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Abstract 

The interfacial defects properties of GaN-based Schottky diodes have been 

investigated and fabricated by utilized current voltage temperature (I-V-T) and 

capacitance-frequency (C-f) methods. Surface states effects of 

metal-semiconductor-metal (MSM) photodetectors (PDs) and p-i-n PDs is applied 

high reverse electrical field in illumination to confirm the relationship between 

ICP-induced defects and optoelectric devices characteristics in this dissertation. The 

current transport mechanisms are analyzed in terms of specific contact resistance ( c� ), 

characteristic energy (E00) and ideality factor (�) under different annealing 

temperatures. The current transport mechanisms of non-treated n-type GaN was TE 

and was FE based on the finding that the sample by using ICP etching processes. 

However, the current transport mechanisms can be changed from FE to TE by 

annealing at 600  in N2 ambient or 500  in H2 ambient, that is, the current transport 

mechanism dominates TE or between TE and FE. These results showed that the ICP 

damages were reduced to a low level and the Schottky diodes characteristics 

recovered by annealing 600  in N2 ambient or 500  in H2 ambient. In this 

dissertation, we have found that the current transport mechanisms are directly 



dependent on the surface treated conditions, and annealing processes are an effective 

step in eliminating these defects, and characterize ICP-induced defects such as s-type, 

m-type and f-type interfacial defects by capacitance-frequency (C-f) methods. The 

s-type interfacial defects can be reduced by annealing temperature increasing to 

600  in N2 ambient or 500  in H2 ambient. The m-type interfacial defects can be 

recovered to non-treated n-type GaN by annealing at high temperature in N2 ambient 

or in H2 ambient. In f-type interfacial defects, annealing in N2 ambient is more 

effective than that in H2 ambient. The interfacial defects of the Schottky diode with 

ICP induced defect is dominant s-type, and non-treated sample is dominant f-type. 

The interfacial defects is f-type indicating the ICP induced defects nearly recovered to 

non-treated sample, this is the defects result from epitaxial growth such as dislocation 

or the others.  

On the other hand, the higher responsivity and internal gain for metal 

semiconductor metal photodetectors (MSM-PDs) with different surface treatment 

have been fabricated. The responsivity of MSM-PDs with annealing at 400 , 500  

and 600  in N2 ambient by applying reverse bias -1Volt is 3.95A/W, 0.72A/W and 

1.85A/W, respectively. The internal gain of MSM-PDs with annealing at 400 , 

500  and 600  in N2 ambient at a photon energy of 3.35eV by applying reverse 

bias -1Volt is 195, 36 and 84, respectively. The higher responsivity and internal gain 

characteristics for MSM-PDs with ICP etching process and annealing in N2 ambient at 

different temperatures are clearly observed. This result may attribute to interfacial 



states such as holes traps what capture or emit electrons or hole as applied high 

reverse electrical field and illumination. The persistent photoconductivity effects 

(PPC) in MSM-PDs with interfacial states by annealing treatment have been studied 

to confirm the ICP-induced defects exist. Photocurrent gradually increased and the 

dark current decreased with measured time is observed. These results may also 

attribute to the presence of holes trap or acceptor-type trap states. 
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