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Abstract

In 1994, Chartrand et al. conjectured : (1) If G is a 2-connected graph of
order p > 4 and size ¢(G) = 0(mod 3), then G is Py-decomposable; (2) If G is a
graph of size ¢(G) = 0(mod 3) and 6(G) > 2, then G is H-decomposable for some
graph H of size 3. In the thesis, we first prove the second conjecture. Then, we
study the H-decompositions of G with fixed H of size 3, where G is a complete
multipartite graph, a cubic graph or a hypercube. Finally, we obtain some results
on My-decomposability of a graph GG. Subsequently, we conjecture that a graph G
is of Class 1 provided ¢(G) = kA(G) and A(G) > 2k — 1.
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Chapter 1

Introduction

A graph G is an ordered triple (V(G), E(G), Y¢) consisting of a nonempty set V(G)
of vertices, a set E(G) of edges, and an incidence function 1. For convenience, G is
also denoted by (V, E) or (V(G), E(G)). Two vertices which are incident with a common
edge are adjacent. An edge with identical ends is called a loop, and an edge with distinct
ends is a link.

A graph is finite if both its vertex set and edge set are finite. A graph is simple if
it has no loop and no two of its edges join the same pair of vertices. The order and size
are the numbers of vertices and edges in graph G respectively.

Two graph, G and H are said o/béisomorphic (written G = H) if there are
bijections ¢ : V(G) — V(H) and ¢ E(G)#=E(H).such that ¥c(e) = wov if and only if
Vi (o(e)) = 0(u)0(v).

A simple graph on n vertices in which each pair-of distinct vertices are joined by an
edge is called a complete graph of otder n, denoted by K,,. A bipartite graph is a graph
whose vertex set can be partitioned into two subsets X and Y, so that each edge has one
end in X and one end in Y. A complete bipartite graph K,,,, is a simple bipartite graph
with bipartition (X,Y’) such that |X| = m, |Y| = n and each vertex of X is joined to
each vertex of Y. An r-partite graph is whose vertex set can be partitioned into r subsets
such that no edge has both ends in any subset, a complete r-bipartite graph is a simple
graph such that two vertices are adjacent if and only if they are not in the same subset.

A graph H is a subgraph of G (written H C G) if V(H) C V(G), E(H) C E(G)
and ¢y is the restriction of ¢ to E(H). The degree of a vertex v in G (written d(v)) is
the number of edges of GG incident with v, each loop counting as two edges. A graph G is
k-regular if d(v) =k for all v € V.

A (vo,vg)-path in G is a finite non-null sequence P = wvyejvieqvy - - - €xvp wWhere

Vg, V1, - - - U are distinct, a path P in which vy = v is a cycle; a path of length n is



denoted by P,.1; a cycle of length n is denoted by C,, and a wheel is a graph obtained
from C,, by adding a new vertex and edges joining it to all the vertices of the C,, (written
W,). A graph G is called connected if there is a (u,v)-path for all u,v € V(G).

All graphs we consider are finite, simple and undirected. The order, size, maximum
and minimum degree of a graph G are denoted by p(G), ¢(G), A(G) and 6(G), respec-
tively. The neighborhood of a vertex v, denoted by N(v), is the set of vertices adjacent
to v. The graph S, is the complete bipartite graph K, ,. The graph M,, is a matching of
size n. The graph G U H is the vertex disjoint union of G and H. The graph tH, t > 1,
is the edge disjoint union of ¢ copies of H. The product of simple graphs G and H is the
simple graph G x H with vertex set V(G) x V(H), in which (u,v) is adjacent to (u,v")
if and only if either u = v and vv' € E(H) or v =v" and uu’ € E(G).

A k-edge coloring f of aloopless graph G is an assignment of k colors, 1,2,--- .k, to
the edges of G. The coloring f is proper if no two incident edges have the same color. A
graph is k-edge colorable if it has-a propér-k-edge coloring. The chromatic index x'(G),
of a loopless graph G, is the minimum k for which G is k-edge colorable.

A graph G is said to be H-decompoSablé; dénoted by H | G, if the edge set E(G) of
G can be partitioned into subsets such'that _each subsets induces a subgraph isomorphic
to H. For convenience, we call H a divisor of G in such case. It is clear that Ky | G
and G | G for any graph G with at least one edge. It is easy to see that if H | G, then
q(H) | ¢(G). In [2], Chartrand, Saba and Mynhardt made the following conjectures.

Conjecture 1 [2] Suppose G is a graph of size ¢(G) = 0(mod 3) and 6(G) > 2. Then G

1s H-decomposable for some graph H of size 3.

Conjecture 2 [2] Suppose G is a 2-connected graph of order p(G) > 2 and of size q(G) =
0(mod 3). Then G is Py-decomposable.

These conjectures motivate our study of decomposing a graph of size 3k into k
copies of isomorphic graphs of size 3. It is worth of mentioning that Conjecture 2 has
been disproved by Kumar|[8]. Thus, we shall focus on the study of Conjecture 1 in Chapter
2 of this thesis.



Note here, if ¢(H) = 3, then H = K3, Py, K13, (P3UP,) or M;. Therefore, in order
to prove Conjecture 1, for each given graph G such that ¢(G) = 0(mod 3) we have to find
a graph H of size 3 and prove that H|G. Here are a couple of examples.

In Figure 1(a), it is not difficult to see that the graph is (P U P,)-decomposable
and the graph in Figure 2(b) is Pj-decomposable but not (P U P)-decomposable. So,
the plan of our proof is to characterize the graph G which are (P U P)-decomposable
and for those graphs which are not (P3 U P)-decomposable, we show they are either P-
decomposable or K3-decomposable. For this purpose, we shall first claim that if G is of
size ¢(G') = 0(mod 3) and 6(G) > 2, then G is (P3 U P,)-decomposable if and only if G is
different from K, and K1 3.41,¢ > 0. And then, the proof will be obtained by the fact

K, and K1 3c41,¢ > 1 are Pj-decomposable, and K3 is K3-decomposable.

3c+1

(a) (b)

Figure 1.
In [8], Kumar gave a counterexample to Conjecture 2 and proved the following.

Theorem 1.1 [8] Suppose G = Ky ny..n, a complete r-partite graph of size q(G) =
0(mod 3), where r > 2. Then G is Py-decomposable except G = K 3, or Ks.

In Chapter 3, we study the H-decompositions of a graph G with given H of size 3,
where G is a complete multipartite graph, a cubic graph or a hypercube.

The followings should be mentioned.

If g(H) =1, then H = K, and K, | G for any graph G with at least one edge. If
q(H) = 2, then H = P; or M,. For H = P5, Chartrand et al. [1] showed the following

theorem.



Theorem 1.2 [1] Every nontrivial connected graph of even size is P3-decomposable.

In Chapter 4, we study the Mjy-decompositions of graphs. Also, we will give a

necessary and sufficient condition for a graph being Ms-decomposable.




Chapter 2

(P; U Py)-packings of graphs

We start this chapter with the study of (P;U P,)-packings of graphs. An H-packing
of a graph G is a set of edge-disjoint subgraphs of G' in which each subgraph is isomorphic
to H. An H-packing F is mazimum if |F| > |F'| for all other H-packings F' of G. The
leave L of an H-packing F is the subgraph induced by the set of edges of G that does
not occur in any subgraph of the H-packing F. Therefore, a maximum packing has a
minimum leave. In what follows, all the leaves we consider are minimum. It is easy to
see that H|G if and only if G has an H-packing with empty leave L, i.e., L contains no
edge, or simply L = ¢.

The following lemmas are essential for. proving the main theorem. Since they are
easy to be proved, we omit the proofs.

Lemma 2.1 If G = G;, 1 <i <48, giwen in Figure2, then (P3U P,)|G.

M Apsay AN DK
AR A AR &

3c+1 —/
G, Gg Gy G10
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G G13

[
: : 1%

G17 Gig
Figure 2.
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Lemma 2.2 If G = G,;, 19 <i < 26, given in Figure 3, then G has a (P3 U Py)-packing

with leave an edge.

Al [N %QQ
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23
Figure 3.

Lemma 2.3 If G = G;, 27 < i < 40, given in Figure 4, then G has a (P3 U Py)-packing

with leave a Ps.

X AN .A.Q 1 Q%
Q%@zﬁ%xm

3c+l 3c+1 3c+1
€36
€37
Figure 4.

The next result is our main theorem in this chapter.

Theorem 2.4 Suppose G is a graph different from Ki 1.1 with p(G) > 5, ¢(G) > 6
and §(G) > 2. Then G has a (P3 U Py)-packing with leave L, where

¢ if ¢(G) = 0(mod 3);
L=< P if q(G) = 1(mod 3);
Ps if q(G) = 2(mod 3).

10



Proof. By induction on ¢(G).

If ¢(G) = 6, then G = G;, 1 < i < 5, given in Figure 2. By Lemma 2.1, we have
(P U BR)|G.

Suppose the assertion holds for any graph G’ different from K ;341 with p(G') >
5, 0(G") > 2 and ¢(G’) < q, where ¢ > 7. Let G be a graph different from K 3.41 with
p(G) > 5, q(G) = q and 6(G) > 2. There are three cases to be considered.

Case 1. A(G) > 4 and 6(G) > 3.
By degree-sum formula, ¢(G) =1 > d(z) > 3(4 + 3x4)= 8. If ¢(G) = &, then

2
G = G97. We use equal sign for isomorpﬁi;/rﬁ) By Lemma 2.3, G has a (P; U P,)-packing
with leave a Ps.

Now, suppose ¢(G) > 8. Let v be a vertex with d(v) = A(G) and N(v) =
{vi,v2, -+, va@}. If v1 is adjacent to some, v; for i > 2, say viv, € E(G), let G' =
G — {vsvvy, v1v9}; otherwise, let wsbe a neighborrof v; which is different from v and
G' = G—{wvyvvs,viu}. Then G’ satisfies the'induction hypothesis. Since G = G'U(P;UP,),

the assertion holds for the graphG.

Case 2. (G is 3-regular.

First, suppose G is connected. If p(G) = 6, then G = G¢ or G7. By Lemma 2.1,
(PsU Py)|G.

Suppose (P3 U P,)|G" for any connected 3-regular graph G’ of order less than p,
where p > 8. Let GG be a connected 3-regular graph of order p. It is not difficult to see
that G has an edge zy with N(z) = {x1,z2,y}, N(y) = {y1, 42,2} and N(z) (" N(y) = ¢
such that z1y; € E(G) and x9ys & E(G). Let G' = (G — {x,y}) U {x1y1, 22y2}. Then G
is a connected 3-regular graph of order p—2. By induction hypothesis, G’ has a (P3 U P,)-
packing F with empty leave. Without loss of generality, we may consider the following

cases.

(1) If there is an F' = {z1y1v3, x2y2} in F, then G has a (P; U P)-packing (F — F)
U{z1222, yy1 } U {2Yy9, y1v3} With empty leave.

11



(2) If there are Fy = {vjvgus, 11 } and Fy = {ujugus, xoys } in F, then G has a (P;UP,)-
packing (F—{Fy, [y }) U{z1229, yy1 }U{v10203, 2y }U{uyusus, yy» } with empty leave.
(3) If there are F} = {vjvous, 11 } and Fy = {xayaus, ugus } in F, then G has a (P3UP,)-
packing (F—{Fy, [y }) U{z1229, yy1 }U{v10203, 2y }U{yyous, usus } with empty leave.
(4) Suppose there are Fy = {x1y1v3, 0405} and Fy = {xayous, ugus }(or Fy = {yaxous, usus})
in F. If 1 & {us, us}, then G has a (PsUP,)-packing (F—{Fy, [y }) U{z12y, ugus }U
{yy1vs, vavs} U {yyaus, zxa}(or {zzous, yyz}) with empty leave.
If 1 = uy(or uz) and uz # v, then G has a (P3U Py)-packing (F —{F, F})U
{zz1us, y1vs} U {zyyr, vavs } U {yyous, v} (or {xzous, yy=}) with empty leave.
If 2y = uy(or us) and us = vg, then G has a (P3 U Py)-packing (F — {1, F»})

U{z12y, youz(or xoug)} U {z1v3y1, 0405} U {11yye, xx2} with empty leave.

Hence, by induction, (PsUP,)|Gfor any connected 3-regular graph G except G = K.

Secondly, let G = (mK,) U Gy Ul-—U G, be.a disconnected 3-regular graph, where
m > 0 and G; # K, for 1 <i <m. Since.P3U P,|G; G — mK, has a (P; U P)-packing
F with empty leave.

If m = 1, choose an F in F. It'is easy to see that K, U F' = 3(P3 U P,). Hence,
(P U BPy)|G.

If m # 1, then G = 2(2K4)UG,U- - UG, when m is even and G = %53(2K)U(3K,)U
G1U---UG, when m is odd. It is easy to see that (P; U P»)|(tK,) for t = 2 or 3. Hence
(Ps U Py)|(mKy) for m > 2 and then (P3 U P)|G.

Case 3. /(G) = 2.

Suppose G has a cycle-component. Let C),, = x5 - -x,27 be the minimum cycle-
component. If 3 <n <5, let G =G —C,,.

Suppose n = 3 and C,, = x1x9x37,. If G = Gy, Gy, Grg, Gog or Gag, by Lemmas 2.1,
2.2 and 2.3, the assertion holds for these graphs GG. Otherwise, by induction hypothesis,
G’ has a (P3 U Py)-packing F with leave L. Choose an F' = {v 0903, 0405} in F. Hence,
G has a (P3 U Py)-packing (F — F)U{x 2923, v4v5} U {v 0903, 2123} with leave L.

12



Suppose n = 4 and C,, = x1x9x32421. If G = Go, G171, Gag, G21 or G3g, by Lemmas
2.1, 2.2 and 2.3, the assertion holds for these graphs GG. Otherwise, by induction hypoth-
esis, G’ has a (P3 U Pp)-packing F with leave L. For L = ¢, choose an F' = {v1v903, 0405}
in F. Then G has a (P3U Ps)-packing (F — F') U{x1x2x3, 0405 } U{v109v3, z324 } With leave
x1xy4. For L = vjve, G has a (P3U Py) -packing F U {x;xex3, v1v9} with leave z3z42;. For
L = vyvyus, G has a (P U Py)-packing F U {x1xew3, v1v9} U {z324271, 1203} with empty
leave.

Suppose n = 5 and C), = z10223242571. If G = Gag, Gia3, G'31 or G329, by Lemmas 2.2
and 2.3, the assertion holds for these graphs G. Otherwise, by induction hypothesis, G’ has
a (P3UP,)-packing F with leave L. Choose an F' = {v1v9v3, v4v5} in F. For L = ¢, G has a
(PsUP,y)-packing (F—F)U{z12923, v405 fU{v1 0903, 2324 } With leave z4z521. For L = ujus,
G has a (P3U Py)-packing (F — F') U{x 2923, 0405 } U{x32425, uyus } U {v1v9vs, 125} with
empty leave. For L = ujuqus, G has a{PsUP;)-packing FU{x xox3, uyus fU{x32475, Usus}
with leave x1xs.

For n > 6, let C,, = x129- - -wpry. If ¢(G)=0(med 3), let G’ = (G — {23, x3,24}) U
x1x5. Then ¢(G’') = ¢(G) — 3 = Ofmod 3). Bylinduction hypothesis, G’ has a (Py U P)-
packing F with empty leave. Choose'an F.in Fwith x5 € F. Since F' = {x 2516, 0405},
{zpx125, 0405} or {viv9vs, 125}, it is not difficult to see that (F — z125) U 2129232405 =
2(P3 U Py). Hence, G has a (P U Py)-packing with empty leave.

If ¢(G) = 1(mod 3), let G' = (G — x2) Uxyxs. Then ¢(G’') = ¢(G) — 1 = 0(mod 3).
By induction hypothesis, G' has a (P; U P,)-packing F with empty leave. Choose an F
in F such that x;x3 € F. Since F' = {12314, v405}, {xn2123, 0405} or {vivous, 2123}, it
is not difficult to see that (F' — xyx3) Uxjxexs = (Ps U Po) U L, where L = x1x9 or 2ox3.
Hence, G has a (P3 U P)-packing with leave L.

If ¢(G) = 2(mod 3), let G' = (G — {x2,23}) Uz124. Then ¢(G') = ¢(G) — 2 =
O(mod 3). By induction hypothesis, G’ has a (P; U P,)-packing F with empty leave.
Choose an F in F such that zix4 € F. Since F = {z1x425, 0405}, {x 2124, 0405} OF
{v1v9v3, T124 }, it is not difficult to see that (F — z124) Uzz923704 = (P3U Py) U L, where

L = zyx9w3 or xox3x4. Hence, G has a (P3 U P)-packing with leave a Ps.

13



Suppose G has no cycle-component. Since 0(G) = 2, there is a shortest path
Tox Ty - -Ty(not necessary open) in G with d(xg) > 3,d(x;) > 3 and d(z;) = 2 for

1 <1 < t, where t > 2. Consider the following cases.

(1) zoz: € E(G).

Suppose ¢(G) = 2(mod 3). If t =2, let " = G — x1. Then ¢(G') = 0(mod 3). If
G = (33, G54 or G35, by Lemma 2.3, G has a (P3UP,)-packing with leave a P;. Otherwise,
by induction hypothesis, (PsUP,)|G’. Hence, G has a (P3U P»)-packing with leave zox ;5.

Ift =3, let G =G — {x1,22}. Then ¢(G') = 2(mod 3). If G = G34, by Lemma
2.3, G has a (P3 U Py)-packing with leave a P3. Otherwise, by induction hypothesis, G’
has a (P3 U P,)- packing F with leave a L' = Pj. It is easy to check that L' Uxzozizo13 =
(P; U Py) U Py except L' = xgvrs. For L' = xgvrs, choose an F in F with zqzxs € F. Tt
is easy to check that F' U xoxixex3vry = 2(P3 U Py) U L, where L = zgr3z9 Or 1203,
Hence, G has a (P; U P,)-packing with leave a Pis.

Iftt >4, let G = (G — {xpa})yUwgxs.Then ¢(G') = 0(mod 3). By induction
hypothesis, G’ has a (P; U P;)-packing F-with empty leave. Choose an F' in F with
xoxsz € F. It is a routine matter 10 cheek that-(F /= ror3) U zori0903 = (P U Py) U L,
where L = zoz129 or zy2923. Hence, G'hasa (Ps'U P,)-packing with leave a Psj.

Suppose ¢(G) = 1(mod 3). Let G' = G — zox;. Then ¢(G’) = 0(mod 3). Since x;
is of degree two in G’ and zox; ¢ E(G'), G’ is neither Ky nor Kj;3.41. By induction
hypothesis, G’ has a (P3U P,)-packing with empty leave. Hence, G has a (P;U P,)-packing
with leave xgxy.

Suppose ¢(G) = 0(mod 3). If t =2, let G' = G — x;. Then ¢(G’') = 1(mod 3). By
induction hypothesis, G’ has a (P; U P,)-packing F with leave an edge e.

If {xoxq129, €} forms a (P3 U P,), then (P U P)|G.

If e = xoz, 2z # zo(similarly if e = 292, 2 # x¢), choose an F' in F with zoxe € F. It is
a routine matter to check that FUzxor129 = 2(P3UP;) except F = {xora2,v4v5}. For F =
{zox22,v4v5}, choose an Fy in F — F. It is a routine matter to check that Fy U zxox 2o =
2(P3 U Py) except Fy = {xgugug, zus} or {zausz, ugus}, where zg is neither uy nor us. If

Fy = {xougug, zus }, then FUF\Uzxoxi0e = {2120%2, 2us }U{ X229, 405 FU{xousu3, T122}.

14



If F} = {xousz, ugus}, then FUF\Uzzoz 129 = {xom122, 2Us JU{X0222, V405 JU{ToTous, usus}.
Hence, (P3 U P,)|G.

Suppose e = xoxy. Since G is different from K 3041, there is an edge v4v5 such
that e and vyvs are vertex disjoint edges. Choose an F' in F with vyvs € F. It is a
routine matter to check that F'U zorix0mg = 2(P3 U Py) except F' = {xgvama, v4v5}.
For F' = {xgvoxy,v4v5}, choose an Fy in F — F. It is a routine matter to check that
FiUxori2000 = 2(P3U Py) except Fy = {wouats, ugus}, {wirows, xows} or {z12923, xo25}.
If Fi = {xougxs,uqus}, then F U Fy U xoxix0mg = {T120us, Tov2} U {z129U0, ugus} U
{zozgue, vavs}. If Fy = {wyzows, xows} (similarly if Fy; = {22923, 2925}), then FF U Fy U
2x0T1Ty = {X2xgVs, V4vs} U {wixows, T122} U {vexows, zoz1 }. Hence, (P3 U P)|G.

Ift =3, let G =G —{x1,22}. Then ¢(G’') = 0(mod 3). If G = G15, by Lemma
2.1, (P3U Py)|G. Otherwise, by induction hypothesis, G’ has a (P3; U P;)-packing F with
empty leave. Choose an F' in F with @pxs € F. Thus, F'Uzoxixews = 2(P3 U P,) and we
have (P; U P)|G.

Ift =4, let G =G — {x1, w9, r3}. Then ¢(G’) = 2(mod 3). If G = G13, by Lemma
2.1, (P3U Py)|G. Otherwise, by induction hypothesis; G’ has a (P3; U P)-packing F with
leave v109v3. Since v1vaV3 U 201222384 =4uiuals, Tox3} U {xox129, 2324}, (P3 U Py)|G.

Ift > 5, let G = (G — {x1,22,23}) Uzoxry. Then ¢(G') = 0(mod 3). By induction
hypothesis, G’ has a (P; U P;)-packing F with empty leave. Choose an F' in F with
xoxry € F. Tt is a routine matter to check that (F — xozy) U zoz1222374 = 2(P3 U P).

Hence, (P3 U P)|G.

(2) zozy € E(G) and x¢ # xy.

Suppose ¢(G) = 2(mod 3). If t =2, let G’ = G — x1. Then ¢(G’) = 0(mod 3)). By
induction hypothesis, G’ has a (P3 U P)-packing F with empty leave. Hence, G has a
(P; U Py)-packing F with leave xoz;zs.

Ift >3, let G' = (G — {x1,22}) Uzgrs. Then ¢(G’) = 0(mod 3). If G = G37, by
Lemma 2.3, G has a (P3UP,)-packing with leave a P3. Otherwise, by induction hypothesis,
G’ has a (P3 U Py)-packing F with empty leave. Choose an F'in F with zoz3 € F. It is

a routine matter to check that (F — zozr3) U xor1zow3 = (PsU Py) U L, where L = xox1xo
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or z1x9x3. Hence, G has a (P3 U Py)-packing with leave a P;.

Suppose ¢(G) = 1(mod 3). Let G'=(G — x1)Uzozy. Then ¢(G') = 0(mod 3). If
G = Gy or Gos, by Lemma 2.2, G has a (P;U P)-packing with leave a P,. Otherwise, by
induction hypothesis, G’ has a (P; U P,)-packing F with empty leave. Choose an F' in F
with zgzy € F. It is a routine matter to check that (F' — zoxo) Uxgrize = (PsU Py) U L,
where L = zgz; or x1x9. Hence, G has a (P3 U P»)-packing with leave a P;.

Suppose ¢(G) = 0(mod 3). If t =2, let @’ = G — x;. Then ¢(G’') = 1(mod 3). By
induction hypothesis, G’ has a (P3 U P)-packing F with leave an edge e. If {zgz122,€}
forms a P3 U Py, then (P3; U P)|G. Let e = xoz(similarly e = x92z). Choose an F' in
F with x5 € F. It is a routine matter to check that F' U zxoxime = 2(P3 U Ps) except
F = {zvyz9,v4v5}. Since d(z5) > 3, there is some Fy in F — F with xo € Fj. Similarly,
Fy U zagxrime = 2(P3 U Py) where Iy = {zugws, ugus}. In such case, if vq is incident with
gy, say Vo = uy, then F'UFy U zzoxpts = {ToT1ln, V405 } U{zovous, usz } U{xo2zvs, Tous};
otherwise, F'U F| U zzgx1x9 = {191 2o, Vgt } U {ua@ave, 202} U {ugzvs, ugus}. Hence, G
has a (P; U Py)-packing with empty leave.

Ift =3, let G = G — {1, 29}. Theng(G") = 0(mod 3). By induction hypothesis,
G’ has a (P3 U Py)-packing F with empty. leave.. Choose an F' in F with zo € F. Tt is
a routine matter to check that F'U xoxixexrs = 2(P3 U Ps) except F' = {xovors, v4vs}.
For F' = {zgvax3,v4v5}, by the same argument as above, G has a (P; U P,)-packing with
empty leave.

Ift >4, let G =G — {x1,29, 23} Uxgry. Then ¢(G’) = 0(mod 3). By induction
hypothesis, G’ has a (P; U P)- packing F with empty leave. Choose an F' in F with
xoxry € F. Tt is a routine matter to check that (F' — xozy) U zozz202374 = 2(P3 U P).

Hence, G has a (P3 U P»)-packing with empty leave.

(3) g = x; and t > 3.

Suppose ¢(G) = 2(mod 3). Fort = 3or4, ifd(xy) > 4,let G’ = G—{x1, 29, -, T4_1}.
If G = G3g or Gsg, by Lemma 2.3, G has a (P U P,)-packing with leave a Ps;. Other-
wise, by induction hypothesis, G’ has a (P3 U P)-packing F with leave L. If ¢ = 3,
then L = P3 and L U xoxi2emg = {L,x120} U x12079. If t = 4, then L = P, and
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L U zorix00300 = {T12223, L} U 212023. Hence, G has a (P3 U P,)-packing with leave a
Ps.

Suppose d(xg) = 3. Let N(xg) = {1, 2¢-1,2}. In this case, d(z) > 3. Let G’ =
G —{xg,x1, ", x4_1}. If G = Gy, by Lemma 2.3, G has a (P3 U P,)-packing with leave
a P3. Otherwise, by induction hypothesis, G’ has a (P3 U P,)-packing F with leave L. If
t =3, then L = P and L U xgz12920 U 292 = {x02129, L} U 902, If t = 4, then L = ¢
and wor1T22370 U 29z = {x10923, 192} U m12023. Hence, G has a (P3 U P,)-packing with
leave a Pj.

For t > 5, let G' = (G — {x9,x3}) Uz124. Then ¢(G') = 0(mod 3). By induction
hypothesis, G’ has a (P; U Py)-packing F with empty leave. Choose an F in F with
x1x4 € F. It is a routine matter to check that (F' — x1x4) U 1200304 = (P U Py) U L,
where L = z129x3 or xowzry. Hence, G has a (P; U Py)-packing with leave a Psj.

Suppose ¢(G) = 1(mod 3). Fott = 3/ ifd(zo) > 4, let G = G — {z1, 22} If
G = Gop, by Lemma 2.2, G has=a (P; U-P,)-packing with leave a P,. Otherwise, by
induction hypothesis, G’ has a (P3 U Py)-packing F with leave a P,. Choose an F in
F. It is a routine matter to cheek: thatiFlUZgr 2500 = 2(P; U P,). Hence, G has a
(Py U Py)-packing with leave a P;.

Suppose d(zg) = 3. Let N(zg) = {x1,22,2}. In this case, d(z) > 3. Let G' =
G — xpz. Then ¢(G') = 0(mod 3). By induction hypothesis, G’ has a (P3 U P,)-packing
F with empty leave. Hence, G has a (P; U P)-packing with leave z¢z.

For t > 4, let ¢ = (G — x3) U xyxs. Then ¢(G') = 0(mod 3). By induction
hypothesis, G’ has a (P; U P;)-packing F with empty leave. Choose an F' in F with
x1xg € F. It is a routine matter to check that (F' — zy23) Uz xexs = (P3U Py) U L, where
L = x1x9 or z9x3. Hence, G has a (P U Py)-packing with leave a P.

Suppose ¢(G) = 0(mod 3). For3 <t <5,ifd(xo) > 4,let G' = G—{x1, 29, -, 241}
If G = G4 or Gy5, by Lemma 2.1, G has a (P;U P,)-packing with empty leave. Otherwise,
by induction hypothesis, G’ has a (P3 U P,)-packing F with leave L. If t = 3, then L = ¢.
Choose an F' in F. It is a routine matter to check that F' U xoxizexy = 2(P3 U Py). If
t =4, then L = P;. It is a routine matter to check that L U zozix9x300 = 2(P35 U Py).
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If t =5, then L = wv. If zq is incident with uv, say xq = u, then xoriz2230400 U uv =
{zox122, T34 }U{VZ024, 223 }. Otherwise, choose an F' = {z12923, 2425} in F with xy € F.
If g = z4 or z5, then F U xgri 20232470 U uv = {xox129, uv} U {To2324, 2425 }U

{z12023, ;420 }. If xy = 21, 29 Or 23, then F' U zor129232470 U uv = {xox129, v }U
{x324200, 2425} U {212223, zox3}. Hence, G has a (P; U Py)-packing with empty leave.

Suppose d(xg) = 3. Let N(xg) = {1, 2¢-1,2}. In this case, d(z) > 3. Let G' =
G —{xo, 21, s 1}. If G = Gig,G17 or Gig, by Lemma 2.1, G has a (P U P)-packing
with empty leave. Otherwise, by induction hypothesis, G’ has a (P U P;)-packing F
with leave L. It is a routine matter to check that L U zoz- - 220 U x9z = 2(P3 U Py) for
3 <t <5. Hence, G has a (P; U P)-packing with empty leave.

Finally, for t > 6, let G’ = (G — {22, x3,24}) Ux125. Then ¢(G') = 0(mod 3). By
induction hypothesis, G’ has a ( P3U P;)-packing F with empty leave. Choose an F'in F
with 2125 € F. It is a routine matter. 4o eheck that, (F — xix5) Uz zox324m5 = 2(PsU Py).
Hence G has a (P3 U P,)-packing with! emipty-leave.

Therefore, the proof concludes by induction. |
Now, we are ready to prove the Conjecture 1.

Theorem 2.5 If G is a graph with ¢(G) = 0(mod 3) and §(G) > 2, then H|G for some
graph H of size 3.

Proof. If ¢(G) = 3, then it is trivial that G|G. In [8], Kumar proved that Py|G if G = K,
or K11 3c+1. For the rest, by Theorem 2.4, we have (P; U P)|G. Therefore, we complete
the proof. [ |

The result of Theorem 2.4 generalizes the following result proved in [5].

18



Theorem 2.6 [5] The necessary and sufficient conditions for a simple graph G having a
(P3 U Py)-decomposition are the following :

1) ¢(G) = 0(mod 3);

2) A(G) < 24(G);

(
(
(
(4

)
)

3) ¢(G) < %q(G), where ¢(G) denotes the number of odd components of G,
)

the edges of G cannot be covered by two adjacent vertices.
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Chapter 3

H-decompositions of Special Classes of Graphs

3.1 H-decompositions of complete multipartite Graphs

First, we consider the Ss-decomposition of a complete r-partite graph G = K, ... 5.,

of size ¢(G) = 0(mod 3) and r > 2.
Lemma 3.1 The graph K,,, is Ss-decomposable if and only if mn = 0(mod 3).

Proof. The condition mn = 0(mod 3) is clearly necessary. Conversely, assume 3 | m.

Since E(Kpn)=EnKy1) = E("*K31), Ky is Ss-decomposable. [ |

Lemma 3.2 The complete graph Ky ts Ss-decornposable if and only if n > 5 and q(K,,) =
0(mod 3).

Proof. It is clear that K, is not Sz-de¢ompesable if n.< 5 or ¢(K,) # 0(mod 3). Suppose
n > 6 and ¢(K,) = 0(mod 3), i.e., n'=0.or 1(mod 3). It is a routine matter to check that
Kg and Ky are Ss-decomposable. If n = 0(mod 3) and n > 12, then E(K,) = E(Ks) U
E(K,—¢6) U E(K,—¢). If n = 1(mod 3) and n > 7, then E(K,)=E(K,—1)UE(K,_11).

By Lemma 3.1 and mathematical induction, K, is S3-decomposable. |

Theorem 3.3 The graph G = K,, ..., with r > 2 is Ss-decomposable if and only if
¢(@) = 0(mod 3) and G is different from Ky and K 13041, ¢ > 0.

Proof. The condition ¢(G) = 0(mod 3) is clearly necessary and K, = Kj;1, is not
Ss-decomposable. For G = K 13041, there is a unique edge e = zy in E(G) which is
incident with other edges in E(G). If G is Ss-decomposable, since deg(v) = 2 if v is
neither x nor y, the center of each S3 of an S3-decomposition of G must be = or y. Hence,

% =2c+1< Lde%(x)J + Lde%(y)J = c+c = 2c. It is impossible. Therefore, G = K 13011

is not S3-decomposable.
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Conversely, we shall prove the assertion by induction on r > 2. By Lemma 3.1,
Ky, ny 18 Ssz-decomposable if nyny = 0(mod 3). Suppose any graph G’ = K, ,.n,, of size
¢(G") = 0(mod 3) and different from Ky and K 1 3041 is S3-decomposable for " < r, where
r > 3. Let G = K,, ..., of size ¢(G) = 0(mod 3) and different from K, and K1 3c41.

Consider the following disjoint cases.

Case 1. At least one n}s = 0(mod 3).

We may assume n; = 3a,a > 1. By Lemma 3.1, S3|K,, ny+.4n,. By induction
hypothesis, S3| Ky, ... n, €xcept Ky, ..., = Ky 0r K1 3.41. Since E(G) = E(Ky, nytotn, )Y
E(an,---,m)a S3 | G except G = K310, or K30.1,1,3041-

If G = Ksa1,1,1, then E(G) = E(K311,11) U Ksg—1)4. It is a routine matter to
check that S3 | K311,1,1. By Lemma 3.1, S3 | K3(,-1)4. Hence, S5 | G.

If G = K34,11,3041, then E(G) = E(K3111) U E(Ks@-1)14143¢+1) U E(Kse34141). It
is a routine matter to check that S3| ' K3;1,1. By'Lemma 3.1, S3 | K34—1),14143.+1 and

S3 | K3c,3+1+1- Hence, S3 | G.

Case 2. At least three of n}s = 2(mod 3)

We may assume n; = 3a +2;n5 = 3b +2and ng = 3¢+ 2. Then E(G) =
E(Kuy npmg)IE (K 4nytnsna.n,)- By induetion hypothesis, Ss | K, +no+nsna,n,- More-
over, E(Kp, nyns) = E(Ka22) U E(Ksqnytng) U E(Kspoin,) U E(Kse042). It is a routine
matter to check that S; | Ky20. By Lemma 3.1, K34 py4n4, Ksp2tn, and Kscopo are

Ss-decomposable. Hence, S5 | Ky 5y ns and then Ss | G.

Case 3. Exactly two of n}s = 2(mod 3).

Suppose n; = ny = 2(mod 3) and n; = 1(mod 3) for i > 3. Then ¢(G) = (("}°) +

4(r—2)+4)(mod 3) = ’”Q’L%(mod 3) & 0(mod 3) for r > 3. Hence, there are no graphs
G = K, ..., of size ¢(G) = 0(mod 3) in this case.

Case 4. Exactly one of nis = 2(mod 3).

We may assume n; = 3a + 2 and n; = 1(mod 3) for i > 2. Then ¢(G) = (("}') +

2(r —1))(mod 3) = W(mod 3). Since ¢(G) = 0(mod 3), we obtain r = 1(mod 3).

Hence, ny + -+ - +n, = (r — 1)(mod 3) = 0(mod 3). Moreover, E(G) = E(Ky, nyt-in,) U
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E(K,,...n,). Then Ss | Ky nyttn, by Lemma 3.1. By induction hypothesis, S3 | K, ...,
except K, .., = K111. Hence, S5|G except G = K3a1211.1-

If G = Ksq4211,1, then E(G) = E(Ks111) U E(K3414141)- It is a routine matter to
check that S3 | K91,1,1. By Lemma 3.1, S5 | K3,14+141. Hence, S5 | G.

Case 5. n; = 1(mod 3) for 1 <i <.

Then ¢(G) = #(mod 3). Since ¢(G) = 0(mod 3), we obtain r = 0 or 1(mod 3).
For r = 3, let G = Ky, nyng With ny > ny > 4 (since G # Ki13041). Then E(G) =
E(Ky41) U E(Kp—angtns) U E(Kpy—444ns) U E(Kpy—1444). It is a routine matter to
check that S3 | Ky41. By Lemma 3.1, Ky, —4091ng> Knp—aatns and Ky, 1414 are all Ss-
decomposable. Hence, S3 | G.

For r = 4, let G = K, nyngmng, With ny > 4 (since G # K4). Then E(G) =
E(Ky111)UE (K —4nytns4na)IE (K1 415100 UE (Kng 1441500 ) UE (K, —144111). Tt s
a routine matter to check that Ss | K1 11. By Lemma 3.1, Ky, 45y tngtnas Kno—1,4-4ns+n4s
Kyy—14414n, and Ky, 144141 aresall Ss-decomposable. Hence, S5 | G.

Forr > 5, E(G) = E(K,)UE(K, <1 pstetn, ) I(U_ o E( Ky, —10-1) )UE(Kpy—1,n—1)-
By Lemma 3.2, S3 | K,. By Lemm&'3.1,°55 | Ky, 114 tn, and S | Ky, 1,1 for
2 < ¢ <r. By induction hypothesis, S5/ K;21:n.—1. Hence, S5 | G.

Therefore, the assertion holds by the mathematical induction. |

Theorem 3.4 The graph G = K,, ..
if ¢(G) = 0(mod 3) and G is different from K, and Ky 3c+1,¢ > 0.

. With v > 2 is (PyU Py)-decomposable if and only

Proof. It follows by Theorem 2.4. [ ]

We may use the same argument as in Theorem 3.3 to prove the next theorem.

However, we will give an alternative proof in Chapter 4.

Theorem 3.5 The graph G = K, ..., with r > 2 is Mz-decomposable if and only if
¢(G) = 0(mod 3) and G is different from K1 3,, Ko 30, K331, K113c41 and Ky 11 ,m, where

n>1,c>0and m > 1.
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Remark here, the problem of determining the graph G = K,,, ..., being K3-decomposable
is still widely open, see [3, 4].

3.2 H-decompositions of Cubic graphs

A cubic graph is a 3-regular graph. Let G be a cubic graph. By the degree-sum
formula, we obtain 2¢(G) = 3p(G). Hence, ¢(G) = 0(mod 3).

Theorem 3.6 Suppose G is a cubic graph.

1) G s not K3-decomposable.

2) G s Py-decomposable if G is 2-connected.

(1)
(2)
(3) G is S3-decomposable if and only if it is bipartite.
(4) G is (P3U Py)-decomposable except G'=Ky.

()

5) G is Ms-decomposable except G = K.

Proof.

(1) It is easy to see that a graph which is-#3-decomposable must be eulerian, i.e., the

degree of each vertex is even. Hence, GG is not K3-decomposable.

(2) If G is 2-connected, then G has a perfect matching M (see [10]). Let M =

{e1, -+, e}, where t = ’@. Since G is cubic, G\M is a disjoint union of cy-
cles. For each cycle, we assign a oritation on it. Secondly, each e; in M and the two
arcs that point to the end vertices of e; form a P,. It is not difficult to check that

E(G) is partitioned into ¢ P, in such a way. Therefore, G is P;-decomposable.
(3) Suppose G = (X,Y) is a cubic bipartite graph. For each vertex v in X, the three

edges that incident with v form an S;3. Hence, G is S3-decomposable.

Conversely, suppose F(G) can be partitioned into ¢t = @ Sis, say Si. S2)
.-+, SL. Since G is cubic, each vertex in V(G) is either the center of some S or a

leaf of S%, SJ and S¥. Hence the sets X = {v € V(G) | v is the center of some S}
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and Y = {v € V(G) | v is a leaf of some Si} are independent sets. Moreover, each
edge in E(G) has one end in X and one end in Y since it is an edge of some S%.
Therefore, G is a bipartite graph with bipartition (X,Y).

(4) It follows by Theorem 1.1.

(5) If p(G) = 6, then G = K33 or K3 x Ky. It is easy to check that G is Ms-
decomposable. If p(G) > 8, then ¢(G) —3A(G) > + x3x8—-3x3 =3 > 0.

2
By Theorem 4.5, G is M3-decomposable. |

In [8], Kumar constructed a 2-connected graph G of size ¢(G) = 0(mod 3) and
d(G) = 2 which is not Pj;-decomposable. See Figure 5. Combining with Theorem 3.5(2),

we give a modified conjecture as follows.

Figure 5.

Conjecture 3 Any 2-connected graph G of size ¢(G) = 0(mod 3) and 6(G) > 3 is P;-

decomposable.

3.3 H-decompositions of Hypercubes

An n-cube, denoted by @, is defined recursively as follows : (); = Ky and Q,, =
Qn_1 X Ky for n > 2. It is well-known that @), is bipartite. Hence, @, is not Kj-
decomposable. Moreover, ¢(Q,) = n - 2""! = 0(mod 3) if and only if n=0(mod 3). It is
a routine matter to check that ()3 is H-decomposable with H of size 3 if H is different
from Kj3. If we replace each vertex of QY5 by a @), and each edge of ()3 by a matching of
size p(Q,) = 2" such that the corresponding vertices of 8 /s form a @3, then it yields a
Qni3. Hence, E(Q,13) = F(8Q,) U E(2"Qs3). Therefore, by induction on n = 0(mod 3),

the following result is easy to see.
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Theorem 3.7 Suppose n = 0(mod 3) and H is a graph different from Ks and of size 3.
Then @), is H-decomposable.
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Chapter 4
M-decompositions of graphs

In this chapter, we mainly obtain necessary and sufficient conditions for graphs
which are Ms-decomposable. But for completeness, we also present some result on the
decomposition of G into matchings of size k, k > 3.

A graph G is said to be n-edge colorable if its edge set F(G) can be partitioned into
n disjoint matchings Fy, Fs, ---, E, and it is equitably n-edge colorable if the sizes of E;
and £ differ by at most one for all 1 < i < j < n. The chromatic index of GG, denoted
by x'(G), is the minimum number n such that G is n-edge colorable.

The followings are useful in this chapter.
Theorem 4.1 [10] For a simple graph G, A(GY < X' (G) < A(G) + 1.
A simple graph is of class 1 iffA(G) =X/ (G), otherwise it is of class 2.

Theorem 4.2 [11] Suppose G is a.siniple graph Grand n > x'(G). Then G is equitably

n-edge colorable.

Theorem 4.3 [6] Suppose G = (X,Y) a bipartite graph. Then G has a matching that
saturates every vertex in X if and only if | S |<| N(S) | for all S C X, where N(S) =
{y €Y | zy € E(GQ) for some x € S}.

is of class 2 if and only if |E(G)| >

T

Theorem 4.4 [7] The graph G = Ky, ny.m
AG) 22,

Now, we are ready to prove the main results of this chapter.
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Theorem 4.5 Suppose G is a graph of size q(G) = 0(mod k), where k > 1.

(1) If ¢(G) > kA(G), then G is My-decomposable.
(2) If ¢(G) < kA(G), then G is not My-decomposable.
(3) If ¢(G) = kA(G), then G is My-decomposable if and only if X' (G) = A(G).

Proof. Let ¢(G) = nk. It is clear that G is Mj-decomposable if and only if G is equitably
n-edge colorable. If ¢(G) > kA(G), by Theorem 4.1, n > A+ 1 > \/(G). By Theorem
4.2, G is equitably n-edge colorable. Hence G is Mj-decomposable.

If ¢(G) < kA(G), by Theorem 4.1, n < A < x/(G). Hence, G is not n-edge colorable
and then G is not Mj-decomposable.

Suppose ¢(G) = kA(G), i.e., n = A(G). If G is My-decomposable, then G is n-
edge colorable. By Theorem 4.1, A(G) Six/(G) < n = A(G) and then xX'(G) = A(G).
Conversely, if x'(G) = A(G) = ny by Theorem 4.2, G is equitably n-edge colorable.
Therefore, G is Mj-decomposable. |

Recall that, in [1], the authors gave a necessary and sufficient condition for a graph

being Ps-decomposable. Here, we characterize graphs which are Ms-decomposable.

Theorem 4.6 Suppose G is a graph different from K3 U Ky and of even size. Then G
is My-decomposable if and only if ¢(G) > 2A(G).

Proof. Let ¢(G) = 2A(G). By Theorem 4.5, G is Msy-decomposable if ¢(G) > 2A(G)
and G is not Ms-decomposable if ¢(G) < 2A(G). Now, let ¢(G) = 2A(G). For A(G) =1,
then G = Ms. For A(G) = 2, then G = Cy, K3UK5, Ps, P,UP,, 2P; or P;U2P,. Hence,
G is Msy-decomposable except G = K3 U Ks. Suppose A(G) > 3. Choose a vertex v with
deg(v) = A(G) and vy, vy, -+, va(e) are adjacent to v. Let E(G)\{vvy,---,vva@)} =
{e1,---,eaw}- Consider the bipartite graph H = (X,Y’) with vertex set V(H) = X UY/,
where X = {e1, - -,ea} and Y = {v,---,va)}, and edge set E(H) = {e;v; | €; is
not incident with v;}. Let S C X. It is easy to see that degy(e;) > A(G) — 2. Hence,
if | §|< A(G) =2, then | N(S) |> A(G) =2 >[ S |. For | S |= A(G) -1 > 2, if
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| N(S) |= A(G) — 2. then all €s in S have the same end vertices. It is impossible since
G is simple. Hence | N(S) |> A(G)—1=| S |. For | S |= A(G), we have S = X
and | N(S) |=| Y |= A(G). Therefore, | N(S) |>| S | for all S € X. By Theorem
4.3, H has a matching M that saturates every vertex in X. Without loss of generality,

assume M = {ejvy, equg, - - - ,eA(G)vA(G)}. Color the edges e; and vv; by the color ¢ for
1 <i < A(G). Then G is A(G)-colorable. By Theorem 4.1, A(G) < x'(G) < A(G) and
then x'(G) = A(G). By Theorem 4.5, G is My-decomposable. |

Next, we will give an alternative proof to Theorem 3.5.

Theorem 3.5 Suppose G = Ky, ny..m, Of size ¢(G) = 0(mod 3) with r > 2. Then G
is Ms-decomposable if and only if G is different from K 3,, Kosn, K133, Ki13c41 and
Ki11m, wheren >1,¢>0 and m > 1.

Proof. Let ¢(G) = 3A(G). By directeds computing, ¢(G) < 3A(G) if (ny,---,n,) =
(1,3n), (2,3n), (1,3,3), (1,1,3c+ lJor (Lgylsm), ¢(G) = 3A(G) if (ny,---,n,) = (3,n),
n >3, (2,2,2), (1,3,6), (1,4,4), (11,24, (1,2:2:2),(1,1,1,1,3) or (1,1,1,1,1,1) and ¢(G) >
3A(G) for other cases. By Theorem 4!5;/°G is M;-decomposable if ¢(G) > 3A(G) and
G is not Ms-decomposable if G is éne of K3, Kos,, K133, Ki13c41, and Ky 1,,. For
q(G) = 3A(G), it is easy to see that | E(G) < A(G) L@J for each possible graph G. By
Theorem 4.4, G is of class 1, i.e., X'(G) = A(G). By Theorem 4.5, G is M3-decomposable.

Before we put an end of this chapter, we would like to point out the relationship
of Mg-decomposition of a graph G with kA(G) edges. Clearly, if G is of Class 1,then
an Mj-decomposition exists. Unfortunately, for smaller A(G), we may not be able to

guarantee that G is of Class 1.

Example 1 For k > 1, there exists a graph G such that q(G) = EA(G), 1 < A(G) <
2k —1 and ' (G) = A(G) + 1.
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Proof. Let A =2k —i <2k — 1, where 2 <i¢ < 2k — 1.
If i is even, let G = Kog_;j11 U P11, where n = k(2k — i) — (2]‘;_2”1) = w;k*’) It
is easy to see that ¢(G) = kA(G) and X'(G) = X/ (Kog—iy1) =2k —i +1=A(G) + 1.
If i > 1 and odd, let G = (Ko,_j12\H) U P41, where H = P3 U Mk_% and
n="kQ2k—i+1)— () +|E(H)| = (i —2)k — 3(:% — 2i — 1). It is easy to sce that
2(G) = KA(G) and \(G) = x'(Fox_112\H) > {ww ok —it1=AG)+1
or X'(G) = A(G) + 1 by Theorem 4.1. 2 [ |

From above example, we have constructed a graph of Class 2 which satisfies the
conditions ¢(G) = kA(G) and 1 < A(G) < 2k — 1. But if k = 1, then ¢(G) = A(G)
and this G = Sa. Clearly x'(G) = A(G). Forthemore for £ = 2 and 3, if A(G) > 3 and
A(G) > 5 respectively, then x'(G) = A(G). Hence, it is reasonable to make the following

conjecture to conclude this thesis.

Conjecture 4 If G is a simple graph-with ¢(G) = kA(G) and A(G) > 2k — 1, then
X'(G) = A(G).
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