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Abstract

We study mosaic patterns ofa one-dimensional Cellular Neural Network
with an output function which is non=flatrat infinity. Spatial chaotic regions
are completely characterized. Moreover, ‘each of their exact corresponding
entropy is obtained via the method of transition-matrices. We also study the
bifurcation phenomenon of mosai¢ patterns-with-bifurcation parameters z and
B. Here z is a source (or bias)term and /5is the interaction weight between the
neighboring cells. In particular, sve-find that by injecting the source term, i.e.
z # 0, a lot of new chaotic patterns emerge with a smaller interaction weight
(. However, as [ increases to a certain range, most of previously observed
chaotic patterns disappear, while other new chaotic patterns emerge.
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1 Introduction

Of concern is one-dimensional Cellular Neural Networks (CNNs) of the form
d!L‘i
dt

Here z; denote the state of a cell C; and f(z) is a piecewise-linear output function defined

by

=—u;+ 2+ af(xi1) + af(x;) + Bf(xiy1), @ € Z. (1.1a)

re+1—r, ifx>1,
flz)=4¢ =, if |z| <1, (1.1b)
re—14r, ifr <-—-1,
where 7 is a positive constant. The quantity z is called a source term or a bias term. The
numbers «, a and 3 are arranged in a vector form [« a, /3], which is called a space-invariant
A-template

A =a, a, (]. (1.2)

A is called symmetric (resp., antisymmetric) if « = 3 (resp., « = —f3).

CNNs were first proposed by Chua and Yang [1988a, 1988b]. Their main applications
are in image processing and pattern réeognition [Chua, 1998]. For additional background
information, applications, and theory, see [SpeciakIssue, 1995; Thiran, 1997; Chua, 1998]
among others.

A basic and important classtof solutions of (1.1} is the stable stationary solutions.

Specifically, a stationary solution x=(z,);cz of (L.1).satisfies the following equation

i) = é{xi i —af(ria) = Bf(@i)}, i€ Z. (1.3)

Let x= (2;):ez be a solution of (1.3). The associated output y= (v;)icz = (f(2:))icz
is called a pattern. The following two types of stationary solutions are of particular

interest.

Definition 1.1. A solution = (x;);cz is called a mosaic solution if |x;| > 1 for alli € Z.
Its associated pattern y= (y;)iez = (f(x;))iez is called a mosaic pattern. If |x;| # 1 for
all i € Z and there are i, j € Z such that |x;] < 1 and |x;| > 1, then x= (x;);cz and

y= (f(x;))icz are called, respectively, a defect solution and a defect pattern.

To define the stability of the stationary solution, we consider the following linearized
stability. Let = (&;);ez € ¢2, the linearized operator L(x) of (1.1) at a stationary solution

x= (x;);ez is given by

(L(x)&)i = =& + af'(zi-1)&i1 + af'(23)& + Bf (ip1)Eita- (1.4)



Definition 1.2. Let = (x;);cz be a solution of (1.3) with |z;| # 1 for alli € Z. The
stationary solution x is called (linearized) stable if all eigenvalues of L(x) have negative
real parts. The solution is called unstable if there is an eigenvalue A of L(x) such that X

has a positive real part.

It is well-known, see e.g., [Juang and Lin, 2000; Hsu, 2000], that for
1

m >r >0, (1.5)
where 7, a, @ and [ are defined as in (1.1), —L(x) is a self-adjoint and positive operator.
Therefore, if r is sufficiently small, all mosaic solutions of (1.1) are stable. For r = 0,
the complexity of stable stationary solutions of (1.1) with respect to all the parameters
has been completely characterized when the template A is symmetric or antisymmetric
(see [Thiran et. al., 1995; Juang and Lin, 2000]). For r > 0, sufficiently small, a map
approach was introduced to study the complexity of stable stationary solutions of (1.1)
with limited success (see e.g., [Hsu, 2000; Chang and Juang, 2004]). Specifically, only the
parameters region that would yield Smale horseshoe, hence, the spatial entropy of In 2, is
located in those papers. That is to say,enly regions that yield the full shift with 2 symbols
are found. For r = 0 [Juang and Lia, 2000];jthe ‘parameters regions corresponding to the
positive entropy less than In2 can also be found. Those are the regions that yield the
subshift of finite types (see e.g., [Robinson,1995]). It would be reasonable to expect that

for r # 0, one can find such regions as well.

The purpose of this thesis is to find-parameters regions yielding the subshift of finite
types when the template A is symmetric. Our approach here makes use of the techniques
originated in [Juang and Lin, 2000] and, later, generalized by [Cheng and Shih, 2005]. The
thesis is organized as follows. In section 2, we introduce the notion of (local) basic mosaic
patterns. We then identify all these basic mosaic patterns. Moreover, the solvability
conditions for the existence of such patterns are also given. Section 3 is devoted to the
global mosaic patterns for the symmetric template A and z = 0. Specifically, we find
parameters regions whose corresponding positive spatial entropy is less than In2. The
exact entropy of those regions are obtained via the method of the transition matrix. The
effect on the pattern formation with the presence of the bias term z and with the intensity
of the interaction weight 3 is recorded in section 4. In particular, with the injection of
a source term z (# 0), a lot of new patterns, which correspond to a certain subshifts of
finite types, emerge with a smaller interaction weight 3. However, as [ increases to a
certain range, most of previously observed chaotic patterns disappear, while other new

patterns with positive entropy emerge.



2 Basic Mosaic Solutions and Patterns

As in the map approach case, we seek to find the set of solutions of (1.3) that is uniformly
bounded. This is also the essence of the thesis in [Cheng and Shih, 2005]. Specifically, we

consider the set of solutions (x;);cz for which
|z;| <146 forall i€ Z, (2.1a)

or equivalently,
|f(z:)| <1410 forallicZ, (2.1b)

where 6 > 0 is a constant.

To study (1.3), we first define the following concepts.

Definition 2.1. Given any @ € Z, let x;_1 and x;11 be any real numbers for which
|z;| <140, 7 =1i—1, i+ 1. If there is a unique z; satisfying (1.3), then [v;_1, ©;, T;y1] is
called a basic solution of (1.3). Its corresponding output [f(x;_1), f(x;), f(xir1)] is called a
basic pattern of (1.3). If, in addition, |x {210 4= i—1, i, i+1, then [z;_1, x;, ;1] (resp.,
[f(zic1), f(xs), f(ziy1)] ) is called asbasic meosaic solution (resp., pattern) of (1.3). Note
that the template A is space-invartant. Therefore; a basic solution pattern is independent

of the spatial variable 1.

Notation 2.1. For any mosaic patterny;}ticz, we.shall denote by + (resp., —) if y; =
flx;) > 1 (resp., yi = f(x;) < —1). There are only 8 types of basic mosaic patterns. We

list as below.
[+ 4+ +s, [— — =los [+ + =5, [— + +s, [+ — =lo; [ — +Hs, [— + =)o and [+ — +]5. (2.2)

Notation 2.2. The parameters regions that would yield the 8 basic mosaic patterns are,
respectively, denoted by Ty, T—,, T¢, Tg, Ty, Ty, [Ty and Ty.

Remark 2.1. Since the template A under consideration is symmetric, the parameter
regions generating [+ + —|s and [— + +]s are exactly the same (see Propositions 2.3 and
4.1). Thus, we make no distinction for the region that would yield those two types mosaic

patterns. Likewise, the same is true for [+ — —|s and [— — +]s.

We next study the range of parameters a, o, (3, z and r for which the existence
of each of 8 basic mosaic patterns is guaranteed. For simplification, we first consider

0<r< %, z =0 and a = 3. We need the following useful proposition.



Proposition 2.1. Let A = (a1,0), B = (b,0), C = (1,1), D = (1 + 6,1 +rd), C' =
(=1,-1) and D' = (=1 — 6,—1 — r8). Suppose =1 < a1 < by <1 and 0 <r < 1. Let
E € AB be arbitrarily given. The necessary and sufficient condition for any straight line
I passing through E with the slope mg and intercepting the open line segment CD (resp.,
C'D’) is that the slope mp satisfies the following inequalities.

mpp < mp < Mae (2.3a)
(resp., mapr < mp < Myer). (2.3b)
Here myy means the slope of the line through E and F.
Proof. Form Figure 2.1., we see clearly that [ N open segment CD # @ if and only if
mep < me < Mge. (2.4)

Note that we need 0 < r < % to ensure (2.4) holds. The slopes mgzp and mgs are
increasing in E as long as F is in between A and B. Thus if mg satisfies (2.3a), then the
intersection of [ and open segment C D-is nonempty:.On the other hand, if mp > mzg, we
see immediately that the line passing throtgh:F with such slope mp either intersects CD

at C' or does not intersect C'D at-all; a contradiction. Similarly, if mg < myp, we draw

the same conclusion. The proof for second-assertion of the proposition is similar. Il
Y
A
D
C 7
//
/ 7
/ 7
/ ///
/
////
O £ > X
A B
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Figure 2.1: .



In the following, we describe the parameters regions, I'; and I'_,, which are the

Sameif0<r<%,a:ﬁandz:().

Proposition 2.2. Let

0< <1 =0 and ! <a=f0< ! (2.5)
Sy AT T ) S T S 2 o) '
Then the basic mosaic patterns [+ + +|s and [— — —]s exist provided that (2.6) or (2.7)
holds. Here (2.6) and (2.7) are given in the following.
a+206>1, (2.6a)
(1+78)a+2(1+78)8 <1+, (2.6b)
5 > 07 (26C)
and
a+28(1+76) > 1, (2.72)
(14+7rd)a+28<1+79, (2.7b)
g<0. (2.7¢)

Proof. We illustrate only the case that > 0, let ;. 1 and x;_; be any numbers in between
L and 140, then 208 < B(f(zi—1) + f(@iq1)) =:p < 26(1 + ) and equation (1.3) reduces

to I
Pl = - v, ) (28)
Set A = (26,0),B = (26(1 +r9),0) and E'="(p,0). It then follows from Proposition 2.1

that
if (2.6) holds, then (2.8) has a unique solution x; with 1 < z; < 1+ 4. (2.9)

Similarly, if z;_; and z;,; are any numbers in between —1 — ¢ and —1. Then 25(147d) <
p < 28. Set A= (26(1+176),0) and B = (23,0), we also conclude that if (2.6) holds,
than (2.8) has a unique solution z; with —1 — ¢ < x; < —1. Since (2.9) holds for any
l <ziq,mip <14+dor =1 -6 < zq,x41 < —1, we conclude that [x;_1, x;, x;11] is

indeed a local solution. O

From Proposition 2.2, we see that for fixed r, 0 < r < %, and 0 > 0,

1
Iy =T, ={(a,B):(2.6) holds or (2.7) holds and |3| < 5

m} = Fg.

We next study the parameters regions I'y and T'; .

5



Proposition 2.3. Suppose (2.5) holds, then the basic mosaic patterns [++ —|s, [— ++]s,
[+ — —]s and [— — +]s exist provided that (2.10) or (2.11) holds. Here (2.10) and (2.11)

are given in the following.

(1+7rd)a+rif <1+74, (2.10a)
a—1réf>1, (2.10b)
B8 >0, (2.10¢)
and
(1+7rd)a—rof <1+79, (2.11a)
a+rif>1, (2.11b)
3<0. (2.11c)

The parameters regions I'; and I'",, are given in the following.

Proposition 2.4. Suppose (2.5) holds, then the basic mosaic patterns [+—+]s and [—+—]s
exist provided that (2.12) or (2.13) holds. Here (2.12) and (2.13) are given in the following.

a— 2(L¥ré)B. > 1 (2.12a)
(L +7rd)a—20 <1+9, (2.12Db)
B8 >0, (2.12¢)
and
a—20>1, (2.13a)
(1+7rd)a—2(1+7r6)f <1+, (2.13b)
B8 <0. (2.13¢)

The proof of Propositions 2.3 and 2.4 are similar to that of Proposition 2.2, and is
thus omitted.
Clearly, we have that for fixed r, 0 < r < %, and 6 > 0,

1
I =rI, = : (2.1 2.11 —} =T
] o = {(a,B) :(2.10) holds or (2.11) holds and || < 20 —|—r§)} 0,
and
1
I, =TIt = 1 (2.12 2.1 —— =:T"_.
5 T =A{(a,B) : (2.12) holds or (2.13) holds and |3| < 20 —|—7“(5)} 2



3 Global Patterns and Their Entropy

To construct the global solutions/patterns from the local solutions/patterns, we need the

following notation and proposition.

Notation 3.1. Set F; =R*-T;,i=2,0, —2. Let L1 i0,i5) = 1N Ry N Ry, where 1; =

F, 1 f 1, = 1 ’
Oorl,j=1,23 and R; = { r zﬁi’ ZZJ}ZZJ B 07 For instance, I'(101) = ToNTiNT .
—2j+4> i =V.

The set of basic mosaic patterns whose corresponding parameters are in I, 4, i,) is denoted

by B(il,i27i3) .

1+0
70

-1
2
-(1+0) y
2(1+r9) 7 UN
- / \
/// / N
i -7 // \\
2r / '

-(1+9) |
7o

Figure 3.1: P = (1,0), Q = (115.0), U = (5, r5mes)-




For fixed r and 0, we put I';, i = 2, 0, —2, on the a — ( plane as in Figure 3.1.. Let
1
= N < - (-

Note that

Lai1y =TaNToNT_y = Quadrilateral PRQR' N /\ £ ¢,
L0 =T2NTN FI_Q = Triangular PSR U Triangular QT'R' N /\ £ &,

F(O,l,l) == FIQ N FO M F_Q = Triangular QTR U Trl'angular PS/R/ N /\ 7é ¢,
and
Loy =T2N IyNT_y = ¢.

Proposition 3.1. Suppose (2.5) holds, and that (a,3) € I'¢, ip44), 5 =00r 1, j =1,2,3.
If [xiq, x4, xi1] == xp is a local mosaic solution of (1.3) for some i, then xy can be
extended to be a global solution T¢ =A%;);cz, whetex, =Ty, k=1—1, i, i+ 1, and for

all i # j, [Tj—1, Tj, Tj1] are any docal solutiops of (1.3) in B, iy.iy)-

Proof. We only illustrate the casé that (a,8) € T'¢ o), since the others are similar. In
this case either 1 < xp < 1+0 or 1 =0 <ap < ~1 forall k =¢—1, i, 1+ 1. Now
suppose the former holds, then we aSsign x;,3 tobe any number in between 1 and 1 + §.
Since (a,3) € I'1,00), Ti+2 can be uniquely determined and its value lies between 1 and

1 4 9. By proceeding similarly, we get to a global solution Z¢ as claimed. O]

From here on, by a mosaic pattern, we mean that the pattern consists of only + or
— sign. That is to say we make distinction on only the signs of f(z;). Using Proposition
3.1, we see immediately that if (a,3) € I'q,0,0), then the only mosaic patterns are of the

following two types

Similarly, if (a,3) € (91,0 (resp., I'00,1)), then the mosaic pattern produced is

unique up to the translation.



Theorem 3.1. Suppose (2.5) holds. Then the following are true.

(i) If (a,3) € T1,1,1), then any mosaic pattern (x;)icz, *; = + or —, is a pattern for (1.3).
(ii) If (a,3) € 11,0y, then any mosaic pattern (;)icz, *i = + or —, satisfying the rules
that any + 1s adjacent to at least one 4+, any — is adjacent to at least one —, is a pattern
for (1.3). (i) If (a,3) € T'(01,1), then any mosaic pattern (x)icz, ¥ = + or —, satisfying
the rules that any + is adjacent to at least one —, any — s adjacent to at least one +, is
a pattern for (1.3).

Proof. We illustrate only (ii). The other cases are similar. If (a,3) € I'(11,0), then its

corresponding basic mosaic patterns are

[+ + +lo, [= = s, [+ + =5, [= + +]s, [+ — =5, [= — +]s = B0 (3.1)

In view of (3.1) and Proposition 3.1, we see, immediately, that the assertion in (ii)
holds true. [

We next study the complexity of the patterns for given choices of parameters .

Definition 3.1. Let ur = {(%;)icz5 *; = fpora—} be a set of stable mosaic patterns of
(1.3) for given choices of parameters in I'v\"The spatial entropy h(ur) is defined as the
limat

Py )o="lim M (3.2)

n—oo n

Here §(u}t) = the cardinality of the set ulh=fG)_, : %; = + or —, (*;)icz € ur}

Note that ur is a translation invariant set and the limit in (3.2) is well-defined (see
e.g., [Chow et. al., 1996]).

Definition 3.2. We say the system (1.1) or (1.3) exhibits spatial chaos for given choices
of parameters in I, in case that spatial entropy h(ur) is positive. We say that the system
(1.1) or (1.3) exhibits pattern formation for given choices of parameters in I in case the

spatial entropy h(ur) is zero.
We next recall a well-known result (see e.g., Robinson, 1995).

Theorem 3.2. Suppose there is a one-to-one and onto correspondence between the set ur
and the sequence space 4. Here A is a matriz of dimension n X n whose elements are 0
and 1, and that X4 = {(s;) : (A) =1 for all i}. Then h(ur) = In X, where X is the

mazximal eigenvalue of A.

SiySi+1



Theorem 3.3. Suppose (2.5) holds. If (a,3) € g, 044), 95 € {0,1}, 5 =1, 2, 3, then
system (1.1) exhibits spatial chaos if and only if is = 1 and iy + i3 > 1. Moreover,
h(,up(l’l’l)) = In2 and h(,U/[‘(LLO)) = h(,up(o’l’l)) = 1In %5 Consequently, I'q.11y, T'1,1,0

and 1,1y are the only chaotic parameters regions.

Proof. We first show that the mosaic patterns produced from I'(1 11y, I'1,1,0) and I'(o1,1)
are all stable. Note that the stability condition (1.5) reduces to

la| +2|8] < % (3.3)

fo<r< %7 then @), see Figure 3.1., is to the left of the a-intercept of the line a+ 25 = %
Moreover, a direct computation could yield that the point U, see Figure 3.1., lies on
the line a + 20 = % Similarly, the point U’ lies on the line a — 208 = % Thus, the
mosaic patterns under consideration are all stable. We illustrate only the cases that (a,s)
€ I'n1yp), and (a,0) € T'g11). We assign 4 symbols ++,+—,—+ and —— to be 1,2,3
and 4 | respectively. We define i; and i,, respectively, to be the left (resp., right ) side of
the symbol corresponding to i. For instance;letr2 = + —, then 2; = + and 2, = —. We

construct a 4 x 4 transition matrix;4 = (gzj)rasfollows.
1, if i, = j; and {iy, 5 Jr] s a basic mosaic patterns in B 10,

Set Q5 = . (34)
0, otherwise.

Thus the transition matrix with the choice of parameters in I'(; 1 o is

=: A(Ll,O)-

O = O =
o OO
_ O O O
_— O = O

Now, the set of uir, , ., has a one-to-one and onto correspondence with the sequence
space Y4, - Here X4, = {(s:)) + si € {1,2,3,4},(An10))s18000 = 1 for all i}.
Clearly, the characteristic polynomial for A 1) is A* — 2A% + A% — 1 = 0 or equivalently
(A =A+1)(A* =X —1) = 0. It then follows from Theorem 3.2 that h(ur, ,, ) = In %5

If (a,8) € ['(0,1,1), we will define the corresponding transition matrix A 1) as

10



Notation Parameters’ regions Corresponding patterns
a+z>1-28,(14+rd)a+z<1+0—-2(1+7r9)3, 5>0.
Iy or [+ + +]s
a+z>1=-214r0)3, (1+rdla+z<1+06—-25,6<0
r-, replacing z by —z in the equations right above. [— — —]s,
a+z>14+766, (1+rd)a+z2<1+d5—rif, 3> 0.
Iy or [++ =5, [= + +s
at+z>1—=7rdp, (14+rd)a+z<1+d+7rif, <0
Ty replacing 2z by —z in the equations right above. [+ — s, [— —+]s
a+z>142(14+7r0)p, (1+rdla+z<1+6+25,3>0.
I’ or [+ s
at+z>1428, (1+rd)a+z<1+04+2(1+75)3, <0
ry replacing z by —z in the equations right above. [+ —+]s
Table 4.1: .
0100
0011
1 1 0 0 = A(O,l,l)?
0010

the characteristic polynomial of Agg; 1518 (P4FA+1)(¥ —A—1) = 0. Thus h(ur,, ) =
In %5 [

4 The Effect of the Source Term on Patterns

In this section, we first consider the effect of the source term z on patterns. With the
presence of the source term z # 0, the regions I'; and I'_, are no longer identical. Same
can be said to the two pairs of regions I’ and I'y, and T’y and I't,. Therefore, some new

patterns emerge as z moves away from zero.

Proposition 4.1. Suppose
1
—14+2|8|(1+7r0) < z<1-=2|B|(1+rd) cmd0<7"<§. (4.1)

Then the Table 4.1. holds true.

The first two inequalities imply that |5] < m =: [

For fixed 0 < r < % and 0 > 0 to draw parameters regions in z — a space, we need

the following notations.

11



Notation 4.1. Denote by z = 1-23(1419), a+z = 1-20, (14+rd)a+z = 1+0—2(1+r0)[,
a+z = 141608, (1+rd)atz = 1+6—7rf3, at+z = 14+2(1+7r0) [ and (1+7rd)a+z = 140420
by lo, 11, ly, ls, l5, I3 and lg, respectively. Replacing z and —z in those equations above,

we shall denote the corresponding equations by rq, 11, T4, T2, T5, T3 and rg, respectively.

Notation 4.2. (1) We shall denote the intersection of the lines l; and rj, 1,5 =1,2,..6 by
A; ;. (1) We shall denote by the quadrilateral A; ;A; kA1pAr; = (Lisre, Uy ry) = (4, k.1, 7).
Here the a-coordinate of A, ; is greater than those of Ak, Aiy and A; ;. Note that such
tuple is well-defined.

Let 0 <r < % and § > 0 be fixed and 0 < 3 < mﬁ;—% =: (4,. Putting r; and [;,

1 =20,1,2,...6, on z — a plane, we have the Figure 4.1..

>z

Figure 4.1: Orange region: (5,4,4,5), green region: (4,3,3,4) and yellow region:
(3,2,2,3).
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Notation 4.3. Set Ay =T, Ay =T",, A3 =T¢, Ay =T, As =T7,, A¢ =T5, and for

Rj - { R2 _]’Aj’ Z]:f?.']z] :1(;’ and /\z = {(a,ﬁ) . |Z| <1-— 26(1 +T6)}

With z # 0 and a small g > 0, we see, in the following, that a lot more chaotic

parameters regions emerge. The case for § < 0 is similar and is, thus, omitted.

Theorem 4.1. Assume that (4.1) holds and r is sufficiently small. Then the following
hold:

(1) Suppose 0 < B < mm{@ﬁ%&rfm&), s} = min{ By, B} and 0 < § < 2. Then all

parameters regions in Table 4.2. are nonempty and all assertions in Table 4.2. hold true.

(11) Suppose min{ﬁo,ﬁo} < B < pPrand 0 < < 1_23 Then the last two parame-

ters regions I'o1,0,1,1,1) and I'101,01,1) tn Table 4.2. are empty, and all other regions are

nonempty.

11) Suppose 0 < 3 < min Bo,ﬁo and —%- < §. Then the last two parameters regions
1—2r g
Lio,1,1,1,1,00 and L' p11,0,1) @n Table 4.2.%are empty,y and all other regions are nonempty.
1w) Suppose min ﬁo,ﬁo < B < Beand =231<8. Then the last four parameters regions
pp | p g
P(0’1707171,1), F(17071707171), F(0717171’170) and F(1,071,1,0’1) wm Table 4.2. are 6mpty, and all other

regions are nonempty.

Proof. We illustrate only (i). To see:the non-emptiness of the parameters regions in
Table 4.2., we first check that the z-cootdinates of both A,3 and A5, are smaller than
z=1-20(1+rd). A direction computation would yield so provided that 0 < ¢ < =5
and 0 < 3 < ﬁAo. We then need to verify that the intersection A of r3 and r4 lies above [5.

We see, via direct computations, that only if 0 < 3 < [y, then A lies above [5. Note also
that if r is sufficiently small, the stability condition (1.5) is satisfied. The verification of
the other assertions in the theorem is then similar to the above and those in Theorem 3.1
and is thus omitted. [

Remark 4.1. (i) If0 <6 < % and 0 <r < %, then By > (1.
(11) Note that 2 > Ay > Ay > %‘?’ Thus, Table 4.2. is arranged in the following way :
the higher row the parameters region is placed the more complex its corresponding patterns

are.

(iii) It is clear that the chaotic patterns produced from the regions I'11,11,1,1) and I 1)

are the same. Similarly, the pairs T'o01,1,1,1), T'0,1,1) and U' 111,000, T'1,1,0) generate the

yhy sty
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Parameters | Exact location | Basic mosaic patterns contained | Spatial Entropy
region in Figure 4.1.

P(l,l,l,l,l,l) (47 3,3, 4) N /\z H— + +]57 [_ - _]57 [+ + _]5’ In2
[— + +s, [+ — =6, [ — +]s,
[—+ -5, [+ — 5.

Foi11,10) | (5,3,4,4)NA, [— — —ls, [+ + =5, [— + +s, In A\
[+ - _]57 [_ - +]57
[— + s [+ — +]s.

Faoa110) | (4,4,3,5) NA, [+ + +s, [+ + =5, [— + +]s, In \;
[_'_ - _]57 [_ - +]57
[— 4+ —]s, [+ — +]s-

Faia101) | (3,3,2,4)NA, [+ + +]s, [— — =ls, [+ + =5, In Ay
[_ + +]57 [+ - _]57
[— — +]s, [+ — +5]-

Faaiia0 | (4,2,3,3)NA, [+ ]s 2= —1s, [+ + =5, In \s

Loty | (5,445 NA, 2 ek =ld=+ +s [+ — s, In 105
[t s [+ — 4],

Faia100 |(3,2,2,3)NA, s = —=s, [+ + = s, In 1+2x/5
Hddeald = —ls, [ — +s.

Fo111,10 |(5,2,4,3)NA, [— — =5, [+ + =5, [= + +]s, In 1+2\/5
[+ — =5 [= — s, [ + =5

Faoa101) | (3,4,2,5) NA, [+ + +s, [+ + =5, [— + +]s, In 1+2x/5
[+ — o [= — +ls, [+ — +s-

Fo10111) | (6,3,5,4) NA, [— — =15, [+ — =5, [ — +]s, In 1+2\/5

[—+ s, [+ —+s
L0101 | (4,5,3,6) N A, [+ + +s, [+ + —]s, [ + +]s, n 1+2\/5

[— + =5, [+ — +]s-

Here \; and Ay are the maximal roots of (A*> =\ — A —1) =0
and (A3 —2X\% + X\ — 1) = 0, respectively.

Table 4.2: .
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exact patterns. Thus, with the presence of the bias term z # 0, some new chaotic patterns
would emerge. Specifically, the patterns whose parameters regions are from I' 111,11,
I‘(1,0,1,1,1,1); F(1,171,1,0,1), I‘(1,1,1,1,1,0), F(0,1,1,1,1,0), F(1,0,1,1,0,1), 11(0,1,0,1,1,1), and F(1,0,1,0,1,1) are
new and chaotic.

(iv) Note that in Figure 4.1., we have 0 < 3 < (1. Such condition is to ensure that the
B-intercept of l3 is smaller than that of ly. We also remark that (3, is the § coordinate
of R in Figure 3.1.. Therefore when 3 (< (1) is fized, we see in Figure 3.1. that the line
B = B3 passes through U0, Dy and Ty, which corresponds to the line z = 0 in
Figure 4.1. going through I 111,000, a1, and T'oo,1,1,1)-

(v) In the case that ngﬁm) < B < Bo, (6,3,5,4) reduces to a triangular As 4As3A.
Here A is the intersection of lines r3 and ry. Likewise, (4,5,3,6) reduces to a triangular

too.

(vi) In the case that By < [ < (1, (5,2,4,3) and (3,4,2,5) both reduce to a triangular.
Moreover, (6,3,5,4) and (4,5, 3,6) disappear.

For f; < B < min{ 1+r1§ TQ)ir(;)a 2(1(+1r5; 5282} =1 min{By, Bs, B4}, we have Figure
4.2. and Table 4.3. ;

Figure 4.2: Orange region: (5,3,3,5) and yellow region: (4,2,2,4).



Parameters | Exact location | Basic mosaic patterns contained | Spatial Entropy
region in Figure 4.2.
Poontan | (5,335 NA, | [+ + o[ ++a [+ — s, In £572
[— =+, [= + =I5, [+ — +5-
Paaanon | (L2290 | [F++s - = s [+ + s, In 157
[— + s, [+ = =5 [= — +s-
o0 | 32,4 4)N0A | [=—=lo [+ + s [+ +s, In A3
[+ —=Js, [= = +ls
Faoproo | (H423)0A | [+ +ls [+ =l [+ 46, In A3
[+ — —ls, [= = +4]
Foo11,01) | 3,3,45) 0N, | [++ 15[+ +s [+ ——]s, In A\
[— — +]s, [+ — +s-
Foo11,10 | (5,4,3,3)0A, | [++—ls[—++s [+ ——]s, In A\
==+l [=+ s
Here A3 and )\, are the maximal roots of A* = X3 —1=0
and \* — \ — 1 = 0, respectively. Clearly, Y5 > Ay > Ay > 1.

Theorem 4.2. Let (4.1) hold, 0 <. < ﬁ and. 7 be sufficiently small. In the case that
B1 < B < min{0s, B3, 04}, the parameters regions in. Table 4.3. are nonempty, and all

assertions in Table 4.3. hold true.

Remark 4.2. (i) If 8 < [ < min{Bsy03, B4}, then the a-intercept of l3 is greater than
that of ly. We also note that By and (B3 arethe'(3-coordinates of S and T, respectively. So
when By < < min{Bs, B3, B1}, we see from Figure 3.1. that I 1,1y disappears. Thus, not
surprisingly, most of regions in Figure 4.1. are destroyed; however, there are some new

chaotic parameters regions as opposed to the case that 0 < 3 < (31 appear. Specifically,

Table 4.3: .

the parameters regions with indexes containing three zeros newly emerge.

(1) For B > min{ B, s, 04}, most of chaotic regions are destroyed and yield no new

chaotic regions. We thus skip the discussion of the case.

We conclude the thesis with the following remarks.

(i) The antisymmetric template for (1.1) can be similarly done. Moreover, the general-

ization of the work to two-dimensional CNNs with output function (1.1) and with the

symmetric and antisymmetric templates is also straightforward.

(ii) It is of considerable interests to study the defect patterns for (1.1).
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(1>_E1,1,1,1,1,1) (2)_E0,1,1,1,1,1)

(3)*1—;1,0,1.1,1,1) (4>_E1.1.1.1,0.1>

<5>_E1,1,1,1,1,0) (6>_Iﬂ(0,0,1,1‘1,1)

(7)_E1,1,1,1,0,0) (8)_E0,1,1,1,1,0>

(9)71—;1,0,1.1,0,1) (10)_Eo,1.0.1,1,1)

(11)71—21,0,1,0.1,1) (12>_r(0.1,1,1'0,0)

I‘iI
£y

(13)_E1,0,1,1,0,0) g —h QA Lo o0

h |L

(15)_F(o 0.1,1,1,0

| I p
e
LS

Figure 4.3:

(iii) Figure 4.3. is a collection of a computer simulation with sets of parameters chosen
from the parameters regions in Tables 4.2. and 4.3.. Specifically, we set r = 0.25 and
0 = 2 for all cases. The first eleven cases in Figure 4.3. correspond to the first eleven
parameters regions in Table 4.2.. The last four cases in Figure 4.3 correspond to the last
four parameters regions in Table 4.3.. Each collection in Figure 4.3. contains two arrays
of colors. The first array is the initial outputs. The second array represents the final
outputs. If the state x; of a cell C; is such that |z;| < 1, then we color it green. If the
state x; of a cell C; is less than —1 (greater than 1, respectively), then we color it blue

(red, respectively). Moreover, the final outputs in each of the collection consist of all

17



basic mosaic patterns allowed in their corresponding parameters region. For instance, the
final outputs in (1) consist of all 8 basic mosaic patterns. Likewise, in (6) — I'00,1,1,1,1)
and (12) —I'(0,1,1,1,0,0), their corresponding outputs contain 6 and 5 basic mosaic patterns

listed in Table 4.2. and 4.3., respectively.
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