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Packing Graphs with Graphs of Size Three
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Abstract

In 1994, Chartrand et al. conjectured : (1) If G is a 2-connected graph of

order p ≥ 4 and size q(G) ≡ 0(mod 3), then G is P4-decomposable; (2) If G is a

graph of size q(G) ≡ 0(mod 3) and δ(G) ≥ 2, then G is H-decomposable for some

graph H of size 3. In the thesis, we first prove the second conjecture. Then, we

study the H-decompositions of G with fixed H of size 3, where G is a complete

multipartite graph, a cubic graph or a hypercube. Finally, we obtain some results

on Mk-decomposability of a graph G. Subsequently, we conjecture that a graph G

is of Class 1 provided q(G) = k∆(G) and ∆(G) ≥ 2k − 1.
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Chapter 1

Introduction

A graph G is an ordered triple (V (G), E(G), ψG) consisting of a nonempty set V (G)

of vertices, a set E(G) of edges, and an incidence function ψG. For convenience, G is

also denoted by (V,E) or (V (G), E(G)). Two vertices which are incident with a common

edge are adjacent. An edge with identical ends is called a loop, and an edge with distinct

ends is a link.

A graph is finite if both its vertex set and edge set are finite. A graph is simple if

it has no loop and no two of its edges join the same pair of vertices. The order and size

are the numbers of vertices and edges in graph G respectively.

Two graph, G and H are said to be isomorphic (written G = H) if there are

bijections θ : V (G) → V (H) and φ : E(G) → E(H) such that ψG(e) = uv if and only if

ψH(φ(e)) = θ(u)θ(v).

A simple graph on n vertices in which each pair of distinct vertices are joined by an

edge is called a complete graph of order n, denoted by Kn. A bipartite graph is a graph

whose vertex set can be partitioned into two subsets X and Y , so that each edge has one

end in X and one end in Y . A complete bipartite graph Km,n is a simple bipartite graph

with bipartition (X,Y ) such that |X| = m, |Y | = n and each vertex of X is joined to

each vertex of Y . An r-partite graph is whose vertex set can be partitioned into r subsets

such that no edge has both ends in any subset, a complete r-bipartite graph is a simple

graph such that two vertices are adjacent if and only if they are not in the same subset.

A graph H is a subgraph of G (written H ⊆ G) if V (H) ⊆ V (G), E(H) ⊆ E(G)

and ψH is the restriction of ψG to E(H). The degree of a vertex v in G (written d(v)) is

the number of edges of G incident with v, each loop counting as two edges. A graph G is

k-regular if d(v) = k for all v ∈ V .

A (v0, vk)-path in G is a finite non-null sequence P = v0e1v1e2v2 · · · ekvk where

v0, v1, · · · vk are distinct, a path P in which v0 = vk is a cycle; a path of length n is

5



denoted by Pn+1; a cycle of length n is denoted by Cn and a wheel is a graph obtained

from Cn by adding a new vertex and edges joining it to all the vertices of the Cn (written

Wn). A graph G is called connected if there is a (u, v)-path for all u, v ∈ V (G).

All graphs we consider are finite, simple and undirected. The order, size, maximum

and minimum degree of a graph G are denoted by p(G), q(G), ∆(G) and δ(G), respec-

tively. The neighborhood of a vertex v, denoted by N(v), is the set of vertices adjacent

to v. The graph Sn is the complete bipartite graph K1,n. The graph Mn is a matching of

size n. The graph G ∪H is the vertex disjoint union of G and H. The graph tH, t ≥ 1,

is the edge disjoint union of t copies of H. The product of simple graphs G and H is the

simple graph G×H with vertex set V (G)× V (H), in which (u, v) is adjacent to (u′, v′)

if and only if either u = u′ and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G).

A k-edge coloring f of a loopless graph G is an assignment of k colors, 1, 2, · · · , k, to

the edges of G. The coloring f is proper if no two incident edges have the same color. A

graph is k-edge colorable if it has a proper k-edge coloring. The chromatic index χ′(G),

of a loopless graph G, is the minimum k for which G is k-edge colorable.

A graph G is said to be H-decomposable, denoted by H | G, if the edge set E(G) of

G can be partitioned into subsets such that each subsets induces a subgraph isomorphic

to H. For convenience, we call H a divisor of G in such case. It is clear that K2 | G

and G | G for any graph G with at least one edge. It is easy to see that if H | G, then

q(H) | q(G). In [2], Chartrand, Saba and Mynhardt made the following conjectures.

Conjecture 1 [2] Suppose G is a graph of size q(G) ≡ 0(mod 3) and δ(G) ≥ 2. Then G

is H-decomposable for some graph H of size 3.

Conjecture 2 [2] Suppose G is a 2-connected graph of order p(G) ≥ 2 and of size q(G) ≡
0(mod 3). Then G is P4-decomposable.

These conjectures motivate our study of decomposing a graph of size 3k into k

copies of isomorphic graphs of size 3. It is worth of mentioning that Conjecture 2 has

been disproved by Kumar[8]. Thus, we shall focus on the study of Conjecture 1 in Chapter

2 of this thesis.
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Note here, if q(H) = 3, then H = K3, P4, K1,3, (P3 ∪P2) or M3. Therefore, in order

to prove Conjecture 1, for each given graph G such that q(G) ≡ 0(mod 3) we have to find

a graph H of size 3 and prove that H|G. Here are a couple of examples.

In Figure 1(a), it is not difficult to see that the graph is (P3 ∪ P2)-decomposable

and the graph in Figure 2(b) is P4-decomposable but not (P3 ∪ P2)-decomposable. So,

the plan of our proof is to characterize the graph G which are (P3 ∪ P2)-decomposable

and for those graphs which are not (P3 ∪ P2)-decomposable, we show they are either P4-

decomposable or K3-decomposable. For this purpose, we shall first claim that if G is of

size q(G) ≡ 0(mod 3) and δ(G) ≥ 2, then G is (P3 ∪ P2)-decomposable if and only if G is

different from K4 and K1,1,3c+1, c ≥ 0. And then, the proof will be obtained by the fact

K4 and K1,1,3c+1, c ≥ 1 are P4-decomposable, and K3 is K3-decomposable.

...

3c+1

(a) (b)

Figure 1.

In [8], Kumar gave a counterexample to Conjecture 2 and proved the following.

Theorem 1.1 [8] Suppose G = Kn1,n2,···,nr a complete r-partite graph of size q(G) ≡
0(mod 3), where r ≥ 2. Then G is P4-decomposable except G = K1,3n or K3.

In Chapter 3, we study the H-decompositions of a graph G with given H of size 3,

where G is a complete multipartite graph, a cubic graph or a hypercube.

The followings should be mentioned.

If q(H) = 1, then H = K2 and K2 | G for any graph G with at least one edge. If

q(H) = 2, then H = P3 or M2. For H = P3, Chartrand et al. [1] showed the following

theorem.
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Theorem 1.2 [1] Every nontrivial connected graph of even size is P3-decomposable.

In Chapter 4, we study the Mk-decompositions of graphs. Also, we will give a

necessary and sufficient condition for a graph being M2-decomposable.
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Chapter 2

(P3 ∪ P2)-packings of graphs

We start this chapter with the study of (P3∪P2)-packings of graphs. An H-packing

of a graph G is a set of edge-disjoint subgraphs of G in which each subgraph is isomorphic

to H. An H-packing F is maximum if |F| ≥ |F ′| for all other H-packings F ′ of G. The

leave L of an H-packing F is the subgraph induced by the set of edges of G that does

not occur in any subgraph of the H-packing F . Therefore, a maximum packing has a

minimum leave. In what follows, all the leaves we consider are minimum. It is easy to

see that H|G if and only if G has an H-packing with empty leave L, i.e., L contains no

edge, or simply L = φ.

The following lemmas are essential for proving the main theorem. Since they are

easy to be proved, we omit the proofs.

Lemma 2.1 If G = Gi, 1 ≤ i ≤ 18, given in Figure 2, then (P3 ∪ P2)|G.

GGGGG1 2 3 4 5
G
6

...

G G 108
G

7
G
11

G
12

G
13

G
16

G
14

G
15

G
17

G
18

G
9

3c+1

Figure 2.
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Lemma 2.2 If G = Gi, 19 ≤ i ≤ 26, given in Figure 3, then G has a (P3 ∪ P2)-packing

with leave an edge.

G
20

G19 21
G

22
G

G
23

G
26

G
24

G
25

...

...

3c+1

3c+1

Figure 3.

Lemma 2.3 If G = Gi, 27 ≤ i ≤ 40, given in Figure 4, then G has a (P3 ∪ P2)-packing

with leave a P3.

G
28

G G
30 3129

GG
27

G
32

G
34

G
33

G
35

G
36

G
37

G
38

G
39

G
40

... ... ...

3c+1 3c+1 3c+1

Figure 4.

The next result is our main theorem in this chapter.

Theorem 2.4 Suppose G is a graph different from K1,1,3c+1 with p(G) ≥ 5, q(G) ≥ 6

and δ(G) ≥ 2. Then G has a (P3 ∪ P2)-packing with leave L, where

L =





φ if q(G) ≡ 0(mod 3);

P2 if q(G) ≡ 1(mod 3);

P3 if q(G) ≡ 2(mod 3).
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Proof. By induction on q(G).

If q(G) = 6, then G = Gi, 1 ≤ i ≤ 5, given in Figure 2. By Lemma 2.1, we have

(P3 ∪ P2)|G.

Suppose the assertion holds for any graph G′ different from K1,1,3c+1 with p(G′) ≥
5, δ(G′) ≥ 2 and q(G′) < q, where q ≥ 7. Let G be a graph different from K1,1,3c+1 with

p(G) ≥ 5, q(G) = q and δ(G) ≥ 2. There are three cases to be considered.

Case 1. ∆(G) ≥ 4 and δ(G) ≥ 3.

By degree-sum formula, q(G) = 1
2

∑
x∈V (G)

d(x) ≥ 1
2
(4 + 3×4)= 8. If q(G) = 8, then

G = G27. We use equal sign for isomorphism. By Lemma 2.3, G has a (P3 ∪ P2)-packing

with leave a P3.

Now, suppose q(G) > 8. Let v be a vertex with d(v) = ∆(G) and N(v) =

{v1, v2, · · · , v∆(G)}. If v1 is adjacent to some vi for i ≥ 2, say v1v2 ∈ E(G), let G′ =

G − {v3vv4, v1v2}; otherwise, let u be a neighbor of v1 which is different from v and

G′ = G−{v2vv3, v1u}. Then G′ satisfies the induction hypothesis. Since G = G′∪(P3∪P2),

the assertion holds for the graph G.

Case 2. G is 3-regular.

First, suppose G is connected. If p(G) = 6, then G = G6 or G7. By Lemma 2.1,

(P3 ∪ P2)|G.

Suppose (P3 ∪ P2)|G′ for any connected 3-regular graph G′ of order less than p,

where p ≥ 8. Let G be a connected 3-regular graph of order p. It is not difficult to see

that G has an edge xy with N(x) = {x1, x2, y}, N(y) = {y1, y2, x} and N(x)
⋂

N(y) = φ

such that x1y1 6∈ E(G) and x2y2 6∈ E(G). Let G′ = (G− {x, y}) ∪ {x1y1, x2y2}. Then G′

is a connected 3-regular graph of order p−2. By induction hypothesis, G′ has a (P3∪P2)-

packing F with empty leave. Without loss of generality, we may consider the following

cases.

(1) If there is an F = {x1y1v3, x2y2} in F , then G has a (P3 ∪ P2)-packing (F − F )

∪{x1xx2, yy1} ∪ {xyy2, y1v3} with empty leave.

11



(2) If there are F1 = {v1v2v3, x1y1} and F2 = {u1u2u3, x2y2} in F , then G has a (P3∪P2)-

packing (F−{F1, F2}) ∪{x1xx2, yy1}∪{v1v2v3, xy}∪{u1u2u3, yy2} with empty leave.

(3) If there are F1 = {v1v2v3, x1y1} and F2 = {x2y2u3, u4u5} in F , then G has a (P3∪P2)-

packing (F−{F1, F2}) ∪{x1xx2, yy1}∪{v1v2v3, xy}∪{yy2u3, u4u5} with empty leave.

(4) Suppose there are F1 = {x1y1v3, v4v5} and F2 = {x2y2u3, u4u5}(or F2 = {y2x2u3, u4u5})
in F . If x1 6∈ {u4, u5}, then G has a (P3∪P2)-packing (F−{F1, F2})∪{x1xy, u4u5}∪
{yy1v3, v4v5} ∪ {yy2u3, xx2}(or {xx2u3, yy2}) with empty leave.

If x1 = u4(or u5) and u5 6= v3, then G has a (P3∪P2)-packing (F−{F1, F2})∪
{xx1u5, y1v3} ∪ {xyy1, v4v5} ∪ {yy2u3, xx2}(or {xx2u3, yy2}) with empty leave.

If x1 = u4(or u5) and u5 = v3, then G has a (P3 ∪P2)-packing (F −{F1, F2})
∪{x1xy, y2u3(or x2u3)} ∪ {x1v3y1, v4v5} ∪ {y1yy2, xx2} with empty leave.

Hence, by induction, (P3∪P2)|G for any connected 3-regular graph G except G = K4.

Secondly, let G = (mK4) ∪G1 ∪ · · · ∪Gn be a disconnected 3-regular graph, where

m ≥ 0 and Gi 6= K4 for 1 ≤ i ≤ n. Since P3 ∪ P2|Gi, G −mK4 has a (P3 ∪ P2)-packing

F with empty leave.

If m = 1, choose an F in F . It is easy to see that K4 ∪ F = 3(P3 ∪ P2). Hence,

(P3 ∪ P2)|G.

If m 6= 1, then G = m
2
(2K4)∪G1∪· · ·∪Gn when m is even and G = m−3

2
(2K4)∪(3K4)∪

G1 ∪ · · · ∪Gn when m is odd. It is easy to see that (P3 ∪ P2)|(tK4) for t = 2 or 3. Hence

(P3 ∪ P2)|(mK4) for m ≥ 2 and then (P3 ∪ P2)|G.

Case 3. δ(G) = 2.

Suppose G has a cycle-component. Let Cn = x1x2· · ·xnx1 be the minimum cycle-

component. If 3 ≤ n ≤ 5, let G′ = G− Cn.

Suppose n = 3 and Cn = x1x2x3x1. If G = G8, G9, G19, G28 or G29, by Lemmas 2.1,

2.2 and 2.3, the assertion holds for these graphs G. Otherwise, by induction hypothesis,

G′ has a (P3 ∪ P2)-packing F with leave L. Choose an F = {v1v2v3, v4v5} in F . Hence,

G has a (P3 ∪ P2)-packing (F − F )∪{x1x2x3, v4v5} ∪ {v1v2v3, x1x3} with leave L.

12



Suppose n = 4 and Cn = x1x2x3x4x1. If G = G10, G11, G20, G21 or G30, by Lemmas

2.1, 2.2 and 2.3, the assertion holds for these graphs G. Otherwise, by induction hypoth-

esis, G′ has a (P3 ∪P2)-packing F with leave L. For L = φ, choose an F = {v1v2v3, v4v5}
in F . Then G has a (P3∪P2)-packing (F−F ) ∪{x1x2x3, v4v5}∪{v1v2v3, x3x4} with leave

x1x4. For L = v1v2, G has a (P3 ∪P2) -packing F ∪{x1x2x3, v1v2} with leave x3x4x1. For

L = v1v2v3, G has a (P3 ∪ P2)-packing F ∪ {x1x2x3, v1v2} ∪ {x3x4x1, v2v3} with empty

leave.

Suppose n = 5 and Cn = x1x2x3x4x5x1. If G = G22, G23, G31 or G32, by Lemmas 2.2

and 2.3, the assertion holds for these graphs G. Otherwise, by induction hypothesis, G′ has

a (P3∪P2)-packing F with leave L. Choose an F = {v1v2v3, v4v5} in F . For L = φ, G has a

(P3∪P2)-packing (F−F )∪{x1x2x3, v4v5}∪{v1v2v3, x3x4} with leave x4x5x1. For L = u1u2,

G has a (P3∪P2)-packing (F −F )∪{x1x2x3, v4v5}∪{x3x4x5, u1u2}∪{v1v2v3, x1x5} with

empty leave. For L = u1u2u3, G has a (P3∪P2)-packing F∪{x1x2x3, u1u2}∪{x3x4x5, u2u3}
with leave x1x5.

For n ≥ 6, let Cn = x1x2· · ·xnx1. If q(G) ≡ 0(mod 3), let G′ = (G− {x2, x3, x4}) ∪
x1x5. Then q(G′) = q(G) − 3 ≡ 0(mod 3). By induction hypothesis, G′ has a (P3 ∪ P2)-

packing F with empty leave. Choose an F in F with x1x5 ∈ F . Since F = {x1x5x6, v4v5},
{xnx1x5, v4v5} or {v1v2v3, x1x5}, it is not difficult to see that (F − x1x5) ∪ x1x2x3x4x5 =

2(P3 ∪ P2). Hence, G has a (P3 ∪ P2)-packing with empty leave.

If q(G) ≡ 1(mod 3), let G′ = (G− x2) ∪ x1x3. Then q(G′) = q(G)− 1 ≡ 0(mod 3).

By induction hypothesis, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F

in F such that x1x3 ∈ F . Since F = {x1x3x4, v4v5}, {xnx1x3, v4v5} or {v1v2v3, x1x3}, it

is not difficult to see that (F − x1x3) ∪ x1x2x3 = (P3 ∪ P2) ∪ L, where L = x1x2 or x2x3.

Hence, G has a (P3 ∪ P2)-packing with leave L.

If q(G) ≡ 2(mod 3), let G′ = (G − {x2, x3}) ∪ x1x4. Then q(G′) = q(G) − 2 ≡
0(mod 3). By induction hypothesis, G′ has a (P3 ∪ P2)-packing F with empty leave.

Choose an F in F such that x1x4 ∈ F . Since F = {x1x4x5, v4v5}, {xnx1x4, v4v5} or

{v1v2v3, x1x4}, it is not difficult to see that (F − x1x4)∪ x1x2x3x4 = (P3 ∪P2)∪L, where

L = x1x2x3 or x2x3x4. Hence, G has a (P3 ∪ P2)-packing with leave a P3.
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Suppose G has no cycle-component. Since δ(G) = 2, there is a shortest path

x0x1x2· · ·xt(not necessary open) in G with d(x0) ≥ 3, d(xt) ≥ 3 and d(xi) = 2 for

1 ≤ i < t, where t ≥ 2. Consider the following cases.

(1) x0xt ∈ E(G).

Suppose q(G) ≡ 2(mod 3). If t = 2, let G′ = G − x1. Then q(G′) ≡ 0(mod 3). If

G = G33, G34 or G35, by Lemma 2.3, G has a (P3∪P2)-packing with leave a P3. Otherwise,

by induction hypothesis, (P3∪P2)|G′. Hence, G has a (P3∪P2)-packing with leave x0x1x2.

If t = 3, let G′ = G − {x1, x2}. Then q(G′) ≡ 2(mod 3). If G = G36, by Lemma

2.3, G has a (P3 ∪ P2)-packing with leave a P3. Otherwise, by induction hypothesis, G′

has a (P3 ∪P2)- packing F with leave a L′ = P3. It is easy to check that L′ ∪ x0x1x2x3 =

(P3 ∪ P2) ∪ P3 except L′ = x0vx3. For L′ = x0vx3, choose an F in F with x0x3 ∈ F . It

is easy to check that F ∪ x0x1x2x3vx0 = 2(P3 ∪ P2) ∪ L, where L = x0x3x2 or x1x0x3.

Hence, G has a (P3 ∪ P2)-packing with leave a P3.

If t ≥ 4, let G′ = (G − {x1, x2}) ∪ x0x3. Then q(G′) ≡ 0(mod 3). By induction

hypothesis, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with

x0x3 ∈ F . It is a routine matter to check that (F − x0x3) ∪ x0x1x2x3 = (P3 ∪ P2) ∪ L,

where L = x0x1x2 or x1x2x3. Hence, G has a (P3 ∪ P2)-packing with leave a P3.

Suppose q(G) ≡ 1(mod 3). Let G′ = G − x0xt. Then q(G′) ≡ 0(mod 3). Since x1

is of degree two in G′ and x0xt 6∈ E(G′), G′ is neither K4 nor K1,1,3c+1. By induction

hypothesis, G′ has a (P3∪P2)-packing with empty leave. Hence, G has a (P3∪P2)-packing

with leave x0xt.

Suppose q(G) ≡ 0(mod 3). If t = 2, let G′ = G − x1. Then q(G′) ≡ 1(mod 3). By

induction hypothesis, G′ has a (P3 ∪ P2)-packing F with leave an edge e.

If {x0x1x2, e} forms a (P3 ∪ P2), then (P3 ∪ P2)|G.

If e = x0z, z 6= x2(similarly if e = x2z, z 6= x0), choose an F in F with x0x2 ∈ F . It is

a routine matter to check that F∪zx0x1x2 = 2(P3∪P2) except F = {x0x2z, v4v5}. For F =

{x0x2z, v4v5}, choose an F1 in F −F . It is a routine matter to check that F1 ∪ zx0x1x2 =

2(P3 ∪ P2) except F1 = {x0u2u3, zu5} or {x2u2z, u4u5}, where x0 is neither u4 nor u5. If

F1 = {x0u2u3, zu5}, then F∪F1∪zx0x1x2 = {x1x0x2, zu5}∪{x0zx2, v4v5}∪{x0u2u3, x1x2}.
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If F1 = {x2u2z, u4u5}, then F∪F1∪zx0x1x2 = {x0x1x2, zu2}∪{x0zx2, v4v5}∪{x0x2u2, u4u5}.
Hence, (P3 ∪ P2)|G.

Suppose e = x0x2. Since G is different from K1,1,3c+1, there is an edge v4v5 such

that e and v4v5 are vertex disjoint edges. Choose an F in F with v4v5 ∈ F . It is a

routine matter to check that F ∪ x0x1x2x0 = 2(P3 ∪ P2) except F = {x0v2x2, v4v5}.
For F = {x0v2x2, v4v5}, choose an F1 in F − F . It is a routine matter to check that

F1∪x0x1x2x0 = 2(P3∪P2) except F1 = {x0u2x2, u4u5}, {w1x0w3, x2w5} or {z1x2z3, x0z5}.
If F1 = {x0u2x2, u4u5}, then F ∪ F1 ∪ x0x1x2x0 = {x1x0u2, x2v2} ∪ {x1x2u2, u4u5} ∪
{x2x0v2, v4v5}. If F1 = {w1x0w3, x2w5} (similarly if F1 = {z1x2z3, x0z5}), then F ∪ F1 ∪
zx0x1x2 = {x2x0v2, v4v5} ∪ {w1x0w3, x1x2} ∪ {v2x2w5, x0x1}. Hence, (P3 ∪ P2)|G.

If t = 3, let G′ = G − {x1, x2}. Then q(G′) ≡ 0(mod 3). If G = G12, by Lemma

2.1, (P3 ∪ P2)|G. Otherwise, by induction hypothesis, G′ has a (P3 ∪ P2)-packing F with

empty leave. Choose an F in F with x0x3 ∈ F . Thus, F ∪ x0x1x2x3 = 2(P3 ∪P2) and we

have (P3 ∪ P2)|G.

If t = 4, let G′ = G− {x1, x2, x3}. Then q(G′) ≡ 2(mod 3). If G = G13, by Lemma

2.1, (P3 ∪ P2)|G. Otherwise, by induction hypothesis, G′ has a (P3 ∪ P2)-packing F with

leave v1v2v3. Since v1v2v3 ∪ x0x1x2x3x4 = {v1v2v3, x2x3} ∪ {x0x1x2, x3x4}, (P3 ∪ P2)|G.

If t ≥ 5, let G′ = (G − {x1, x2, x3}) ∪ x0x4. Then q(G′) ≡ 0(mod 3). By induction

hypothesis, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with

x0x4 ∈ F . It is a routine matter to check that (F − x0x4) ∪ x0x1x2x3x4 = 2(P3 ∪ P2).

Hence, (P3 ∪ P2)|G.

(2) x0xt 6∈ E(G) and x0 6= xt.

Suppose q(G) ≡ 2(mod 3). If t = 2, let G′ = G− x1. Then q(G′) ≡ 0(mod 3)). By

induction hypothesis, G′ has a (P3 ∪ P2)-packing F with empty leave. Hence, G has a

(P3 ∪ P2)-packing F with leave x0x1x2.

If t ≥ 3, let G′ = (G − {x1, x2}) ∪ x0x3. Then q(G′) ≡ 0(mod 3). If G = G37, by

Lemma 2.3, G has a (P3∪P2)-packing with leave a P3. Otherwise, by induction hypothesis,

G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with x0x3 ∈ F . It is

a routine matter to check that (F − x0x3)∪ x0x1x2x3 = (P3 ∪ P2)∪L, where L = x0x1x2
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or x1x2x3. Hence, G has a (P3 ∪ P2)-packing with leave a P3.

Suppose q(G) ≡ 1(mod 3). Let G′=(G − x1)∪x0x2. Then q(G′) ≡ 0(mod 3). If

G = G24 or G25, by Lemma 2.2, G has a (P3∪P2)-packing with leave a P2. Otherwise, by

induction hypothesis, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F
with x0x2 ∈ F . It is a routine matter to check that (F − x0x2) ∪ x0x1x2 = (P3 ∪ P2) ∪ L,

where L = x0x1 or x1x2. Hence, G has a (P3 ∪ P2)-packing with leave a P2.

Suppose q(G) ≡ 0(mod 3). If t = 2, let G′ = G − x1. Then q(G′) ≡ 1(mod 3). By

induction hypothesis, G′ has a (P3 ∪ P2)-packing F with leave an edge e. If {x0x1x2, e}
forms a P3 ∪ P2, then (P3 ∪ P2)|G. Let e = x0z(similarly e = x2z). Choose an F in

F with x2 ∈ F . It is a routine matter to check that F ∪ zx0x1x2 = 2(P3 ∪ P2) except

F = {zv2x2, v4v5}. Since d(x2) ≥ 3, there is some F1 in F − F with x2 ∈ F1. Similarly,

F1 ∪ zx0x1x2 = 2(P3 ∪ P2) where F1 = {zu2x2, u4u5}. In such case, if v2 is incident with

u4u5, say v2 = u4, then F ∪F1∪ zx0x1x2 = {x0x1x2, v4v5}∪{x2v2u5, u2z}∪{x0zv2, x2u2};
otherwise, F ∪ F1 ∪ zx0x1x2 = {x0x1x2, v4v5} ∪ {u2x2v2, x0z} ∪ {u2zv2, u4u5}. Hence, G

has a (P3 ∪ P2)-packing with empty leave.

If t = 3, let G′ = G − {x1, x2}. Then q(G′) ≡ 0(mod 3). By induction hypothesis,

G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with x0 ∈ F . It is

a routine matter to check that F ∪ x0x1x2x3 = 2(P3 ∪ P2) except F = {x0v2x3, v4v5}.
For F = {x0v2x3, v4v5}, by the same argument as above, G has a (P3 ∪ P2)-packing with

empty leave.

If t ≥ 4, let G′ = G − {x1, x2, x3} ∪ x0x4. Then q(G′) ≡ 0(mod 3). By induction

hypothesis, G′ has a (P3 ∪ P2)- packing F with empty leave. Choose an F in F with

x0x4 ∈ F . It is a routine matter to check that (F − x0x4) ∪ x0x1x2x3x4 = 2(P3 ∪ P2).

Hence, G has a (P3 ∪ P2)-packing with empty leave.

(3) x0 = xt and t ≥ 3.

Suppose q(G) ≡ 2(mod 3). For t = 3 or 4, if d(x0) ≥ 4, let G′ = G−{x1, x2, · · ·, xt−1}.
If G = G38 or G39, by Lemma 2.3, G has a (P3 ∪ P2)-packing with leave a P3. Other-

wise, by induction hypothesis, G′ has a (P3 ∪ P2)-packing F with leave L. If t = 3,

then L = P3 and L ∪ x0x1x2x0 = {L, x1x2} ∪ x1x0x2. If t = 4, then L = P2 and
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L ∪ x0x1x2x3x0 = {x1x2x3, L} ∪ x1x0x3. Hence, G has a (P3 ∪ P2)-packing with leave a

P3.

Suppose d(x0) = 3. Let N(x0) = {x1, xt−1, z}. In this case, d(z) ≥ 3. Let G′ =

G − {x0, x1, · · ·, xt−1}. If G = G40, by Lemma 2.3, G has a (P3 ∪ P2)-packing with leave

a P3. Otherwise, by induction hypothesis, G′ has a (P3 ∪ P2)-packing F with leave L. If

t = 3, then L = P2 and L ∪ x0x1x2x0 ∪ x0z = {x0x1x2, L} ∪ x2x0z. If t = 4, then L = φ

and x0x1x2x3x0 ∪ x0z = {x1x2x3, x0z} ∪ x1x0x3. Hence, G has a (P3 ∪ P2)-packing with

leave a P3.

For t ≥ 5, let G′ = (G − {x2, x3}) ∪ x1x4. Then q(G′) ≡ 0(mod 3). By induction

hypothesis, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with

x1x4 ∈ F . It is a routine matter to check that (F − x1x4) ∪ x1x2x3x4 = (P3 ∪ P2) ∪ L,

where L = x1x2x3 or x2x3x4. Hence, G has a (P3 ∪ P2)-packing with leave a P3.

Suppose q(G) ≡ 1(mod 3). For t = 3, if d(x0) ≥ 4, let G′ = G − {x1, x2}. If

G = G26, by Lemma 2.2, G has a (P3 ∪ P2)-packing with leave a P2. Otherwise, by

induction hypothesis, G′ has a (P3 ∪ P2)-packing F with leave a P2. Choose an F in

F . It is a routine matter to check that F ∪ x0x1x2x0 = 2(P3 ∪ P2). Hence, G has a

(P3 ∪ P2)-packing with leave a P2.

Suppose d(x0) = 3. Let N(x0) = {x1, x2, z}. In this case, d(z) ≥ 3. Let G′ =

G − x0z. Then q(G′) ≡ 0(mod 3). By induction hypothesis, G′ has a (P3 ∪ P2)-packing

F with empty leave. Hence, G has a (P3 ∪ P2)-packing with leave x0z.

For t ≥ 4, let G′ = (G − x2) ∪ x1x3. Then q(G′) ≡ 0(mod 3). By induction

hypothesis, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with

x1x3 ∈ F . It is a routine matter to check that (F −x1x3)∪x1x2x3 = (P3∪P2)∪L, where

L = x1x2 or x2x3. Hence, G has a (P3 ∪ P2)-packing with leave a P2.

Suppose q(G) ≡ 0(mod 3). For 3 ≤ t ≤ 5, if d(x0) ≥ 4, let G′ = G−{x1, x2, · · ·, xt−1}.
If G = G14 or G15, by Lemma 2.1, G has a (P3∪P2)-packing with empty leave. Otherwise,

by induction hypothesis, G′ has a (P3∪P2)-packing F with leave L. If t = 3, then L = φ.

Choose an F in F . It is a routine matter to check that F ∪ x0x1x2x0 = 2(P3 ∪ P2). If

t = 4, then L = P3. It is a routine matter to check that L ∪ x0x1x2x3x0 = 2(P3 ∪ P2).
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If t = 5, then L = uv. If x0 is incident with uv, say x0 = u, then x0x1x2x3x4x0 ∪ uv =

{x0x1x2, x3x4}∪{vx0x4, x2x3}. Otherwise, choose an F = {z1z2z3, z4z5} in F with x0 ∈ F .

If x0 = z4 or z5, then F ∪ x0x1x2x3x4x0 ∪ uv = {x0x1x2, uv} ∪ {x2x3x4, z4z5}∪
{z1z2z3, x4x0}. If x0 = z1, z2 or z3, then F ∪ x0x1x2x3x4x0 ∪ uv = {x0x1x2, uv}∪
{x3x4x0, z4z5} ∪ {z1z2z3, x2x3}. Hence, G has a (P3 ∪ P2)-packing with empty leave.

Suppose d(x0) = 3. Let N(x0) = {x1, xt−1, z}. In this case, d(z) ≥ 3. Let G′ =

G− {x0, x1, · · ·, xt−1}. If G = G16, G17 or G18, by Lemma 2.1, G has a (P3 ∪ P2)-packing

with empty leave. Otherwise, by induction hypothesis, G′ has a (P3 ∪ P2)-packing F
with leave L. It is a routine matter to check that L ∪ x0x1· · ·xtx0 ∪ x0z = 2(P3 ∪ P2) for

3 ≤ t ≤ 5. Hence, G has a (P3 ∪ P2)-packing with empty leave.

Finally, for t ≥ 6, let G′ = (G − {x2, x3, x4}) ∪ x1x5. Then q(G′) ≡ 0(mod 3). By

induction hypothesis, G′ has a ( P3 ∪P2)-packing F with empty leave. Choose an F in F
with x1x5 ∈ F . It is a routine matter to check that (F −x1x5)∪x1x2x3x4x5 = 2(P3∪P2).

Hence G has a (P3 ∪ P2)-packing with empty leave.

Therefore, the proof concludes by induction. ¥

Now, we are ready to prove the Conjecture 1.

Theorem 2.5 If G is a graph with q(G) ≡ 0(mod 3) and δ(G) ≥ 2, then H|G for some

graph H of size 3.

Proof. If q(G) = 3, then it is trivial that G|G. In [8], Kumar proved that P4|G if G = K4

or K1,1,3c+1. For the rest, by Theorem 2.4, we have (P3 ∪ P2)|G. Therefore, we complete

the proof. ¥

The result of Theorem 2.4 generalizes the following result proved in [5].
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Theorem 2.6 [5]The necessary and sufficient conditions for a simple graph G having a

(P3 ∪ P2)-decomposition are the following :

(1) q(G) ≡ 0(mod 3);

(2) ∆(G) ≤ 2
3
q(G);

(3) c(G) ≤ 1
3
q(G), where c(G) denotes the number of odd components of G;

(4) the edges of G cannot be covered by two adjacent vertices.
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Chapter 3

H-decompositions of Special Classes of Graphs

3.1 H-decompositions of complete multipartite Graphs

First, we consider the S3-decomposition of a complete r-partite graph G = Kn1,···,nr

of size q(G) ≡ 0(mod 3) and r ≥ 2.

Lemma 3.1 The graph Km,n is S3-decomposable if and only if mn ≡ 0(mod 3).

Proof. The condition mn ≡ 0(mod 3) is clearly necessary. Conversely, assume 3 | m.

Since E(Km,n)=E(nKm,1) = E(mn
3

K3,1), Km,n is S3-decomposable. ¥

Lemma 3.2 The complete graph Kn is S3-decomposable if and only if n > 5 and q(Kn) ≡
0(mod 3).

Proof. It is clear that Kn is not S3-decomposable if n ≤ 5 or q(Kn) 6≡ 0(mod 3). Suppose

n ≥ 6 and q(Kn) ≡ 0(mod 3), i.e., n ≡ 0 or 1(mod 3). It is a routine matter to check that

K6 and K9 are S3-decomposable. If n ≡ 0(mod 3) and n ≥ 12, then E(Kn) = E(K6) ∪
E(Kn−6,6) ∪ E(Kn−6). If n ≡ 1(mod 3) and n ≥ 7, then E(Kn)=E(Kn−1)∪E(Kn−1,1).

By Lemma 3.1 and mathematical induction, Kn is S3-decomposable. ¥

Theorem 3.3 The graph G = Kn1,···,nr with r ≥ 2 is S3-decomposable if and only if

q(G) ≡ 0(mod 3) and G is different from K4 and K1,1,3c+1, c ≥ 0.

Proof. The condition q(G) ≡ 0(mod 3) is clearly necessary and K4 = K1,1,1,1 is not

S3-decomposable. For G = K1,1,3c+1, there is a unique edge e = xy in E(G) which is

incident with other edges in E(G). If G is S3-decomposable, since deg(v) = 2 if v is

neither x nor y, the center of each S3 of an S3-decomposition of G must be x or y. Hence,

q(G)
3

= 2c + 1 ≤ bdeg(x)
3
c+ bdeg(y)

3
c = c + c = 2c. It is impossible. Therefore, G = K1,1,3c+1

is not S3-decomposable.
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Conversely, we shall prove the assertion by induction on r ≥ 2. By Lemma 3.1,

Kn1,n2 is S3-decomposable if n1n2 ≡ 0(mod 3). Suppose any graph G′ = Kn1,···,nr′ of size

q(G′) ≡ 0(mod 3) and different from K4 and K1,1,3c+1 is S3-decomposable for r′ < r, where

r ≥ 3. Let G = Kn1,···,nr of size q(G) ≡ 0(mod 3) and different from K4 and K1,1,3c+1.

Consider the following disjoint cases.

Case 1. At least one n′is ≡ 0(mod 3).

We may assume n1 = 3a, a ≥ 1. By Lemma 3.1, S3|Kn1,n2+···+nr . By induction

hypothesis, S3|Kn2,···,nr except Kn2,···,nr = K4 or K1,1,3c+1. Since E(G) = E(Kn1,n2+···+nr)∪
E(Kn2,···,nr), S3 | G except G = K3a,1,1,1,1 or K3a,1,1,3c+1.

If G = K3a,1,1,1,1, then E(G) = E(K3,1,1,1,1) ∪ K3(a−1),4. It is a routine matter to

check that S3 | K3,1,1,1,1. By Lemma 3.1, S3 | K3(a−1),4. Hence, S3 | G.

If G = K3a,1,1,3c+1, then E(G) = E(K3,1,1,1)∪E(K3(a−1),1+1+3c+1)∪E(K3c,3+1+1). It

is a routine matter to check that S3 | K3,1,1,1. By Lemma 3.1, S3 | K3(a−1),1+1+3c+1 and

S3 | K3c,3+1+1. Hence, S3 | G.

Case 2. At least three of n′is ≡ 2(mod 3).

We may assume n1 = 3a + 2, n2 = 3b + 2 and n3 = 3c + 2. Then E(G) =

E(Kn1,n2,n3)∪E(Kn1+n2+n3,n4,···,nr). By induction hypothesis, S3 | Kn1+n2+n3,n4,···,nr . More-

over, E(Kn1,n2,n3) = E(K2,2,2) ∪ E(K3a,n2+n3) ∪ E(K3b,2+n3) ∪ E(K3c,2+2). It is a routine

matter to check that S3 | K2,2,2. By Lemma 3.1, K3a,n2+n3 , K3b,2+n3 and K3c,2+2 are

S3-decomposable. Hence, S3 | Kn1,n2,n3 and then S3 | G.

Case 3. Exactly two of n′is ≡ 2(mod 3).

Suppose n1 ≡ n2 ≡ 2(mod 3) and ni ≡ 1(mod 3) for i ≥ 3. Then q(G) ≡ (
(

r−2
2

)
+

4(r− 2) + 4)(mod 3) ≡ r2+3r−2
2

(mod 3) ≡\ 0(mod 3) for r ≥ 3. Hence, there are no graphs

G = Kn1,···,nr of size q(G) ≡ 0(mod 3) in this case.

Case 4. Exactly one of n′is ≡ 2(mod 3).

We may assume n1 = 3a + 2 and ni ≡ 1(mod 3) for i ≥ 2. Then q(G) ≡ (
(

r−1
2

)
+

2(r − 1))(mod 3) ≡ (r−1)(r+2)
2

(mod 3). Since q(G) ≡ 0(mod 3), we obtain r ≡ 1(mod 3).

Hence, n2 + · · ·+ nr ≡ (r − 1)(mod 3) ≡ 0(mod 3). Moreover, E(G) = E(Kn1,n2+···+nr) ∪
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E(Kn2,···,nr). Then S3 | Kn1,n2+···+nr by Lemma 3.1. By induction hypothesis, S3 | Kn2,···,nr

except Kn2,···,nr = K1,1,1. Hence, S3|G except G = K3a+2,1,1,1.

If G = K3a+2,1,1,1, then E(G) = E(K2,1,1,1)∪E(K3a,1+1+1). It is a routine matter to

check that S3 | K2,1,1,1. By Lemma 3.1, S3 | K3a,1+1+1. Hence, S3 | G.

Case 5. ni ≡ 1(mod 3) for 1 ≤ i ≤ r.

Then q(G) ≡ r(r−1)
2

(mod 3). Since q(G) ≡ 0(mod 3), we obtain r ≡ 0 or 1(mod 3).

For r = 3, let G = Kn1,n2,n3 with n1 ≥ n2 ≥ 4 (since G 6= K1,1,3c+1). Then E(G) =

E(K4,4,1) ∪ E(Kn1−4,n2+n3) ∪ E(Kn2−4,4+n3) ∪ E(Kn3−1,4+4). It is a routine matter to

check that S3 | K4,4,1. By Lemma 3.1, Kn1−4,n2+n3 , Kn2−4,4+n3 and Kn3−1,4+4 are all S3-

decomposable. Hence, S3 | G.

For r = 4, let G = Kn1,n2,n3,n4 with n1 ≥ 4 (since G 6= K4). Then E(G) =

E(K4,1,1,1)∪E(Kn1−4,n2+n3+n4)∪E(Kn2−1,4+n3+n4)∪E(Kn3−1,4+1+n4)∪E(Kn4−1,4+1+1). It is

a routine matter to check that S3 | K4,1,1,1. By Lemma 3.1, Kn1−4,n2+n3+n4 , Kn2−1,4+n3+n4 ,

Kn3−1,4+1+n4 and Kn4−1,4+1+1 are all S3-decomposable. Hence, S3 | G.

For r > 5, E(G) = E(Kr)∪E(Kn1−1,n2+···+nr)∪(∪r
i=2E(Kni−1,r−1))∪E(Kn2−1,···,nr−1).

By Lemma 3.2, S3 | Kr. By Lemma 3.1, S3 | Kn1−1,n2+···+nr and S3 | Kni−1,r−1 for

2 ≤ i ≤ r. By induction hypothesis, S3 | Kn2−1,···,nr−1. Hence, S3 | G.

Therefore, the assertion holds by the mathematical induction. ¥

Theorem 3.4 The graph G = Kn1,···,nr with r ≥ 2 is (P3 ∪P2)-decomposable if and only

if q(G) ≡ 0(mod 3) and G is different from K4 and K1,1,3c+1, c ≥ 0.

Proof. It follows by Theorem 2.4. ¥

We may use the same argument as in Theorem 3.3 to prove the next theorem.

However, we will give an alternative proof in Chapter 4.

Theorem 3.5 The graph G = Kn1,···,nr with r ≥ 2 is M3-decomposable if and only if

q(G) ≡ 0(mod 3) and G is different from K1,3n, K2,3n, K3,3,1, K1,1,3c+1 and K1,1,1,m, where

n ≥ 1, c ≥ 0 and m ≥ 1.
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Remark here, the problem of determining the graph G = Kn1,···,nr being K3-decomposable

is still widely open, see [3, 4].

3.2 H-decompositions of Cubic graphs

A cubic graph is a 3-regular graph. Let G be a cubic graph. By the degree-sum

formula, we obtain 2q(G) = 3p(G). Hence, q(G) ≡ 0(mod 3).

Theorem 3.6 Suppose G is a cubic graph.

(1) G is not K3-decomposable.

(2) G is P4-decomposable if G is 2-connected.

(3) G is S3-decomposable if and only if it is bipartite.

(4) G is (P3 ∪ P2)-decomposable except G = K4.

(5) G is M3-decomposable except G = K4.

Proof.

(1) It is easy to see that a graph which is K3-decomposable must be eulerian, i.e., the

degree of each vertex is even. Hence, G is not K3-decomposable.

(2) If G is 2-connected, then G has a perfect matching M (see [10]). Let M =

{e1, · · · , et}, where t = p(G)
2

. Since G is cubic, G\M is a disjoint union of cy-

cles. For each cycle, we assign a oritation on it. Secondly, each ei in M and the two

arcs that point to the end vertices of ei form a P4. It is not difficult to check that

E(G) is partitioned into tP4 in such a way. Therefore, G is P4-decomposable.

(3) Suppose G = (X, Y ) is a cubic bipartite graph. For each vertex v in X, the three

edges that incident with v form an S3. Hence, G is S3-decomposable.

Conversely, suppose E(G) can be partitioned into t = q(G)
3

S ′3s, say S1
3 , S2

3 ,

· · ·, St
3. Since G is cubic, each vertex in V (G) is either the center of some Si

3 or a

leaf of Si
3, Sj

3 and Sk
3 . Hence the sets X = {v ∈ V (G) | v is the center of some Si

3}
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and Y = {v ∈ V (G) | v is a leaf of some Si
3} are independent sets. Moreover, each

edge in E(G) has one end in X and one end in Y since it is an edge of some Si
3.

Therefore, G is a bipartite graph with bipartition (X, Y ).

(4) It follows by Theorem 1.1.

(5) If p(G) = 6, then G = K3,3 or K3 × K2. It is easy to check that G is M3-

decomposable. If p(G) ≥ 8, then q(G) − 3∆(G) ≥ 1
2
× 3 × 8 − 3 × 3 = 3 > 0.

By Theorem 4.5, G is M3-decomposable. ¥

In [8], Kumar constructed a 2-connected graph G of size q(G) ≡ 0(mod 3) and

δ(G) = 2 which is not P4-decomposable. See Figure 5. Combining with Theorem 3.5(2),

we give a modified conjecture as follows.

Figure 5.

Conjecture 3 Any 2-connected graph G of size q(G) ≡ 0(mod 3) and δ(G) ≥ 3 is P4-

decomposable.

3.3 H-decompositions of Hypercubes

An n-cube, denoted by Qn, is defined recursively as follows : Q1 = K2 and Qn =

Qn−1 × K2 for n ≥ 2. It is well-known that Qn is bipartite. Hence, Qn is not K3-

decomposable. Moreover, q(Qn) = n · 2n−1 ≡ 0(mod 3) if and only if n≡0(mod 3). It is

a routine matter to check that Q3 is H-decomposable with H of size 3 if H is different

from K3. If we replace each vertex of Q3 by a Qn and each edge of Q3 by a matching of

size p(Qn) = 2n such that the corresponding vertices of 8 Q′
ns form a Q3, then it yields a

Qn+3. Hence, E(Qn+3) = E(8Qn) ∪ E(2nQ3). Therefore, by induction on n ≡ 0(mod 3),

the following result is easy to see.

24



Theorem 3.7 Suppose n ≡ 0(mod 3) and H is a graph different from K3 and of size 3.

Then Qn is H-decomposable.
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Chapter 4

Mk-decompositions of graphs

In this chapter, we mainly obtain necessary and sufficient conditions for graphs

which are M2-decomposable. But for completeness, we also present some result on the

decomposition of G into matchings of size k, k ≥ 3.

A graph G is said to be n-edge colorable if its edge set E(G) can be partitioned into

n disjoint matchings E1, E2, · · ·, En and it is equitably n-edge colorable if the sizes of Ei

and Ej differ by at most one for all 1 ≤ i ≤ j ≤ n. The chromatic index of G, denoted

by χ′(G), is the minimum number n such that G is n-edge colorable.

The followings are useful in this chapter.

Theorem 4.1 [10] For a simple graph G, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

A simple graph is of class 1 if ∆(G) = χ′(G), otherwise it is of class 2.

Theorem 4.2 [11] Suppose G is a simple graph G and n ≥ χ′(G). Then G is equitably

n-edge colorable.

Theorem 4.3 [6] Suppose G = (X,Y ) a bipartite graph. Then G has a matching that

saturates every vertex in X if and only if | S |≤| N(S) | for all S ⊆ X, where N(S) =

{y ∈ Y | xy ∈ E(G) for some x ∈ S}.

Theorem 4.4 [7] The graph G = Kn1,n2,···,nr is of class 2 if and only if |E(G)| >

∆(G)bp(G)
2
c.

Now, we are ready to prove the main results of this chapter.
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Theorem 4.5 Suppose G is a graph of size q(G) ≡ 0(mod k), where k ≥ 1.

(1) If q(G) > k∆(G), then G is Mk-decomposable.

(2) If q(G) < k∆(G), then G is not Mk-decomposable.

(3) If q(G) = k∆(G), then G is Mk-decomposable if and only if χ′(G) = ∆(G).

Proof. Let q(G) = nk. It is clear that G is Mk-decomposable if and only if G is equitably

n-edge colorable. If q(G) > k∆(G), by Theorem 4.1, n ≥ ∆ + 1 ≥ χ′(G). By Theorem

4.2, G is equitably n-edge colorable. Hence G is Mk-decomposable.

If q(G) < k∆(G), by Theorem 4.1, n < ∆ ≤ χ′(G). Hence, G is not n-edge colorable

and then G is not Mk-decomposable.

Suppose q(G) = k∆(G), i.e., n = ∆(G). If G is Mk-decomposable, then G is n-

edge colorable. By Theorem 4.1, ∆(G) ≤ χ′(G) ≤ n = ∆(G) and then χ′(G) = ∆(G).

Conversely, if χ′(G) = ∆(G) = n, by Theorem 4.2, G is equitably n-edge colorable.

Therefore, G is Mk-decomposable. ¥

Recall that, in [1], the authors gave a necessary and sufficient condition for a graph

being P3-decomposable. Here, we characterize graphs which are M2-decomposable.

Theorem 4.6 Suppose G is a graph different from K3 ∪K2 and of even size. Then G

is M2-decomposable if and only if q(G) ≥ 2∆(G).

Proof. Let q(G) = 2∆(G). By Theorem 4.5, G is M2-decomposable if q(G) > 2∆(G)

and G is not M2-decomposable if q(G) < 2∆(G). Now, let q(G) = 2∆(G). For ∆(G) = 1,

then G = M2. For ∆(G) = 2, then G = C4, K3∪K2, P5, P4∪P2, 2P3 or P3∪ 2P2. Hence,

G is M2-decomposable except G = K3 ∪K2. Suppose ∆(G) ≥ 3. Choose a vertex v with

deg(v) = ∆(G) and v1, v2, · · ·, v∆(G) are adjacent to v. Let E(G)\{vv1, · · · , vv∆(G)} =

{e1, · · · , e∆(G)}. Consider the bipartite graph H = (X,Y ) with vertex set V (H) = X ∪Y ,

where X = {e1, · · · , e∆(G)} and Y = {v1, · · · , v∆(G)}, and edge set E(H) = {eivj | ei is

not incident with vj}. Let S ⊆ X. It is easy to see that degH(ei) ≥ ∆(G) − 2. Hence,

if | S |≤ ∆(G) − 2, then | N(S) |≥ ∆(G) − 2 ≥| S |. For | S |= ∆(G) − 1 ≥ 2, if
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| N(S) |= ∆(G) − 2. then all e′is in S have the same end vertices. It is impossible since

G is simple. Hence | N(S) |≥ ∆(G) − 1 = | S |. For | S |= ∆(G), we have S = X

and | N(S) |=| Y |= ∆(G). Therefore, | N(S) |≥| S | for all S ⊆ X. By Theorem

4.3, H has a matching M that saturates every vertex in X. Without loss of generality,

assume M = {e1v1, e2v2, · · · , e∆(G)v∆(G)}. Color the edges ei and vvi by the color i for

1 ≤ i ≤ ∆(G). Then G is ∆(G)-colorable. By Theorem 4.1, ∆(G) ≤ χ′(G) ≤ ∆(G) and

then χ′(G) = ∆(G). By Theorem 4.5, G is M2-decomposable. ¥

Next, we will give an alternative proof to Theorem 3.5.

Theorem 3.5 Suppose G = Kn1,n2,···,nr of size q(G) ≡ 0(mod 3) with r ≥ 2. Then G

is M3-decomposable if and only if G is different from K1,3n, K2,3n, K1,3,3, K1,1,3c+1 and

K1,1,1,m, where n ≥ 1, c ≥ 0 and m ≥ 1.

Proof. Let q(G) = 3∆(G). By directed computing, q(G) < 3∆(G) if (n1, · · · , nr) =

(1, 3n), (2, 3n), (1, 3, 3), (1, 1, 3c+1) or (1, 1, 1, m), q(G) = 3∆(G) if (n1, · · · , nr) = (3, n),

n ≥ 3, (2,2,2), (1,3,6), (1,4,4), (1,1,2,4), (1,2,2,2), (1,1,1,1,3) or (1,1,1,1,1,1) and q(G) >

3∆(G) for other cases. By Theorem 4.5, G is M3-decomposable if q(G) > 3∆(G) and

G is not M3-decomposable if G is one of K1,3n, K2,3n, K1,3,3, K1,1,3c+1, and K1,1,1,m. For

q(G) = 3∆(G), it is easy to see that | E(G) |≤ ∆(G)bp(G)
2
c for each possible graph G. By

Theorem 4.4, G is of class 1, i.e., χ′(G) = ∆(G). By Theorem 4.5, G is M3-decomposable.

¥

Before we put an end of this chapter, we would like to point out the relationship

of Mk-decomposition of a graph G with k∆(G) edges. Clearly, if G is of Class 1,then

an Mk-decomposition exists. Unfortunately, for smaller ∆(G), we may not be able to

guarantee that G is of Class 1.

Example 1 For k ≥ 1, there exists a graph G such that q(G) = k∆(G), 1 < ∆(G) <

2k − 1 and χ′(G) = ∆(G) + 1.
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Proof. Let ∆ = 2k − i < 2k − 1, where 2 ≤ i < 2k − 1.

If i is even, let G = K2k−i+1 ∪ Pn+1, where n = k(2k − i)− (
2k−i+1

2

)
= (i−1)(2k−i)

2
. It

is easy to see that q(G) = k∆(G) and χ′(G) = χ′(K2k−i+1) = 2k − i + 1 = ∆(G) + 1.

If i > 1 and odd, let G = (K2k−i+2\H) ∪ Pn+1, where H = P3 ∪ Mk− i+1
2

and

n = k(2k − i + 1) − (
2k−i+2

2

)
+ |E(H)| = (i − 2)k − 1

2
(i2 − 2i − 1). It is easy to see that

q(G) = k∆(G) and χ′(G) = χ′(K2k−i+2\H) ≥
⌈

(2k−i+2
2 )−|E(H)|

2k−i+1
2

⌉
= 2k − i + 1 = ∆(G) + 1

or χ′(G) = ∆(G) + 1 by Theorem 4.1. ¥

From above example, we have constructed a graph of Class 2 which satisfies the

conditions q(G) = k∆(G) and 1 < ∆(G) < 2k − 1. But if k = 1, then q(G) = ∆(G)

and this G = S∆. Clearly χ′(G) = ∆(G). Forthemore for k = 2 and 3, if ∆(G) ≥ 3 and

∆(G) ≥ 5 respectively, then χ′(G) = ∆(G). Hence, it is reasonable to make the following

conjecture to conclude this thesis.

Conjecture 4 If G is a simple graph with q(G) = k∆(G) and ∆(G) ≥ 2k − 1, then

χ′(G) = ∆(G).
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