國立交通大學

應用數學研究所

碩士論文

研究生:陳抮君

指導教授:傅恆霖與黃國卿

中華民國九十三年六月

三邊圖裝填的研究

Packing Graphs with Graphs of Size Three

研究生:陳抮君

Student : Chun-Cheng Chen

Advisor : Hung-Lin Fu

指导教授:傅恆霖

黃國卿

Kuo-Ching Huang

Submitted to Department of Applied Mathematics

College of Science National Chiao Tung University

In Partial Fulfillment of Requirements

for the Degree of Master

In

Applied Mathematics

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

三邊圖裝塡的研究

學生: 陳抮君

指導教授: 傅恆霖 黃國卿

摘要 (中文)

在 1994 年, Chartrand 等人,提出下列兩個猜測: (1) - @ 2 連通的圖, 只要點數大於等於 4 而且邊數為 3 的倍數,則此圖為 P_4 可分割; (2)對於任一 個邊數為 3 的倍數且最小度數大於等於 2 的圖,都存在一個邊數為 3 的圖 H,使 得 $G \triangleq H$ 可分割。

我們在這篇論文中首先證明了猜測(2),然後,我們對於指定的3邊圖H, 就完全多部圖,三正則圖和超立方體分別研究他們的分割。最後,我們在研究配對 分割方面得到一些結果,並且猜測當 $q(G) = k\Delta(G)$ 及 $\Delta(G) \ge 2k - 1$ 成立時 G爲第一類圖。

Packing Graphs with Graphs of Size Three

Student : Chun-Cheng Chen

Advisor : Hung-Lin Fu Kuo-Ching Huang

Abstract

In 1994, Chartrand et al. conjectured : (1) If G is a 2-connected graph of order $p \ge 4$ and size $q(G) \equiv 0 \pmod{3}$, then G is P_4 -decomposable; (2) If G is a graph of size $q(G) \equiv 0 \pmod{3}$ and $\delta(G) \ge 2$, then G is H-decomposable for some graph H of size 3. In the thesis, we first prove the second conjecture. Then, we study the H-decompositions of G with fixed H of size 3, where G is a complete multipartite graph, a cubic graph or a hypercube. Finally, we obtain some results on M_k -decomposability of a graph G. Subsequently, we conjecture that a graph G is of Class 1 provided $q(G) = k\Delta(G)$ and $\Delta(G) \ge 2k - 1$.

致謝

首先感謝指導教授傅恆霖老師與黃國卿老師,這兩年來的指導,特別是黃國卿 老師,在靜宜時就開始指導我,讓我越來越喜歡組合數學。兩位老師花很多時間與我 討論問題,協助我解決問題,使得我可以順順利利的畢業,真的非常謝謝他們!

感謝交大應數系有一個好的環境讓我讀書,有許多的期刊,許多的書可供我研 習;還有黃光明老師、黃大原老師、陳秋媛老師 與翁志文老師等,不同領域的知識 讓我學到更多的東西。

感謝嚴志弘學長、張嘉芬學姊、郭志銘學長、許弘松學長、張飛黃學長、郭君逸 學長、陳宏賓學長、錢威印學長、陳冠帆學長、莊弼凱學長與 李育民學長,昭芳、棨 丯、啓賢、正傑、喩培、宏嘉、嘉文、致維、建瑋、貴弘、文祥、亮銓、依凡和泰峰的 許多幫助,大家像家人一樣眞是快樂組合數學組。

最後也要感謝媽媽,總是擔心我一個人在外,每次回家都幫我大補特補,媽媽 的支持,陪我一起走過這兩年。

4000

Contents

Chapter 1

Introduction

A graph G is an ordered triple $(V(G), E(G), \psi_G)$ consisting of a nonempty set V(G)of vertices, a set E(G) of edges, and an incidence function ψ_G . For convenience, G is also denoted by (V, E) or (V(G), E(G)). Two vertices which are incident with a common edge are adjacent. An edge with identical ends is called a *loop*, and an edge with distinct ends is a *link*.

A graph is finite if both its vertex set and edge set are finite. A graph is simple if it has no loop and no two of its edges join the same pair of vertices. The *order* and *size* are the numbers of vertices and edges in graph G respectively.

Two graph, G and H are said to be isomorphic (written G = H) if there are bijections $\theta : V(G) \to V(H)$ and $\phi : E(G) \to E(H)$ such that $\psi_G(e) = uv$ if and only if $\psi_H(\phi(e)) = \theta(u)\theta(v)$.

A simple graph on n vertices in which each pair of distinct vertices are joined by an edge is called a *complete graph* of order n, denoted by K_n . A *bipartite graph* is a graph whose vertex set can be partitioned into two subsets X and Y, so that each edge has one end in X and one end in Y. A *complete bipartite graph* $K_{m,n}$ is a simple bipartite graph with bipartition (X, Y) such that |X| = m, |Y| = n and each vertex of X is joined to each vertex of Y. An *r*-partite graph is whose vertex set can be partitioned into r subsets such that no edge has both ends in any subset, a *complete r-bipartite graph* is a simple graph is a simple graph such that two vertices are adjacent if and only if they are not in the same subset.

A graph H is a subgraph of G (written $H \subseteq G$) if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$ and ψ_H is the restriction of ψ_G to E(H). The degree of a vertex v in G (written d(v)) is the number of edges of G incident with v, each loop counting as two edges. A graph G is k-regular if d(v) = k for all $v \in V$.

A (v_0, v_k) -path in G is a finite non-null sequence $P = v_0 e_1 v_1 e_2 v_2 \cdots e_k v_k$ where $v_0, v_1, \cdots v_k$ are distinct, a path P in which $v_0 = v_k$ is a cycle; a path of length n is

denoted by P_{n+1} ; a cycle of length n is denoted by C_n and a *wheel* is a graph obtained from C_n by adding a new vertex and edges joining it to all the vertices of the C_n (written W_n). A graph G is called connected if there is a (u, v)-path for all $u, v \in V(G)$.

All graphs we consider are finite, simple and undirected. The order, size, maximum and minimum degree of a graph G are denoted by p(G), q(G), $\Delta(G)$ and $\delta(G)$, respectively. The neighborhood of a vertex v, denoted by N(v), is the set of vertices adjacent to v. The graph S_n is the complete bipartite graph $K_{1,n}$. The graph M_n is a matching of size n. The graph $G \cup H$ is the vertex disjoint union of G and H. The graph tH, $t \ge 1$, is the edge disjoint union of t copies of H. The product of simple graphs G and H is the simple graph $G \times H$ with vertex set $V(G) \times V(H)$, in which (u, v) is adjacent to (u', v')if and only if either u = u' and $vv' \in E(H)$ or v = v' and $uu' \in E(G)$.

A k-edge coloring f of a loopless graph G is an assignment of k colors, $1, 2, \dots, k$, to the edges of G. The coloring f is proper if no two incident edges have the same color. A graph is k-edge colorable if it has a proper k-edge coloring. The chromatic index $\chi'(G)$, of a loopless graph G, is the minimum k for which G is k-edge colorable.

A graph G is said to be *H*-decomposable, denoted by $H \mid G$, if the edge set E(G) of G can be partitioned into subsets such that each subsets induces a subgraph isomorphic to H. For convenience, we call H a divisor of G in such case. It is clear that $K_2 \mid G$ and $G \mid G$ for any graph G with at least one edge. It is easy to see that if $H \mid G$, then $q(H) \mid q(G)$. In [2], Chartrand, Saba and Mynhardt made the following conjectures.

Conjecture 1 [2] Suppose G is a graph of size $q(G) \equiv 0 \pmod{3}$ and $\delta(G) \ge 2$. Then G is H-decomposable for some graph H of size 3.

Conjecture 2 [2] Suppose G is a 2-connected graph of order $p(G) \ge 2$ and of size $q(G) \equiv 0 \pmod{3}$. Then G is P_4 -decomposable.

These conjectures motivate our study of decomposing a graph of size 3k into k copies of isomorphic graphs of size 3. It is worth of mentioning that Conjecture 2 has been disproved by Kumar[8]. Thus, we shall focus on the study of Conjecture 1 in Chapter 2 of this thesis.

Note here, if q(H) = 3, then $H = K_3$, P_4 , $K_{1,3}$, $(P_3 \cup P_2)$ or M_3 . Therefore, in order to prove Conjecture 1, for each given graph G such that $q(G) \equiv 0 \pmod{3}$ we have to find a graph H of size 3 and prove that H|G. Here are a couple of examples.

In Figure 1(a), it is not difficult to see that the graph is $(P_3 \cup P_2)$ -decomposable and the graph in Figure 2(b) is P_4 -decomposable but not $(P_3 \cup P_2)$ -decomposable. So, the plan of our proof is to characterize the graph G which are $(P_3 \cup P_2)$ -decomposable and for those graphs which are not $(P_3 \cup P_2)$ -decomposable, we show they are either P_4 decomposable or K_3 -decomposable. For this purpose, we shall first claim that if G is of size $q(G) \equiv 0 \pmod{3}$ and $\delta(G) \geq 2$, then G is $(P_3 \cup P_2)$ -decomposable if and only if G is different from K_4 and $K_{1,1,3c+1}, c \geq 0$. And then, the proof will be obtained by the fact K_4 and $K_{1,1,3c+1}, c \geq 1$ are P_4 -decomposable, and K_3 is K_3 -decomposable.

In [8], Kumar gave a counterexample to Conjecture 2 and proved the following.

Theorem 1.1 [8] Suppose $G = K_{n_1,n_2,\dots,n_r}$ a complete r-partite graph of size $q(G) \equiv 0 \pmod{3}$, where $r \geq 2$. Then G is P₄-decomposable except $G = K_{1,3n}$ or K_3 .

In Chapter 3, we study the H-decompositions of a graph G with given H of size 3, where G is a complete multipartite graph, a cubic graph or a hypercube.

The followings should be mentioned.

If q(H) = 1, then $H = K_2$ and $K_2 \mid G$ for any graph G with at least one edge. If q(H) = 2, then $H = P_3$ or M_2 . For $H = P_3$, Chartrand et al. [1] showed the following theorem.

Theorem 1.2 [1] Every nontrivial connected graph of even size is P_3 -decomposable.

In Chapter 4, we study the M_k -decompositions of graphs. Also, we will give a necessary and sufficient condition for a graph being M_2 -decomposable.

Chapter 2

$(P_3 \cup P_2)$ -packings of graphs

We start this chapter with the study of $(P_3 \cup P_2)$ -packings of graphs. An *H*-packing of a graph *G* is a set of edge-disjoint subgraphs of *G* in which each subgraph is isomorphic to *H*. An *H*-packing \mathcal{F} is maximum if $|\mathcal{F}| \geq |\mathcal{F}'|$ for all other *H*-packings \mathcal{F}' of *G*. The *leave L* of an *H*-packing \mathcal{F} is the subgraph induced by the set of edges of *G* that does not occur in any subgraph of the *H*-packing \mathcal{F} . Therefore, a maximum packing has a minimum leave. In what follows, all the leaves we consider are minimum. It is easy to see that H|G if and only if *G* has an *H*-packing with empty leave *L*, i.e., *L* contains no edge, or simply $L = \phi$.

The following lemmas are essential for proving the main theorem. Since they are easy to be proved, we omit the proofs.

Figure 2.

Lemma 2.2 If $G = G_i$, $19 \le i \le 26$, given in Figure 3, then G has a $(P_3 \cup P_2)$ -packing with leave an edge.

Figure 3.

Lemma 2.3 If $G = G_i$, $27 \le i \le 40$, given in Figure 4, then G has a $(P_3 \cup P_2)$ -packing with leave a P_3 .

The next result is our main theorem in this chapter.

Theorem 2.4 Suppose G is a graph different from $K_{1,1,3c+1}$ with $p(G) \ge 5$, $q(G) \ge 6$ and $\delta(G) \ge 2$. Then G has a $(P_3 \cup P_2)$ -packing with leave L, where

$$L = \begin{cases} \phi & if \ q(G) \equiv 0 \pmod{3}; \\ P_2 & if \ q(G) \equiv 1 \pmod{3}; \\ P_3 & if \ q(G) \equiv 2 \pmod{3}. \end{cases}$$

Proof. By induction on q(G).

If q(G) = 6, then $G = G_i$, $1 \le i \le 5$, given in Figure 2. By Lemma 2.1, we have $(P_3 \cup P_2)|G$.

Suppose the assertion holds for any graph G' different from $K_{1,1,3c+1}$ with $p(G') \ge 5$, $\delta(G') \ge 2$ and q(G') < q, where $q \ge 7$. Let G be a graph different from $K_{1,1,3c+1}$ with $p(G) \ge 5$, q(G) = q and $\delta(G) \ge 2$. There are three cases to be considered.

Case 1. $\Delta(G) \ge 4$ and $\delta(G) \ge 3$.

By degree-sum formula, $q(G) = \frac{1}{2} \sum_{x \in V(G)} d(x) \ge \frac{1}{2}(4 + 3 \times 4) = 8$. If q(G) = 8, then $G = G_{27}$. We use equal sign for isomorphism. By Lemma 2.3, G has a $(P_3 \cup P_2)$ -packing with leave a P_3 .

Now, suppose q(G) > 8. Let v be a vertex with $d(v) = \Delta(G)$ and $N(v) = \{v_1, v_2, \dots, v_{\Delta(G)}\}$. If v_1 is adjacent to some v_i for $i \ge 2$, say $v_1v_2 \in E(G)$, let $G' = G - \{v_3vv_4, v_1v_2\}$; otherwise, let u be a neighbor of v_1 which is different from v and $G' = G - \{v_2vv_3, v_1u\}$. Then G' satisfies the induction hypothesis. Since $G = G' \cup (P_3 \cup P_2)$, the assertion holds for the graph G.

Case 2. G is 3-regular.

First, suppose G is connected. If p(G) = 6, then $G = G_6$ or G_7 . By Lemma 2.1, $(P_3 \cup P_2)|G$.

Suppose $(P_3 \cup P_2)|G'$ for any connected 3-regular graph G' of order less than p, where $p \geq 8$. Let G be a connected 3-regular graph of order p. It is not difficult to see that G has an edge xy with $N(x) = \{x_1, x_2, y\}$, $N(y) = \{y_1, y_2, x\}$ and $N(x) \bigcap N(y) = \phi$ such that $x_1y_1 \notin E(G)$ and $x_2y_2 \notin E(G)$. Let $G' = (G - \{x, y\}) \cup \{x_1y_1, x_2y_2\}$. Then G'is a connected 3-regular graph of order p-2. By induction hypothesis, G' has a $(P_3 \cup P_2)$ packing \mathcal{F} with empty leave. Without loss of generality, we may consider the following cases.

(1) If there is an $F = \{x_1y_1v_3, x_2y_2\}$ in \mathcal{F} , then G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - F) \cup \{x_1xx_2, yy_1\} \cup \{xyy_2, y_1v_3\}$ with empty leave.

- (2) If there are $F_1 = \{v_1v_2v_3, x_1y_1\}$ and $F_2 = \{u_1u_2u_3, x_2y_2\}$ in \mathcal{F} , then G has a $(P_3 \cup P_2)$ packing $(\mathcal{F} - \{F_1, F_2\}) \cup \{x_1xx_2, yy_1\} \cup \{v_1v_2v_3, xy\} \cup \{u_1u_2u_3, yy_2\}$ with empty leave.
- (3) If there are $F_1 = \{v_1v_2v_3, x_1y_1\}$ and $F_2 = \{x_2y_2u_3, u_4u_5\}$ in \mathcal{F} , then G has a $(P_3 \cup P_2)$ packing $(\mathcal{F} - \{F_1, F_2\}) \cup \{x_1xx_2, yy_1\} \cup \{v_1v_2v_3, xy\} \cup \{yy_2u_3, u_4u_5\}$ with empty leave.
- (4) Suppose there are $F_1 = \{x_1y_1v_3, v_4v_5\}$ and $F_2 = \{x_2y_2u_3, u_4u_5\}$ (or $F_2 = \{y_2x_2u_3, u_4u_5\}$) in \mathcal{F} . If $x_1 \notin \{u_4, u_5\}$, then G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F_1, F_2\}) \cup \{x_1xy, u_4u_5\} \cup \{yy_1v_3, v_4v_5\} \cup \{yy_2u_3, xx_2\}$ (or $\{xx_2u_3, yy_2\}$) with empty leave.

If $x_1 = u_4$ (or u_5) and $u_5 \neq v_3$, then G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F_1, F_2\}) \cup \{xx_1u_5, y_1v_3\} \cup \{xyy_1, v_4v_5\} \cup \{yy_2u_3, xx_2\}$ (or $\{xx_2u_3, yy_2\}$) with empty leave.

If $x_1 = u_4$ (or u_5) and $u_5 = v_3$, then G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F_1, F_2\})$ $\cup \{x_1xy, y_2u_3$ (or $x_2u_3)\} \cup \{x_1v_3y_1, v_4v_5\} \cup \{y_1yy_2, xx_2\}$ with empty leave.

Hence, by induction, $(P_3 \cup P_2)|G$ for any connected 3-regular graph G except $G = K_4$. Secondly, let $G = (mK_4) \cup G_1 \cup \cdots \cup G_n$ be a disconnected 3-regular graph, where $m \ge 0$ and $G_i \ne K_4$ for $1 \le i \le n$. Since $P_3 \cup P_2|G_i$, $G - mK_4$ has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave.

If m = 1, choose an F in \mathcal{F} . It is easy to see that $K_4 \cup F = 3(P_3 \cup P_2)$. Hence, $(P_3 \cup P_2)|G$.

If $m \neq 1$, then $G = \frac{m}{2}(2K_4) \cup G_1 \cup \cdots \cup G_n$ when m is even and $G = \frac{m-3}{2}(2K_4) \cup (3K_4) \cup G_1 \cup \cdots \cup G_n$ when m is odd. It is easy to see that $(P_3 \cup P_2)|(tK_4)$ for t = 2 or 3. Hence $(P_3 \cup P_2)|(mK_4)$ for $m \geq 2$ and then $(P_3 \cup P_2)|G$.

Case 3. $\delta(G) = 2$.

Suppose G has a cycle-component. Let $C_n = x_1 x_2 \cdots x_n x_1$ be the minimum cyclecomponent. If $3 \le n \le 5$, let $G' = G - C_n$.

Suppose n = 3 and $C_n = x_1 x_2 x_3 x_1$. If $G = G_8, G_9, G_{19}, G_{28}$ or G_{29} , by Lemmas 2.1, 2.2 and 2.3, the assertion holds for these graphs G. Otherwise, by induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. Choose an $F = \{v_1 v_2 v_3, v_4 v_5\}$ in \mathcal{F} . Hence, G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - F) \cup \{x_1 x_2 x_3, v_4 v_5\} \cup \{v_1 v_2 v_3, x_1 x_3\}$ with leave L. Suppose n = 4 and $C_n = x_1 x_2 x_3 x_4 x_1$. If $G = G_{10}, G_{11}, G_{20}, G_{21}$ or G_{30} , by Lemmas 2.1, 2.2 and 2.3, the assertion holds for these graphs G. Otherwise, by induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. For $L = \phi$, choose an $F = \{v_1 v_2 v_3, v_4 v_5\}$ in \mathcal{F} . Then G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - F) \cup \{x_1 x_2 x_3, v_4 v_5\} \cup \{v_1 v_2 v_3, x_3 x_4\}$ with leave $x_1 x_4$. For $L = v_1 v_2$, G has a $(P_3 \cup P_2)$ -packing $\mathcal{F} \cup \{x_1 x_2 x_3, v_1 v_2\}$ with leave $x_3 x_4 x_1$. For $L = v_1 v_2 v_3$, G has a $(P_3 \cup P_2)$ -packing $\mathcal{F} \cup \{x_1 x_2 x_3, v_1 v_2\} \cup \{x_3 x_4 x_1, v_2 v_3\}$ with empty leave.

Suppose n = 5 and $C_n = x_1 x_2 x_3 x_4 x_5 x_1$. If $G = G_{22}, G_{23}, G_{31}$ or G_{32} , by Lemmas 2.2 and 2.3, the assertion holds for these graphs G. Otherwise, by induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. Choose an $F = \{v_1 v_2 v_3, v_4 v_5\}$ in \mathcal{F} . For $L = \phi$, G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - F) \cup \{x_1 x_2 x_3, v_4 v_5\} \cup \{v_1 v_2 v_3, x_3 x_4\}$ with leave $x_4 x_5 x_1$. For $L = u_1 u_2$, G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - F) \cup \{x_1 x_2 x_3, v_4 v_5\} \cup \{x_3 x_4 x_5, u_1 u_2\} \cup \{v_1 v_2 v_3, x_1 x_5\}$ with empty leave. For $L = u_1 u_2 u_3$, G has a $(P_3 \cup P_2)$ -packing $\mathcal{F} \cup \{x_1 x_2 x_3, u_1 u_2\} \cup \{x_3 x_4 x_5, u_2 u_3\}$ with leave $x_1 x_5$.

with leave x_1x_5 . For $n \ge 6$, let $C_n = x_1x_2 \cdots x_nx_1$. If $q(G) \equiv 0 \pmod{3}$, let $G' = (G - \{x_2, x_3, x_4\}) \cup x_1x_5$. Then $q(G') = q(G) - 3 \equiv 0 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_1x_5 \in F$. Since $F = \{x_1x_5x_6, v_4v_5\}$, $\{x_nx_1x_5, v_4v_5\}$ or $\{v_1v_2v_3, x_1x_5\}$, it is not difficult to see that $(F - x_1x_5) \cup x_1x_2x_3x_4x_5 = 2(P_3 \cup P_2)$. Hence, G has a $(P_3 \cup P_2)$ -packing with empty leave.

If $q(G) \equiv 1 \pmod{3}$, let $G' = (G - x_2) \cup x_1 x_3$. Then $q(G') = q(G) - 1 \equiv 0 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} such that $x_1 x_3 \in F$. Since $F = \{x_1 x_3 x_4, v_4 v_5\}$, $\{x_n x_1 x_3, v_4 v_5\}$ or $\{v_1 v_2 v_3, x_1 x_3\}$, it is not difficult to see that $(F - x_1 x_3) \cup x_1 x_2 x_3 = (P_3 \cup P_2) \cup L$, where $L = x_1 x_2$ or $x_2 x_3$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave L.

If $q(G) \equiv 2 \pmod{3}$, let $G' = (G - \{x_2, x_3\}) \cup x_1 x_4$. Then $q(G') = q(G) - 2 \equiv 0 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} such that $x_1 x_4 \in F$. Since $F = \{x_1 x_4 x_5, v_4 v_5\}$, $\{x_n x_1 x_4, v_4 v_5\}$ or $\{v_1 v_2 v_3, x_1 x_4\}$, it is not difficult to see that $(F - x_1 x_4) \cup x_1 x_2 x_3 x_4 = (P_3 \cup P_2) \cup L$, where $L = x_1 x_2 x_3$ or $x_2 x_3 x_4$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave a P_3 . Suppose G has no cycle-component. Since $\delta(G) = 2$, there is a shortest path $x_0x_1x_2\cdots x_t$ (not necessary open) in G with $d(x_0) \geq 3$, $d(x_t) \geq 3$ and $d(x_i) = 2$ for $1 \leq i < t$, where $t \geq 2$. Consider the following cases.

(1) $x_0 x_t \in E(G)$.

Suppose $q(G) \equiv 2 \pmod{3}$. If t = 2, let $G' = G - x_1$. Then $q(G') \equiv 0 \pmod{3}$. If $G = G_{33}, G_{34}$ or G_{35} , by Lemma 2.3, G has a $(P_3 \cup P_2)$ -packing with leave a P_3 . Otherwise, by induction hypothesis, $(P_3 \cup P_2)|G'$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave $x_0x_1x_2$.

If t = 3, let $G' = G - \{x_1, x_2\}$. Then $q(G') \equiv 2 \pmod{3}$. If $G = G_{36}$, by Lemma 2.3, G has a $(P_3 \cup P_2)$ -packing with leave a P_3 . Otherwise, by induction hypothesis, G' has a $(P_3 \cup P_2)$ - packing \mathcal{F} with leave a $L' = P_3$. It is easy to check that $L' \cup x_0 x_1 x_2 x_3 = (P_3 \cup P_2) \cup P_3$ except $L' = x_0 v x_3$. For $L' = x_0 v x_3$, choose an F in \mathcal{F} with $x_0 x_3 \in F$. It is easy to check that $F \cup x_0 x_1 x_2 x_3 v x_0 = 2(P_3 \cup P_2) \cup L$, where $L = x_0 x_3 x_2$ or $x_1 x_0 x_3$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave a P_3 .

If $t \ge 4$, let $G' = (G - \{x_1, x_2\}) \cup x_0 x_3$. Then $q(G') \equiv 0 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0 x_3 \in F$. It is a routine matter to check that $(F - x_0 x_3) \cup x_0 x_1 x_2 x_3 = (P_3 \cup P_2) \cup L$, where $L = x_0 x_1 x_2$ or $x_1 x_2 x_3$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave a P_3 .

Suppose $q(G) \equiv 1 \pmod{3}$. Let $G' = G - x_0 x_t$. Then $q(G') \equiv 0 \pmod{3}$. Since x_1 is of degree two in G' and $x_0 x_t \notin E(G')$, G' is neither K_4 nor $K_{1,1,3c+1}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing with empty leave. Hence, G has a $(P_3 \cup P_2)$ -packing with leave $x_0 x_t$.

Suppose $q(G) \equiv 0 \pmod{3}$. If t = 2, let $G' = G - x_1$. Then $q(G') \equiv 1 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave an edge e.

If $\{x_0x_1x_2, e\}$ forms a $(P_3 \cup P_2)$, then $(P_3 \cup P_2)|G$.

If $e = x_0 z, z \neq x_2$ (similarly if $e = x_2 z, z \neq x_0$), choose an F in \mathcal{F} with $x_0 x_2 \in F$. It is a routine matter to check that $F \cup z x_0 x_1 x_2 = 2(P_3 \cup P_2)$ except $F = \{x_0 x_2 z, v_4 v_5\}$. For $F = \{x_0 x_2 z, v_4 v_5\}$, choose an F_1 in $\mathcal{F} - F$. It is a routine matter to check that $F_1 \cup z x_0 x_1 x_2 = 2(P_3 \cup P_2)$ except $F_1 = \{x_0 u_2 u_3, z u_5\}$ or $\{x_2 u_2 z, u_4 u_5\}$, where x_0 is neither u_4 nor u_5 . If $F_1 = \{x_0 u_2 u_3, z u_5\}$, then $F \cup F_1 \cup z x_0 x_1 x_2 = \{x_1 x_0 x_2, z u_5\} \cup \{x_0 z x_2, v_4 v_5\} \cup \{x_0 u_2 u_3, x_1 x_2\}$. If $F_1 = \{x_2u_2z, u_4u_5\}$, then $F \cup F_1 \cup zx_0x_1x_2 = \{x_0x_1x_2, zu_2\} \cup \{x_0zx_2, v_4v_5\} \cup \{x_0x_2u_2, u_4u_5\}$. Hence, $(P_3 \cup P_2)|G$.

Suppose $e = x_0 x_2$. Since G is different from $K_{1,1,3c+1}$, there is an edge $v_4 v_5$ such that e and $v_4 v_5$ are vertex disjoint edges. Choose an F in \mathcal{F} with $v_4 v_5 \in F$. It is a routine matter to check that $F \cup x_0 x_1 x_2 x_0 = 2(P_3 \cup P_2)$ except $F = \{x_0 v_2 x_2, v_4 v_5\}$. For $F = \{x_0 v_2 x_2, v_4 v_5\}$, choose an F_1 in $\mathcal{F} - F$. It is a routine matter to check that $F_1 \cup x_0 x_1 x_2 x_0 = 2(P_3 \cup P_2)$ except $F_1 = \{x_0 u_2 x_2, u_4 u_5\}$, $\{w_1 x_0 w_3, x_2 w_5\}$ or $\{z_1 x_2 z_3, x_0 z_5\}$. If $F_1 = \{x_0 u_2 x_2, u_4 u_5\}$, then $F \cup F_1 \cup x_0 x_1 x_2 x_0 = \{x_1 x_0 u_2, x_2 v_2\} \cup \{x_1 x_2 u_2, u_4 u_5\} \cup \{x_2 x_0 v_2, v_4 v_5\}$. If $F_1 = \{w_1 x_0 w_3, x_2 w_5\}$ (similarly if $F_1 = \{z_1 x_2 z_3, x_0 z_5\}$), then $F \cup F_1 \cup z_0 x_1 x_2 = \{x_2 x_0 v_2, v_4 v_5\} \cup \{w_1 x_0 w_3, x_1 x_2\} \cup \{v_2 x_2 w_5, x_0 x_1\}$. Hence, $(P_3 \cup P_2)|G$.

If t = 3, let $G' = G - \{x_1, x_2\}$. Then $q(G') \equiv 0 \pmod{3}$. If $G = G_{12}$, by Lemma 2.1, $(P_3 \cup P_2)|G$. Otherwise, by induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0x_3 \in F$. Thus, $F \cup x_0x_1x_2x_3 = 2(P_3 \cup P_2)$ and we have $(P_3 \cup P_2)|G$.

If t = 4, let $G' = G - \{x_1, x_2, x_3\}$. Then $q(G') \equiv 2 \pmod{3}$. If $G = G_{13}$, by Lemma 2.1, $(P_3 \cup P_2)|G$. Otherwise, by induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave $v_1v_2v_3$. Since $v_1v_2v_3 \cup x_0x_1x_2x_3x_4 = \{v_1v_2v_3, x_2x_3\} \cup \{x_0x_1x_2, x_3x_4\}, (P_3 \cup P_2)|G$.

If $t \ge 5$, let $G' = (G - \{x_1, x_2, x_3\}) \cup x_0 x_4$. Then $q(G') \equiv 0 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0 x_4 \in F$. It is a routine matter to check that $(F - x_0 x_4) \cup x_0 x_1 x_2 x_3 x_4 = 2(P_3 \cup P_2)$. Hence, $(P_3 \cup P_2)|G$.

(2) $x_0 x_t \notin E(G)$ and $x_0 \neq x_t$.

Suppose $q(G) \equiv 2 \pmod{3}$. If t = 2, let $G' = G - x_1$. Then $q(G') \equiv 0 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Hence, G has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave $x_0 x_1 x_2$.

If $t \ge 3$, let $G' = (G - \{x_1, x_2\}) \cup x_0 x_3$. Then $q(G') \equiv 0 \pmod{3}$. If $G = G_{37}$, by Lemma 2.3, G has a $(P_3 \cup P_2)$ -packing with leave a P_3 . Otherwise, by induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0 x_3 \in F$. It is a routine matter to check that $(F - x_0 x_3) \cup x_0 x_1 x_2 x_3 = (P_3 \cup P_2) \cup L$, where $L = x_0 x_1 x_2$ or $x_1x_2x_3$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave a P_3 .

Suppose $q(G) \equiv 1 \pmod{3}$. Let $G' = (G - x_1) \cup x_0 x_2$. Then $q(G') \equiv 0 \pmod{3}$. If $G = G_{24}$ or G_{25} , by Lemma 2.2, G has a $(P_3 \cup P_2)$ -packing with leave a P_2 . Otherwise, by induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0 x_2 \in F$. It is a routine matter to check that $(F - x_0 x_2) \cup x_0 x_1 x_2 = (P_3 \cup P_2) \cup L$, where $L = x_0 x_1$ or $x_1 x_2$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave a P_2 .

Suppose $q(G) \equiv 0 \pmod{3}$. If t = 2, let $G' = G - x_1$. Then $q(G') \equiv 1 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave an edge e. If $\{x_0x_1x_2, e\}$ forms a $P_3 \cup P_2$, then $(P_3 \cup P_2)|G$. Let $e = x_0z$ (similarly $e = x_2z$). Choose an F in \mathcal{F} with $x_2 \in F$. It is a routine matter to check that $F \cup zx_0x_1x_2 = 2(P_3 \cup P_2)$ except $F = \{zv_2x_2, v_4v_5\}$. Since $d(x_2) \geq 3$, there is some F_1 in $\mathcal{F} - F$ with $x_2 \in F_1$. Similarly, $F_1 \cup zx_0x_1x_2 = 2(P_3 \cup P_2)$ where $F_1 = \{zu_2x_2, u_4u_5\}$. In such case, if v_2 is incident with u_4u_5 , say $v_2 = u_4$, then $F \cup F_1 \cup zx_0x_1x_2 = \{x_0x_1x_2, v_4v_5\} \cup \{x_2v_2u_5, u_2z\} \cup \{x_0zv_2, x_2u_2\}$; otherwise, $F \cup F_1 \cup zx_0x_1x_2 = \{x_0x_1x_2, v_4v_5\} \cup \{u_2x_2v_2, x_0z\} \cup \{u_2zv_2, u_4u_5\}$. Hence, Ghas a $(P_3 \cup P_2)$ -packing with empty leave.

If t = 3, let $G' = G - \{x_1, x_2\}$. Then $q(G') \equiv 0 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0 \in F$. It is a routine matter to check that $F \cup x_0 x_1 x_2 x_3 = 2(P_3 \cup P_2)$ except $F = \{x_0 v_2 x_3, v_4 v_5\}$. For $F = \{x_0 v_2 x_3, v_4 v_5\}$, by the same argument as above, G has a $(P_3 \cup P_2)$ -packing with empty leave.

If $t \ge 4$, let $G' = G - \{x_1, x_2, x_3\} \cup x_0 x_4$. Then $q(G') \equiv 0 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ - packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0 x_4 \in F$. It is a routine matter to check that $(F - x_0 x_4) \cup x_0 x_1 x_2 x_3 x_4 = 2(P_3 \cup P_2)$. Hence, G has a $(P_3 \cup P_2)$ -packing with empty leave.

(3) $x_0 = x_t$ and $t \ge 3$.

Suppose $q(G) \equiv 2 \pmod{3}$. For t = 3 or 4, if $d(x_0) \ge 4$, let $G' = G - \{x_1, x_2, \dots, x_{t-1}\}$. If $G = G_{38}$ or G_{39} , by Lemma 2.3, G has a $(P_3 \cup P_2)$ -packing with leave a P_3 . Otherwise, by induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. If t = 3, then $L = P_3$ and $L \cup x_0 x_1 x_2 x_0 = \{L, x_1 x_2\} \cup x_1 x_0 x_2$. If t = 4, then $L = P_2$ and $L \cup x_0 x_1 x_2 x_3 x_0 = \{x_1 x_2 x_3, L\} \cup x_1 x_0 x_3$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave a P_3 .

Suppose $d(x_0) = 3$. Let $N(x_0) = \{x_1, x_{t-1}, z\}$. In this case, $d(z) \ge 3$. Let $G' = G - \{x_0, x_1, \dots, x_{t-1}\}$. If $G = G_{40}$, by Lemma 2.3, G has a $(P_3 \cup P_2)$ -packing with leave a P_3 . Otherwise, by induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. If t = 3, then $L = P_2$ and $L \cup x_0 x_1 x_2 x_0 \cup x_0 z = \{x_0 x_1 x_2, L\} \cup x_2 x_0 z$. If t = 4, then $L = \phi$ and $x_0 x_1 x_2 x_3 x_0 \cup x_0 z = \{x_1 x_2 x_3, x_0 z\} \cup x_1 x_0 x_3$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave a P_3 .

For $t \geq 5$, let $G' = (G - \{x_2, x_3\}) \cup x_1 x_4$. Then $q(G') \equiv 0 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_1 x_4 \in F$. It is a routine matter to check that $(F - x_1 x_4) \cup x_1 x_2 x_3 x_4 = (P_3 \cup P_2) \cup L$, where $L = x_1 x_2 x_3$ or $x_2 x_3 x_4$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave a P_3 .

Suppose $q(G) \equiv 1 \pmod{3}$. For t = 3, if $d(x_0) \ge 4$, let $G' = G - \{x_1, x_2\}$. If $G = G_{26}$, by Lemma 2.2, G has a $(P_3 \cup P_2)$ -packing with leave a P_2 . Otherwise, by induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave a P_2 . Choose an F in \mathcal{F} . It is a routine matter to check that $F \cup x_0 x_1 x_2 x_0 = 2(P_3 \cup P_2)$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave a P_2 .

Suppose $d(x_0) = 3$. Let $N(x_0) = \{x_1, x_2, z\}$. In this case, $d(z) \ge 3$. Let $G' = G - x_0 z$. Then $q(G') \equiv 0 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Hence, G has a $(P_3 \cup P_2)$ -packing with leave $x_0 z$.

For $t \ge 4$, let $G' = (G - x_2) \cup x_1 x_3$. Then $q(G') \equiv 0 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_1 x_3 \in F$. It is a routine matter to check that $(F - x_1 x_3) \cup x_1 x_2 x_3 = (P_3 \cup P_2) \cup L$, where $L = x_1 x_2$ or $x_2 x_3$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave a P_2 .

Suppose $q(G) \equiv 0 \pmod{3}$. For $3 \leq t \leq 5$, if $d(x_0) \geq 4$, let $G' = G - \{x_1, x_2, \dots, x_{t-1}\}$. If $G = G_{14}$ or G_{15} , by Lemma 2.1, G has a $(P_3 \cup P_2)$ -packing with empty leave. Otherwise, by induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. If t = 3, then $L = \phi$. Choose an F in \mathcal{F} . It is a routine matter to check that $F \cup x_0 x_1 x_2 x_0 = 2(P_3 \cup P_2)$. If t = 4, then $L = P_3$. It is a routine matter to check that $L \cup x_0 x_1 x_2 x_3 x_0 = 2(P_3 \cup P_2)$. If t = 5, then L = uv. If x_0 is incident with uv, say $x_0 = u$, then $x_0x_1x_2x_3x_4x_0 \cup uv = \{x_0x_1x_2, x_3x_4\} \cup \{vx_0x_4, x_2x_3\}$. Otherwise, choose an $F = \{z_1z_2z_3, z_4z_5\}$ in \mathcal{F} with $x_0 \in F$. If $x_0 = z_4$ or z_5 , then $F \cup x_0x_1x_2x_3x_4x_0 \cup uv = \{x_0x_1x_2, uv\} \cup \{x_2x_3x_4, z_4z_5\} \cup \{z_1z_2z_3, x_4x_0\}$. If $x_0 = z_1, z_2$ or z_3 , then $F \cup x_0x_1x_2x_3x_4x_0 \cup uv = \{x_0x_1x_2, uv\} \cup \{x_0x_1x_2, uv\} \cup \{x_2x_3x_4, z_4z_5\} \cup \{z_1z_2z_3, x_4x_0\}$. Hence, G has a $(P_3 \cup P_2)$ -packing with empty leave.

Suppose $d(x_0) = 3$. Let $N(x_0) = \{x_1, x_{t-1}, z\}$. In this case, $d(z) \ge 3$. Let $G' = G - \{x_0, x_1, \dots, x_{t-1}\}$. If $G = G_{16}, G_{17}$ or G_{18} , by Lemma 2.1, G has a $(P_3 \cup P_2)$ -packing with empty leave. Otherwise, by induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. It is a routine matter to check that $L \cup x_0 x_1 \cdots x_t x_0 \cup x_0 z = 2(P_3 \cup P_2)$ for $3 \le t \le 5$. Hence, G has a $(P_3 \cup P_2)$ -packing with empty leave.

Finally, for $t \ge 6$, let $G' = (G - \{x_2, x_3, x_4\}) \cup x_1 x_5$. Then $q(G') \equiv 0 \pmod{3}$. By induction hypothesis, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_1 x_5 \in F$. It is a routine matter to check that $(F - x_1 x_5) \cup x_1 x_2 x_3 x_4 x_5 = 2(P_3 \cup P_2)$. Hence G has a $(P_3 \cup P_2)$ -packing with empty leave.

Therefore, the proof concludes by induction.

Now, we are ready to prove the Conjecture 1.

Theorem 2.5 If G is a graph with $q(G) \equiv 0 \pmod{3}$ and $\delta(G) \ge 2$, then H|G for some graph H of size 3.

Proof. If q(G) = 3, then it is trivial that G|G. In [8], Kumar proved that $P_4|G$ if $G = K_4$ or $K_{1,1,3c+1}$. For the rest, by Theorem 2.4, we have $(P_3 \cup P_2)|G$. Therefore, we complete the proof.

The result of Theorem 2.4 generalizes the following result proved in [5].

Theorem 2.6 [5] The necessary and sufficient conditions for a simple graph G having a $(P_3 \cup P_2)$ -decomposition are the following :

- (1) $q(G) \equiv 0 \pmod{3};$
- (2) $\Delta(G) \leq \frac{2}{3}q(G);$
- (3) $c(G) \leq \frac{1}{3}q(G)$, where c(G) denotes the number of odd components of G;
- (4) the edges of G cannot be covered by two adjacent vertices.

Chapter 3

H-decompositions of Special Classes of Graphs

3.1 *H*-decompositions of complete multipartite Graphs

First, we consider the S_3 -decomposition of a complete *r*-partite graph $G = K_{n_1,\dots,n_r}$ of size $q(G) \equiv 0 \pmod{3}$ and $r \geq 2$.

Lemma 3.1 The graph $K_{m,n}$ is S_3 -decomposable if and only if $mn \equiv 0 \pmod{3}$.

Proof. The condition $mn \equiv 0 \pmod{3}$ is clearly necessary. Conversely, assume $3 \mid m$. Since $E(K_{m,n}) = E(nK_{m,1}) = E(\frac{mn}{3}K_{3,1}), K_{m,n}$ is S_3 -decomposable.

Lemma 3.2 The complete graph K_n is S_3 -decomposable if and only if n > 5 and $q(K_n) \equiv 0 \pmod{3}$.

Proof. It is clear that K_n is not S_3 -decomposable if $n \leq 5$ or $q(K_n) \not\equiv 0 \pmod{3}$. Suppose $n \geq 6$ and $q(K_n) \equiv 0 \pmod{3}$, i.e., $n \equiv 0$ or $1 \pmod{3}$. It is a routine matter to check that K_6 and K_9 are S_3 -decomposable. If $n \equiv 0 \pmod{3}$ and $n \geq 12$, then $E(K_n) = E(K_6) \cup E(K_{n-6,6}) \cup E(K_{n-6})$. If $n \equiv 1 \pmod{3}$ and $n \geq 7$, then $E(K_n) = E(K_{n-1}) \cup E(K_{n-1,1})$. By Lemma 3.1 and mathematical induction, K_n is S_3 -decomposable.

Theorem 3.3 The graph $G = K_{n_1,\dots,n_r}$ with $r \ge 2$ is S_3 -decomposable if and only if $q(G) \equiv 0 \pmod{3}$ and G is different from K_4 and $K_{1,1,3c+1}$, $c \ge 0$.

Proof. The condition $q(G) \equiv 0 \pmod{3}$ is clearly necessary and $K_4 = K_{1,1,1,1}$ is not S_3 -decomposable. For $G = K_{1,1,3c+1}$, there is a unique edge e = xy in E(G) which is incident with other edges in E(G). If G is S_3 -decomposable, since deg(v) = 2 if v is neither x nor y, the center of each S_3 of an S_3 -decomposition of G must be x or y. Hence, $\frac{q(G)}{3} = 2c + 1 \leq \lfloor \frac{deg(x)}{3} \rfloor + \lfloor \frac{deg(y)}{3} \rfloor = c + c = 2c$. It is impossible. Therefore, $G = K_{1,1,3c+1}$ is not S_3 -decomposable.

Conversely, we shall prove the assertion by induction on $r \ge 2$. By Lemma 3.1, K_{n_1,n_2} is S_3 -decomposable if $n_1n_2 \equiv 0 \pmod{3}$. Suppose any graph $G' = K_{n_1,\dots,n_{r'}}$ of size $q(G') \equiv 0 \pmod{3}$ and different from K_4 and $K_{1,1,3c+1}$ is S_3 -decomposable for r' < r, where $r \ge 3$. Let $G = K_{n_1,\dots,n_r}$ of size $q(G) \equiv 0 \pmod{3}$ and different from K_4 and $K_{1,1,3c+1}$. Consider the following disjoint cases.

Case 1. At least one $n'_i s \equiv 0 \pmod{3}$.

We may assume $n_1 = 3a, a \ge 1$. By Lemma 3.1, $S_3|K_{n_1,n_2+\dots+n_r}$. By induction hypothesis, $S_3|K_{n_2,\dots,n_r}$ except $K_{n_2,\dots,n_r} = K_4$ or $K_{1,1,3c+1}$. Since $E(G) = E(K_{n_1,n_2+\dots+n_r}) \cup E(K_{n_2,\dots,n_r})$, $S_3 \mid G$ except $G = K_{3a,1,1,1}$ or $K_{3a,1,1,3c+1}$.

If $G = K_{3a,1,1,1,1}$, then $E(G) = E(K_{3,1,1,1,1}) \cup K_{3(a-1),4}$. It is a routine matter to check that $S_3 \mid K_{3,1,1,1,1}$. By Lemma 3.1, $S_3 \mid K_{3(a-1),4}$. Hence, $S_3 \mid G$.

If $G = K_{3a,1,1,3c+1}$, then $E(G) = E(K_{3,1,1,1}) \cup E(K_{3(a-1),1+1+3c+1}) \cup E(K_{3c,3+1+1})$. It is a routine matter to check that $S_3 | K_{3,1,1,1}$. By Lemma 3.1, $S_3 | K_{3(a-1),1+1+3c+1}$ and $S_3 | K_{3c,3+1+1}$. Hence, $S_3 | G$.

Case 2. At least three of $n'_i s \equiv 2 \pmod{3}$.

We may assume $n_1 = 3a + 2$, $n_2 = 3b + 2$ and $n_3 = 3c + 2$. Then $E(G) = E(K_{n_1,n_2,n_3}) \cup E(K_{n_1+n_2+n_3,n_4,\cdots,n_r})$. By induction hypothesis, $S_3 | K_{n_1+n_2+n_3,n_4,\cdots,n_r}$. Moreover, $E(K_{n_1,n_2,n_3}) = E(K_{2,2,2}) \cup E(K_{3a,n_2+n_3}) \cup E(K_{3b,2+n_3}) \cup E(K_{3c,2+2})$. It is a routine matter to check that $S_3 | K_{2,2,2}$. By Lemma 3.1, $K_{3a,n_2+n_3}, K_{3b,2+n_3}$ and $K_{3c,2+2}$ are S_3 -decomposable. Hence, $S_3 | K_{n_1,n_2,n_3}$ and then $S_3 | G$.

Case 3. Exactly two of $n'_i s \equiv 2 \pmod{3}$.

Suppose $n_1 \equiv n_2 \equiv 2 \pmod{3}$ and $n_i \equiv 1 \pmod{3}$ for $i \geq 3$. Then $q(G) \equiv \binom{r-2}{2} + 4(r-2) + 4 \pmod{3} \equiv \frac{r^2 + 3r - 2}{2} \pmod{3} \equiv 0 \pmod{3}$ for $r \geq 3$. Hence, there are no graphs $G = K_{n_1, \dots, n_r}$ of size $q(G) \equiv 0 \pmod{3}$ in this case.

Case 4. Exactly one of $n'_i s \equiv 2 \pmod{3}$.

We may assume $n_1 = 3a + 2$ and $n_i \equiv 1 \pmod{3}$ for $i \ge 2$. Then $q(G) \equiv \binom{r-1}{2} + 2(r-1) \pmod{3} \equiv \frac{(r-1)(r+2)}{2} \pmod{3}$. Since $q(G) \equiv 0 \pmod{3}$, we obtain $r \equiv 1 \pmod{3}$. Hence, $n_2 + \cdots + n_r \equiv (r-1) \pmod{3} \equiv 0 \pmod{3}$. Moreover, $E(G) = E(K_{n_1, n_2 + \cdots + n_r}) \cup$ $E(K_{n_2,\dots,n_r})$. Then $S_3 \mid K_{n_1,n_2+\dots+n_r}$ by Lemma 3.1. By induction hypothesis, $S_3 \mid K_{n_2,\dots,n_r}$ except $K_{n_2,\dots,n_r} = K_{1,1,1}$. Hence, $S_3 \mid G$ except $G = K_{3a+2,1,1,1}$.

If $G = K_{3a+2,1,1,1}$, then $E(G) = E(K_{2,1,1,1}) \cup E(K_{3a,1+1+1})$. It is a routine matter to check that $S_3 \mid K_{2,1,1,1}$. By Lemma 3.1, $S_3 \mid K_{3a,1+1+1}$. Hence, $S_3 \mid G$.

Case 5. $n_i \equiv 1 \pmod{3}$ for $1 \leq i \leq r$.

Then $q(G) \equiv \frac{r(r-1)}{2} \pmod{3}$. Since $q(G) \equiv 0 \pmod{3}$, we obtain $r \equiv 0$ or $1 \pmod{3}$. For r = 3, let $G = K_{n_1,n_2,n_3}$ with $n_1 \ge n_2 \ge 4$ (since $G \ne K_{1,1,3c+1}$). Then $E(G) = E(K_{4,4,1}) \cup E(K_{n_1-4,n_2+n_3}) \cup E(K_{n_2-4,4+n_3}) \cup E(K_{n_3-1,4+4})$. It is a routine matter to check that $S_3 \mid K_{4,4,1}$. By Lemma 3.1, $K_{n_1-4,n_2+n_3}, K_{n_2-4,4+n_3}$ and $K_{n_3-1,4+4}$ are all S_3 -decomposable. Hence, $S_3 \mid G$.

For r = 4, let $G = K_{n_1,n_2,n_3,n_4}$ with $n_1 \ge 4$ (since $G \ne K_4$). Then $E(G) = E(K_{4,1,1,1}) \cup E(K_{n_1-4,n_2+n_3+n_4}) \cup E(K_{n_2-1,4+n_3+n_4}) \cup E(K_{n_3-1,4+1+n_4}) \cup E(K_{n_4-1,4+1+1})$. It is a routine matter to check that $S_3 \mid K_{4,1,1,1}$. By Lemma 3.1, $K_{n_1-4,n_2+n_3+n_4}$, $K_{n_2-1,4+n_3+n_4}$, $K_{n_3-1,4+1+n_4}$ and $K_{n_4-1,4+1+1}$ are all S_3 -decomposable. Hence, $S_3 \mid G$.

For r > 5, $E(G) = E(K_r) \cup E(K_{n_1-1,n_2+\dots+n_r}) \cup (\bigcup_{i=2}^r E(K_{n_i-1,r-1})) \cup E(K_{n_2-1,\dots,n_r-1}).$ By Lemma 3.2, $S_3 \mid K_r$. By Lemma 3.1, $S_3 \mid K_{n_1-1,n_2+\dots+n_r}$ and $S_3 \mid K_{n_i-1,r-1}$ for $2 \le i \le r$. By induction hypothesis, $S_3 \mid K_{n_2-1,\dots,n_r-1}$. Hence, $S_3 \mid G$.

Therefore, the assertion holds by the mathematical induction.

Theorem 3.4 The graph $G = K_{n_1,\dots,n_r}$ with $r \ge 2$ is $(P_3 \cup P_2)$ -decomposable if and only if $q(G) \equiv 0 \pmod{3}$ and G is different from K_4 and $K_{1,1,3c+1}, c \ge 0$.

Proof. It follows by Theorem 2.4.

We may use the same argument as in Theorem 3.3 to prove the next theorem. However, we will give an alternative proof in Chapter 4.

Theorem 3.5 The graph $G = K_{n_1,\dots,n_r}$ with $r \ge 2$ is M_3 -decomposable if and only if $q(G) \equiv 0 \pmod{3}$ and G is different from $K_{1,3n}, K_{2,3n}, K_{3,3,1}, K_{1,1,3c+1}$ and $K_{1,1,1,m}$, where $n \ge 1, c \ge 0$ and $m \ge 1$.

Remark here, the problem of determining the graph $G = K_{n_1,\dots,n_r}$ being K_3 -decomposable is still widely open, see [3, 4].

3.2H-decompositions of Cubic graphs

A cubic graph is a 3-regular graph. Let G be a cubic graph. By the degree-sum formula, we obtain 2q(G) = 3p(G). Hence, $q(G) \equiv 0 \pmod{3}$.

Theorem 3.6 Suppose G is a cubic graph.

- (1) G is not K_3 -decomposable.
- (2) G is P_4 -decomposable if G is 2-connected.
- (3) G is S_3 -decomposable if and only if it is bipartite.
- (4) G is $(P_3 \cup P_2)$ -decomposable except $G = K_4$.
- (5) G is M_3 -decomposable except $G = K_4$. Proof.

Proof.

- (1) It is easy to see that a graph which is K_3 -decomposable must be eulerian, i.e., the degree of each vertex is even. Hence, G is not K_3 -decomposable.
- (2) If G is 2-connected, then G has a perfect matching M (see [10]). Let M = $\{e_1, \dots, e_t\}$, where $t = \frac{p(G)}{2}$. Since G is cubic, $G \setminus M$ is a disjoint union of cycles. For each cycle, we assign a oritation on it. Secondly, each e_i in M and the two arcs that point to the end vertices of e_i form a P_4 . It is not difficult to check that E(G) is partitioned into tP_4 in such a way. Therefore, G is P_4 -decomposable.
- (3) Suppose G = (X, Y) is a cubic bipartite graph. For each vertex v in X, the three edges that incident with v form an S_3 . Hence, G is S_3 -decomposable.

Conversely, suppose E(G) can be partitioned into $t = \frac{q(G)}{3} S'_3 s$, say S^1_3, S^2_3 , \cdots , S_3^t . Since G is cubic, each vertex in V(G) is either the center of some S_3^i or a leaf of S_3^i , S_3^j and S_3^k . Hence the sets $X = \{v \in V(G) \mid v \text{ is the center of some } S_3^i\}$

and $Y = \{v \in V(G) \mid v \text{ is a leaf of some } S_3^i\}$ are independent sets. Moreover, each edge in E(G) has one end in X and one end in Y since it is an edge of some S_3^i . Therefore, G is a bipartite graph with bipartition (X, Y).

- (4) It follows by Theorem 1.1.
- (5) If p(G) = 6, then $G = K_{3,3}$ or $K_3 \times K_2$. It is easy to check that G is M_3 -decomposable. If $p(G) \ge 8$, then $q(G) 3\Delta(G) \ge \frac{1}{2} \times 3 \times 8 3 \times 3 = 3 > 0$. By Theorem 4.5, G is M_3 -decomposable.

In [8], Kumar constructed a 2-connected graph G of size $q(G) \equiv 0 \pmod{3}$ and $\delta(G) = 2$ which is not P_4 -decomposable. See Figure 5. Combining with Theorem 3.5(2), we give a modified conjecture as follows.

Conjecture 3 Any 2-connected graph G of size $q(G) \equiv 0 \pmod{3}$ and $\delta(G) \geq 3$ is P_4 -decomposable.

3.3 *H*-decompositions of Hypercubes

An *n*-cube, denoted by Q_n , is defined recursively as follows : $Q_1 = K_2$ and $Q_n = Q_{n-1} \times K_2$ for $n \ge 2$. It is well-known that Q_n is bipartite. Hence, Q_n is not K_3 -decomposable. Moreover, $q(Q_n) = n \cdot 2^{n-1} \equiv 0 \pmod{3}$ if and only if $n \equiv 0 \pmod{3}$. It is a routine matter to check that Q_3 is *H*-decomposable with *H* of size 3 if *H* is different from K_3 . If we replace each vertex of Q_3 by a Q_n and each edge of Q_3 by a matching of size $p(Q_n) = 2^n$ such that the corresponding vertices of 8 Q'_n s form a Q_3 , then it yields a Q_{n+3} . Hence, $E(Q_{n+3}) = E(8Q_n) \cup E(2^nQ_3)$. Therefore, by induction on $n \equiv 0 \pmod{3}$, the following result is easy to see.

Theorem 3.7 Suppose $n \equiv 0 \pmod{3}$ and H is a graph different from K_3 and of size 3. Then Q_n is H-decomposable.

Chapter 4

M_k -decompositions of graphs

In this chapter, we mainly obtain necessary and sufficient conditions for graphs which are M_2 -decomposable. But for completeness, we also present some result on the decomposition of G into matchings of size $k, k \geq 3$.

A graph G is said to be *n*-edge colorable if its edge set E(G) can be partitioned into n disjoint matchings E_1, E_2, \dots, E_n and it is equitably *n*-edge colorable if the sizes of E_i and E_j differ by at most one for all $1 \le i \le j \le n$. The chromatic index of G, denoted by $\chi'(G)$, is the minimum number n such that G is *n*-edge colorable.

The followings are useful in this chapter.

Theorem 4.1 [10] For a simple graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$. A simple graph is of class 1 if $\Delta(G) = \chi'(G)$, otherwise it is of class 2.

Theorem 4.2 [11] Suppose G is a simple graph G and $n \ge \chi'(G)$. Then G is equitably *n*-edge colorable.

Theorem 4.3 [6] Suppose G = (X, Y) a bipartite graph. Then G has a matching that saturates every vertex in X if and only if $|S| \leq |N(S)|$ for all $S \subseteq X$, where $N(S) = \{y \in Y \mid xy \in E(G) \text{ for some } x \in S\}.$

Theorem 4.4 [7] The graph $G = K_{n_1,n_2,\dots,n_r}$ is of class 2 if and only if $|E(G)| > \Delta(G)\lfloor \frac{p(G)}{2} \rfloor$.

Now, we are ready to prove the main results of this chapter.

Theorem 4.5 Suppose G is a graph of size $q(G) \equiv 0 \pmod{k}$, where $k \ge 1$.

- (1) If $q(G) > k\Delta(G)$, then G is M_k -decomposable.
- (2) If $q(G) < k\Delta(G)$, then G is not M_k -decomposable.
- (3) If $q(G) = k\Delta(G)$, then G is M_k -decomposable if and only if $\chi'(G) = \Delta(G)$.

Proof. Let q(G) = nk. It is clear that G is M_k -decomposable if and only if G is equitably *n*-edge colorable. If $q(G) > k\Delta(G)$, by Theorem 4.1, $n \ge \Delta + 1 \ge \chi'(G)$. By Theorem 4.2, G is equitably *n*-edge colorable. Hence G is M_k -decomposable.

If $q(G) < k\Delta(G)$, by Theorem 4.1, $n < \Delta \leq \chi'(G)$. Hence, G is not n-edge colorable and then G is not M_k -decomposable.

Suppose $q(G) = k\Delta(G)$, i.e., $n = \Delta(G)$. If G is M_k -decomposable, then G is nedge colorable. By Theorem 4.1, $\Delta(G) \leq \chi'(G) \leq n = \Delta(G)$ and then $\chi'(G) = \Delta(G)$. Conversely, if $\chi'(G) = \Delta(G) = n$, by Theorem 4.2, G is equitably n-edge colorable. Therefore, G is M_k -decomposable.

Recall that, in [1], the authors gave a necessary and sufficient condition for a graph being P_3 -decomposable. Here, we characterize graphs which are M_2 -decomposable.

Theorem 4.6 Suppose G is a graph different from $K_3 \cup K_2$ and of even size. Then G is M_2 -decomposable if and only if $q(G) \ge 2\Delta(G)$.

Proof. Let $q(G) = 2\Delta(G)$. By Theorem 4.5, G is M_2 -decomposable if $q(G) > 2\Delta(G)$ and G is not M_2 -decomposable if $q(G) < 2\Delta(G)$. Now, let $q(G) = 2\Delta(G)$. For $\Delta(G) = 1$, then $G = M_2$. For $\Delta(G) = 2$, then $G = C_4$, $K_3 \cup K_2$, P_5 , $P_4 \cup P_2$, $2P_3$ or $P_3 \cup 2P_2$. Hence, G is M_2 -decomposable except $G = K_3 \cup K_2$. Suppose $\Delta(G) \ge 3$. Choose a vertex v with $deg(v) = \Delta(G)$ and $v_1, v_2, \dots, v_{\Delta(G)}$ are adjacent to v. Let $E(G) \setminus \{vv_1, \dots, vv_{\Delta(G)}\} =$ $\{e_1, \dots, e_{\Delta(G)}\}$. Consider the bipartite graph H = (X, Y) with vertex set $V(H) = X \cup Y$, where $X = \{e_1, \dots, e_{\Delta(G)}\}$ and $Y = \{v_1, \dots, v_{\Delta(G)}\}$, and edge set $E(H) = \{e_iv_j \mid e_i \text{ is}$ not incident with $v_j\}$. Let $S \subseteq X$. It is easy to see that $deg_H(e_i) \ge \Delta(G) - 2$. Hence, if $\mid S \mid \le \Delta(G) - 2$, then $\mid N(S) \mid \ge \Delta(G) - 2 \ge \mid S \mid$. For $\mid S \mid = \Delta(G) - 1 \ge 2$, if $|N(S)| = \Delta(G) - 2$. then all e'_i s in S have the same end vertices. It is impossible since G is simple. Hence $|N(S)| \ge \Delta(G) - 1 = |S|$. For $|S| = \Delta(G)$, we have S = X and $|N(S)| = |Y| = \Delta(G)$. Therefore, $|N(S)| \ge |S|$ for all $S \subseteq X$. By Theorem 4.3, H has a matching M that saturates every vertex in X. Without loss of generality, assume $M = \{e_1v_1, e_2v_2, \cdots, e_{\Delta(G)}v_{\Delta(G)}\}$. Color the edges e_i and vv_i by the color i for $1 \le i \le \Delta(G)$. Then G is $\Delta(G)$ -colorable. By Theorem 4.1, $\Delta(G) \le \chi'(G) \le \Delta(G)$ and then $\chi'(G) = \Delta(G)$. By Theorem 4.5, G is M_2 -decomposable.

Next, we will give an alternative proof to Theorem 3.5.

Theorem 3.5 Suppose $G = K_{n_1,n_2,\dots,n_r}$ of size $q(G) \equiv 0 \pmod{3}$ with $r \geq 2$. Then G is M_3 -decomposable if and only if G is different from $K_{1,3n}$, $K_{2,3n}$, $K_{1,3,3}$, $K_{1,1,3c+1}$ and $K_{1,1,1,m}$, where $n \geq 1$, $c \geq 0$ and $m \geq 1$.

Proof. Let $q(G) = 3\Delta(G)$. By directed computing, $q(G) < 3\Delta(G)$ if $(n_1, \dots, n_r) = (1, 3n), (2, 3n), (1, 3, 3), (1, 1, 3c + 1)$ or $(1, 1, 1, m), q(G) = 3\Delta(G)$ if $(n_1, \dots, n_r) = (3, n), n \ge 3, (2, 2, 2), (1, 3, 6), (1, 4, 4), (1, 1, 2, 4), (1, 2, 2, 2), (1, 1, 1, 1, 3)$ or (1, 1, 1, 1, 1, 1) and $q(G) > 3\Delta(G)$ for other cases. By Theorem 4.5, G is M_3 -decomposable if $q(G) > 3\Delta(G)$ and G is not M_3 -decomposable if G is one of $K_{1,3n}, K_{2,3n}, K_{1,3,3}, K_{1,1,3c+1}, \text{ and } K_{1,1,1,m}$. For $q(G) = 3\Delta(G)$, it is easy to see that $|E(G)| \le \Delta(G) \lfloor \frac{p(G)}{2} \rfloor$ for each possible graph G. By Theorem 4.4, G is of class 1, i.e., $\chi'(G) = \Delta(G)$. By Theorem 4.5, G is M_3 -decomposable.

Before we put an end of this chapter, we would like to point out the relationship of M_k -decomposition of a graph G with $k\Delta(G)$ edges. Clearly, if G is of Class 1,then an M_k -decomposition exists. Unfortunately, for smaller $\Delta(G)$, we may not be able to guarantee that G is of Class 1.

Example 1 For $k \ge 1$, there exists a graph G such that $q(G) = k\Delta(G)$, $1 < \Delta(G) < 2k - 1$ and $\chi'(G) = \Delta(G) + 1$.

Proof. Let $\Delta = 2k - i < 2k - 1$, where $2 \le i < 2k - 1$.

If *i* is even, let $G = K_{2k-i+1} \cup P_{n+1}$, where $n = k(2k-i) - \binom{2k-i+1}{2} = \frac{(i-1)(2k-i)}{2}$. It is easy to see that $q(G) = k\Delta(G)$ and $\chi'(G) = \chi'(K_{2k-i+1}) = 2k - i + 1 = \Delta(G) + 1$.

If i > 1 and odd, let $G = (K_{2k-i+2} \setminus H) \cup P_{n+1}$, where $H = P_3 \cup M_{k-\frac{i+1}{2}}$ and $n = k(2k - i + 1) - \binom{2k-i+2}{2} + |E(H)| = (i - 2)k - \frac{1}{2}(i^2 - 2i - 1)$. It is easy to see that $q(G) = k\Delta(G)$ and $\chi'(G) = \chi'(K_{2k-i+2} \setminus H) \ge \left\lceil \frac{\binom{2k-i+2}{2} - |E(H)|}{\frac{2k-i+1}{2}} \right\rceil = 2k - i + 1 = \Delta(G) + 1$ or $\chi'(G) = \Delta(G) + 1$ by Theorem 4.1.

From above example, we have constructed a graph of Class 2 which satisfies the conditions $q(G) = k\Delta(G)$ and $1 < \Delta(G) < 2k - 1$. But if k = 1, then $q(G) = \Delta(G)$ and this $G = S_{\Delta}$. Clearly $\chi'(G) = \Delta(G)$. For themore for k = 2 and 3, if $\Delta(G) \ge 3$ and $\Delta(G) \ge 5$ respectively, then $\chi'(G) = \Delta(G)$. Hence, it is reasonable to make the following conjecture to conclude this thesis.

Conjecture 4 If G is a simple graph with $q(G) = k\Delta(G)$ and $\Delta(G) \ge 2k - 1$, then $\chi'(G) = \Delta(G)$.

References

- [2] G. Chartrand, F. Saba and C.M. Mynhardt, Prime graphs, prime-connected graphs and prime divisors of graphs, Utilitas Math. 46(1994), 179-191.
- [3] C.J. Colbourn, C.A. Cusack and D.L. Kreher, Partial steiner triple system with equal-sized holes, J. Combin. Theory A 70(1995), 56-65.
- [4] C.J. Colbourn, D.G. Hoffman and R. Rees, A new class of group divisible designs with block size three, J. Combin. Theory A 59(1992), 73-89.
- [5] O. Favaron, Z. Lonc and M. Truszczynski, Decompositions of graphs into Graphs with Three Edges, Ars Combinatoria 20(1985), 125-146.

- [6] P. Hall, On representatives of subsets, J. London Math. Soc. 10(1935), 26-30.
- [7] D.G. Hoffman and C.A. Rodger, Chromatic index of complete multipartite graph, J. Graph Theory 16(1992), 159-163.
- [8] C.S. Kumar, On P₄-decomposition of graphs, Taiwanese Journal of Mathematics 7(2003), 657-676.
- [9] J. Petersen, Die Theorie der regularen graphs, Acta Math. 5(1891), 193-220.
- [10] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3(1964), 25-30.
- [11] D. de Werra, On some combinatorial problem arising in scheduling, INFOR, 8(1970), 165-175.

