
We use the same method to partition the parameter space and the ideas from [10] to

estimate lower and upper bounds of the spatial entropy. In subsection 4.3, We discuss the

entropy in infinite lattices and effect of the boundary conditions on spatial entropy. We

use the Proposition in [11] to discuss the question “h = hN = hP = hD?” In Section 5,

we provide some numerical illustrations. Those patterns in the illustrations also appear

in [3].

2 Partitioning Parameter Space and Basic Patterns

In [3], u = {ui}i∈Zd is called a mosaic solution, if ui ∈ {−1, 0, 1}, for all i ∈ Z
d, where

d = 1 or 2. In this work, we want to extend such a notion to mosaic solutions for SD-RDE

(1.1), (1.2). Their corresponding patterns have the same appearance as mosaic patterns.

Definition 2.1. For a small fixed positive number σ, we say that a stationary solution

u = {ui}i∈Zd of (1.1) or (1.2), with (1.4), is a mosaic solution if

ui ∈ [−1− σ,−1 + σ] ∪ [−σ, σ] ∪ [1− σ, 1 + σ], for all i ∈ Z
d,

where d = 1 or 2.

For sure that with a small σ > 0, there associate different groups of similar solu-

tions, corresponding to different parameters of the system. However, their appearances

as patterns are similar, despite of small differences among the values of σ. We introduce

{si}i∈Zd to represent the corresponding pattern of {ui}i∈Zd by

si = − , if − 1− σ ≤ ui ≤ −1 + σ,

si = × , if − σ ≤ ui ≤ σ, (2.1)

si = + , if 1− σ ≤ ui ≤ 1 + σ.

Consider the case d = 1, the stationary (equilibrium) equation for (1.1) is

β(ui+1 + ui−1 − 2ui) + αf(ui) = 0, i ∈ Z
1, (2.2)

where, α and β are two parameters. For an i ∈ Z
1, let (ηi−1, ηi, ηi+1) ∈ R

3 with

ηl ∈ [−1− σ,−1 + σ] ∪ [−σ, σ] ∪ [1− σ, 1 + σ], l = i− 1, i, i + 1.

If (ui−1, ui, ui+1) = (ηi−1, ηi, ηi+1) satisfies (2.2) for this specific i ∈ Z
1 and if (ηi−1, ηi, ηi+1)

is represented by (si−1, si, si+1), sl = “ + ”, “ × ”, “ − ”, l = i − 1, i, i + 1 according to
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(2.1), then the triple tuple symbol (si−1, si, si+1) consisting of “ + ”, “× ”, “− ” is called

a pseudo basic pattern for (2.2).

Next, we want to partition the parameter space P = {(α, β) : α, β ∈ R} to establish

the existence of pseudo mosaic patterns with respect to the parameters. For convenience,

we rewrite (2.2) as

b(ui+1 + ui−1 − 2ui) + f(ui) = 0, i ∈ Z (2.3)

where

b =
β

α
, α 6= 0. (2.4)

Then we partition the parameter space P1 = {b : b ∈ R} into finitely many regions

such that in each region, (2.2) has the same pseudo basic patterns. For any i ∈ Z,

(ui−1, ui, ui+1) satisfies (2.2) if (ui, yi) satisfies

yi = f(ui) with f(ui) = ui(ui − 1)(ui + 1) (2.5)

and

yi = b[2ui − ui−1 − ui+1]. (2.6)

We rewrite (2.5):

yi = 2b[ui −
(ui−1 + ui+1)

2
] (2.7)

We use intercept ui = ui−1+ui+1

2
and slope 2b to classify the parameter regions and

characterize what basic patterns will appear in each parameter region.

1+-1- -1+

-

1-

L

L1

2

Figure 1: The intersection of (2.5) and (2.6). The slope of L1 is m1 and the slope of L2

is m2.
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Let us use the following example to illustrate the idea. Given ũi−1, ũi+1 ∈ [−σ, σ], so

(ũi−1 + ũi+1) ∈ [−2σ, 2σ]. If there is an intersection for (2.5) and (2.6) with ui−1 = ũi−1,

ui+1 = ũi+1 at ui ∈ [1 − σ, 1 + σ], then we have a pseudo basic pattern (ũi−1, ui, ũi+1) =

×+×. In order to guarantee the existence of intersection, we need to restrict the value of

b such that the graph of f is located between L1 : y = m1(u + σ) and L2 : y = m2(u + σ).

In Fig. 1, this parameter region is f(1−σ)
2
≤ b ≤ f(1+σ)

2+4σ
(for the confirmative existence of

the pseudo basic pattern ×+× ).

Notation 2.2. We classify the pseudo basic patterns into B•
2 , B•

1 , B•
0 , B•

−1, B•
−2,where

• = +, × or −, as in Table 1, and denote the following sets:

B•
{i1,i2,··· ,ik}

=
⋃

i=i1,··· ,ik
B•

i , i` = ±2, ± 1, or 0.

Notation basic patterns
B•

2 + •+
B•

1 + • × × •+
B•

0 + • − × • × − •+
B•

−1 × • − − •×
B•

−2 − • −
Table 1: Notations for collections of basic patterns, • = +,×,−.

Using previous observation we have the following result.

Theorem 2.3. Suppose that σ is a fixed number with 0 < σ < 1
11

. Consider the equations

(1.1), (1.4). The pseudo basic patterns exist in respective parameter regions as in Table

2.

In the next section we shall obtain some global patterns in respective parameter

regions by employing Schauder fixed point theorem. In order to apply the theorem, we

need to construct a convex compact subset of a Banach space. In addition to the idea,

we wander if there still exist other ”possible” pseudo basic patterns. So, it is worthy to

find out all possible pseudo basic patterns in all parameter regions. In the view point, we

need to consider all the possibility of the intersection of the graph of f = u(u− 1)(u + 1)

with L1, L2.
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Figure 2: Partitioning parameter space for one-dimensional SD-RDE.
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parameter regions pseudo basic patterns

I7 = [f(−1+σ)
4σ

,∞] B×
{0}

I6 = [f(1+σ)
1+4σ

, f(−1+σ)
4σ

] B+
{2}, B

×
{0}, B

−
{−2}

I5 = [f(−σ), f(1+σ)
1+4σ

] B+
{2,1}, B

×
{0}, B

−
{−1,−2}

I4 = [f(1+σ)
2+4σ

, f(−σ)] B+
{2,1}, B

×
{1,0,−1}, B

−
{−1,−2}

I3 = [f(1+σ)
3+4σ

, f(1+σ)
2+4σ

] B+
{2,1,0}, B

×
{1,0,−1}, B

−
{0,−1,−2}

I2 = [f(1+σ)
4+4σ

, f(1+σ)
3+4σ

] B+
{2,1,0,−1}, B

×
{1,0,−1}, B

−
{1,0,−1,−2}

I1 = [f(−σ)
2

, f(1+σ)
4+4σ

] B+
{2,1,0,−1,−2}, B

×
{2,1,0,−1,−2}, B

−
{1,0,−1}

I0 = [− f(−σ)
2+4σ

, f(−σ)
2

] B+
{2,1,0,−1,−2}, B

×
{2,1,0,−1,−2}, B

−
{2,1,0,−1,−2}

I−1 = [− f(−1+σ)
4

,−f(−σ)
2+4σ

] B+
{2,1,0,−1,−2}, B

×
{2,1,0,−1,−2}, B

−
{1,0,−1}

I−2 = [− f(−1+σ)
3

,−f(−1+σ)
4

] B+
{2,1,0,−1}, B

×
{1,0,−1}, B

−
{1,0,−1,−2}

I−3 = [− f(−σ)
1+4σ

,−f(−1+σ)
3

] B+
{2,1,0}, B

×
{1,0,−1}, B

−
{0,−1,−2}

I−4 = [− f(−1+σ)
2

,−f(−σ)
1+4σ

] B+
{2,1,0}, B

×
{0}, B

−
{0,−1,−2}

I−5 = [−f(−1 + σ),− f(−1+σ)
2

] B+
{2,1}, B

×
{0}, B

−
{−1,−2}

I−6 = [− f(−σ)
4σ

,−f(−1 + σ)] B+
{2}, B

×
{0}, B

−
{−2}

I−7 = [−∞,− f(−σ)
4σ

] B+
{2}, B

−
{−2}

Table 2: Existence of pseudo basic patterns in parameter regions

3 From Basic Patterns to Global Patterns

In the previous section, we define twenty-seven pseudo basic patterns. In this section,

we discuss one-dimensional lattice. For any two pseudo basic patterns s1 = w1m1e1 ,

s2 = w2m2e2 , where wl, ml, el = +,×,−, l = 1, 2, we say that the pseudo basic pattern s2

can be attached to the right of pseudo basic pattern s1, if w2 = m1 and m2 = e1. Using the

method of attaching compatible pseudo basic patterns, we obtain pseudo global mosaic

patterns. Since wl, ml, el, l = 1, 2, correspond to some values in three possible intervals,

each of length 2σ, w2 = m1 and m2 = e1 may not imply their corresponding values are

identical. We shall claim the existence of global mosaic patterns in the following content.

In the case Λ = Z
d, d = 1 or 2, consider the phase space

X = {u = {ui} : i ∈ Z
d, ‖ui‖ <∞},

where ui ∈ R and the norm ‖ · ‖ could be ‖ · ‖`∞ , the `∞ norm , or ‖ · ‖`2q , the `2
q norm.

The `2
q norm is defined as follows:

‖u‖`2q = (
∑

i∈Zd

q−|i||ui|
2)

1

2 ,
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