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最小覆蓋問題在測集設計的反物模型上的應用 

研 究 生：陳正傑 指導老師：黃光明 教授

 

國 立 交 通 大 學 

應 用 數 學 系 

 

摘 要 

 
    最小覆蓋問題在圖論中算是個大問題,很多題目都可以轉換成這類形的問題. 

在這篇文章中,我們會討論到的是它的一個特別例子,即發生在二分圖中的最小覆蓋

問題,我們將給出一個下界並將這個結果用在測集設計中. 
 
一個clone是一小段DNA序列,clone library是儲存了大量clone的地方,從clone library
裡找出特定性質的 clones, 我們稱之為正物,便是 clone library 的檢測問題。將一群
clones放在一起並稱此集合為一個測集(pool)。我們用檢測測集代替檢測所有 clone 
。另外,我們還希望同時檢測所有的測集,以節省我們的時間。所謂測集設計就是同

時檢測所有測集的方法,我們利用它有效的找出正物。 
 
由於 DNA分子間的作用,有時正物會與某些亦存在於 clone library 裡的 clones,我們
稱之為反物.產生化學反應。如果受測試的測集中,同時包含了一些正物跟反物,我們
會誤認此測集中並不含有正物.本論文利用了最小覆蓋問題的結果,提出了一個結果

可以應用在測集設計上,達到檢測出所有正物的結果。 

關鍵詞：最小覆蓋問題，測集設計，反物模型。  
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Application in Pooling Designs with Inhibitors  
 

Student : Cheng-Jie Chen Advisor : F.K. Hwang 
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Abstract 
 
Many problems in graph theory can be formulated as a minimum covering problem. In 
this thesis, we will discuss a special form of the minimum covering problem, based on the 
bipartite graph. We will give a lower bound of the cardinality of a vertex-cover and use 
this result in screening clone library. 
 
A clone is a DNA subsequence and a clone library is a large collection of clones. 
Screening of a clone library is to identify all clones containing a specific subsequence, in 
the clone library. We refer to such a clone as a positive clone. We choose a set of clones 
to form a pool and screen each pool as a unit for the existence of a positive clone. Further, 
we screen all pools in parallel to save time. Such a set of pools is called a pooling design 
which helps us solve the clone library screening problem efficiently.   
 
Due to the interaction between DNA molecules, positive clones might interact with some 
other clones, called inhibitors, to lose their positive effect. This thesis, using the result of 
the minimum covering problem, provides a result which identifies all positive clones even 
in the presence of inhibitors and errors for some inhibitor model. 
 
Keywords: Minimum covering problem, Pooling designs, Inhibitor model.  
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1 Introduction

Many problems in graph theory can be formulated as an instance of the following set-

covering problem (for ease of writing, we omit the word ”set” from now on):

Problem (A minimum covering of R):

Let G be a bipartite graph with bipartition (D,R) where every vertex in R has degree at

least s. We want to find a subset X0 ∈ D of minimum cardinality such that NG(X0) = R,

where NG(G) is the set of neighbors of X0 in G.

This problem is NP-hard (Karp(1972))[6]. In Chapter 2. We will use the greedy

algorithm to find approximate solutions, which we will use in Chapter 3.

The emergence of pooling designs arose from the need to screen a collection of clones,

say, from a clone library, against a probe. A clone represents a short DNA fragment cut

from a molecule into storage size, and a probe is a specific DNA fragment (very short) that

we are interested in. (For more information about clone library, see pp 83-85 in [7]). A

clone is called positive if it contains the complement of the probe as a segment. Otherwise,

it is called negative. Our goal is to identify all positive clones in the library efficiently. (For

ease of writing, we use ”positives” instead of ”positive clones” and ”negatives” instead of

”negative clones” from now on).

Because the number of clones in a library is very large, screening each clone individ-

ually, of course, is not a good idea. An alternative strategy is to select a set of clones to

form a pool and assay the pool as a unit. There are two possible outcomes: a pool with

negative outcome is called a negative pool which signifies that no clone in it is positive;

otherwise it is called a positive pool which signifies that there’s at least one positive in

this pool. This strategy is helpful because in most situations, relatively few clones are

positive for the probe. Hence one negative pool identifies all clones contained in it as

negative.

A pooling design is a collection of pools. It is a screening scheme which identifies all

positives in the library efficiently. Figure 1 is an example for a pooling design, in which
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C2 is contained in pools 1 and 2; pool 1 contains C1, C2, C3 and C5. A pooling design

with t pools for a library and n clones is represented by a t × n binary matrix M. Each

column of M represents a clone and each row represents a pool. A 1-entry in cell (i,j)

signifies that clone j is contained in pool i.

 C1 C2 C3 C4 C5 C6 C7

P1   1   1   1     1   

P2   1   1     1     1  

P3   1    1    1      1 

Figure 1: A t=3,n=7 pooling design.

After all pools have been assayed, let 1 represent a positive outcome and 0 represent

a negative outcome. Then the t outcomes can be written as an outcome vector. While a

column is a binary t-vector, it can also be viewed as a subset of 1,...,t depending on the

locations of its 1-entries. So we can talk about a union of columns, which is simply their

Boolean sum. Note that the union of all positives is the outcome vector. For example, in

Figure 2, suppose C2 and C5 are the positives, then the outcome vector would be 1,1,0.

We have to decode the outcome vector to infer what is the set of positives.

 C1 C2 C3 C4 C5 C6 C7 Outcome

P1   1   1   1        1      1 

P2   1   1        1     1     1 

P3   1   1    1      1    0 

Figure 2: The outcome vector.

In the pooling design problem, all information we have consists of the matrix M and

the outcome vector. Whether we can decode correctly, i.e, identifying the positive clones,

from this outcome vector apparently depends on the structure of the matrix.

An example of a pooling design with good structure is the d-disjunct matrices. A

matrix is d-disjunct if the union of any up to d columns can not cover any other column.
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Figure 3 gives a 2-disjunct matrix. Note that a set of d columns can be viewed as

a candidate set of positives. The union of this candidate set then yields the outcome

vector. When there are at most d positives, the d-disjunct property guarantees that all

negatives have at least one 1-entry not covered by the set of positive pools, or at least

one 1-entry in a negative pool, hence it can be identified as a negative.

 C1 C2 C3  C4 C5 C6 C7 C8 C9 C10 C11 C12 outcome

P1 1  1  1  1            1 

P2  1      1  1  1         1 

P3  1        1  1  1      0 

P4   1      1   1   1     1 

P5    1   1    1    1     1 

P6    1   1          0 

P7   1      1     1   1    1 

P8      1   1      1    1    1 

P9     1       1  1     1    0 

Figure 3: A 2-disjunct matrix.

An error in pooling design changes the outcome vector of a pool(0− > 1, 1− > 0).

For example, in Figure 4, suppose C2 and C5 are the positives. The outcome vector would

be 1,0,0 if pool 2 incurs an error.

 C1 C2 C3 C4 C5 C6 C7 Outcome

P1   1   1   1        1      1 

P2   1   1        1     1     0

P3   1       1    1      1    0 

Figure 4: The outcome vector with error.

The inhibitor is a new category of clones whose presence in a pool dictates a negative

outcome, regardless of the presence of positives in that pool. Farach et al. [4] first

introduced this model. Let n denote the total number of clones including at most d

positives and at most r inhibitors. They gave a randomized algorithm to identify all

positives in O((d+r)logn) tests, assuming d+r¿n. De Bonis and Vaccaro [2] gave a
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deterministic algorithm in O((r2+d)logn) tests. However, both algorithms are sequential

in nature, namely, tests cannot be preformed in parallel. It is possible to convert the De

Bonis and Vaccaro algorithm to a 3-stage algorithm (tests in a stage can be preformed in

parallel) by increasing the number of tests to O((r2+d2)logn). Hwang and Liu[5] gave a

pooling design which can tolerate e errors.

In a k-fold inhibitor model, the presence of an inhibitor in a pool dictates a negative

outcome unless the number of positive clones in that pool is at least k. Our goal is still

to identify all positive clones, figure 5 gives an example. Suppose C1 , C2 and C6 are the

positive clones, while C7 is a 2-fold inhibitor. Then P4 would have a negative outcome

but P2 would not, since P2 intersects two positives clones, and P4 intersects one.

 C1 C2 C3  C4 C5 C6 C7 C8 C9 C10 C11 C12 outcome

P1 1  1  1  1            1 

P2  1      1  1  1         1 

P3  1        1  1  1      1 

P4   1      1   1   1     0 

P5    1   1    1    1     0 

P6    1   1          1 

P7   1      1     1   1    1 

P8      1   1      1    1    0 

P9     1       1  1     1    0 

Figure 5: A pooling design under the 2-fold inhibitor model.

We study the k-fold inhibitor model in Sec.3, using the results obtained in Sec.2.

2 Result of a minimum covering of R

In this section, we consider the minimum covering problem stated in Chapter 1. Consider

a bipartite graph G(D, R) with |D| = m, |R| = n, and every vertex in R has degree at

least s. We assume the degrees are exactly s since that is clearly the worst case. In order

to find X0, we use the greedy covering algorithm which we give below.

Greedy covering algorithm
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• Begin with bipartite graph G(D,R).

• Let C=∅.
• Repeat while R 6= ∅
Choose a vertex v of maximum degree in D.

Set D = D − v, and R = R−NG(v).

Add v to the set C.

• End while.

Let f=dsn/me, and mi be the number of vertices which covers i neighbors in the greedy

algorithm. We have
∑p

i=0 imi = n immediately since C is a cover of R.

Lemma 1 Suppose the first vertex chosen in C covers p neighbors, p≥f. Then

s(n− pmp − (p− 1)mp−1 · · · − (p− i)mp−i) ≤ (p− i− 1)(m−mp −mp−1 · · · −mp−i)

for 0 ≤ i ≤ p− 2.

Proof. If not, then

s(n− pmp − (p− 1)mp−1 · · · − (p− i)mp−i) > (p− i− 1)(m−mp −mp−1 · · · −mp−i),

which says that after all vertices in D each covering at least p-i vertices in R have been cho-

sen, there is still a vertex x ∈ D of degree at least > p-i-1 which the greedy algorithm could

choose to cover at least p-i vertices, contradicting our assumption of mp, mp−1, · · · ,mp−i.

We want to find an upper bound of
∑p

i=1 mi since
∑p

i=1 mi is the cardinality of a

covering set C, and
∑p

i=0 imi = n. Now, an upper bound of
∑p

i=1 mi can be considered

as a lower bound of
∑p

i=1(i− 1)mi since their sum is
∑p

i=0 imi = n, a constant.

Define c(v)m,n,s = {v!(s−1)v [(v+1)m−n]Qv
w=1[(w+1)s−w]

} −m + n., when the context is clear, we use c(v)

instead c(v)m,n,s

Note: c(1)m,n,s = (s−1)[2m−n]
2s−1

−m+n = (s−1)[2m−n]−2sm+m+2sn−n
2s−1

= sn−m
2s−1

. If c(1)m,n,s <

0, then sn−m < 0 ⇒ f = 1. In this case, clearly the worst case occurs when the degree
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of each vertex of D is not more than 1. Then it takes m vertices in D to cover R. Thus

we only need to consider c(1)m,n,s > 0.

Lemma 2 c(f-1) is a maximum of c(v) for 1 ≤ v ≤ p-1.

Proof.

c(v + 1)− c(v) = (v+1)!(s−1)v+1[(v+2)m−n]Qv+1
w=1[(w+1)s−w]

−m + n− [v!(s−1)v[(v+1)m−n]Qv
w=1[(w+1)s−w]

−m + n]

= v!(s−1)v

Qv+1
w=1[(w+1)s−w]

[(v + 1)(s− 1)[(v + 2)m− n]− [(v + 2)s− (v + 1)][(v + 1)m− n]]

= v!(s−1)v

Qv+1
w=1[(w+1)s−w]

[(v+1)(s−1)[(v+1)m−n]+(v+1)(s−1)m−[(v+2)s−(v+1)][(v+1)m−n]

= v!(s−1)v

Qv+1
w=1[(w+1)s−w]

[(vs + s− v − 1− vs− 2s + v + 1)[(v + 1)m− n] + (v + 1)(s− 1)m]

= v!(s−1)v

Qv+1
w=1[(w+1)s−w]

[(−s)[(v + 1)m− n] + (v + 1)(s− 1)m]

= v!(s−1)v

Qv+1
w=1[(w+1)s−w]

[sn− s(v + 1)m + (v + 1)(s− 1)m]

= v!(s−1)v

Qv+1
w=1[(w+1)s−w]

[sn− (v + 1)m]

Since f=dsn/me =⇒ sn > (f−1)m and sn ≤ fm=⇒, sn−(v+1)m > 0 for 1 ≤ v ≤ f−2

and sn − (v + 1)m ≤ 0 for f − 1 ≤ v ≤ p − 1. Then c(v + 1) ≤ c(v) for f-1 ≤ v ≤ p-1,

and hence c(f-1) is a maximum of c(v) for 1 ≤ v ≤ p-1.

Theorem 3 Consider a bipartite graph G(D,R) where |D| = m, |R| = n, and every

vertex in R has degree at least s. We have
∑p

i=1(i− 1)mi ≥ c(v) + v!(s−1)vQv
w=1[(w+1)s−w]

[[
∑p

j=v+2[j − (v + 1)]mj] for 1 5 v 5 p− 1.

Proof. By induction. Suppose v=1. Set i= p-2 in Lemma1, we have

s(n− pmp − (p− 1)mp−1 · · · − 2m2) ≤ (m−mp −mp−1 · · · −m2).

Then,

m2 ≥
sn−m− [

∑p
j=3[sj − 1]mj]

2s− 1
.

We find

6



p∑
i=1

(i− 1)mi = m2 +

p∑
i=3

(i− 1)mi

≥ sn−m

2s− 1
+

1

2s− 1
[

p∑
j=3

(2s− 1)(j − 1)mj −
p∑

j=3

[sj − 1]mj]

≥ sn−m

2s− 1
+

1

2s− 1
[

p∑
j=3

[2sj − j − 2s + 1− sj + 1]]mj

≥ sn−m

2s− 1
+

s− 1

2s− 1
[

p∑
j=3

(j − 2)mj]

= c(1) +
s− 1

2s− 1
[

p∑
j=3

(j − 2)mj].

So v=1 is true.

Suppose v=q ,1 ≤ q ≤ p− 3, holds, i.e.,

p∑
i=1

(i− 1)mi

≥ c(q) +
q!(s− 1)q

∏q
w=1[(w + 1)s− w]

[

p∑
j=q+2

(j − (q + 1))mj].

Now let v=q+1. Setting i=p-q-2 in Lemma1,

s(n− pmp − (p− 1)mp−1 · · · − (q + 2)mq+2) ≤ (q + 1)(m−mp −mp−1 · · · −mq+2).

We find

mq+2 ≥
sn− (q + 1)m− [

∑p
j=q+3[sj − (q + 1)mj]]

s(q + 2)− (q + 1)
.

7



Combining the two inequalities, we find

p∑
i=1

(i− 1)mi

≥ c(q) +
q!(s− 1)q

∏q
w=1[(w + 1)s− w]

[

p∑
j=q+3

(j − (q + 1))mj + mq+2]

≥ c(q) +
q!(s− 1)q

∏q
w=1[(w + 1)s− w]

[[

p∑
j=q+3

(j − (q + 1))mj] +

(q!(s− 1)q)(sn− (q + 1)m− [
∑p

j=q+3[sj − (q + 1)mj]])∏q+1
w=1[(w + 1)s− w]

]

= c(q) +
q!(s− 1)q

∏q+1
w=1[(w + 1)s− w]

[sn− (q + 1)m] +

(q!(s− 1)q)∏q+1
w=1[(w + 1)s− w]

[

p∑
j=q+3

[j − (q + 1)][(q + 2)s− (q + 1)]mj −
p∑

j=q+3

[sj − (q + 1)]mj]

= c(q + 1) +
(q!(s− 1)q)∏q+1

w=1[(w + 1)s− w]
[

p∑
j=q+3

[[(q + 2)s− (q + 1)][j − q − 1]− sj + (q + 1)]mj]

= c(q + 1) +
(q!(s− 1)q)∏q+1

w=1[(w + 1)s− w]
[

p∑
j=q+3

(q + 1)[sj − j − (q + 2)s + (q + 1) + (q + 1) + 1]mj]

= c(q + 1) +
(q!(s− 1)q)∏q+1

w=1[(w + 1)s− w]
[

p∑
j=q+3

(q + 1)(s− 1)[j − (q + 2)]mj]

= c(q + 1) +
(q + 1)!(s− 1)q+1

∏q+1
w=1[(w + 1)s− w]

[

p∑
j=q+3

[j − (q + 2)]mj]

So, by the induction hypothesis, theorem 2 is true for 1 ≤ v ≤ p− 1.

Corollary 4 Using the greedy algorithm,
∑p

i=1(i− 1)mi ≥ c(f − 1).

Proof. By Theorem 3

p∑
i=1

(i− 1)mi

≥ c(f − 1) +
(f − 1)!(s− 1)f−1

∏f−1
w=1[(w + 1)s− w]

[

p∑

j=f+1

[j − f ]mj].

Since mj ≥ 0 for f + 1 ≤ j ≤ p− 1, and mp ≥ 1,
∑p

i=1(i− 1)mi ≥ c(f − 1).
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By Corollary 4, we find a lower bound of
∑p

i=1(i− 1)mi to be c(f − 1), and an upper

bound of |X0| is n− c(f − 1).

Now we give a relation of n− c(f − 1) and m.

Lemma 5 n-c(f-1) is increasing in m.

Proof. Since n− c(f − 1)m,n,s = m− { (f−1)!(s−1)f−1[fm−n]Qf−1
w=1[(w+1)s−w]

}.
Now we consider n− c(f − 1)m−1,n,s, if f does not change, then

n− c(f − 1)m−1,n,s = (m− 1)− { (f−1)!(s−1)f−1[f(m−1)−n]Qf−1
w=1[(w+1)s−w]

}
and,

n− c(f − 1)m,n,s−n + c(f − 1)m−1,n,s = 1− (f−1)!(s−1)f−1[fm−n]Qf−1
w=1[(w+1)s−w]

+ (f−1)!(s−1)f−1[f(m−1)−n]Qf−1
w=1[(w+1)s−w]

=

1− (f−1)!(s−1)f−1[f ]Qf−1
w=1[(w+1)s−w]

= 1−∏f−1
w=1

[(w+1)s−(w+1)]
[(w+1)s−w]

> 0

else f increase 1 (note: f=dsn/me), at this time, we give

c(f)m−1,n,s − c(f − 1)m−1,n,s =f !(s−1)f [(f+1)(m−1)−n]Qf
w=1[(w+1)s−w]

− (f−1)!(s−1)f−1[f(m−1)−n]Qf−1
w=1[(w+1)s−w]

= (f−1)!(s−1)f−1

Qf−1
w=1[(w+1)s−w]

[ fs−f
(f+1)s−f

[(f + 1)(m− 1)− n]− f(m− 1) + n]

= (f−1)!(s−1)f−1

Qf−1
w=1[(w+1)s−w]

[ 1
(f+1)s−f

[(fs− f)(f + 1)(m− 1) + sn− [(f + 1)s− f ]f(m− 1)]]

= (f−1)!(s−1)f−1

Qf−1
w=1[(w+1)s−w]

[ 1
(f+1)s−f

[f(m− 1)[(s− 1)(f + 1)− [(f + 1)s− f ]] + sn]]

= (f−1)!(s−1)f−1

Qf−1
w=1[(w+1)s−w]

[ 1
(f+1)s−f

[f(m− 1) + sn] > 0]

then c(f)m−1,n,s > c(f − 1)m−1,n,s. Hence n− c(f − 1)m,n,s − n + c(f)m−1,n,s > n− c(f −
1)m,n,s − n + c(f − 1)m−1,n,s > 0, and we find n− c(f − 1) is increasing in m.

Sapozhenko[1] also gave an upper bound 1+m
s
(1+log sn

m
) by using the greedy algorithm.

We will show our upper bound is less than 1 + m
s
(1 + log sn

m
)

His analysis can be summarized to: let Uk be the subset of vertices remaining in R

after the kth iteration of the greedy algorithm. Then there is a vertex x ∈ D of degree at

least s|Uk|
m−k

.

Let X be the first q chosen vertices in greedy algorithm, and let n̄q be |NG(X)| in our

analysis, and let n̄′q be |NG(X)| in his analysis. Sapozhenko gave n̄′q =
∑q

i=1
s(n−Pi−1

v=1 n′v)

m+1−i

Lemma 6 n̄q ≥ n̄′q for all q.
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Proof. By induction. Suppose q=1. Obviously,

n̄1 = d sn
(m)
e ≥ sn

(m)
= n̄′1

Suppose q=p holds.

Condider q=p+1. n̄p ≥ n̄′p, so ¯np+1 = n̄p + d sn−n̄p

m−p
e

≥ n̄p + sn−n̄p

m−p
= n̄p(1 + 1

m−p
) + sn

m−p

≥ n̄′p(1 + 1
m−p

) + sn
m−p

= n̄′p +
sn−n̄′p
m−p

= ¯n′p+1

Thus our analysis produces better results than his.

We give some numerical comparisons of |X0|, as a function of d, between our method(Table

1) and Sapozhenko’s method(Table 2).

   s  

n

2 3 4 5 6 7 8 9 10

0.5d 0.5 0.4 0.357143 0.316239 0.289773 0.265425 0.247335 0.230698 0.21743

0.75d 0.5833 0.485714 0.421429 0.372549 0.336601 0.308334 0.28526 0.265495 0.24884

d 0.6667 0.542857 0.465934 0.411621 0.370589 0.338207 0.311844 0.289872 0.27122

2d 0.8 0.659008 0.565337 0.498003 0.446871 0.406492 0.373658 0.346349 0.32321

3d 0.8571 0.716227 0.616951 0.544122 0.488307 0.439389 0.403695 0.37397 0.34877

Table 1: |X0|/d in our method

s

n
2 3 4 5 6 7 8 9 10

0.5d 0.5 0.468488 0.423287 0.383258 0.349769 0.321823 0.298287 0.278231 0.26095

0.75d 0.702733 0.603643 0.524653 0.464351 0.417346 0.379747 0.34897 0.323283 0.30149

d 0.846574 0.699537 0.596574 0.521888 0.465293 0.420844 0.38493 0.355247 0.33026

2d 1.193147 0.930586 0.76986 0.660517 0.580818 0.519865 0.471574 0.432264 0.39957

3d 1.39588 1.065742 0.871227 0.74161 0.648395 0.577789 0.522257 0.477315 0.44012

Table 2: |X0|/d in Sapozhenko’s method

Our result can be extended to non-bipartite graphs.

A vertex dominating set in a graph G is defined to be a subset of vertices D ⊆ V (G)

such that each vertex x ∈ V (G) \D is adjacent to some vertex of D. The problem is to
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find a vertex dominating set D0 consisting of as few vertices as possible. We give a lemma

of this problem.

Lemma 7 Every n-vertex graph with minimum degree k has a dominating set of size at

most n− c(k)n,n,k+1.

Proof. By interpreting G as a bipartite graph G’(D,R) where D=R=V(G). Each vertex

x ∈ D covers itself in R and those vertices in R, which it is adjacent to in G. Hence

s=k+1.

3 Pooling design with k-fold inhibitor model

If k>d, then all tests will have a negative outcome. To avoid this uninteresting case, we

assume k≤d in this section.

Definition: A column Ci in a 0-1 matrix is isolated if there exists one row that

contains Ci only.

To avoid trivial discussion, it is often assumed that a pooling designs has no isolated

column. We make this assumption in this section. D’yachkov and Rykov[3] proved that:

Lemma 8 Every column should have column weight at least m+1 in a m-disjunct matrix.

Lemma 9 Let K denote a set of k row indices. There exists a set of at most k columns

whose union covers K.

Proof. For each row index in K, select any column with a 1-entry in that row (whose

existence is guaranteed by the assumption of no isolated column). Then the set of at most

k chosen columns covers K.

Suppose there are at most d positives , r inhibitors and e errors.
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Lemma 10 A positive should have at least d+e+1 1-outcomes in a (d+ r+2e)-disjunct

matrix.

Proof. Suppose there is a positive C which has at most d + e 1-outcomes. By Lemma 9,

there exists a set of at most d + e columns covering the row indices of these 1-outcomes.

Further all its other (at least r + e + 1) 1-entries are covered by the r inhibitors and the

up to e errors. Since there is no isolated column, there exists a set E of e column, C " E

, covering the row indices of the up to e errors. Hence at most (d+e)+(r+e) = d+r+2e

columns cover C, contradicting Lemma 8.

Lemma 11 A negative should have at least r+e+1 0-outcomes in a (d+r+2e)-disjunct

matrix.

Proof. Suppose to the contrary that a negative C has only r + e 0-outcomes. Let E be

defined as in the last lemma. Then all the 1-entries of C with 1-outcomes are covered by

at most d + e columns, and all with 0-outcomes by at most r + e columns, leading to the

conclusions that C is covered by d + r + 2e columns, a contradiction to Lemma 8.

Let M denote a (d + r + 2e)-disjunct matrix . Let Ii denote an inhibitor with weight

wi, and let Wi denote the set of pools i appears and W+
i ⊆Wi the subset of pools with

positive outcomes. We will show that Wi can be covered by at most d+r+2e columns,

there violating the (d + r + 2e)-disjunctness of M (lemma 9). This is accomplished by

observing that W+
i can be covered by a fraction of the positive clones, using the results

in the last section. We first need to turn the problem into the covering problem format.

Define the graph G(D,R) by taking D so the set of d positives (by Lemma 5, d is the

worst case among all d’¡=d). R as the set W+
i and an edge from u∈D to v∈R if u is a

positive clone appearing in pool v. Then each v most have degree at least k since it takes

at least k positive clones to yield a positive outcome. Figure 6 illustrates the construction

of G(D,R) from M although only the columns corresponding to Ii and the d(6) positive

clones in M are shown.
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 I   D1 D2 D3 D4 D5 D6 Outcome

P1

P2

  1 

  1 

   1   1   1 

  1 

      1 

   1 

P3   1    1   1    1 

P4   1    1    1     1 

P5   1    1    1     1 

P6

P7

  1 

  1 

   1 

  1 

  1   1     1 

   1 

P8   1     0 

P9   1     0 

D1

D2

D3

D4

D5

D6

a

b

c

d

e

f

g

Figure 6: In a 2-fold inhibitor model, relation between positives and the 1-outcomes.
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Now the main results.

Theorem 12 A k-fold inhibitor with weight less than d + r + c(k)d,d+1,k + 2e + 1 have at

most d + e 1-outcomes in a d+r+2e-disjunct matrix.

Proof. Since this matrix has at most e errors, it suffices to show that not counting

errors, if an inhibitor I has at least d + 1 1-outcomes, then it will violate the (d+r+2e)-

disjunctness. Let R denote a set of d+1 1-outcomes of I. Then each of these d + 1

1-outcomes has to be covered by k positive clones’. Hence we can define a bipartite graph

G(R,D) with |R| = d + 1. |D| = d, s = k, then f=dk(d + 1)/de=k+1 (recall k ≤ d

obviously). By Corollary ?? it only needs d − c(k) vertices in D to cover R, in other

words it only needs d− c(k) positive clones to cover the 1-outcome of I. Suppose weight

of I is less than d + r + 2e + c(k) + 1. By Lemma 7 the other at most r + 2e + c(k)

0-outcomes of I can be covered by r+2e+c(k) columns . Combining, I can be covered by

d− c(k)d,d+1,k + r +2e+ c(k)d,d+1,k = d+ r +2e columns, violating (d+r+2e)-disjunctness

assumption.

So an inhibitor must have at most d 1-outcomes if there is no error. Considering error,

an inhibitor must have at most d + e 1-outcomes.

Using the above result, we give a 1-stage method.

Pooling: Use a (d+r+2e)-disjunct matrix with column weight ≤ d+r+2e+1+c(k)d,d+1.

Decoding:

Step1. Partition clones into 3-sets: P consists of those with at most r + e 0-outcomes.

O consists of those with at most d + e 1-outcomes, R consists of the rest.

Step2. If R 6= φ let the outcome vector be V and denote the union of an r-subset S

of O as V ′
S. Let US = V ∪ V ′

S. If clone C has at most e 0-outcomes under US,

then put it into P . Do this for all S.

Step3. Output P as our positives.
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Lemma 13 After step1, P is contained in the set of all positives. O contains all inhibitors

and no positive.

Proof. By Lemma 11, a negative has at least r + e + 1 0-outcomes and can’t be in P.

Further, the column weight is at least (d + r + 2e + 1) in a (d+r+2e)-disjunct matrix,

so a clone in P has at least (d + e + 1) > d + e 1-outcomes. By Theorem 12, inhibitors

will not appear in P , either. By Lemma 9, a clone with at most d + e 1-outcomes can’t

be a positive. An inhibitor can’t have more than d + e 1-outcomes. Hence O contains all

inhibitors but no positive.

Lemma 14 A clone C in R is positive ⇐⇒ there exists at least one r-subset of O such

that C has at most e 0-outcomes under U .

Proof. (⇒) O contains all inhibitors(whose number is at most r). Some r-subsets chosen

in step 2 should contain all r inhibitors. Then the vector V ′
S corrects the false negative

outcomes caused by the inhibitors.

(⇐) Suppose a clone C is negative. U can be viewed as the union of d + r clones.

Then |C\U | > e for otherwise C can be covered by U ∪E, where E is a set of e columns,

a contradiction to the (d+r+2e)-disjunctness since |U ∪ E| ≤ d + r + 2e.

Corollary 15 After Step 2, the set P contains all positives and nothing else.
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