
1 Introduction

In many scientific models, discrete reaction diffusion equations play an important and

in some cases essential roles. In this report, we study the basic problem of stationary

patterns and spatial structures for discrete reaction diffusion equations. The system we

consider takes the form
dui

dt
= β∆ui + αf(ui), i ∈ Z

1, (1.1)

in one dimension and it takes the form

dui,j

dt
= β+∆+ui,j + β×∆×ui,j + αf(ui,j), where (i, j) ∈ Z

2, (1.2)

in two dimension, where

∆ui = ui+1 + ui−1 − 2ui

∆+ui,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j (1.3)

∆×ui,j = ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1 − 4ui,j .

Herein, for simplicity, we consider f as the cubic function in the form

f(ξ) = ξ3 − ξ. (1.4)

(1.1) and (1.2) have been considered in Chow et.al. [3]. The nonlinearity f therein is not

a smooth function, but instead a set-valued function

f(ξ) =





(−∞,−γ] if ξ = −1,
γξ if |ξ| < 1,
[γ,∞) if ξ = 1,
∅ if |ξ| > 1.

(1.5)

As mentioned in [3], other nonlinearity f for such a reaction diffusion equation include

cubic polynomial such as f(ξ) = γξ + ξ3 or f(ξ) = (ξ2 − 1)(ξ − a), or more generally

a smooth function with f(ξ) → ±∞ as ξ → ±∞ at a rate faster than linear. The

logarithmic nonlinearity

f(ξ) = γξ + ln(
1 + ξ

1− ξ
)

is also interesting which restricts the range of the argument to −1 < ξ < 1. Thus, we

take a typical nonlinearity f(ξ) = ξ3 − ξ. Our results can be adopted to (1.1), (1.2) with

all of the above mentioned nonlinearity.
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Chow et.al. [3] discussed mosaic solutions, their stability, pattern formation, spatial

entropy, and spatial chaos. The mosaic patterns and solutions therein takes the value ui

or ui,j = −1, 0, 1. In this paper, we use the basic pattern formation [7, 10] to discuss

formations of mosaic patterns, spatial entropy and effect of boundary conditions for the

discrete reaction diffusion equations (1.1), (1.2) with (1.3). Our treatments are motivated

by numerical sense as well as the sense from real-world pattern formations. In comparing

with the definition in [3], our patterns should be named as mosaic patterns, since we

consider the component of the stationary solutions to lie in a small range, instead of just

some single values, namely,

ui or ui,j ∈ [−1− σ,−1 + σ] ∪ [−σ, σ] ∪ [1− σ, 1 + σ],

where σ is a small number. Stability and basins of attraction for these stationary solutions

have been studied in [4]. We shall also discuss the question of the influence of boundary

conditions on the spatial entropy, raised in [1]:

h = hN = hP = hD?

Herein, h denotes the spatial entropy; and hN , hP and hD respectively represent the

spatial entropy for the same class of patterns that satisfy Neumann, periodic and Dirichlet

boundary conditions.

In [7], [10], [11], [2], they construct the basic mosaic patterns and use translation-

invariant property discuss the patterns formations and spatial chaos in cellular neural

networks. [11] also discussed the question “h = hN = hP = hD?” for cellular neural

networks. We continue to use their formations in this report.

In the following, we write the spatially discrete reaction diffusion equations as “SD-

RDE” for abbreviation. The rest of this paper is organized as follows. In Section 2, we

definite the mosaic pattern for SD-RDE. And we use the concept of pseudo basic pattern

to partition the parameter space in one dimension. Corresponding to each parameter

region, there are sets of pseudo basic patterns and possible pseudo basic patterns. In

Section 3, according to the fixed point theorem, we can use the pseudo basic patterns to

span the global patterns in one dimension. In infinite lattices, we use the Schauder fixed

point theorem to proof the result. In finite lattices, we use the Brouwer fixed theorem to

prove the result. We divide Section 4 into three subsections. In subsection 4.1, we discuss

mosaic patterns on one-dimensional infinite lattice. We use the transition matrices to span

the global patterns. In subsection 4.2, we analyze the case of two-dimensional lattices.
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We use the same method to partition the parameter space and the ideas from [10] to

estimate lower and upper bounds of the spatial entropy. In subsection 4.3, We discuss the

entropy in infinite lattices and effect of the boundary conditions on spatial entropy. We

use the Proposition in [11] to discuss the question “h = hN = hP = hD?” In Section 5,

we provide some numerical illustrations. Those patterns in the illustrations also appear

in [3].

2 Partitioning Parameter Space and Basic Patterns

In [3], u = {ui}i∈Zd is called a mosaic solution, if ui ∈ {−1, 0, 1}, for all i ∈ Z
d, where

d = 1 or 2. In this work, we want to extend such a notion to mosaic solutions for SD-RDE

(1.1), (1.2). Their corresponding patterns have the same appearance as mosaic patterns.

Definition 2.1. For a small fixed positive number σ, we say that a stationary solution

u = {ui}i∈Zd of (1.1) or (1.2), with (1.4), is a mosaic solution if

ui ∈ [−1− σ,−1 + σ] ∪ [−σ, σ] ∪ [1− σ, 1 + σ], for all i ∈ Z
d,

where d = 1 or 2.

For sure that with a small σ > 0, there associate different groups of similar solu-

tions, corresponding to different parameters of the system. However, their appearances

as patterns are similar, despite of small differences among the values of σ. We introduce

{si}i∈Zd to represent the corresponding pattern of {ui}i∈Zd by

si = − , if − 1− σ ≤ ui ≤ −1 + σ,

si = × , if − σ ≤ ui ≤ σ, (2.1)

si = + , if 1− σ ≤ ui ≤ 1 + σ.

Consider the case d = 1, the stationary (equilibrium) equation for (1.1) is

β(ui+1 + ui−1 − 2ui) + αf(ui) = 0, i ∈ Z
1, (2.2)

where, α and β are two parameters. For an i ∈ Z
1, let (ηi−1, ηi, ηi+1) ∈ R

3 with

ηl ∈ [−1− σ,−1 + σ] ∪ [−σ, σ] ∪ [1− σ, 1 + σ], l = i− 1, i, i + 1.

If (ui−1, ui, ui+1) = (ηi−1, ηi, ηi+1) satisfies (2.2) for this specific i ∈ Z
1 and if (ηi−1, ηi, ηi+1)

is represented by (si−1, si, si+1), sl = “ + ”, “ × ”, “ − ”, l = i − 1, i, i + 1 according to
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