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The Minimum Covering Problem with

Application in Pooling Designs with Inhibitors

Student : Cheng-Jie Chen Advisor : F.K. Hwang

Department of Applied Mathematics
National Chiao Tung University
Hsinchu 300, Taiwan, R.O.C.

Abstract

Many problems in graph theory can be formulated as a minimum covering problem. In
this thesis, we will discuss a special form-of the minimum covering problem, based on the
bipartite graph. We will give a lower,bound ofithe cardinality of a vertex-cover and use
this result in screening clone library:

A clone is a DNA subsequence and a-clone-library is a large collection of clones.
Screening of a clone library is to identify.all clones containing a specific subsequence, in
the clone library. We refer to such a clone as a positive clone. We choose a set of clones
to form a pool and screen each pool as a unit for the existence of a positive clone. Further,
we screen all pools in parallel to save time. Such a set of pools is called a pooling design
which helps us solve the clone library screening problem efficiently.

Due to the interaction between DNA molecules, positive clones might interact with some
other clones, called inhibitors, to lose their positive effect. This thesis, using the result of
the minimum covering problem, provides a result which identifies all positive clones even
in the presence of inhibitors and errors for some inhibitor model.

Keywords: Minimum covering problem, Pooling designs, Inhibitor model.
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1 Introduction

Many problems in graph theory can be formulated as an instance of the following set-
covering problem (for ease of writing, we omit the word ”set” from now on):

Problem (A minimum covering of R):

Let G be a bipartite graph with bipartition (D, R) where every vertex in R has degree at
least s. We want to find a subset Xo € D of minimum cardinality such that Ng(Xo) = R,

where Ng (G) is the set of neighbors of Xq in G.

This problem is NP-hard (Karp(1972))[6]. In Chapter 2. We will use the greedy

algorithm to find approximate solutions, which we will use in Chapter 3.

The emergence of pooling designs arose from the need to screen a collection of clones,
say, from a clone library, against a probe. A clone represents a short DNA fragment cut
from a molecule into storage size, and aprobe is aspecific DNA fragment (very short) that
we are interested in. (For more information‘about clone library, see pp 83-85 in [7]). A
clone is called positive if it contains the complementof the probe as a segment. Otherwise,
it is called negative. Our goal is to identify all positive clones in the library efficiently. (For
ease of writing, we use "positives” instead of ”positive clones” and "negatives” instead of
"negative clones” from now on).

Because the number of clones in a library is very large, screening each clone individ-
ually, of course, is not a good idea. An alternative strategy is to select a set of clones to
form a pool and assay the pool as a unit. There are two possible outcomes: a pool with
negative outcome is called a negative pool which signifies that no clone in it is positive;
otherwise it is called a positive pool which signifies that there’s at least one positive in
this pool. This strategy is helpful because in most situations, relatively few clones are
positive for the probe. Hence one negative pool identifies all clones contained in it as
negative.

A pooling design is a collection of pools. It is a screening scheme which identifies all

positives in the library efficiently. Figure 1 is an example for a pooling design, in which



C5 is contained in pools 1 and 2; pool 1 contains C,Cy,C3 and Cs. A pooling design
with t pools for a library and n clones is represented by a ¢t x n binary matrix M. Each
column of M represents a clone and each row represents a pool. A l-entry in cell (i,j)

signifies that clone j is contained in pool i.

o Co Cs Ca Cs Ce C7
P4 1 1 1 1
P2 1 1 1 1
Ps 1 1 1 1

Figure 1: A t=3,n=7 pooling design.

After all pools have been assayed, let 1 represent a positive outcome and 0 represent
a negative outcome. Then the t outcomes’¢an béswritten as an outcome vector. While a
column is a binary t-vector, it can dlso bewiewed as a.subset of 1,....t depending on the
locations of its 1-entries. So we can talk about a union -of columns, which is simply their
Boolean sum. Note that the union of allpositives is the outcome vector. For example, in
Figure 2, suppose Cy and (5 are the positives; then the outcome vector would be 1,1,0.

We have to decode the outcome vector to infer what is the set of positives.

C+ Co Cs Cs Cs Ce C7  outcome

P4 1 1 1 1 1
P> 1 1 1 1 1
Ps 1 1 1 1 0

Figure 2: The outcome vector.

In the pooling design problem, all information we have consists of the matrix M and
the outcome vector. Whether we can decode correctly, i.e, identifying the positive clones,
from this outcome vector apparently depends on the structure of the matrix.

An example of a pooling design with good structure is the d-disjunct matrices. A

matrix is d-disjunct if the union of any up to d columns can not cover any other column.



Figure 3 gives a 2-disjunct matrix. Note that a set of d columns can be viewed as
a candidate set of positives. The union of this candidate set then yields the outcome
vector. When there are at most d positives, the d-disjunct property guarantees that all

negatives have at least one 1l-entry not covered by the set of positive pools, or at least

one l-entry in a negative pool, hence it can be identified as a negative.

C1 Cz C3 C4 C5 Ce C7 Cg Cg C1o C11 C12 outcome
P4 1 1 1 1 1
P> 1 1 1 1 1
Ps 1 1 1 1 0
P4 1 1 1 1 1
Ps 1 1 1 1 1
Ps 1 1 0
Pz 1 1 1 1 1
Ps 1 1 1 1 1
P9 1 1 1 1 0

Figuré 3: A 2-disjunct matrix.

An error in pooling design changes the outcome.vector of a pool(0— > 1, 1— > 0).
For example, in Figure 4, suppose Cy and (5 are the positives. The outcome vector would

be 1,0,0 if pool 2 incurs an error.

C;

Co

Cs

C4

Cs

Ce

Gy

Outcome
P 1 1 1 1 1
P 1 1 1 1
Ps 1 1 1 1 0

Figure 4: The outcome vector with error.

The inhibitor is a new category of clones whose presence in a pool dictates a negative

outcome, regardless of the presence of positives in that pool. Farach et al. [4] first

introduced this model. Let n denote the total number of clones including at most d
positives and at most r inhibitors. They gave a randomized algorithm to identify all

positives in O((d+r)logn) tests, assuming d+r<n. De Bonis and Vaccaro [2| gave a
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deterministic algorithm in O((r?+d)logn) tests. However, both algorithms are sequential

in nature, namely, tests cannot be preformed in parallel. It is possible to convert the De

Bonis and Vaccaro algorithm to a 3-stage algorithm (tests in a stage can be preformed in

parallel) by increasing the number of tests to O((r?+d?)logn). Hwang and Liu[5] gave a

pooling design which can tolerate e errors.

In a k-fold inhibitor model, the presence of an inhibitor in a pool dictates a negative

outcome unless the number of positive clones in that pool is at least k. Our goal is still

to identify all positive clones, figure 5 gives an example. Suppose C , C5 and Cy are the

positive clones, while C; is a 2-fold inhibitor. Then P, would have a negative outcome

but P, would not, since P, intersects two positives clones, and P, intersects one.

G+

Co

Cs

Cs

Cs

Cs

Cr

Cs

Co

Cio

Ci1

Ci2

outcome

P4
P2
Ps
P4
Ps
Pe
P7
Ps
Po

1
1
1

.1

1

.1

OO -4 4 OO0 - 4 4

Figure 5: A pooling design under the 2-fold inhibitor model.

We study the k-fold inhibitor model in Sec.3, using the results obtained in Sec.2.

2 Result of a minimum covering of R

In this section, we consider the minimum covering problem stated in Chapter 1. Consider

a bipartite graph G(D, R) with |D| = m, |R| = n, and every vertex in R has degree at

least s. We assume the degrees are exactly s since that is clearly the worst case. In order

to find Xg, we use the greedy covering algorithm which we give below.

Greedy covering algorithm



e Begin with bipartite graph G(D,R).

e Let C=0.

e Repeat while R # ()

Choose a vertex v of maximum degree in D.
Set D =D —wv,and R =R — Ng(v).

Add v to the set C.

e End while.

Let f=[sn/m], and m; be the number of vertices which covers i neighbors in the greedy

algorithm. We have Y7 im; = n immediately since C is a cover of R.

Lemma 1 Suppose the first vertex chosen in C covers p neighbors, p>f. Then
S(n = pmy — (p— Dyt -+ — (p— i) < (p— i — L)(m — my, =y — )

for0<i<p-—2.

Proof. If not, then

s(n—pmy — (p— Vmyp_1 -+ — (p — ihip2a) > (p=i=1)(m —my —myp_1 - — myp_y),
which says that after all vertices in D each covering at least p-i vertices in R have been cho-
sen, there is still a vertex x € D of degree at least > p-i-1 which the greedy algorithm could
choose to cover at least p-i vertices, contradicting our assumption of m,, mpy_1,- -+, m,_;.

We want to find an upper bound of Y7  m; since Y}, m; is the cardinality of a
covering set C, and ) ©_ im; = n. Now, an upper bound of > 7 m; can be considered

as a lower bound of "7 | (i — 1)m; since their sum is Y »_,im; = n, a constant.

Define ¢(v)mns = {”"i‘}: :137{([1(0?11)&;?]} — m + n., when the context is clear, we use ¢(v)

instead ¢(v)mn.s

Note: C(l)m,n,s — %_m_kn — (871)[2m7n]2*s275;n+m+23n7n _ 82115:71” If C(l)m,n,s <

0, then sn —m < 0= f = 1. In this case, clearly the worst case occurs when the degree



of each vertex of D is not more than 1. Then it takes m vertices in D to cover R. Thus

we only need to consider ¢(1),,,s > 0.

Lemma 2 ¢(f-1) is a maximum of c(v) for 1 < v < p-1.

Proof.

(v+1 1+ (v4+2)m—n vs—1)Y[(v+1)m—n
c(v+1) —c(v) = Ly 1[)(w+[1()st3,] L —m4n—| ‘iﬁw:i[(%ﬂ))sfw]] —m+n]

—%[ v+ 1)(s = D](v+2)m—n] = [(v+2)s — (v+ D)][(v + 1)m — n]]

(
=t (v D) (s D[(v+ Lym—n]+ (v 1) (s = Lm—[(v+2)s— (v+ D] [(v+ L)m—n]
—eﬁ%[(vsﬂ—v—1—us—2s+v+1>[( +1)m—n]+ (v+1)(s — )m]

- ”Jrf'[((iu-l-lls w] (=

wal(#[sn —s(v+1)m+ (v+1)(s—1)m|

$)[(v+1)m —n]+ (v +1)(s — 1)m]

(et 1)s—u]
vl(s—1
=S [(<w+i>s—w1 [sn — (v +1)m]
Since f=[sn/m] = sn > (f —1)mand sn/< fm==,sn—(v+1)m > 0for 1 <v < f—2
and sn — (v 4+ 1)m <0 for f —1 L v <p—"1. Then ¢fv + 1) < ¢(v) for f-1 < v < p-1,

and hence ¢(f-1) is a maximum of c(y) forr1 <v< p-1. ]

Theorem 3 Consider a bipartite graph G(D,R) where |D| = m, |R| = n, and every
vertex in R has degree at least s. We have

. w!(s—1)?
i (i = 1)my > c(v )+%H ool — 0+ Dmy] forlsvsp-1.

Proof. By induction. Suppose v=1. Set i= p-2 in Lemmal, we have

s(n—pmy —(p—1)mp_1--+—2my) < (M —my, —my_1--- —ma).
Then,
p .
> sn—m —| j:3[8j — 1jm;]
2s —1
We find



p

Z(z—l mg—i-Zz—l

=1

_ 1 P
L D (@s—1)(j — hm,

M@

S P 25— 1 pr (5 = Ljm,]
sn—m 1 u

> 25_1—i—28_1[]23[23j—j—28+1—sj—|—1]]mj
sn—m s—1 &

= 23—1+23—1[;(j 2)m|

So v=1 is true.

Suppose v=q ,1 < g < p — 3, holds, i.e.,

Z(Z - l)mz
q'ls =) Y 2
> c(q)+ T [0 S s [j§2(1 — (g +1))myl.

Now let v=q+1. Setting i=p-q-2 in Lemmal,
s(n—pmy — (p— Dmyp_1 -+ = (4 2)mgy2) < (¢ +1)(m —mp —myp_y -+ = mgps).

We find

sn— (q+ 1)m —[30_ sls5 — (¢ + 1)my]]
s(g+2) = (¢ +1) '

mq+2 2



Combining the two inequalities, we find

p

> (i—1)m;

=1

> c(q) + q_lq[iij__‘_ 3; — w][ Z (J = (g +1))m; + mgo]
g'(s — 1) ~
> c(q) + = NCESIE w][[Z(J—(Q+1)) ]+

(q'(s = 1)) (sn — (g + )m — [D25_, 5ls0 — (g + 1)“%‘]])]
q“ (w4 1)s — w

— clg)+ HQHQ[L(S”; —lan— g+ ] +

qﬂ( [(S e [éfj — (g Dllg+2)s — g+ )y — j;g[sj ~ g+ 1)}y
= clg+1)+ Hﬁf[(fjj))g w][jzzz;rgmqw)s—<q+1>nj—q—1]—sj+<q+1>]mj]
= cla+ )+ e w][ég(qﬂnsj—j—<q+2>s+<q+1>+<q+1>+11mﬂ
= o) w][é;g(qﬂ)(s—l)[j—(q+2)]mj]
— efgr )4 DD S

ot
Llw+1)s —w] 27,

So, by the induction hypothesis, theorem 2 is true for 1 <v < p— 1. [
Corollary 4 Using the greedy algorithm, Y 5 _ (i — 1)ym; > c(f — 1).
Proof. By Theorem 3
p
> (i = m;
i=1
f=1D(s—1 L
> off -+ MO 5 )
[Lol(w+1)s —w] 57,
Since m; > 0for f+1<j<p—1,andm, >1,> 7" (i—1)m; > c(f —1). ]
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By Corollary 4, we find a lower bound of > 7 (i — 1)m; to be ¢(f — 1), and an upper
bound of | Xg|isn —c(f —1).

Now we give a relation of n — ¢(f — 1) and m.

Lemma 5 n-c(f-1) is increasing in m.

. S f m—n
Proof. Since n — ¢(f — )pmns = m — {* Yf(l[éuﬂ;sf vl 1.

w=1
Now we consider n — ¢(f — 1)1, if f does not change, then
)1
n o]~ s = (m — 1) — (U= o

w

and,
n—of = Vs =1 e(f = Doy = 1= yilimenl o (ot timeninl

[(w+1)s w] f 1[(w—l—l)s w]
é s—1)f -1 H -1 [(w4+1)s—(w+1
1 f 1( ) Ll — =1 1]101:1 : [(w+)1)s( w] J >0

1 [(w+1)s—w]

else f increase 1 (note: f=[sn/m]), at this time, we give

Y _ N D (m—1) —n] L~ 1= 1)~ [f(m—1)—n]
(Pm-rs = e(f = Dm-tns = ST [(w1)s—10] T (w1 s—w)

s—1)/ -1
= ST Lt (1) (= ) = A1) + 1)

= e [ty (s — N (Fa Wls— By sn'= [ + s — f1f(m—1)]

S (w1 s—w]

= éﬁiﬁ;;;;;‘,;] [t L m = DI SR + D+ 1)s = 1] + sn)]

. L__[f(m — 1)+ sn] > 0]

_ & Di =St [
Vf 1[(w—i—l)s w] L (f+1)s—f

then ¢(f)m—1ns > c(f — 1)m—1ns- Hence n —c(f — 1)pmms —n+ c(f)moins >n—c(f —

Dmms —n+c(f = 1)m-1ns > 0, and we find n — ¢(f — 1) is increasing in m. ]

Sapozhenko[1] also gave an upper bound 14" (14-log®*) by using the greedy algorithm.
We will show our upper bound is less than 1 + Z(1 + log22)
His analysis can be summarized to: let U, be the subset of vertices remaining in R
after the kth iteration of the greedy algorithm. Then there is a vertex x € D of degree at
8|Uk|

least — .

Let X be the first q chosen vertices in greedy algorithm, and let 7, be |Ng(X)| in our

— — _ 0 i=1
analysis, and let n), be [Ng(X)| in his analysis. Sapozhenko gave n/ = Y7 | w

Lemma 6 1, > n/ for all q.



Proof. By induction. Suppose q=1. Obviously,
=[] > o =
Suppose q=p holds.
— sn—np

Condider q=p+1. 1, > n, 50 npyy =1, + [

m—p

>+ S = (1 4+ o) + 2

> (L )+ i = S =
Thus our analysis produces better results than his.
We give some numerical comparisons of | Xj|, as a function of d, between our method(Table

1) and Sapozhenko’s method(Table 2).

0.5d 0.5 0.4 | 0.357143 | 0.316239,,,0.289773 | 0.265425 | 0.247335 | 0.230698 | 0.21743
0.75d 0.5833 | 0.485714 | 0.421429 | 0.372549 | 0.336601 |- 0.308334 | 0.28526 | 0.265495 | 0.24884
d 0.6667 | 0.542857 | 0.465934 |:0.411621;(-0.370589 |'0.838207 | 0.311844 | 0.289872 | 0.27122

2d 0.8 | 0.659008 | 0.5653374f 0.498003 | 0.446871 | 0.406492 | 0.373658 | 0.346349 | 0.32321

3d 0.8571 | 0.716227 | 0.616951,| 0.544122 |.0.488307 | 0.439389 | 0.403695 | 0.37397 | 0.34877

Table 1: | Xy|/d in'our method

2 3 4 5 6 7 8 9 10

0.5d 0.5 | 0.468488 | 0.423287 | 0.383258 | 0.349769 | 0.321823 | 0.298287 | 0.278231 | 0.26095
0.75d | 0.702733 | 0.603643 | 0.524653 | 0.464351 | 0.417346 | 0.379747 | 0.34897 | 0.323283 | 0.30149
d | 0.846574 | 0.699537 | 0.596574 | 0.521888 | 0.465293 | 0.420844 | 0.38493 | 0.355247 | 0.33026

2d | 1.193147 | 0.930586 | 0.76986 | 0.660517 | 0.580818 | 0.519865 | 0.471574 | 0.432264 | 0.39957

3d | 1.39588 | 1.065742 | 0.871227 | 0.74161 | 0.648395 | 0.577789 | 0.522257 | 0.477315 | 0.44012

Table 2: |Xy|/d in Sapozhenko’s method

Our result can be extended to non-bipartite graphs.
A vertex dominating set in a graph G is defined to be a subset of vertices D C V(G)

such that each vertex x € V(G) \ D is adjacent to some vertex of D. The problem is to

10



find a vertex dominating set Dy consisting of as few vertices as possible. We give a lemma

of this problem.

Lemma 7 Every n-vertex graph with minimum degree k has a dominating set of size at

most 7 — ¢(k)n nkt+1-

Proof. By interpreting G as a bipartite graph G’(D,R) where D=R=V(G). Each vertex
x € D covers itself in R and those vertices in R, which it is adjacent to in G. Hence

s=k-+1. (]

3 Pooling design with k-fold inhibitor model

If k>d, then all tests will have a negative outcome. To avoid this uninteresting case, we

assume k<d in this section.

Definition: A column C; in a 0-1 matrix.is ¢solated if there exists one row that
contains C}; only.
To avoid trivial discussion, it is often assumed.théat a pooling designs has no isolated

column. We make this assumption in this section. D’yachkov and Rykov|3]| proved that:

Lemma 8 FEvery column should have column weight at least m+1 in a m-disjunct matriz.

Lemma 9 Let K denote a set of k row indices. There exists a set of at most k columns

whose union covers K.

Proof. For each row index in K, select any column with a l-entry in that row (whose
existence is guaranteed by the assumption of no isolated column). Then the set of at most

k chosen columns covers K. (]

Suppose there are at most d positives , r inhibitors and e errors.

11



Lemma 10 A positive should have at least d+e+1 1-outcomes in a (d+ 1+ 2e)-disjunct

matrix.

Proof. Suppose there is a positive C' which has at most d + e 1-outcomes. By Lemma 9,
there exists a set of at most d 4+ e columns covering the row indices of these 1-outcomes.
Further all its other (at least r + e + 1) l-entries are covered by the r inhibitors and the
up to e errors. Since there is no isolated column, there exists a set E of e column, C' g E
, covering the row indices of the up to e errors. Hence at most (d+e€)+(r+e) = d+r+2e

columns cover C, contradicting Lemma 8. ]

Lemma 11 A negative should have at least r+e+1 0-outcomes in a (d+1r+2e)-disjunct

matriz.

Proof. Suppose to the contrary that a megative € has only r 4+ e 0-outcomes. Let E be
defined as in the last lemma. Then-all'the 1-entries of € with 1-outcomes are covered by
at most d + e columns, and all with=0-outcomes by at' most r + e columns, leading to the

conclusions that C'is covered by d + r 4 2ereolumns, a contradiction to Lemma 8. [

Let M denote a (d + r + 2¢)-disjunct matrix . Let I; denote an inhibitor with weight
w;, and let W; denote the set of pools i appears and W;"CW; the subset of pools with
positive outcomes. We will show that W, can be covered by at most d+r+2e columns,
there violating the (d + r + 2e)-disjunctness of M (lemma 9). This is accomplished by
observing that W™ can be covered by a fraction of the positive clones, using the results
in the last section. We first need to turn the problem into the covering problem format.

Define the graph G(D,R) by taking D so the set of d positives (by Lemma 5, d is the
worst case among all d’j=d). R as the set W;" and an edge from ueD to veR if u is a
positive clone appearing in pool v. Then each v most have degree at least k since it takes
at least k positive clones to yield a positive outcome. Figure 6 illustrates the construction

of G(D,R) from M although only the columns corresponding to I; and the d(6) positive

clones in M are shown.

12



| D, D D3 D, Ds D¢ 1 Outcome
P, 1 1 1 1 v
P, 1 1 b
Py 1 1 1 1
P, 1 1 1 v
Ps 1 1 1 b1
Ps 1 1 1 1 0
P, 1 1 I
Ps 1 L0
P 1 v 0
a
Dy
b
D,
C
Ds;
d
D4
(]
Ds
f
Ds
g

Figure 6: In a 2-fold inhibitor model, relation between positives and the 1-outcomes.
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Now the main results.

Theorem 12 A k-fold inhibitor with weight less than d + 1+ ¢(k)ga+1, + 2¢ + 1 have at

most d + e 1-outcomes in a d+r+2e-disjunct matriz.

Proof. Since this matrix has at most e errors, it suffices to show that not counting
errors, if an inhibitor I has at least d + 1 1-outcomes, then it will violate the (d+r+2e)-
disjunctness. Let R denote a set of d+1 1-outcomes of I. Then each of these d + 1
1-outcomes has to be covered by k positive clones’. Hence we can define a bipartite graph
G(R,D) with |R| = d+ 1. |D| = d, s = k, then f=[k(d + 1)/d]=k+1 (recall k& < d
obviously). By Corollary ?? it only needs d — ¢(k) vertices in D to cover R, in other
words it only needs d — ¢(k) positive clones to cover the 1-outcome of I. Suppose weight
of I is less than d + r + 2e + ¢(k) + 1. By Lemma 7 the other at most r + 2e + ¢(k)
0-outcomes of I can be covered by r+2e+ c(k) columns . Combining, I can be covered by
d—c(k)aari ke +7+2e+c(k)garx = d+ 17+ 2e columns: violating (d+r+2e)-disjunctness

assumption.

So an inhibitor must have at most d 1-outcomes if there is no error. Considering error,

an inhibitor must have at most d + e 1-outcomes. (]

Using the above result, we give a 1-stage method.
Pooling: Use a (d+r+2e)-disjunct matrix with column weight < d+r+2e+1+c(k)qa+1-

Decoding:

Stepl. Partition clones into 3-sets: P consists of those with at most r + e 0-outcomes.

O consists of those with at most d + e 1-outcomes, R consists of the rest.

Step2. If R # ¢ let the outcome vector be V' and denote the union of an r-subset S
of O as V4. Let Ug =V U V4. If clone C has at most e 0-outcomes under Ug,

then put it into P. Do this for all S.
Step3. Output P as our positives.
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Lemma 13 After stepl, P is contained in the set of all positives. O contains all inhibitors

and no positive.

Proof. By Lemma 11, a negative has at least r + e + 1 0-outcomes and can’t be in P.
Further, the column weight is at least (d + r + 2e 4+ 1) in a (d4r+2e)-disjunct matrix,
so a clone in P has at least (d + e+ 1) > d + e 1l-outcomes. By Theorem 12, inhibitors
will not appear in P, either. By Lemma 9, a clone with at most d + e 1-outcomes can’t
be a positive. An inhibitor can’t have more than d 4+ e 1-outcomes. Hence O contains all

inhibitors but no positive. [

Lemma 14 A clone C in R is positive <= there exists at least one r-subset of O such

that C' has at most e 0-outcomes under U.

Proof. (=) O contains all inhibitors(whose numberis at most ). Some 7-subsets chosen
in step 2 should contain all r inhibitors. Then'the wector V¢ corrects the false negative
outcomes caused by the inhibitors.

(<) Suppose a clone C' is negative. U can bewiewed as the union of d + r clones.
Then |C\U| > e for otherwise C' can be covered by U U E, where E is a set of e columns,

a contradiction to the (d-+r+2e)-disjunctness since |U U E| < d +r + 2e. ]

Corollary 15 After Step 2, the set P contains all positives and nothing else.
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