if S; = +,

—1—-0c<y;,<-1+40
—1l—-—c<w;<-140

= —l—-oc<py+(1—-pw <—-1+o0.

Thus, for all 0 < p < 1, p{v;} + (1 — p){w;} € V. Clearly, any sequence {v;} € V has a
subsequence which converges to an element of ), in suitable topology. Apply the Schauder
fixed point theorem, we know that there exists {%; };cz, which solves (2.5), (2.6), for each
i € Z. And it is a mosaic solution of the form {s;} for the SD-RDE. O

Remark 3.2. In a finite lattice SD-RDE, we only project the global patterns on the
infinite lattice onto local part of the lattice and make it satisfy the boundary condition.

Thus, according to the Brouwer fized point theorem, we can get the result.

In the rest of this report, we omit the term “pseudo” in discussing patterns, due to
Theorem 3.1.

4 Pattern Formation and Spatial Entropy

In this section, we divide it into three three subsections. Here, we discuss the spatial
entropy and effect of boundary conditions in one and two dimension. First subsection,
we discuss the spatial entropy in one-dimensional lattices. Second subsection, we discuss
the spatial entropy in two-dimensional lattices. Last subsection, we discuss the effect of

boundary conditions and give some examples.

4.1 SD-RDE on one-dimensional lattices

In this subsection, we will find out the transition matrices and then use them to obtain
mosaic patterns and the spatial entropy as in [2] in one-dimensional infinite lattice. In
subsection 4.3, we impose three kinds of boundary conditions to discuss its effect on
pattern formation and spatial entropy for finite lattice.

Firstly, we take the following identification between the indices {1,2,3,---,9} and
the nine 1 x 2 patterns {4++, +X,+—, X+, X X, Xx—, —+, — X, ——} using



le— 4+, 2+— +x, 3(—)—}——,
44— X+, H— XX, 6 X—, (4.1)

T— —F, 88— —X, 9¢— ——,

we consider the transition matrix M :

T1 T2 T3 0 0 0 0 0 0
0 0 0 T4 s T6 0 0 0
0 0 0 0 0 0 T rs T9
Tio T11 T12 0 0 0 0 0 0
M = M(’F) = 0 0 0 13 Ti14 T15 0 0 0 (42)
0 0 0 0 0 0 T T17 T18
19 T20 T21 0 0 0 0 0 0
0 0 0 T92 T9o3 T4 0 0 0
0 0 0 0 0 0 To5 Tog To7

where r = {Tj}?;, r; = 0 or 1. The_ formation of feasible mosaic patterns related to
the transition matrix can be described as follows: the (i, j)-entry of M is one if and only
if the jth 1 x 2 pattern in (4.1)can be joined, with one site overlapped, to the right
of ith 1 x 2 pattern in (4.1) to form a 1 %73 feasible: pattern. For example, in case of
bels=[f(—o), fl(}:;g)], we have the basi¢ patterns

{F+4++ ++X, X++, XXX, X — —mo— X, ——— } |

and the corresponding transition matrix.

110000000
000001000
00000O0OGOO
100000000

Mi=|[000010000 (4.3)
00000O0GOO1
00000O0OOO
000100000
000000O0GO0T11

Now, if there exists a pattern having (i — 1, 4, i+ 1)—entries as + + +, as in Figure 3, we

could continue the attaching from the right only with + + + or + + X. For the opposite

use spelling checks to left sites, follow the same device.
Notably, according to [9], M = [m;;] is a transition matrix, if (i) a;; = 0, 1, for all
i and j, (ii) Z?:1 ai; > 1 for all i, and (iii) 7, a;; > 1 for all j. In our case, (i) or (iii)
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Figure 3: Attaching the two basic patterns, where e = + or x.

may not hold. But, in infinite lattice system A = 7Z, this is of little significance. Because,

observe the same case in the parameter region I5 = [f(—0), %] The corresponding
transition matrix is M; in (4.3), which has the 3th row to be [0, 0, -, 0]. It means that

when +— appears in somewhere of two adjacent sites, say (s;, S;41) = +—, the attaching
could not go on to the site right of s;,1, and impossible to form a global pattern in the
infinite lattice A = Z. Hence, we can drop the 3th row and 3th column of the transition
matrix M;. And it does not affect the complexity of the pattern formation. Similarly, we
also drop the 7th row and the 7th column of M;. Eventually, we could apply the following
theorem to study the spatial entropy of‘the pattern formation.

Theorem 4.1. [9] Let A be a trangition matriz on:N symbols. Let p, : X4 — Y4 be the
associated subshift of finite type (either one or two sided). Then h(pa) = log(A1) where
A1 is the real eigenvalue of A such thatsXi—=-{Nj| for all the other eigenvalues \; of A.

Definition 4.2. [9] We say that the:system. (1.1) and (1.4) exhibits spatial chaos at
a choice of parameters (o, (3), if the spatial entropy is positive there. And say that the
system (1.1) and (1.4) exhibits pattern formation at such a choice of parameters, if the

spatial entropy is zero.

Definition 4.3. A basic pattern exists in the parameter region, we call it feasible basic
pattern. A basic pattern may be exist in the parameter region, then we call it “possible”

basic pattern.

For the computations of spatial entropy, we need to explore all possible basic patterns
in each parameter region. In order to achieve this, further partitioning in each parameter
region is necessary. In previous discussions, we have observed the feasible basic patterns
for each parameter region [;. For example, consider the parameter region /5 again . We
have divided the parameter region I5 into three subregions I3, IZ, and I3. Take a look
at Fig. 4, we may indicate the certain basic patterns in I3, and then compute the spatial

entropy exactly. But, in I} and 2, we do the estimates of the spatial entropy. According

11



to the results, we could describe the complexity of the pattern formation in each parameter

region.

/\\/

-1-0 -140
-0

:
/i S

Figure 4: The intersection of (2.6) and (2.5). The slope of L3 is m3 and the slope of L,
is my.

Remark 4.4. Any parameter region, it must at'least have basic patterns are feasible basic
patterns and at most basic patterns are possible-basic patterns. And the set of “possible”

basic patterns is contains the set of feasible basic patteins.

Theorem 4.5. Consider the parameter regions L; and Ig , the system (1.1) with nonlin-
earity in (1.4) exhibits spatial chaos in" each parameter region I; or ]ij, for =5 <1 < 5;
and the system (1.1) with (1.4) exhibits pattern formation in parameter regions 117 and

2
[iﬁ.

Proof. For the proof of the theorem, it suffices to observe the upper bounds and lower
bounds for the spatial entropy h in each parameter region. We list the computation results

in Table 3, and the assertion is proved. O

After partitioning the parameter space, we know that the set of basic patterns in
each parameter region. Here, there are some parameter regions have upper bounds and
lower bounds of basic patterns. Therefore, there are two different transition matrices
in each parameter region above. Refer to [2], we can get the transition matrix in each

parameter region, and we use the numerical computation to estimate the eigenvalues.
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parameter regions A A h (entropy)
I = [{EH o) 1 1 0
Iy | I2=[f(1+0), {507 1 1 0
1 =12 f(1+0)] 1| 14656 | 0<h<0.3823
I, | I3 =52, [0 1.4656 | 1.4656 0.3823
Iz = [{0a B 1.4656 | 1.8972 | 0.3823 < h < 0.6404
I} = [f(~o), 1F7] 1.4656 | 2.3165 | 0.3823 < h < 0.8401
L =112 f(—0)] 1.8972 | 2.3165 | 0.6404 < h < 0.8401
I | 13 =[x [ 2.3165 | 2.3165 0.8401
1} = (L2 [ 2.3165 | 2.5921 | 0.8401 < h < 0.9525
L | =552, L2 2.5021 | 2.5921 0.9525
12 =11 [o)] 2.5921 | 2.8312 | 0.9525 < h < 1.0407
1} = £33, 1) 25921 | 3 ]0.9525 < h < 1.0986
I = [{52, 1) 2.7693 | 3 | 1.0186 < h < 1.0986
I, = [-4=2, 19 3 3 1.0986
I, =[5, ICo) 2.76934.0. 8+ | 1.0186 < h < 1.0986
[y ] 1Y, =[- 1) JEHa)) = [ 56210 g = | 0.9525 < h < 1.0986
2, =[-152 I 2.5921 | 2.8312| 0.9525 < h < 1.0407
B, =[5 L) 2.5921172:5921 0.9525
[y |1ty = [0 T 073165 | 2.5021 | 0.8401 < h < 0.9525
12, = [ I 23165 |'2.3165 0.8401
[, =[-{2) IEa) 1.9052 | 2.3165 | 0.6446 < h < 0.8401
5| Ity = [ f(—0), - {17 1.4656 | 2.3165 | 0.3823 < h < 0.8401
P, =[-1d f(—o)] 1.4656 | 1.9052 | 0.3823 < h < 0.6446
By=[-f(-1+0), -] | 1.4656 | 1.4656 0.3823
Le| g=[-152 —f(—1+0)) | 1 [14656] 0<h<0.3823
]gﬁ _ [_f(él—gff) _ f(l—_lz;a)] 1 1 0
I = [—o0, —{&7] 1 1 0

Table 3: Upper bounds and lower bounds for the spatial entropy h in the case of one-
dimensional lattice. A is the maximal eigenvalue of the transition matrix corresponding
to generate patterns from the set of the feasible basic patterns, in each parameter region;
) is the maximal eigenvalue of the transition matrix corresponding to generate patterns

from the set of possible basic patterns, in each parameter region.
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parameter regions possible basic patterns

8=/ +0), 5577 | Bl Bloy By

I = lrg S+ o)l | By Bioy Bloy

B= % 5] | By By Bray

Ig = [f(1;0)7 _%] Ba,z}v B{X—I,O,l}’ BE—Z,—I}

I% = [—f(o), f(l;a)] BEB,1,2}7 BE(—I,O,I}’ B(—2,—1,0}

I} = [f(1;0)7 fQ(iZZ)] B{+0,1,2}> B{X—1,0,1}’ Bf—z,—l,o}

I3 = Véig)) f(lzjg)] B?_—LO,LZ}’ B{X—I,O,l}»? B{_—Q,—I,O,l}

I = [_2{(2—7 féﬂi)] 3?71,0,1,2}’ BE:I,O,I}’ B{_72,71,0,1}

Ig = [f(ljo)v _21‘_(1)7] 33—1,0,1,2}7 B{X—z,—Lo,l,z}v BE—Z,—I,O,I}
I} = [fﬁZZ)a f(lira)] B?—z,—1,o,1,2}7 B{X—z,—Lo,Lz}’ B{-z,—1,o,1,2}
I, = [fi:?a —f“?”)] B{+—2,—1,0,1,2}’ B{X—2,—1,0,1,2}7 B{—Q,—1,0,1,2}
2, = [%’ fﬁiﬁ,’)] B{+—1,0,1,2}7 B{X—2,—1,0,1,2}= BE—2,—1,0,1}
132 = [f(lg_g)7 @} Bzr—l,o,m}v B{X—1,0,1}7 BE—Q,—I,O,I}

IL; = [fg(l_li)v f(l?)_a)] B?—1,0,1,2}7 B{X—1,0,1}v B{_—z,—l,o,l}
;= [1&27 fs(:?} BEBJ,Q}? B{X~1,0,1}7 B{_72,71,0}

1175 = [f(o), _f(_;JrU)] B?E),l,Z}’ B{X71,0,1}7 B{_fz,fl,o}

12—5 = [fg(:?af(a)] B{+o,1,2}= B{Xop B{~—2,—1,0}

I315 =[f(1-o0), fz(:?] B{lg}v B{Xo}7 B{_—z,—l}

Iy = [’Ti? (1—o)] Ba,z}v B?o}a B{_~2,71}

2, =42, 552 Bio) Blop By

Table 4: Possible existence of basic patterns in parameter regions.

4.2 SD-RDE on two-dimensional lattices

In this subsection, similar to one-dimensional case we use the same method to discuss

two-dimensional SD-RDE (1.2).

The stationary equation for Eq. (1.2) is

ﬁ+A+Ui7]‘ + BXAXULJ‘ + @f(ui7j> = O, for (l,]) S Z2.

In Eq. (4.4), we have three parameters 8, §* and «. Similarly, we also partition
the parameter regions PP = {(BT, 3%, «a) : BT, 8%, «a € Z}. We rewrite (4.4) as

b1A+ui,j + bQAXUi’j + f(ui,j) = O, for (Z,]) S Z2.
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where

BT )
blz—,bgz—,OZ?éO. (46)
«Q «Q

Then we partition the parameter regions PP = {(by,by) : by,bs € R}. For any
(i,5) € 2?2, (wij,y) satisfies

y = fluiy) with f(u;) = wij(ui; — 1) (ui; 4 1) (4.7)
and
y=—biA%u;; — b A . (4.8)
We rewrite (4.8):
y=—biATu;; — by A*u;

= 4(b1 + b2)u; j — b1g1 — bago.
b1g1 + b2g2

= 4(b1 + bz)(ui,j — 4(b1 T b2)

),

where

g1 = Uiyt + Ui_g gl Uifga t Wi 1,
g2 = Uit1 j+1at Uimgllidb £ 1 + Ui-15-1.

For any small ¢ > 0 and uz; € [-1 —o,=1+ 0|, [—0,0] or [l — 0,1+ o|. Then
gi € [-4 — 40,4 + o], [-3 — 4g,—3.+40o], =2 — 40, -2 + 40|, [-1 — 40,1 + 40],
[—40,40], [1 — 40,1+ 40], 2 — 40,2+ 40], [3— 40,84 40] or [4 — 40,4+ o] for i € {1,2}
and respectively denotes B*,, B*;, B*,..\By v BS, BY, B3, B3, Bj.
: bigy +b
We use intercept u; ; = if’gltlff)?

and characterize what basic patterns will appear in each parameter region. The method

and slope 4(b; +0b9) to classify the parameter regions

is similar to one dimension case. Different part is the intercept in two dimension case
have eighty-one intercepts.

Partitioning the parameter space that must divide two cases to discuss, in the first
case, the parameter region of the patterns appear certainly(i.e. the feasible basic patterns),
in the second case, the parameter region of the patterns maybe appear(i.e. the “possible”

basic patterns). The following process is the same above one dimension case.

Theorem 4.6. Suppose that o is small enough and by = 0 or by = 0. The existence of

feasible basic patterns in each parameter region in Table 5 are confirmed.

We can use the same method to estimate the greatest lower bound of spatial entropy
in each parameter regions as [10]. We only present the results are summarized in Table

6, 7 as by = 0.
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+ | | + |
+ o0+ | X0+ X ® + X o | o |
| + X | +
+ [ X [ + _
+eo | | +e+ e+ | eo+]| | @] e+
+ X X + X |
| | X + + +
+e+ | +e0Xx XxXe+ | e| | & X o |
+ + | + | |
+ + + + _ [
o+ | o+ lex | o+ | +e | ° |
+ X X I X |
+ + + + | _ _ [
+oeX | | ex +oX| XoX 4o [+0 X -| e@x ® X
X + | I 2 | + X
X X X + | X X X
+o+ | e+ +o+|xo0| [FOoF|F+eo || e | o |
X + | X | | + X
+ X X + X + X I X I
+o+| tOX| XO0X XxXeo+|+0Xi Fo |[|XoX X0 eX| | e
X + + | | | | + | X
+ + X X X X X X I I
+ex | X0+ | xeoe4+ +teo||+o]| Xeo||xXe| | e+ o || ]e
+ X X + X + X + X I
X + + + | | | | | X
+o+ | XX |[X0eX Xo||l+O0X xex|Xex Xe+ eX| | e
+ + X + X + X | | I
+ + X X + X X X I X I I
to+ | X0+ | X0+ |t ox t+o||XOX | oX| | ex | e+ || Xe o |
+ + + X X X + X X | | |
PN ® e~ ° °Lo o« T o?,. o T oA_..
Q| ]|y S q N | Al /X

_'_77 C(Xﬂ or “w_m
5 .

o«

Figure 5: g1 € B?, where i € {—4,-3,—-2,—1,0,1,2,3,4} and e
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parameter regions

feasible basic patterns

Iy = [F522, o0 Bloy

Lip = [ffizg)’ f(j;aG)] B{Z}v B{XO}’ B{:‘l}

Ii; = [@a fffg;’)] B{+3,4}’ B{XO}’ 35—4,—3}

Lo = [fz(if,’), @] BE%A}’ B{X—I,OJ}’ B3

Iy = [féfgg), féi;fi)] 8573’4}, B{X—l,o,1}> By 39

Ig = [@, féi;g)] 35,2,3,4}> B{X—1,o,1}v By 5 5 1y

I; = [f4l+gg)7 %] BEFLZSA}’ B{X—Z—LO’LQ}’ Bias s

I = [féféj), fﬁ;g)] Bionzaay Blo 1o Bl s 210

I; = [fgi;?, fsffsrg)] B{ 101280 Bio 10020 Blaca s 100

Iy = [%7 féi?] B{+_2,—1,0,1,2,3,4}7 B{X—2,—l,0,1,2}’ B{—4,—37—27—1701172}

Iy = [f7fé§)’ %;)] B{+—2,—1,0,1,2,3,4}’ B~{X—37—27—1,0,17273}’ BE—4,—37—27—1707172}

I, = [fs(fé?, fﬁZ?] BEF—3,—2,_1,0,1,2,3,4}’ Bis 10125 Blaso-10123)

L = [ff_fu féfég)] 3?74,73,—2,—1,0,1,2,3,4}7 BE(—3,72,71,0,1,2,3}’ B{:4»*37*27*1707172»374}
Ip = [445?0’ %] BEF—4,—3,-2,~1,0,1,2,3,4}’ B{X*47—3:*2’*1:0717273’4}’ B‘{_’4”3”2’*1’0’1’2’3’4}
[, = [f(lga)v 4f4£g()7] BEL—4,—3,—2,—1,0,1,2,3,4}’ B s 10125 Blras 2101254
[, = [f“;"), f“;‘”] B{+_3,—2,—1,0,1,2,3,4}7 B?—S,—z,—170,17273}’ Bl s 10123

[ 3= [:ﬁggf’ f(17_0)] Bzr—2,—1,0,1,2,3,4}’ B«‘i—3,—2,—1,0,1,2,3}’ B{_—4,—37—2,—1707172}

Ly= [f(ls_a)7 ?)f-i(-g)a] B?—2,71,0,1,2,3,4}’ B?*Z*LOJ,Q}’ B~{_*4r3ﬁ27*1707172}

5= [f“;"), f“g")] BEF_1,0,1,2,3,4}7 B{X—Q,—Loga}v B{-4,-3,—2,—1,0}

[g= [;ﬁgl’ f(15_g)] BEB,1,2,3,4}7 B{X—Z,—l,O,LQ}’ B{_—4,—3,—2,—170}

L, =12 2];((;2;] Bionzsay Blaony Bl s s 10

[ g— [f(lgfo)7 f(lA:U)] 36727374}, B{X—I,O,l}’ B€_47_37_27_1}

Ly = [ 157 Blysap Bloony Bilas

[Lio= [m;)v 11;(?0] B{+2,3,4}7 B{Xo}’ Bi-s-2

Lu=[f(1-o0), f(lz_g) BELBA}’ B{XO}’ Bias

[ = [LZ), f(l—o)] BEZ;}’ B{XO}7 B{—4}

13 = [—o0, fég)] B§}>B{14}

Table 5: The feasible basic patterns of the parameter space in b; = 0 or by = 0.
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parameter region hU) | h(U)
Ly | I = [f(1 4+ 0),09] 0 0
I+
1112 = [f1(+8g)> (1 + U)] 0 0
fieE=
Iy 1?1 = [fji(jg);ay 1(f+8§)] 0 0
It
[121 - [ (2 U)a _1(j§0] 0 0
I+ ]
[111 = [fﬁ)’ I . 0)] 0 %’)
L = [H52, 1] 0 | b
T 72 — [{0+0) [(t0) in3 in3
9 9—[ 3 ’2+80] 16 16
72 — [[0+a) J(+o) in3 3in2
g = | 3480 ' 3 ] 16 16
T 73 — [ L@ [(+o) 3in2 3in2
8 8 — [—2+8cr’ 318a ] 16 16
12 :[ (I+o) _flo) ] 3in2 In26
8 4 —248c 16 16
1 _ 1flo) f(+o) 3in2 In3
< [ff( T | s T s
+o o In26 n3
[7 [ 4485 _—2] 7{_6 T}T
T 12 — [{(0a) "F o) in3 in3
6 6 = 5 7 418¢ ] 4 4
71 — [fdTg) Jita) I3 In3
6 [ 548ag 5 ] 4 4
Ji 73 — fulle)_ Jiire) in3 in3
5 5 — [—3+80’ 5480 ] 4 4
72 —i0+0) " J(o) ] in3 inll
5 =1 6 » L2380 ! 4
71 — U T in3 n27
ey [ffﬁs") e I
[4:[—(.;’6+8§] % hﬁ%
I | I = ({0170 L | G
71 — [{0+a) JU+o) n27 In51
3= 718 ' 7 ] 4 1
T I3 — [ f(0) f(1+a)] n51 in51
2 2 — 1480’ 7+8c 4 4
12 — (Ito) _J(o 51 In63
T [f(18+ T 5(414%8")] It .
o o 51
[21 - [ 318c ' 8 ] nT In3
I = [, el b | n3
Ip=[0,29] In3 | In3

Table 6: Estimate the greatest lower bound of spatial entropy for feasible basic pattern
and possible basic pattern in each parameter region, where by = 0. This effective estimate
is similar to [10].
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parameter region hU) | h(U)
Iy = [ﬂgl,O] In3 | In3
L= (2 o | g
Iy [ 11, =[52 0] | 5| n3
72, — [M 1(1—0)] 51 | In63

-2 |l 4 ) 88 4 4

I3 :[f(l—a) M] In51 In51

S e O T B -

Iy | I'y=[- =T ] % nTE)l
2. — [f(a) f(l—a)] n27 n27

—3 3480’ 7—8c 4 4

72 — [f(l—o) flo ] Inl7 In27
—4 6 3480 . 4 4
Ls |Is =[50 I | 22 | o
72 — [M f(l—ff)] n3 Inll

=5 3 68 4 4

3. = [f(l—ff) M] n3 n3

o f(15— )7 f(glf ) l43 143

I | Ilg=] 5 nriiie ] i T
2, — [JalFoh W3 [ 3

—6 — 2385’ 580 4 4

I — [f(l—a) f(a)] in2 n3
—7 4= 7248 4 4
I, | 1L, SEEE e |
12, = [{Te i 3In2 | In2

-8 1=85 2 16 4
2, =L, 32 | 3ln2
i) g 5 Bing

1 . —0 n n
Ig | 1g=| RES G ] 16 16
2, = [LeL, A=) 3 | In3

—91_ 1480’ 3480 16 16
L, = (=, JE Tk
1-0 n

Iy |1, = [{((1‘7)7)f( 2 )] 0 %
[Ell - [ 2—82 ) (0)] 0 ?

1—0o

[ill - [f(O'), f2(_80')] 0 0

I le = [fl(l_;z)> (o)] 0 0
2 = [~oo, fl(lfgf,')] 0 0

Table 7: Estimate the greatest lower bound of spatial entropy for feasible basic pattern
and possible basic pattern in each parameter region, where b, = 0. This effective estimate
is similar to [10].



4.3 Effect of boundary conditions

Let A C Z¢, where d =1 or 2. For d =1, consider A and the finite lattice Tj:
Te ={(G)€Z':1<i<k},
where k is a 1—tuple of positive integer. For d =2, consider A and the finite lattice T:
T = {(i1,i2) €Z*: 1 < iy < k,1 =1,2},

where k = (kq, k) is a 2—tuple of positive integers.
Let A be a finite set of elements (symbols) which are used to represent the patterns

at each site on the lattice. Let A% = {y|y : Z* — A}. There is a natural projection
Tk . .AZd — ATk,

by any y € AZ" on finite lattice Ti. Let U be a translational invariant subset of the
global stationary solutions A% in (SD-RDE) . ( generated by feasible basic patterns), U
be a translational invariant subset ofithe stationgry solutions AZ° in (SD-RDE),, and
U be a translational invariant subset jof the possiblé stationary solutions A% in (SD-

RDE)( generated by possible basic 'patterns); which represent two classes of patterns in
(SD-RDE) .. Set

where I'} is the number of the distinct feasible basic patterns on T projected from U, I'y
is the number of the distinct patterns on Ty projected from U and Ty is the number of
the distinct possible basic patterns on Ty projected from U.

The spatial entropy in one dimension is defined as

hU) = lim %lan(g) = h,

k—oo

1
h(U) := lim Elnf‘k(b{) = h,

k—o00

h(U) = lim Elan(Z/{) = h;

k—oo

20



and the spatial entropy in two dimension is defined as

1
h(U) := lim ——Inl'w(U) := h,

k—oo K1Ko

1
hU) = Jim I (U) =

W) = lim ——InTW () = T,

k—oo K1Ko

where h(U) is the entropy of the feasible basic patterns, h(U) is the entropy of all patterns

and h(U) is the entropy of the possible basic patterns.
Next, we discuss the effect of boundary conditions and spatial entropy similar to

[11]. The following are three types of boundary conditions for SD-RDE on Tj:

(1) (SD-RDE)x — N, SD-RDE with Neumann boundary condition on 7.
Ford=1land 0<:i:<Ek+1,

Ug = Ut U= Uk+1-
Ford=20<:<k+1and 0 <5 <k +1

Uk, 41,7 = Uk, ;- Uo,j = U1,

Wishg+1 = Ui ko, UWio = Ui -

(2) (SD-RDE)x — P, SD-RDE with Periodic boundary condition on Tj.
Ford=1and 0<:i<Ek+1,

Ug = Ug—1, U1 = Uk, U2 = Ug+1-
Ford=20<:i:<k+1land0<j <k +1

Utj = Ukyjs U0,j = Uki—1,5, U2, = Uky+1,5,

Uil = Ui kyy UWi0 = Wiko—15 Wi2 = U ko+1-

(3) (SD-RDE)x — D, SD-RDE with Dirichlet boundary condition on T}.The Dirichlet
boundary conditions means that up, = up := {4;,7 € b}, where b is boundary sites

in one or two dimension.
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Denote by Uy a class of the patterns obtained from attaching all feasible basic
patterns for (SD-RDE)y, U a class of the patterns obtained from attaching all patterns
for (SD-RDE)y and Uf is a class of the all possible basic patterns for (SD-RDE)y, where
B =N, Por D. And we set ['(Ug) = I'f is the number of patterns of U, T(UP) = T'Z
is the number of patterns of U, T'2 (U,) =Ty, is the number of patterns of I/, .

And we define h(U”) := hy as the entropy on Tj with boundary condition B gen-
erated from all feasible basic patterns, h(UP) := hp is entropy on Tj with boundary
condition B generated from all basic patterns, h(U B) := hp is entropy on Ti with bound-

ary condition B generated from all possible basic patterns.

Proposition 4.7. [11] (i) Fiz s € N, for all k > s( means kq > s, for alld), T§ > T
and (ii) Tg < p°-T° , for some p > 0 and ¢ = c(k) with limy_.oo(c/kiky - - kq) = 0, then
h = hg, where B= N or P or D.

Proposition 4.8. Assume two conditions: (i) Fiz s € N, for allk > 5,02 > T}, and
(i1) ff < pe IR, for some p > 0 and ¢ = c(k) with limyx_.o(c/kiks - - - kq) = 0, then
h:hB:ﬁ:ﬁB:E:EB, where B =tN"or Pror D.

Proof. Because ['f > ff , then wesget [f > EF. Andiwe also get that ['f < p°- I3, for
some p > 0 and ¢ = c(k) with ling s(c/k).= 0. According to proposition 4.7, then we
get hp = h. Similarly, because ff < pé-lp-then we get ff < p¢ Ty, And because
Ff > T2, then we get ff > Ff. Aceording to proposition 4.7, then we get hp = h.

We prove the two-dimensional case; according to the condition (i), we get

1
hg=hUP) = lim —InTY

k—oo R1R2
1 =00

> lim —1InD}_

k—oo K1K92

1, (lfl — 281)(]{72 — 282) hl Ff
= 1m

k—o0 ]{71]{32 (l{?l — 281)(]{?2 — 282)
NS
= h.
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According to the condition(ii), we get

— _ 1 —
hy=hU’) = lim ——InTy,
k—>oo 12
1
< lim —— In(P¢- T2 ,,)
k—oo K1Ko
. (ky — 251)(ky — 255)  c¢lnP+1Inly
= lim
k—o0 ]{?1]{72 (]{71 — 281>(k2 — 282)
= h(U)
- A
Thus, h =hg =h=hp =h = hg, where B= N, P or D. O
We want to know whether if “h = hy = hp = hp?’ in each one-dimensional

parameter region. So we must check the conditions of Proposition 4.7 or Proposition 4.8.

It is easy to check that the parameter in all regions satisfy the condition(ii) of
Proposition 4.7 T2 < p°-T'g° _ for some p > 0 and ¢ = ¢(k) with limy .o (c/kiks - kq) = 0.
Next, in each parameter region, we shallschéckswhether if the parameters within satisfy
the condition(i) of Proposition 4.7, ije. fix s.e s fof-all k > s, T'5 > I'® _, where B = N,
Por D.

After the analysis, we comé-to a conelusion as follow. When B = N, we assume
s > 2, then all parameter regions-satisfy #hatfor all'k > s,I'Z > T'° . When B = P,
assume s > 3, then all parameter régions satisfy that for all k > s,T'F > I't° .. When
B = Dy, ie. up = up := {1,i € b}, assume s > 4, then almost all parameter regions
satisfy that for all k > s,'P > T'%° | beside the spatial entropy is zero in some parameter

regions. Thus, according to Proposition 4.7 implies h = hy = hp = hp, in one dimension.

Theorem 4.9. In one dimension, h = hy = hp = hp,. Namely the effect of boundary

conditions does not change the number of spatial entropy.

The following we present several examples to explain how to check the Proposition
4.7 and Proposition 4.8.

Example 4.10. In this example, we illustrate that the parameters in I3 satisfy the con-
ditions of Proposition 4.7 and justify the equality h = hy = hp = hp,. In Table 2

and Table 4.1, the parameter region I3 has the feasible basic patterns: 35172}, B{X—1,0,1}

and Bf—z,—1,0} and the possible basic patterns: Bzr—l,o,m}f B{X—1,o,1} and B, The

{-2,-1,0,1}"
boundary of basic patterns on Tj_s may be:

23



T+
XXX

REE

il it

Figure 6: Left and right boundary of basic patterns on T} _ that satisfy the Neumann

boundary condition.

FF+, x++, T+X, XAK [Tty =+, —+X, X+,
X X+, +XX, XXX, FX= =X+, "XX—, —XX, X—+,
_|__><7 ><_><7 +__7 __—I—’ X_—7 __X7 _

It is easy to check the condition (it) in I3

We=shallcheck the other

=B . : ‘ :
allTP, TP < TP <T,. We divide the discussions into four cases.

(i) B?;J,lﬁ}’ B{X—1,071} and B{_—Q,—l,ﬂ}'

(ﬂ) 3;1,0,1,2}7 B{Xfl,m} and B{_f2,71,0}'

(iii) By,

(iv) 3?71,0,1,2}7 B{Xfl,o;} and B{_fZ,fl,Oyl}'

BX

(-1,01} and B}

{—2,-1,0,1}

condition (i), i.e. for

We use the method is to attach the least basic patterns that satisfies the boundary

conditions of T,.

(Z) B{—B,l’g};

BX

(-101} and B}

{-2,—1,0}"

(a) In Fig. 6, we attach some basic pattern to satisfy the Neumann boundary con-

dition of Ty,. When we choose any s > 0, it satisfies the condition (i).
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XX T+ XA FH]
T+ +X T+ XX
XX EX S XXX
FHXX XXX
FEX— X ]
XXX — = XXX
XIX=X = X=X
———T o —— ]
Et——- D
==X o= —XiX]
XX == X

Figure 7: Left and right boundary of basic patterns on 7}_, that satisfy the periodic and
Dirichlet boundary conditions.

(b) In Fig. 7, we attach some basic patternsto satisfy the periodic boundary condi-
tion of Ty. When we choose any s 1, it satisfies the condition (i).

(c) In Fig. 7, we attach some basié pattern to satisfy the periodic boundary con-

dition of Ty, i.e. D,. When we choose any s > 1, it satisfies the condition
(1)

Thus, we choose a s > 1, this case (i) satisfies the condition (i).

(”) BEF_1,0,1,2}: B{X—l,o,l} and B{_—2,—170}

(a) In Fig. 8, we attach some basic pattern to satisfy the Neumann boundary con-
dition of Ty. When we choose any s > 0, it satisfies the condition (7).

(b) In Fig. 9, we attach some basic pattern to satisfy the periodic boundary condi-
tion of Ty,. When we choose any s > 1, it satisfies the condition (7).

(c) In Fig. 9, we attach some basic pattern to satisfy the Dirichlet boundary con-
dition of Ty, i.e. Dy. When we choose any s > 1, it satisfies the condition

(i).

Thus, we choose a s > 1, this case (ii) satisfies the condition (i).
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XEX - X+ X
KE=—— —XF—
= EE—

Figure 8: Left and right boundary of basi¢'patterns on T}, that satisfy the Neumann
boundary condition.

EEESen X
—— s
———C XX
XX —— X

Figure 9: Left and right boundary of basic patterns on T)_, that satisfy the periodic and
Dirichlet boundary conditions.
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The case (iii) and the case (iv) are similar, and we choose any s > 1 to satisfy the

condition (i). According to the Proposition 4.7, then h = hy = hp = hp,.

Example 4.11. In this ezample, we illustrate that the parameters in I2 satisfy the condi-
tions of Proposition 4.7 and justify the equality h = hy = hp = hp,. In Table 2 and Table
4.1, the parameter region I2 has the feasible basic patterns: BEFI 2} B{XO} and B{i2 1) and
the possible basic patterns: Bz“m}, B{X—1,0,1} and B{_—27—1}' The boundary of basic patterns

on Ty_s may be:
TI+, XTI+, FIX, ITXX, XX+, XXX, £xX=, —xT,
—X X, XX—, ——X, X——, ———,
It is easy to check the condition (ii) in I2. We shall the other condition (i), i.e. for all

=B ., . : .
2, TP <P <T,. We divide the discussions into four cases.

(i) BEFLQ}’ B{XO} and B{_Z_l}.

(ii) BY, ,\, BY

2y Biigy and B,

771} ’

(iii) B}y g, Bjyyy and B, ;.

and B,

{1,2} {-1,0,1}

We use the method is to add the leastlattices that satisfies the boundary conditions
Of Tk

(i) BEFLZ}’ By, and B, .

(a) In Fig. 10, we attach some basic pattern to satisfy the Neumann boundary

condition of Ty. When we choose any s > 1, it satisfies the condition (i).

XX XX - XXXIX]
—T—XF - =X HF
SE=— =

Figure 10: Left and right boundary of basic patterns on T} _ that satisfy the Neumann
boundary condition.
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FFFFFT— R wa

X I G s
X TEEX——X
FFFX=——" E=yekzxa
TEX—— X
X
X=Xt T

T IXE

Figure 11: Left and right boundary of basic patterns on T} _ that satisfy the periodic
and periodic boundary condition.

EoxFE— ) G
C— X XX
==X X ——]
e — XX
X —]
T XE X
D ———

Figure 12: Left and right boundary of Jbasic patterns on T} _ that satisfy the periodic
boundary condition.

(b) In Fig. 11 and 12, we add somelattices to satisfy the periodic boundary condi-
tion of Ty. We divide two.parts of-the boundary patterns to discuss. When we

choose any s > 3, it satisfies the condition (i).
One part is Fig. 11.
The other part is Figure 12.

The pattern Ty, X X X - -+ X X X 1is also satisfying the condition (i).

(c) In Fig. 13 ,we attach some basic pattern to satisfy the Dirichlet boundary con-
dition of Ty, i.e. Dy. When we choose any s > 3, it satisfies the condition (i).

Beside the only one pattern X X X --- X X X can not satisfying the Dirichlet

boundary condition.

Thus, we choose any s > 3, this case (i) satisfies the condition ().

The case (ii), (i) and (iv) are similar, and we choose any s > 3 to satisfy the

condition (i). According to the Proposition 4.7, then h = hy = hp = hp,.
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S e YT CFFFEET

X+ DT
X TEAX——X
X=X T o XFHEE
FFFEX—— X=X
FFX—x— XA
FEfX——— X
FFX——— E——e

Figure 13: Left and right boundary of basic patterns on T}j_, that satisfy the Dirichlet
boundary condition.

Example 4.12. In this example, we check the conditions of Proposition 4.8 to get the
result “h = hy = hp = hp,”. In Table 2 and Table 4.1, the parameter region IZ,
the number of feasible basic patterns is equal to the number of possible basic patterns.
The set of basic patterns is BKJ,LQ}’ B{X—1,o,1}
that choose any s > 1, this region satisfies the conditions of Proposition 4.8. Then

h=hy=hp=hp,.

and B{—Z—LO}' In Example 4.10, we know

Note: If the number of pseudo basic patterns. is least for each case, then we need to
take s.

Now we discuss that the parameter regions-of by = 0 or by = 0, the other parameter
regions are use the same method todiscuss. Similarly, we are only check the conditions:
(i) 2 > T, and (i) T2 < p¢- Ty, for some p> 0 and ¢ = c(k) with limy_(c/k) = 0.
The second condition is easy to check, so we only check the condition(ii) T'Z > T'g° _.

We want to know whether if h is equal to hg in two dimension, where B = N, P
or D? Consider the case of two-dimensional lattice. We shall only discuss the parameter
regions with by = 0. Similar to one-dimensional case, it is easy to check that all parameter
regions satisfy the condition (ii) of Proposition 4.7. Thus, we are only to check each
parameter region satisfies the condition (i) of Proposition 4.7. In each parameter region
and different boundary condition, in [11], if we can modify patterns on the layers of the
lattice near the boundary, for each pattern, then satisfy the boundary condition, then we
can get “h = hy = hp = hp”. Fortunately, all parameter regions of by = 0 satisfy the

assumption, so we can get the result.

Example 4.13. Assume by = 0. In I3, this parameter region has the feasible basic
patterns: B{t2 10,1234} B{X_3 210,123} and B(_4 321,012} and the possible basic

patterns: B B

(=3,-2,-101,234) D{-3-2-10123 9
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B-

{_47_37_27_170717273} ’

According to condition(i) of Proposition 4.7(i.e. for all TE, TP <

2 < Ff satisfies the conditions (1) ), we need to check the following four cases satisfies
the condition (i).

(i)
(i)
(iii)
(iv)

y _
B3 510123 ad B

B+
{727717071»27374}7 {74773772771»07172} ’

X
B{—3,—2,—1,0,1,2,3}

and B,

B+
{-3,-2,-1,0,1,2,3,4} {—4,-3,-2,-1,0,1,2} -

>< —
B3 5 10123 ond B

Bt
{_27_17071727374}; {_47_37_27_170717273} ’

+ x —
B s 5101234y Biis—a 10123 @4 By 3 5 10123} -

Assume the pattern Ty_o is surrounding by two layers “x” in Fig. 14.

(i)

(i)

(iii)

(iv)

If a “+7 in the (k — 2)th layer is surrounded by three “—” on Ty_o, we change this
“G7to “—7. And if a “—7 in the (k—2)th layer is surrounded by three “+” on Ty_o,
we change this “—7 to “+7. After these steps, pattern Ty satisfy those boundary
conditions. Thus, we know that satisfies the condition (ii). According to propsition
4.7 we get that h = hg, where B = N, P or D;.

If a “=7 in the (k — 2)th layeryis surrounded bythree “+” on Ty o, we change this
“—7to “47. After this step,spatterm Ly satisfy those boundary conditions. Thus, we
know that satisfies the condition (13). ‘Aceording to propsitionl we get that h = hp,
where B= N, P or D;.

If a “+7 in the (k — 2)th layer is surrounded by three “—” on Ty_o, we change this
“G7to “—7. After this step, pattern Ty satisfy those boundary conditions. Thus, we
know that satisfies the condition (ii). According to propsitionl we get that h = hg,
where B= N, P or D;.

We do not change the (k — 2)th layer, then only add kth layer to satisfy those
boundary conditions. According to propsitionl we get that h = hg. Then we get
h = hpg, where B= N, P or D;.
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Figure 14: In I}, the pattern T}, is surrounded by two layers “x”.

5 Numerical Illustrations

In this section, we use basic pattern formation to create the same patterns as [3]. We
observe the basic patterns (3 x 3 herein) as needed to obtain the designated patterns
and look for parameters with which thesel basic patterns are feasible for (1.4). We then
choose these parameters for (1.4) and use numerical computations (Newton’s method)
to compute the corresponding solations of (1.4). Our fheory can thus be justified.
Recall the two-dimensional reaetion diffusion‘equation (1.2) with (1.4):
% = BT A u; + B A%y + af (u;;), where (i, ) € Z, (5.1)

where

fe=¢-¢

Patterns in Color: The value of u, ; is to colored as in Fig. 15, 16.

Figure 15: Patterns in color.

Example 5.1. Checkerboard with horizontal interface.
We need the following 3 x 3 basic patterns in Fig. 18 to generate the following 7 x 7

checkerboard with horizontal interface in Fig. 17, through attaching process.
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