdot \cdot \cdot \cdot 90$

Figure 3-40	Capacitance voltage characteristics of Schottky diodes with
	annealing in H_2 ambient at a frequency $1MHz \cdot \cdot \cdot \cdot 91$
Figure 3-41	Depletion width of Schottky diodes with different surface
	treatments \cdot
Figure 3-42	Ideality factor is dependent of annealing temperature for
	different surface treated samples $\cdot \cdot \cdot$
Figure 3-43	Barrier height is dependent of annealing temperature for
	different surface treated samples $\cdot \cdot \cdot$
Figure 3-44	s-type interfacial defects is dependent of annealing
	temperature in N ₂ or H ₂ ambient. $\cdot \cdot \cdot$
Figure 3-45	<i>m</i> -type interfacial defects is dependent of annealing
	temperature in N ₂ or H ₂ ambient. $\cdot \cdot \cdot$
Figure 3-46	f-type interfacial defects is dependent of annealing
	temperature in N ₂ or H ₂ ambient. $\cdot \cdot \cdot$
Figure. 4-1	Current voltage characteristics of MSM-PDs without surface
	treatment \cdot
Figure 4-2	Current voltage characteristics of MSM-PDs with ICP etching
	treatment $\cdots \cdots \cdots$
Figure 4-3	Responsivity of MSM-PDs with/without ICP etching

	treatment •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·10	7
--	-------------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-----	---

Figure 4-4	Responsivity of MSM-PDs with different annealing
	temperatures in N_2 ambient $\cdot \cdot \cdot$
Figure 4-5	Internal gain of MSM-PDs with annealing at different
	temperatures in N ₂ ambient at a wavelength of 370nm $\cdot \cdot 108$
Figure 4-6	Responsivity of MSM-PDs with annealing at different
	temperatures in H_2 ambient $\cdot \cdot \cdot$
Figure 4-7	Internal gain of MSM-PDs with annealing at different
	temperatures in H_2 ambient at a wavelength of 370nm $\cdot \cdot 109$
Figure 4-8	Responsivity of MSM-PDs with annealing at 400 $^\circ\!C$ in N_2
	ambient (A1 sample) depend on the finger spacing and reverse
	bias at wavelength of 370nm. • • • • • • • • • • • • • • • • • • •
Figure 4-9	Internal gain of MSM-PDs with annealing at 400 $^\circ\!\mathrm{C}$ in N_2
	ambient (A1 sample) is depicted as a function of finger
	spacing at wavelength of 370nm. $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 110$
Figure 4-10	Internal gain of MSM-PDs with annealing at 400 $^\circ\!\mathrm{C}$ in N_2
	ambient (A1 sample) is depicted as a function of reverse bias
	at wavelength of 370nm. $\cdot \cdot 110$
Figure 4-11	Internal gain of MSM-PDs with annealing at different

temperature is depicted as a function of finger spacing at wavelength of 370nm and reverse bias -1.5V. · · · · · · 111

Figure 4-12 Dark current voltage characteristics for MSM-PDs with annealing at 500°C in H₂ ambient (B2 sample). After illuminated a photon energy of 3.35eV, the dark current subsequently was measured without illumination. The detailed measured process flow is described in Table 4-1. · · · 413
Figure 4-13 Photocurrent with applied reverse bias for MSM-PDs with annealing at 500°C in H₂ ambient (B2 sample). After illuminated a photon energy of 3.35eV, the photocurrent subsequently was measured by utilized step by step. · · 113
Figure 4-14 Current-time characteristics with a constant reverse bias

-2Volt and illuminated a photon energy of 3.35eV. $\cdot \cdot \cdot 114$

- Figure 4-15 Current-time characteristics with a constant reverse bias -2Volt and illuminated a photon energy of 3.26 eV. $\cdot \cdot \cdot 114$
- Figure 4-16 Current-time characteristics with a constant reverse bias -2Volt and illuminated a photon energy of 3.1eV. ••• 115
- Figure 4-17 Schematic photoexcitation process (a) thermionic emission, (b) field emission, (c) band to band and (d) acceptor level or donor

	level to conduction band in the thermal equilibrium or applied
	lower reverse bias. $\cdots \cdots \cdots$
Figure 4-18	Schematic photoexcitation process (a) thermionic emission, (b)
	field emission, (c) band to band and (d) acceptor level or donor
	level to conduction band in the higher reverse bias. $\cdot \cdot \cdot 116$
Figure 5-1	Current-voltage (I-V) characteristics of AlGaN-based
	photodiode devices (PDs) with annealing at different gases
	under the illumination $(0.13\mu W)$ is at a wavelength of 330nm.
	The insert of figure shows a lower dark current could be
	observed
Figure 5-2	Current-voltage (I-V) characteristics of different annealing
	treated samples illuminated with a wavelength of 360nm
	$(0.23\mu W)$
Figure 5-3	Current-voltage (I-V) characteristics of different annealing
	treated samples illuminated with a wavelength of 400nm
	$(0.4\mu W).$
Figure 5-4	Spectral response of surface treated samples with different
	annealing ambient under reverse bias voltage -8 Volt. \cdot 122
Figure 5-5	Current-voltage characteristics for as grown and KOH-treated
	PDs under the illumination $(0.7\mu W)$ with wavelength
	330nm · · · · · · · · · · · · · · · · · · ·

Figure 5-6	Current-voltage characteristics for as grown and KOH-treated
	PDs under the illumination $(2.8\mu W)$ with wavelength
	400nm · · · · · · · · · · · · · · · · · · ·
Figure 5-7	Spectral responsivity for as grown and KOH-treated PDs at
	different biases • • • • • • • • • • • • • • • • • •
Figure 5-8(a)	Scanning electron microscopy (SEM) images of the
	AlGaN-based photodiodes for the as grown sample after it has
	been etched to n^+ -GaN region. $\cdot \cdot \cdot$
Figure 5-8(b)	Scanning electron microscopy (SEM) images of the
	AlGaN-based photodiodes for the KOH-treated sample after it
	has been etched to n^+ -GaN region. $\cdot \cdot \cdot$
Figure C.1	OXFORD Plasmalab System 100 · · · · · · · · · · 151
Figure C.2	Fabrication process flow of Schottky diodes $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 154$
Figure C.3.	The AlGaN-based photodiode devices structure with different