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細胞類神經網路:馬賽克花樣，分歧點與複雜性 
 

學生：劉明湟 

 

指導教授：莊  重 

 

 

國立交通大學應用數學學系﹙研究所﹚碩士班 

摘 要       
 
    我們主要探討一個細胞類神經網路模型的馬賽克花樣，在這裡考

慮的輸出函數在無窮遠的地方並不是平坦的。許多複雜的參數區域是

可以被完整地描繪出來，每一個參數區域的熵是可以藉由轉換矩陣的

方法算出來﹔我們也利用參數 z 和 β 來討論一些馬賽克花樣的分歧現

象，在這裡 z 是一個偏壓項、 β 是和鄰近細胞的互動比重。特別地，

對於一個小的互動比重 β ，我們發現當加入偏壓項之後，許多新的複

雜參數區域都會產生。然而當 β 增加到某一個範圍之後，許多上述的

複雜參數區域會消失，但是又有一些新的複雜參數範圍會產生。 
 



Cellular Neural Networks : Mosaic Patterns,

Bifurcation and Complexity

Student : Ming-Huang Liu Advisor : Jonq Juang

Department of Applied Mathematics
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Hsinchu, Taiwan,R.O.C.

June 2005

Abstract

We study mosaic patterns of a one-dimensional Cellular Neural Network
with an output function which is non-flat at infinity. Spatial chaotic regions
are completely characterized. Moreover, each of their exact corresponding
entropy is obtained via the method of transition matrices. We also study the
bifurcation phenomenon of mosaic patterns with bifurcation parameters z and
β. Here z is a source (or bias) term and β is the interaction weight between the
neighboring cells. In particular, we find that by injecting the source term, i.e.
z 6= 0, a lot of new chaotic patterns emerge with a smaller interaction weight
β. However, as β increases to a certain range, most of previously observed
chaotic patterns disappear, while other new chaotic patterns emerge.
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1 Introduction

Of concern is one-dimensional Cellular Neural Networks (CNNs) of the form

dxi

dt
= −xi + z + αf(xi−1) + af(xi) + βf(xi+1), i ∈ Z. (1.1a)

Here xi denote the state of a cell Ci and f(x) is a piecewise-linear output function defined

by

f(x) =





rx + 1− r, if x ≥ 1 ,
x , if |x| ≤ 1,
rx− 1 + r, if x ≤ −1 ,

(1.1b)

where r is a positive constant. The quantity z is called a source term or a bias term. The

numbers α, a and β are arranged in a vector form [α, a, β], which is called a space-invariant

A-template

A = [α, a, β]. (1.2)

A is called symmetric (resp., antisymmetric) if α = β (resp., α = −β).

CNNs were first proposed by Chua and Yang [1988a, 1988b]. Their main applications

are in image processing and pattern recognition [Chua, 1998]. For additional background

information, applications, and theory, see [Special Issue, 1995; Thiran, 1997; Chua, 1998]

among others.

A basic and important class of solutions of (1.1) is the stable stationary solutions.

Specifically, a stationary solution x= (xi)i∈Z of (1.1) satisfies the following equation

f(xi) =
1

a
{xi − z − αf(xi−1)− βf(xi+1)}, i ∈ Z. (1.3)

Let x= (xi)i∈Z be a solution of (1.3). The associated output y= (yi)i∈Z = (f(xi))i∈Z
is called a pattern. The following two types of stationary solutions are of particular

interest.

Definition 1.1. A solution x= (xi)i∈Z is called a mosaic solution if |xi| > 1 for all i ∈ Z.

Its associated pattern y= (yi)i∈Z = (f(xi))i∈Z is called a mosaic pattern. If |xi| 6= 1 for

all i ∈ Z and there are i, j ∈ Z such that |xi| < 1 and |xj| > 1, then x= (xi)i∈Z and

y= (f(xi))i∈Z are called, respectively, a defect solution and a defect pattern.

To define the stability of the stationary solution, we consider the following linearized

stability. Let ξ= (ξi)i∈Z ∈ `2, the linearized operator L(x) of (1.1) at a stationary solution

x= (xi)i∈Z is given by

(L(x)ξ)i = −ξi + αf ′(xi−1)ξi−1 + af ′(xi)ξi + βf ′(xi+1)ξi+1. (1.4)
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Definition 1.2. Let x= (xi)i∈Z be a solution of (1.3) with |xi| 6= 1 for all i ∈ Z. The

stationary solution x is called (linearized) stable if all eigenvalues of L(x) have negative

real parts. The solution is called unstable if there is an eigenvalue λ of L(x) such that λ

has a positive real part.

It is well-known, see e.g., [Juang and Lin, 2000; Hsu, 2000], that for

1

|a|+ |α|+ |β| > r ≥ 0, (1.5)

where r, a, α and β are defined as in (1.1), −L(x) is a self-adjoint and positive operator.

Therefore, if r is sufficiently small, all mosaic solutions of (1.1) are stable. For r = 0,

the complexity of stable stationary solutions of (1.1) with respect to all the parameters

has been completely characterized when the template A is symmetric or antisymmetric

(see [Thiran et. al., 1995; Juang and Lin, 2000]). For r > 0, sufficiently small, a map

approach was introduced to study the complexity of stable stationary solutions of (1.1)

with limited success (see e.g., [Hsu, 2000; Chang and Juang, 2004]). Specifically, only the

parameters region that would yield Smale horseshoe, hence, the spatial entropy of ln 2, is

located in those papers. That is to say, only regions that yield the full shift with 2 symbols

are found. For r = 0 [Juang and Lin, 2000], the parameters regions corresponding to the

positive entropy less than ln 2 can also be found. Those are the regions that yield the

subshift of finite types (see e.g., [Robinson, 1995]). It would be reasonable to expect that

for r 6= 0, one can find such regions as well.

The purpose of this thesis is to find parameters regions yielding the subshift of finite

types when the template A is symmetric. Our approach here makes use of the techniques

originated in [Juang and Lin, 2000] and, later, generalized by [Cheng and Shih, 2005]. The

thesis is organized as follows. In section 2, we introduce the notion of (local) basic mosaic

patterns. We then identify all these basic mosaic patterns. Moreover, the solvability

conditions for the existence of such patterns are also given. Section 3 is devoted to the

global mosaic patterns for the symmetric template A and z = 0. Specifically, we find

parameters regions whose corresponding positive spatial entropy is less than ln 2. The

exact entropy of those regions are obtained via the method of the transition matrix. The

effect on the pattern formation with the presence of the bias term z and with the intensity

of the interaction weight β is recorded in section 4. In particular, with the injection of

a source term z (6= 0), a lot of new patterns, which correspond to a certain subshifts of

finite types, emerge with a smaller interaction weight β. However, as β increases to a

certain range, most of previously observed chaotic patterns disappear, while other new

patterns with positive entropy emerge.
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2 Basic Mosaic Solutions and Patterns

As in the map approach case, we seek to find the set of solutions of (1.3) that is uniformly

bounded. This is also the essence of the thesis in [Cheng and Shih, 2005]. Specifically, we

consider the set of solutions (xi)i∈Z for which

|xi| < 1 + δ for all i ∈ Z, (2.1a)

or equivalently,

|f(xi)| < 1 + rδ for all i ∈ Z, (2.1b)

where δ > 0 is a constant.

To study (1.3), we first define the following concepts.

Definition 2.1. Given any i ∈ Z, let xi−1 and xi+1 be any real numbers for which

|xj| < 1+ δ, j = i−1, i+1. If there is a unique xi satisfying (1.3), then [xi−1, xi, xi+1] is

called a basic solution of (1.3). Its corresponding output [f(xi−1), f(xi), f(xi+1)] is called a

basic pattern of (1.3). If, in addition, |xj| > 1, j = i−1, i, i+1, then [xi−1, xi, xi+1] (resp.,

[f(xi−1), f(xi), f(xi+1)] ) is called a basic mosaic solution (resp., pattern) of (1.3). Note

that the template A is space-invariant. Therefore, a basic solution pattern is independent

of the spatial variable i.

Notation 2.1. For any mosaic pattern {yi}i∈Z, we shall denote by + (resp., −) if yi =

f(xi) > 1 (resp., yi = f(xi) < −1). There are only 8 types of basic mosaic patterns. We

list as below.

[+ + +]δ, [−−−]δ, [+ +−]δ, [−+ +]δ, [+−−]δ, [−−+]δ, [−+−]δ and [+−+]δ. (2.2)

Notation 2.2. The parameters regions that would yield the 8 basic mosaic patterns are,

respectively, denoted by Γ+
2 , Γ−−2, Γ+

0 , Γ+
0 , Γ−0 , Γ−0 , Γ+

−2 and Γ−2 .

Remark 2.1. Since the template A under consideration is symmetric, the parameter

regions generating [+ +−]δ and [− + +]δ are exactly the same (see Propositions 2.3 and

4.1). Thus, we make no distinction for the region that would yield those two types mosaic

patterns. Likewise, the same is true for [+−−]δ and [−−+]δ.

We next study the range of parameters a, α, β, z and r for which the existence

of each of 8 basic mosaic patterns is guaranteed. For simplification, we first consider

0 < r < 1
2
, z = 0 and α = β. We need the following useful proposition.

3



Proposition 2.1. Let A = (a1, 0), B = (b1, 0), C = (1, 1), D = (1 + δ, 1 + rδ), C ′ =

(−1,−1) and D′ = (−1 − δ,−1 − rδ). Suppose −1 < a1 < b1 < 1 and 0 < r < 1
2
. Let

E ∈ AB be arbitrarily given. The necessary and sufficient condition for any straight line

l passing through E with the slope mE and intercepting the open line segment CD (resp.,

C ′D′) is that the slope mE satisfies the following inequalities.

mBD < mE < mAC (2.3a)

(resp., mAD′ < mE < mBC′). (2.3b)

Here mEF means the slope of the line through E and F .

Proof. Form Figure 2.1., we see clearly that l ∩ open segment CD 6= ∅ if and only if

mED < mE < mEC . (2.4)

Note that we need 0 < r < 1
2

to ensure (2.4) holds. The slopes mED and mEC are

increasing in E as long as E is in between A and B. Thus if mE satisfies (2.3a), then the

intersection of l and open segment CD is nonempty. On the other hand, if mE ≥ mEC , we

see immediately that the line passing through E with such slope mE either intersects CD

at C or does not intersect CD at all, a contradiction. Similarly, if mE ≤ mED, we draw

the same conclusion. The proof for second assertion of the proposition is similar.

A

C

| |

B

D

X

Y

C

D

`

`

E

O

Figure 2.1: .
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In the following, we describe the parameters regions, Γ+
2 and Γ−−2, which are the

same if 0 < r < 1
2
, α = β and z = 0.

Proposition 2.2. Let

0 < r <
1

2
, z = 0 and − 1

2(1 + rδ)
< α = β <

1

2(1 + rδ)
. (2.5)

Then the basic mosaic patterns [+ + +]δ and [− − −]δ exist provided that (2.6) or (2.7)

holds. Here (2.6) and (2.7) are given in the following.

a + 2β > 1, (2.6a)

(1 + rδ)a + 2(1 + rδ)β < 1 + δ, (2.6b)

β > 0, (2.6c)

and

a + 2β(1 + rδ) > 1, (2.7a)

(1 + rδ)a + 2β < 1 + δ, (2.7b)

β < 0. (2.7c)

Proof. We illustrate only the case that β > 0, let xi+1 and xi−1 be any numbers in between

1 and 1+ δ, then 2β < β(f(xi−1)+ f(xi+1)) =: p < 2β(1+ rδ) and equation (1.3) reduces

to

f(xi) =
1

a
[xi − p]. (2.8)

Set A = (2β, 0), B = (2β(1 + rδ), 0) and E = (p, 0). It then follows from Proposition 2.1

that

if (2.6) holds, then (2.8) has a unique solution xi with 1 < xi < 1 + δ. (2.9)

Similarly, if xi−1 and xi+1 are any numbers in between −1− δ and −1. Then 2β(1+rδ) <

p < 2β. Set A = (2β(1 + rδ), 0) and B = (2β, 0), we also conclude that if (2.6) holds,

than (2.8) has a unique solution xi with −1 − δ < xi < −1. Since (2.9) holds for any

1 < xi−1, xi+1 < 1 + δ or −1 − δ < xi−1, xi+1 < −1, we conclude that [xi−1, xi, xi+1] is

indeed a local solution.

From Proposition 2.2, we see that for fixed r, 0 < r < 1
2
, and δ > 0,

Γ+
2 = Γ−−2 = {(a, β) : (2.6) holds or (2.7) holds and |β| < 1

2(1 + rδ)
} =: Γ2.

We next study the parameters regions Γ+
0 and Γ−0 .

5



Proposition 2.3. Suppose (2.5) holds, then the basic mosaic patterns [++−]δ, [−++]δ,

[+ − −]δ and [− − +]δ exist provided that (2.10) or (2.11) holds. Here (2.10) and (2.11)

are given in the following.

(1 + rδ)a + rδβ < 1 + δ, (2.10a)

a− rδβ > 1, (2.10b)

β > 0, (2.10c)

and

(1 + rδ)a− rδβ < 1 + δ, (2.11a)

a + rδβ > 1, (2.11b)

β < 0. (2.11c)

The parameters regions Γ−2 and Γ+
−2 are given in the following.

Proposition 2.4. Suppose (2.5) holds, then the basic mosaic patterns [+−+]δ and [−+−]δ

exist provided that (2.12) or (2.13) holds. Here (2.12) and (2.13) are given in the following.

a− 2(1 + rδ)β > 1, (2.12a)

(1 + rδ)a− 2β < 1 + δ, (2.12b)

β > 0, (2.12c)

and

a− 2β > 1, (2.13a)

(1 + rδ)a− 2(1 + rδ)β < 1 + δ, (2.13b)

β < 0. (2.13c)

The proof of Propositions 2.3 and 2.4 are similar to that of Proposition 2.2, and is

thus omitted.

Clearly, we have that for fixed r, 0 < r < 1
2
, and δ > 0,

Γ+
0 = Γ−0 = {(a, β) : (2.10) holds or (2.11) holds and |β| < 1

2(1 + rδ)
} =: Γ0,

and

Γ−2 = Γ+
−2 = {(a, β) : (2.12) holds or (2.13) holds and |β| < 1

2(1 + rδ)
} =: Γ−2.

6



3 Global Patterns and Their Entropy

To construct the global solutions/patterns from the local solutions/patterns, we need the

following notation and proposition.

Notation 3.1. Set Γ
′
i = R2 − Γi, i = 2, 0, −2. Let Γ(i1,i2,i3) = R1 ∩R2 ∩R3, where ij =

0 or 1, j = 1, 2, 3, and Rj =

{
Γ−2j+4, if ij = 1 ,
Γ
′
−2j+4, if ij = 0 .

For instance, Γ(1,0,1) = Γ2 ∩Γ
′
0 ∩Γ−2.

The set of basic mosaic patterns whose corresponding parameters are in Γ(i1,i2,i3) is denoted

by B(i1,i2,i3).

a
PO Q

R

S
T

R

S
T

`

`
`

U

U
`

1

2

1+

r

1+

r

-1

2

2(1+r )

-(1+ )

-(1+ )

-1

1

1

2r

r

2r

2(1+r )

Figure 3.1: P = (1, 0), Q = ( 1+δ
1+rδ

, 0), U = ( 2+δ
2+rδ

, 1−r
r(2+rδ)

).
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For fixed r and δ, we put Γi, i = 2, 0, −2, on the a− β plane as in Figure 3.1.. Let

∧
= {(a, β) : |β| < 1

2(1 + rδ)
}.

Note that

Γ(1,1,1) = Γ2 ∩ Γ0 ∩ Γ−2 = Quadrilateral PRQR′ ∩
∧
6= φ,

Γ(1,1,0) = Γ2 ∩ Γ0 ∩ Γ
′
−2 = Triangular PSR ∪ Triangular QT ′R′ ∩

∧
6= φ,

Γ(0,1,1) = Γ
′
2 ∩ Γ0 ∩ Γ−2 = Triangular QTR ∪ Triangular PS ′R′ ∩

∧
6= φ,

and

Γ(1,0,1) = Γ2 ∩ Γ
′
0 ∩ Γ−2 = φ.

Proposition 3.1. Suppose (2.5) holds, and that (a, β) ∈ Γ(i1,i2,i3), ij = 0 or 1, j = 1, 2, 3.

If [xi−1, xi, xi+1] := xL is a local mosaic solution of (1.3) for some i, then xL can be

extended to be a global solution x̄G = (x̄j)j∈Z, where xk = x̄k, k = i− 1, i, i + 1, and for

all i 6= j, [x̄j−1, x̄j, x̄j+1] are any local solutions of (1.3) in B(i1,i2,i3).

Proof. We only illustrate the case that (a, β) ∈ Γ(1,0,0), since the others are similar. In

this case either 1 < xk < 1 + δ or −1 − δ < xk < −1 for all k = i − 1, i, i + 1. Now

suppose the former holds, then we assign xi+3 to be any number in between 1 and 1 + δ.

Since (a, β) ∈ Γ(1,0,0), xi+2 can be uniquely determined and its value lies between 1 and

1 + δ. By proceeding similarly, we get to a global solution x̄G as claimed.

From here on, by a mosaic pattern, we mean that the pattern consists of only + or

− sign. That is to say we make distinction on only the signs of f(xi). Using Proposition

3.1, we see immediately that if (a, β) ∈ Γ(1,0,0), then the only mosaic patterns are of the

following two types

........ + + + + + + + + + + + +..........

........−−−−−−−−−−−−..........

Similarly, if (a, β) ∈ Γ(0,1,0) (resp., Γ(0,0,1)), then the mosaic pattern produced is

unique up to the translation.

........ + +−−+ +−−+ +−−.........

(resp., ........ +−+−+−+−+−+−.........)

8



Theorem 3.1. Suppose (2.5) holds. Then the following are true.

(i) If (a,β) ∈ Γ(1,1,1), then any mosaic pattern (∗i)i∈Z, ∗i = + or −, is a pattern for (1.3).

(ii) If (a,β) ∈ Γ(1,1,0), then any mosaic pattern (∗i)i∈Z, ∗i = + or −, satisfying the rules

that any + is adjacent to at least one +, any − is adjacent to at least one −, is a pattern

for (1.3). (iii) If (a,β) ∈ Γ(0,1,1), then any mosaic pattern (∗)i∈Z, ∗ = + or −, satisfying

the rules that any + is adjacent to at least one −, any − is adjacent to at least one +, is

a pattern for (1.3).

Proof. We illustrate only (ii). The other cases are similar. If (a,β) ∈ Γ(1,1,0), then its

corresponding basic mosaic patterns are

[+ + +]δ, [−−−]δ, [+ +−]δ, [−+ +]δ, [+−−]δ, [−−+]δ =: B(1,1,0). (3.1)

In view of (3.1) and Proposition 3.1, we see, immediately, that the assertion in (ii)

holds true.

We next study the complexity of the patterns for given choices of parameters .

Definition 3.1. Let µΓ = {(∗i)i∈Z : ∗i = + or −} be a set of stable mosaic patterns of

(1.3) for given choices of parameters in Γ. The spatial entropy h(µΓ) is defined as the

limit

h(µΓ) = lim
n→∞

ln ](µn
Γ)

n
. (3.2)

Here ](µn
Γ) = the cardinality of the set µn

Γ = {(∗i)
n
i=1 : ∗i = + or −, (∗i)i∈Z ∈ µΓ}

Note that µΓ is a translation invariant set and the limit in (3.2) is well-defined (see

e.g., [Chow et. al., 1996]).

Definition 3.2. We say the system (1.1) or (1.3) exhibits spatial chaos for given choices

of parameters in Γ, in case that spatial entropy h(µΓ) is positive. We say that the system

(1.1) or (1.3) exhibits pattern formation for given choices of parameters in Γ in case the

spatial entropy h(µΓ) is zero.

We next recall a well-known result (see e.g., Robinson, 1995).

Theorem 3.2. Suppose there is a one-to-one and onto correspondence between the set µΓ

and the sequence space ΣA. Here A is a matrix of dimension n× n whose elements are 0

and 1, and that ΣA = {(si) : (A)si,si+1
= 1 for all i}. Then h(µΓ) = ln λ, where λ is the

maximal eigenvalue of A.
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Theorem 3.3. Suppose (2.5) holds. If (a, β) ∈ Γ(i1,i2,i3), ij ∈ {0, 1}, j = 1, 2, 3, then

system (1.1) exhibits spatial chaos if and only if i2 = 1 and i1 + i3 ≥ 1. Moreover,

h(µΓ(1,1,1)
) = ln 2 and h(µΓ(1,1,0)

) = h(µΓ(0,1,1)
) = ln 1+

√
5

2
. Consequently, Γ(1,1,1), Γ(1,1,0)

and Γ(0,1,1) are the only chaotic parameters regions.

Proof. We first show that the mosaic patterns produced from Γ(1,1,1), Γ(1,1,0) and Γ(0,1,1)

are all stable. Note that the stability condition (1.5) reduces to

|a|+ 2|β| < 1

r
. (3.3)

If 0 < r < 1
2
, then Q, see Figure 3.1., is to the left of the a-intercept of the line a+2β = 1

r
.

Moreover, a direct computation could yield that the point U , see Figure 3.1., lies on

the line a + 2β = 1
r
. Similarly, the point U ′ lies on the line a − 2β = 1

r
. Thus, the

mosaic patterns under consideration are all stable. We illustrate only the cases that (a,β)

∈ Γ(1,1,0), and (a,β) ∈ Γ(0,1,1). We assign 4 symbols ++, +−,−+ and −− to be 1, 2, 3

and 4 , respectively. We define il and ir, respectively, to be the left (resp., right ) side of

the symbol corresponding to i. For instance, let 2 = + −, then 2l = + and 2r = −. We

construct a 4× 4 transition matrix A = (ai,j) as follows.

Set ai,j =

{
1, if ir = jl and [il, ir, jr] is a basic mosaic patterns in B(1,1,0),

0, otherwise.
(3.4)

Thus the transition matrix with the choice of parameters in Γ(1,1,0) is




1 1 0 0
0 0 0 1
1 0 0 0
0 0 1 1


 =: A(1,1,0).

Now, the set of µΓ(1,1,0)
has a one-to-one and onto correspondence with the sequence

space ΣA(1,1,0)
. Here ΣA(1,1,0)

= {(si) : si ∈ {1, 2, 3, 4}, (A(1,1,0))si,si+1
= 1 for all i}.

Clearly, the characteristic polynomial for A(1,1,0) is λ4 − 2λ3 + λ2 − 1 = 0 or equivalently

(λ2− λ + 1)(λ2− λ− 1) = 0. It then follows from Theorem 3.2 that h(µΓ(1,1,0)
) = ln 1+

√
5

2
.

If (a,β) ∈ Γ(0,1,1), we will define the corresponding transition matrix A(1,1,0) as

10



Notation Parameters’ regions Corresponding patterns
a + z > 1− 2β, (1 + rδ)a + z < 1 + δ − 2(1 + rδ)β, β > 0.

Γ+
2 or [+ + +]δ

a + z > 1− 2(1 + rδ)β, (1 + rδ)a + z < 1 + δ − 2β, β < 0
Γ−−2 replacing z by −z in the equations right above. [−−−]δ,

a + z > 1 + rδβ, (1 + rδ)a + z < 1 + δ − rδβ, β > 0.
Γ+

0 or [+ +−]δ, [−+ +]δ
a + z > 1− rδβ, (1 + rδ)a + z < 1 + δ + rδβ, β < 0

Γ−0 replacing z by −z in the equations right above. [+−−]δ, [−−+]δ
a + z > 1 + 2(1 + rδ)β, (1 + rδ)a + z < 1 + δ + 2β, β > 0.

Γ+
−2 or [−+−]δ

a + z > 1 + 2β, (1 + rδ)a + z < 1 + δ + 2(1 + rδ)β, β < 0
Γ−2 replacing z by −z in the equations right above. [+−+]δ

Table 4.1: .




0 1 0 0
0 0 1 1
1 1 0 0
0 0 1 0


 =: A(0,1,1),

the characteristic polynomial of A(0,1,1) is (λ2 +λ+1)(λ2−λ−1) = 0. Thus h(µΓ(0,1,1)
)) =

ln 1+
√

5
2

.

4 The Effect of the Source Term on Patterns

In this section, we first consider the effect of the source term z on patterns. With the

presence of the source term z 6= 0, the regions Γ+
2 and Γ−−2 are no longer identical. Same

can be said to the two pairs of regions Γ+
0 and Γ−0 , and Γ−2 and Γ+

−2. Therefore, some new

patterns emerge as z moves away from zero.

Proposition 4.1. Suppose

−1 + 2|β|(1 + rδ) < z < 1− 2|β|(1 + rδ) and 0 < r <
1

2
. (4.1)

Then the Table 4.1. holds true.

The first two inequalities imply that |β| < 1
2(1+rδ)

=: β4

For fixed 0 < r < 1
2

and δ > 0 to draw parameters regions in z − a space, we need

the following notations.
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Notation 4.1. Denote by z = 1−2β(1+rδ), a+z = 1−2β, (1+rδ)a+z = 1+δ−2(1+rδ)β,

a+z = 1+rδβ, (1+rδ)a+z = 1+δ−rδβ, a+z = 1+2(1+rδ)β and (1+rδ)a+z = 1+δ+2β

by l0, l1, l4, l2, l5, l3 and l6, respectively. Replacing z and −z in those equations above,

we shall denote the corresponding equations by r0, r1, r4, r2, r5, r3 and r6, respectively.

Notation 4.2. (i) We shall denote the intersection of the lines li and rj, i, j = 1, 2, ..6 by

Ai,j.(ii) We shall denote by the quadrilateral Ai,jAi,kAl,kAl,j = (li, rk, ll, rj) = (i, k, l, j).

Here the a-coordinate of Ai,j is greater than those of Ai,k, Al,k and Al,j. Note that such

tuple is well-defined.

Let 0 < r < 1
2

and δ > 0 be fixed and 0 < β < (1−r)δ
2(1+rδ)(2+rδ)

=: β1. Putting ri and li,

i = 0, 1, 2, ...6, on z − a plane, we have the Figure 4.1..

a

z

0
12 3

4 5 66

1

5 4

3

r r

r

r

r l 1

ll

l

l

r
2

lr
0

0

Figure 4.1: Orange region: (5, 4, 4, 5), green region: (4, 3, 3, 4) and yellow region:
(3, 2, 2, 3).
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Notation 4.3. Set Λ1 = Γ+
2 , Λ2 = Γ−−2, Λ3 = Γ+

0 , Λ4 = Γ−0 , Λ5 = Γ+
−2, Λ6 = Γ−2 , and for

ij, j = 1, 2, ...6,∈ {0, 1}, we define Γ(i1,i2,i3,i4,i5,i6) =
6⋂

j=1

Rj ∩
∧

z, where

Rj =

{
Λj, if ij = 1 ,

R2 − Λj, if ij = 0 ,
and

∧
z = {(a, β) : |z| < 1− 2β(1 + rδ)}.

With z 6= 0 and a small β > 0, we see, in the following, that a lot more chaotic

parameters regions emerge. The case for β < 0 is similar and is, thus, omitted.

Theorem 4.1. Assume that (4.1) holds and r is sufficiently small. Then the following

hold:

(i) Suppose 0 < β < min{ 2(1−r)δ
(2+rδ)(4+5rδ)

, 2
6+5rδ

} =: min{β0, β̂0} and 0 < δ < 2
1−2r

. Then all

parameters regions in Table 4.2. are nonempty and all assertions in Table 4.2. hold true.

(ii) Suppose min{β0, β̂0} < β < β1 and 0 < δ < 2
1−2r

. Then the last two parame-

ters regions Γ(0,1,0,1,1,1) and Γ(1,0,1,0,1,1) in Table 4.2. are empty, and all other regions are

nonempty.

(iii) Suppose 0 < β < min{β0, β̂0} and 2
1−2r

< δ. Then the last two parameters regions

Γ(0,1,1,1,1,0) and Γ(1,0,1,1,0,1) in Table 4.2. are empty, and all other regions are nonempty.

(iv) Suppose min{β0, β̂0} < β < β4 and 2
1−2r

< δ. Then the last four parameters regions

Γ(0,1,0,1,1,1), Γ(1,0,1,0,1,1), Γ(0,1,1,1,1,0) and Γ(1,0,1,1,0,1) in Table 4.2. are empty, and all other

regions are nonempty.

Proof. We illustrate only (i). To see the non-emptiness of the parameters regions in

Table 4.2., we first check that the z-coordinates of both A4,3 and A5,4 are smaller than

z = 1 − 2β(1 + rδ). A direction computation would yield so provided that 0 < δ < 2
1−2r

and 0 < β < β̂0. We then need to verify that the intersection A of r3 and r4 lies above l5.

We see, via direct computations, that only if 0 < β < β0, then A lies above l5. Note also

that if r is sufficiently small, the stability condition (1.5) is satisfied. The verification of

the other assertions in the theorem is then similar to the above and those in Theorem 3.1

and is thus omitted.

Remark 4.1. (i) If 0 < δ < 2
1−2r

and 0 < r < 1
2
, then β4 > β1.

(ii) Note that 2 > λ1 > λ2 > 1+
√

5
2

. Thus, Table 4.2. is arranged in the following way :

the higher row the parameters region is placed the more complex its corresponding patterns

are.

(iii) It is clear that the chaotic patterns produced from the regions Γ(1,1,1,1,1,1) and Γ(1,1,1)

are the same. Similarly, the pairs Γ(0,0,1,1,1,1), Γ(0,1,1) and Γ(1,1,1,1,0,0), Γ(1,1,0) generate the
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Parameters Exact location Basic mosaic patterns contained Spatial Entropy
region in Figure 4.1.

Γ(1,1,1,1,1,1) (4, 3, 3, 4) ∩∧
z [+ + +]δ, [−−−]δ, [+ +−]δ, ln 2

[−+ +]δ, [+−−]δ, [−−+]δ,
[−+−]δ, [+−+]δ.

Γ(0,1,1,1,1,1) (5, 3, 4, 4) ∩∧
z [−−−]δ, [+ +−]δ, [−+ +]δ, ln λ1

[+−−]δ, [−−+]δ,
[−+−]δ, [+−+]δ.

Γ(1,0,1,1,1,1) (4, 4, 3, 5) ∩∧
z [+ + +]δ, [+ +−]δ, [−+ +]δ, ln λ1

[+−−]δ, [−−+]δ,
[−+−]δ, [+−+]δ.

Γ(1,1,1,1,0,1) (3, 3, 2, 4) ∩∧
z [+ + +]δ, [−−−]δ, [+ +−]δ, ln λ2

[−+ +]δ, [+−−]δ,
[−−+]δ, [+−+δ].

Γ(1,1,1,1,1,0) (4, 2, 3, 3) ∩∧
z [+ + +]δ, [−−−]δ, [+ +−]δ, ln λ2

[−+ +]δ, [+−−]δ,
[−−+]δ, [−+−]δ.

Γ(0,0,1,1,1,1) (5, 4, 4, 5) ∩∧
z [+ +−]δ, [−+ +]δ, [+−−]δ, ln 1+

√
5

2

[−−+]δ, [−+−]δ, [+−+]δ.

Γ(1,1,1,1,0,0) (3, 2, 2, 3) ∩∧
z [+ + +]δ, [−−−]δ, [+ +−]δ, ln 1+

√
5

2

[−+ +]δ, [+−−]δ, [−−+]δ.

Γ(0,1,1,1,1,0) (5, 2, 4, 3) ∩∧
z [−−−]δ, [+ +−]δ, [−+ +]δ, ln 1+

√
5

2

[+−−]δ, [−−+]δ, [−+−]δ.

Γ(1,0,1,1,0,1) (3, 4, 2, 5) ∩∧
z [+ + +]δ, [+ +−]δ, [−+ +]δ, ln 1+

√
5

2

[+−−]δ, [−−+]δ, [+−+]δ.

Γ(0,1,0,1,1,1) (6, 3, 5, 4) ∩∧
z [−−−]δ, [+−−]δ, [−−+]δ, ln 1+

√
5

2

[−+−]δ, [+−+]δ.

Γ(1,0,1,0,1,1) (4, 5, 3, 6) ∩∧
z [+ + +]δ, [+ +−]δ, [−+ +]δ, ln 1+

√
5

2

[−+−]δ, [+−+]δ.
Here λ1 and λ2 are the maximal roots of (λ3 − λ2 − λ− 1) = 0

and (λ3 − 2λ2 + λ− 1) = 0, respectively.

Table 4.2: .
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exact patterns. Thus, with the presence of the bias term z 6= 0, some new chaotic patterns

would emerge. Specifically, the patterns whose parameters regions are from Γ(0,1,1,1,1,1),

Γ(1,0,1,1,1,1), Γ(1,1,1,1,0,1), Γ(1,1,1,1,1,0), Γ(0,1,1,1,1,0), Γ(1,0,1,1,0,1), Γ(0,1,0,1,1,1), and Γ(1,0,1,0,1,1) are

new and chaotic.

(iv) Note that in Figure 4.1., we have 0 < β < β1. Such condition is to ensure that the

β-intercept of l3 is smaller than that of l4. We also remark that β1 is the β coordinate

of R in Figure 3.1.. Therefore when β̄ (< β1) is fixed, we see in Figure 3.1. that the line

β = β̄ passes through Γ(1,1,0), Γ(1,1,1) and Γ(0,1,1), which corresponds to the line z = 0 in

Figure 4.1. going through Γ(1,1,1,1,0,0), Γ(1,1,1,1,1,1) and Γ(0,0,1,1,1,1).

(v) In the case that (1−r)δ
(2+rδ)(2+3rδ)

< β < β0, (6, 3, 5, 4) reduces to a triangular A5,4A5,3A.

Here A is the intersection of lines r3 and r4. Likewise, (4, 5, 3, 6) reduces to a triangular

too.

(vi) In the case that β0 < β < β1, (5, 2, 4, 3) and (3, 4, 2, 5) both reduce to a triangular.

Moreover, (6, 3, 5, 4) and (4, 5, 3, 6) disappear.

For β1 < β < min{ (1−r)δ
(1+rδ)(2+rδ)

, (1−r)δ
2(1+rδ)2+rδ

, β4} =: min{β2, β3, β4}, we have Figure

4.2. and Table 4.3.

a

z

0

r

l
1234

5
6 r

r r r r l

l

l

l

l
1 2 4

6

3

5

l
0

r
0

Figure 4.2: Orange region: (5, 3, 3, 5) and yellow region: (4, 2, 2, 4).
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Parameters Exact location Basic mosaic patterns contained Spatial Entropy
region in Figure 4.2.

Γ(0,0,1,1,1,1) (5, 3, 3, 5) ∩∧
z [+ +−]δ, [−+ +]δ, [+−−]δ, ln 1+

√
5

2

[−−+]δ, [−+−]δ, [+−+]δ.

Γ(1,1,1,1,0,0) (4, 2, 2, 4) ∩∧
z [+ + +]δ, [−−−]δ, [+ +−]δ, ln 1+

√
5

2

[−+ +]δ, [+−−]δ, [−−+]δ.
Γ(0,1,1,1,0,0) (3, 2, 4, 4) ∩∧

z [−−−]δ, [+ +−]δ, [−+ +]δ, ln λ3

[+−−]δ, [−−+]δ.
Γ(1,0,1,1,0,0) (4, 4, 2, 3) ∩∧

z [+ + +]δ, [+ +−]δ, [−+ +]δ, ln λ3

[+−−]δ, [−−+δ].
Γ(0,0,1,1,0,1) (3, 3, 4, 5) ∩∧

z [+ +−]δ, [−+ +]δ, [+−−]δ, ln λ4

[−−+]δ, [+−+]δ.
Γ(0,0,1,1,1,0) (5, 4, 3, 3) ∩∧

z [+ +−]δ, [−+ +]δ, [+−−]δ, ln λ4

[−−+]δ, [−+−]δ.
Here λ3 and λ4 are the maximal roots of λ4 − λ3 − 1 = 0

and λ4 − λ− 1 = 0, respectively. Clearly, 1+
√

5
2

> λ3 > λ4 > 1.

Table 4.3: .

Theorem 4.2. Let (4.1) hold, 0 < δ < 2
1−2r

and r be sufficiently small. In the case that

β1 < β < min{β2, β3, β4}, the parameters regions in Table 4.3. are nonempty, and all

assertions in Table 4.3. hold true.

Remark 4.2. (i) If β1 < β < min{β2, β3, β4}, then the a-intercept of l3 is greater than

that of l4. We also note that β2 and β3 are the β-coordinates of S and T , respectively. So

when β1 < β < min{β2, β3, β4}, we see from Figure 3.1. that Γ(1,1,1) disappears. Thus, not

surprisingly, most of regions in Figure 4.1. are destroyed; however, there are some new

chaotic parameters regions as opposed to the case that 0 < β < β1 appear. Specifically,

the parameters regions with indexes containing three zeros newly emerge.

(ii) For β > min{β2, β3, β4}, most of chaotic regions are destroyed and yield no new

chaotic regions. We thus skip the discussion of the case.

We conclude the thesis with the following remarks.

(i) The antisymmetric template for (1.1) can be similarly done. Moreover, the general-

ization of the work to two-dimensional CNNs with output function (1.1) and with the

symmetric and antisymmetric templates is also straightforward.

(ii) It is of considerable interests to study the defect patterns for (1.1).
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Figure 4.3:

(iii) Figure 4.3. is a collection of a computer simulation with sets of parameters chosen

from the parameters regions in Tables 4.2. and 4.3.. Specifically, we set r = 0.25 and

δ = 2 for all cases. The first eleven cases in Figure 4.3. correspond to the first eleven

parameters regions in Table 4.2.. The last four cases in Figure 4.3 correspond to the last

four parameters regions in Table 4.3.. Each collection in Figure 4.3. contains two arrays

of colors. The first array is the initial outputs. The second array represents the final

outputs. If the state xj of a cell Cj is such that |xj| < 1, then we color it green. If the

state xj of a cell Cj is less than −1 (greater than 1, respectively), then we color it blue

(red, respectively). Moreover, the final outputs in each of the collection consist of all
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basic mosaic patterns allowed in their corresponding parameters region. For instance, the

final outputs in (1) consist of all 8 basic mosaic patterns. Likewise, in (6) − Γ(0,0,1,1,1,1)

and (12)− Γ(0,1,1,1,0,0), their corresponding outputs contain 6 and 5 basic mosaic patterns

listed in Table 4.2. and 4.3., respectively.
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