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Regular Graphs with Isomorphic Neighbor-Subgraphs

Student: Chao-Fang Li Advisor: Hung-Lin Fu

Department of Applied mathematics
National Chiao Tung University
Hsinchu 300, Taiwan, R.O.C.

Abstract

If all vertices of a graph G have the same degree, then G is a regular graph.
A regular graph G is said to be H-regular if for each vertex v € V(G), the graph
induced by Ng(v) is isomorphic to H.

In this thesis, we shall first study for which H, an H-regular graph does not exist
(forbidden H's) and then, for each "possible” H, we try to construct an H-regular
graph. Finally, we mention the construction of H-regular graphs with smallest
order, i.e., the extremal H-regular graph with a given H.
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1 Introduction and Preliminaries

1.1 Motivation

In the study of graph theory, regular graphs play the most important role. Almost all
graphs with good structures, say connectivity, are regular. Not only this reason, when we
plan to study some properties, it is better off to start with considering regular graphs.
For example, bridgeless cubic graphs have been mentioned here and there. Anyway, it is
nice to be regular.

In order to construct a graph with much better structure, we may also assign certain
constraints to the graphs we construct. .Sayjif we assume that the smallest cycle length
(girth) to be g, then we have an (r, §)-gtaph(r-regular graph with girth g). An (r, g)-graph
with smallest order is the well-known (7, g)-cage. See [4] for a survey. On the other hand,
if we let a k-regular graph whose adjacent pairs have A\ common neighbors, and whose
nonadjacent pair have p common neighbors, then we have a strongly regular graph. The
study of strongly regular graphs is also an important topic in Algebraic graph theory, see
[1].

In this thesis, we shall study a new type of regular graphs. This notion was first
mentioned to us by D. Hoffman a couple of years ago. The structure of such graphs is
also very symmetrical. A regular graph G is said to be H-regular if for each vertex v
belong to GG, the graph induced by the neighbors of v is isomorphic to H. Since all graphs
induced by the neighbors are isomorphic, in what follows, we call an H-regular graph a

"neighbor-regular” graph.



1.2 Graph terms

In this section we present those definitions and basic properties what will be assumed
throughout the rest of this thesis. For those terms not included the readers can refer to

[3] for reference.

A graph G consists of a finite non-empty set V(G) of vertices and a finite set E(G)
of distinct unordered pairs of distinct vertices called edges. The number of vertices of
G is called the order of G and denoted by v(G). The number of edges of G is called
the size of G and denoted by e(G). If e = uv is an edge of G, then u and v are called
its endpoints. Two or more edges joining the same pair of vertices are called multiple
edges. A loop is an edge whose endpoints are equal. A graph is simple if it has no loops

and multiple edges. Throughout ofsthis thesis we consider only simple graphs.

If e = wv is an edge of G, then-e is said®o join the vertices v and v, and these vertices
are then said to be adjacent. If u is‘adjacent to®, then it is denoted by u ~ v. We also
say that e is incident to v and v, and that v is a neighbor of u; the neighborhood
Ng(u) of u is the set of all vertices of G adjacent to u, the closed neighborhood N¢[u]
of u is the union of Ng(u) and u. Two edges incident to the same vertex are adjacent
edges. A matching in G is a set of edges no two of which are adjacent. Two graphs
are isomorphic if there is a one-to-one correspondence between their vertex-sets which
preserves the adjacency of vertices. An isomorphism from a graph G to itself is called an
automorphism of G. An automorphism is therefore a permutation of the vertices of G

that maps edges to edges and nonedges to nonedges.

A subgraph of a graph G is a graph H such that V(H) C V(G) and E(H) C E(G),
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denoted H C G. If V(H) = V(G), then H is called a spanning subgraph of G. If W is
any set of vertices in GG, then the subgraph induced by W is the subgraph of G obtained
by joining those pairs of vertices in W what are joined in G. Any induced subgraph G[W]

of G is a subgraph induced by the subset W of V(G).

If e is an edge of GG, then the edge-deleted subgraph GG — e is the graph obtained
from G by removing the edge e. Similarly, if v is a vertex of GG, then the vertex-deleted
subgraph G — v is the graph obtained from G by removing the vertex v together with

all its incident edges.

For each vertex v in a graph G, the number of edges incident to v is the degree of
v, denoted by deg(v) or d(v). The maximum,and minimum degrees in G are denoted by
A(G) and §(G) respectively. A vertex-of-degree, 0 is called an isolated vertex, and a
vertex of degree 1 is called an end-vertex: If all vertices of G have the same degree,
then G is a regular graph,; if each degree is k, then &7 is a k-regular graph. A 0-regular
graph (that is, one with no edges) is a null graph, and a 3-regular graph is a cubic

graph.

A sequence of edges vgvy,v109,. .., v,—10, (sometime abbreviated to vovy...v,) is a
walk of length r from vy to v,.. If these edges are all distinct, then the walk is a
trail, and if the vertices vy, vs,...,v, are also distinct, then it is a path and denoted by
[vo, 1, ..., v.]. A walk in which v, vy,...,v,, are all distinct except for vy and v, is a
cycle. The girth of a graph with a cycle is the length of its shortest cycle. A graph with

no cycle has infinite girth.

The union G U H of two disjoint graphs G and H is the graph having vertex set
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V(G)UV(H) and edge set E(G) U E(H). The graph obtained by taking the union of
graphs G and H with disjoint vertex sets is the disjoint union, written G+ H. The join
of simple graphs GG and H, written G V H, is the graph obtained from the disjoint union
G+ H by adding the edges {zy : x € V(G),y € V(H)}. The Cartesian product GOH of
two disjoint graphs G and H is the graph having the vertex set V(G) x V(H) and edge set
{(u1,v1)(ug,v2) : uy = uy and vyvy € E(H) or v; = vy and uyuy € E(G)}. The Cartesian
product GOGO - - - OG(n-tuple) is denoted by G™. A graph G is connected if there is
a path joining each pair of vertices of GG, or equivalently if G cannot be expressed as the

union of two vertex disjoint graphs; a graph which is not connected is disconnected.

A graph in which every two vertices are adjacent is complete graph; the complete
graph with n vertices and n(n-1)/2%dgesgis-denotéd by K,. The cycle graph C, of
order n consists of the vertices and edges of a n-gon, afid the path graph P, is obtained
by removing an edge from C,,. The null.graph O, is the graph with n vertices and no
edges. A matching with n edges is denoted by M,. A bipartite graph is one whose
vertex-set can be partitioned into two sets so that each edge joins a vertex of the first
set to a vertex of the second set. A complete bipartite graph is a bipartite graph in
which every vertex in first set is adjacent to every vertex in the second set. If the two sets
contain r and s vertices respectively, then the complete bipartite graph is denoted by K, g;
a complete bipartite graph of the form K, is called a star graph and denoted by S;. A
connected graph which contains no cycle is a tree. A complete balanced m-partite

graph with each partite set of size n is denoted by Ky,(n) = O, VO, V - - -V O, (m-tuple).



1.3 Some special regular graphs

In this section we present some regular graphs with special conditions. A simple n-vertex
graph G is strongly regular if there are parameters k, A, u such that G is k-regular, every
adjacent pair of vertices have A common neighbors, and every nonadjacent pair of vertices
have p common neighbors, written (n, k, A, u)-graph. For example, Petersen graph is a
strongly regular graph with n = 10,k =3, A\ =0, u = 1. A k-regular graph with girth g is
a (k, g)-graph. A (k, g)-graph with the smallest order is called a (k, g)-cage. For example,
Petersen graph is a (3,5)-cage. For more information about cages, see [4] for reference.
A regular graph G is said to be H-regular if for each vertex v € GG, the graph induced
by the neighbors of v is isomorphic to H. For example, Petersen graph is a Os-regular
graph. A Petersen graph is the simple graph whose vertices are the 2-element subsets of
5-element set and whose edges are-the pairs of disjoint-2-element subsets. The followings

are examples of some (k, g)-cages, strongly tégular graphs and Petersen graph.

12

45 34

2

23 15

Figure 1: The Petersen graph



(3,3) —cage (3,4) —cage

Figure 2: Examples of some (k, g)-cage

Parameter Graph

(5,2,0,1)

(6,4,2,4)

Figure 3: Examples of strongly regular graphs

Since Kj1 is a (k,3)-cage and a (k, g)-cage is a triangle-free graph for each g > 4.

Hence, we have

Proposition 1.3.1. A (k, g)-cage is a Ky-regular graph for g = 3 and it is an Oy-regular
graph for g > 4.
As to strongly regular graphs, it seems that all graphs obtained in literatures are

H-regular graphs for some H. We list some graphs in the following table.



Parameter Graph H-regular graph

(2,1,0,0) Path graph P, O,-regular graph
(3,2,1,0) Complete graph K, K,-regular graph
(4,2,0,2) Cycle graph C, O,-regular graph
(4,3,2,0) Complete graph K, K,-regular graph
(5,2,0,1) Cycle graph C, O,-regular graph
(5,4,3,0) Complete graph K, K -regular graph
(6,3,0,3) | Circulant graph Ci (1,3) O,-regular graph
(6,4,2,4) Octahedral graph C,-regular graph
(6,5,4,0) Complete graph K K -regular graph
(7,6,5,0) Complete graph K, K-regular graph
(8,4,0,4) | Circulantgraph Cig(1;3) O,-regular graph
(8,6,4,6) |Circulant graph Cig(1,2,3)|  H,-regular graph
(8,7,6,0) Complete graph K¢ K_-regular graph
(9,6,3,6) |Circulant graph Ciy(1,2,3)| H,-regular graph
(9,8,7,0) Complete graph K, K,-regular graph
(10,3,0,1) Petersen graph 03—regular graph
H, : K-M, H,:

Figure 4: Some of strongly regular graphs are H-regular graph




Let D be a subset of {1,2,...,|n/2|}. A circulant graph Ci,(D) is a graph with
vertex set V(G) = Z,, and edge set E(G) = {i ~ j | d(i,j) € D,Vi,j € Z,}, where
d(i,j) =aey min{| i —j |,n— | i —j |}. The elements of D will be referred as the
differences. Clearly, the circulant graph Ci,(1,2,...,|n/2]) gives the complete graph K,
and the graph C'i,(1) gives the cyclic graph C,,. By the definition of circulant graph, we

have

Proposition 1.3.2. ('%,(D) is an H-regular for some H.

Proof.
Let D = {ay,aq,---,a;} be a set of differences and p, g be two distinct vertices in Z,.

Then

No(p) ={pE a1, .pL ass = -, pEa}

Neo(q) =43¢t a1, g *azy =, ¢Lta}
and

pra;~ptajsqgtai~qgta;,Vi,j

So, G[Ng(p)] = G[Na(q)] =des H. That is, Ci,(D) is an H-regular for some H. O

A graph G is vertex transitive if its automorphism group acts transitively on V(G).
Thus for any two distinct vertices of G there is an automorphism mapping one to the
other. A vertex transitive graph is necessarily regular. By definition, it is not difficult to
see that a vertex transitive graph is an H-regular graph for some H. But, the converse
statement may not be true. Figure 5 is a example which is an Os-regular graph but
not a vertex transitive graph. This tells us that an H-regular graph is in fact not that

symmetrical sometimes.



Figure 5: An Os-regular graph which is not a vertex transitive graph




2 H-regular graphs

We start this chapter with the study of non-existence of H-regular graphs, i.e., to deter-
mine for which H, there dose not exist an H-regular graph.

2.1 Forbidden H’'s

Throughout of this section, an H which we can not find an H-regular graph is called a
forbidden graph. The following lemma shows that there are quite a few connected graphs

which are forbidden.

Lemma 2.1.1. Let H be a graph with two vertices z and y such that |V (H)| > 3,
dy(x) =|V(H)| -1 and dy(y) = 1. Then H is a forbidden graph.
Proof.

Suppose not. Let G be an H-regular graph.” Thens consider an arbitrary vertex v in
G. By the definition of an H-regular graph Ng{v) induces a graph G’ which is isomorphic
to H. Let u € Ng(v) such that dg/(u) = |V(H)|—1 and w € Ng(v) such that de/(w) = 1.
Now, since w € V(G), Ng(w) also induces a graph G” which is isomorphic to H. But, by
the fact that w € Ng(v) and der(w) = 1, V(G”) contains exactly |V (H)|—2 vertices which
are not in V(G")U{v}, moreover {u,v} C V(G"). Now, since dg(u) = dg(v) = |V (H)|, wv
is an independent edge in G”. By assumption that H is connected, G” is not isomorphic
to H. Therefore, G' can not be an H-regular graph, this leads to a contradiction. Hence,

the proof is concluded. O

Corollary 2.1.2. Let H be a graph with two vertices = and y such that V(H) > 3,

dy(x) =|V(H)| — 1 and dy(y) = 1. Then H U Oy is a forbidden graph.

10



Proof.

The proof follows by a similar argument. ]

Corollary 2.1.3. No (S, U O;)-regular graphs exist for n > 2 and ¢ > 0.
Proof.

Fix n > 2. Because there exist both vertices u,v € S, such that d(u) = |[V(S,)| — 1
and d(v) = 1. By Corollary 2.1.2, there does not exist an (.S, UO;)-regular graph for some
t > 0. O

If the connected graph in Lemma 2.1.1 we considered is a tree, then we can lower down

the maximum degree.

Lemma 2.1.4. Let H be a tree of grder n and '€ V (H) such that dy(z) > (2n—2)/3.
Then H is a forbidden graph.
Proof.

Suppose not. Let G is a H-regular graph and v is an arbitrary vertex of G. By
assumption G[Ng(v)] = H. Therefore, we let u € Ng(v) be the vertex of degree larger
than (2n — 2)/3 in G[Ng(v)]. Let dy(u) =k, s0 k > (2n —2)/3 = k > 2(n — k — 1).
Then there exists a vertex w such that only x and v adjacent to w in Ng[u]. Now, since
dg(u) = dg(v) = |V(H)|, uv is an independent edge in G[Ng(w)]. By assumption that
H is connected, G[Ng(w)] is not isomorphic to H. Therefore, G can not be an H-regular

graph, this leads to a contradiction. Hence, the proof is concluded. O]

11



Lemma 2.1.5. If H = K,,— P,, then H is a forbidden graph forn > 3and 2 < s <n-—1.
Proof.

Fix n > 3, suppose G is a (K, — Ps)-regular graph for some 2 < s <n — 1, and v is
an arbitrary vertex of G. By assumption, G[Ng(v)] = K,, — Ps. Let H = K,, — P;. Then
there exist z,y,z € V(H) such that dy(x) =n — 1,dg(y) =n — 2, and dy(z) = n — 2.
Let Hy = HU{v}. Now, we consider two cases.

Case 1. s =2

Consider the vertex y. Because y ~ v, so dg,(y) =n—2+1=n—1. Since n — 1
neighbors of y which are of full degrees, G[Ng(y)| # K, — P.

Case 2. 3<s<n-1

Let G; = G[Ng, (y)] and consider tlie vertex yBecause y ~ v, so dy, (y) =n—2+1 =
n—1,dg,(v) =2+n—4=n-2,dg (x) =24n—-4=n—2, and the vertices of G; —{v, z}
are of degree at most n—2 in G;. Since.y~z and dy,(y) = n—2+1 = n— 1, there exists
a vertex w which is not in H;, and weiz. As to'the vertex v € G[Ng(y)], davg ) (uw) <
n — 2. Now, consider the vertex w. Since dg(y) = dg(z) = n, G[Ng(w)| # K,, — P;. Both

cases lead to a contradiction. Hence, the proof is concluded. ]

Corollary 2.1.6. No ((K,, — P;) UO;)-regular graphs exist, wheren > 3,2 < s <n-—1
and t > 0.

Proof.

The proof follows by a similar argument. O]

Lemma 2.1.7. If H = K,,,, and m # n, then H is a forbidden graph.

Proof.

12



Suppose not. Let GG be an H-regular graph and v be an arbitrary vertex of G. By
assumption, G[Ng(v)] = H. Suppose that H consists of X and Y, where | X| =m, |Y]| =n
and m > n. Let G; = H U {v}. Then dg,(x) = n+1 for all z € X and G[Ng,(z)] =
K, ,,. Since G[Ng(x)] is isomorphic to H, each vertex of A joins each vertex of Y, where
A= Ng(z)\ (YU{v}). But dg(y) = (m+1)+(m—1)=2m > m+n for all y € Y, this

leads to a contradiction. Hence, the proof is concluded. ]

Corollary 2.1.8. If H = K, n,,... n, and n; # n;, for some ¢ # j, then H is a forbidden
graph.
Proof.

The proof follows by a similar argument. O]

Lemma 2.1.9. If H = K,,— K, then H is a forbiddemr graph forn > 3and 2 < s < n—1.
Proof.

Fix n > 3. Suppose G is a (K, — Ky)-regular graph for some 2 < s <n —1 and v is
an arbitrary vertex of G. By assumption, G[Ng(v)] = K, — K. Let K,, — K, = H; V Ho,
where H; = O, and Hy = K,,_s. Consider an arbitrary vertex x of H;. By assumption,
G[N¢(z)] is isomorphic to H. But the neighbors of z in HU{v} are of degree n — 1(major
vertices), so G[Ng(x)] is disconnected. That is, G[Ng(z)] # K, — K,. This leads to a

contradiction. Hence, the proof is concluded. Il

13



2.2 Constructions of H-regular graphs

In this section, we will use ”join” and ”Cartesian product” of graphs to discuss the

structure of H-regular graphs.

Lemma 2.2.1. If G is an H-regular graph, then G V G is a (G V H)-regular graph.
Proof.

Let v be an arbitrary vertex of GVG. Then G[Ngyg(v)] = GVG[Ng(v)] =GVH. O

Corollary 2.2.2. (), V C, is a K5-regular graph for n = 3 and it is a (C,, V O,)-regular
graph for all n > 4.
Proof.

By Lemma 2.2.1, since Cj is an Py-regularsgraph;-Cs V Cs is a (C3 V Py)-regular graph,
i.e., Ks-regular graph. On the other hand, €, is an® Os-regular graph, for all n > 4,

C, Vv C,is a (C, V Oy)-regular graph, for-all'n->4. O

Lemma 2.2.3. K, is a K, -regular graph for all m > 2 and n > 1.
Proof.
Fix n > 1 and m > 2, choose € Ky,(;,). Then G[NKm<n) ()] =0, VO, V---VO,

(m-1 tuple)= Kp,—1()- O

Corollary 2.2.4. K,;; is an O,-regular graph for ¢t > 1.
Proof.

By Lemma 2.2.3, let m =2 and n = t. O

14



Lemma 2.2.5. If G; is an H;-regular graph and G5 is an Hy-regular graph, then G10G,
is an (H; U Hy)-regular graph.
Proof.

Choose a vertex = € V(G10Gs5). By definition of Cartesian product, Ng,ng, () =

Ng, (x) U Ng,(x). Hence G[Ng,n6,(x)] = G[Ng,(z) U Ng,(x)] = Hy U H,. O

Corollary 2.2.6. If H-regular graphs exist, then (HUQO;)-regular graphs exist for ¢t > 1.
Proof.
Let G be an H-regular graph. Because K;; is an O;-regular graph for each ¢ > 1, by

Lemma 2.2.5, GOK;; is an (H U O;)-regular graph. O

Lemma 2.2.7. If G is an H-regular’graph, then:G" is a (| J' H)-regular graph for each
t>1, where |J' H is HUH U --- & H.(t tuple):
Proof.

By Lemma 2.2.5, Gt is an (|J' H)-regular-graph for each ¢ > 1. O

Corollary 2.2.8. (K3)"is an M;-regular graph for each ¢ > 1.

Proof.
Because K3 is an Mi-regular graph, by Lemma 2.2.7, we conclude that (K3)! is an
M;-regular graph. ]

Corollary 2.2.9. If G is an H-regular graph, then GO(Kj3)" is an (H U M;)-regular
graph.

Proof.

15



Because (K3)" is an My-regular graph, by Lemma 2.2.5, we get GO(K3)" is an (HUM,)-

regular graph. U

16



2.3 H-regular graphs of small orders
In section 2.3, we shall consider the graphs H with order < 5 and H = C,, or P, for

n<7.

Proposition 2.3.1. A C,-regular graph exists for n = 3,4,5,6,7.
Proof.

The followings are easy to check.

en=23 Tetrahedron is a Cs-regular graph.

Figure 6: C3-regular graph

en=14 Octahedron is a Cy-regular graph.

Figure 7: Cy-regular graph

17



en=>5 Icosahedron is a Cs-regular graph.

Figure 8: C5-regular graph

en==~0 C'i12(1,2,5) is an Cgsregular graph.

Figure 9: Cg-regular graph

18



en="7 G is a Cr-regular graph.

ERIAA >

&ﬂ&\w‘\‘y)

" ‘§ﬂ\\§§‘\““’
SEK

PR

AN ‘*‘«‘g?k
‘V’é’@llx IS4
\

’V""A“‘r X
WX/

2R aTrm & .

V(G) = {ai, bi, ci, diy eq, f| i € Z7F Bdges of G are :
Q; ~ [az’+17 i1 3, Aitd, Qiye, bi, Ciy bz‘+6]; b; ~ [az‘, Cis Cig1, Qit1, Ai, €ip1, 6z‘+4];
Ci ~ [ai, bi, bive, di, dits, diys, 6i]§ di ~ [bi, Ci, Ciy2, Citd, iy, diys, €i+4]§

i ~ [bit3, bite, Cis digs, €iy3, €iva, f1i [~ (€3, €43, €it6, €itas €igns €ig1s Cigal-

Note : © ~ [a1, g, ..., ) =gef {2 ~ a4 i=1,2,... k}.

Figure 10: Cr-regular graph
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Proposition 2.3.2. A P,-regular graph exists for n =2,4,5,6,7.
Proof.

The following is easy to check,
o n=2 ('3 is a Py-regular graph.
e n=3 No Ps-regular graph, by Corollary 2.1.3.

oen—4

Figure 111 Pgregular graph

Figure 12: Ps-regular graph
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V(G) = {a;, b;, c;, d;| i € Zg}, Edges of G are :
a; ~ [az‘+1, bi, Ciy di, biys, ai+5]; b; ~ [Ci+2, Ci, Gy Qig1, dig 1, dz‘+5];
Ci ~ [dz’7 a;, by, Cito, Cita, bi+4]; d; ~ [Cm @, bigs, diga, diga, bi+1]-

Note : = ~ [a1, g, ..., 0k =gep {x ~ ;| i =1,2,... k}.

Figure 13: Fs-regular graph
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en="7 G is a Pr-regular graph.

‘ 2,
V(G) = {ai, bi, ci, di, e;] 0 & ZG},‘Edges of'G are :

Q; ~ [@i+1, Aiy3, Qigd, Qiye, bs, Cz’ybH—ﬁ ]; by ~ [ai, Ci, Cit1, Qiy1, diy €141, €i+4];

C; ~ [az‘, b;, bi+67 d;, dz‘+3, di+57 6@]; d; ~ [bz‘y Ci, Cit2, Cit4, dz‘+2, di+57 €z'+4]§

ei ~ [biv3, bite, Cis iy, €iys, €ivas f1; f ~ [ei; €iys, Cive, €ita, €ins, €ir1, Cival-

Note : & ~ [a1, Qa, ..., 0] =gep {0 ~ ;| i =1,2,... k}.

Figure 14: Pr-regular graph

Proposition 2.3.3. For each graph of order 2, H, there exists an H-regular graph.

Proof.

Since H is of order 2, H = P, or O,. The proof follows by letting the H-regular graphs

be K3 and Cj respectively. m
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Proposition 2.3.4. There exists an H-regular graph for each graph H of order 3 except
H=P;.
Proof.

We consider the following cases.
e H=0;
Ks 3 is an Os-regular graph.
e H=P,UO,
Since K3 is an Py-regular graph, by Lemma 2.2.5, K30K, is a P,UO;-regular graph.
e H=1P;
Because P; = K3 — P,, by Lemmma 2.175; no. Ps-regular graphs exist.
o H=K;
K, is a K3-regular graph. [
Proposition 2.3.5. There exists an H-regular graph for the graphs H of order 4 except
H=K,— P, Ky — P;3,5; or P;UO0O;.

Proof.

We consider the following cases.

e H=0,

K, 4 is a a Oy-regular graph.

e H=P,UOQO,
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Since K30K5 is a P,UQO;-regular graph, by Lemma 2.2.5, (K30K5)OK; is a P,UOs-

regular graph.
o H = M2
(K3)? is an My-regular graph. (Corollary 2.2.8)

e H=C3U0;

Since K4 is a Cs-regular graph, by Lemma 2.2.5, K;0K, is a C3UO;-regular graph.

H=P,orC,

By Proposition 2.3.1 and Proposition 2.3.2.

.H:K4

K5 is a Ky-regular graph.

° H:K4—P201”K4—P3

By Lemma 2.1.5, no (K4 — P,)-regular graphs and (K, — P;)-regular graphs exist.

L] H253OI‘P3U01

By Corollary 2.1.3, no Ss-regular graphs and (P; U O;)-regular graphs exist. O

Proposition 2.3.6 Let H be a graph of order 5. Then an H-regular graph exists if and

only if H= Gl, GQ, G4, G5, G7, Gg, GlO, Glg, G14, Ggo, Ggl, G24, G25, G34, see Figure 15. [2]
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Proof.

We consider the following cases.

[ H:Gl and G34

K55 is a Gh-regular graph and K is a Gg4-regular graph.

o =Gy G4,Gs5,G7,G19,Gra and Goy

By Corollary 2.2.6, Gs, G4, G5, Gr, G, G14 and Gop-regular graphs exist respec-

tively.

.H:Gg

See Figure 16, (P; U P)-regular graphs exist.
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Figure 16: (P3 U Py)-regular graph

H = G13 and G20

By Proposition 2.3.1 and Proposition 2.3.2, G135 and Gag-regular graphs exist re-

spectively.

H = G24 and G25

The graph Clig(1,3,4) is a Gag-regular graph and the graph Cig(1,2,4) is a Gas-

regular graph.

H = G3, G6 and GH

By Corollary 2.1.3, GG3, Gg and ‘Gip.are forbidden graphs.

H = Gy, G15,Ga9,G31 and Gz

By Lemma 2.1.6, Gy, G15, Gog, G31 and G3sz are forbidden graphs.

H = Gi6,Go2 and Gy

By Lemma 2.1.1, G4, G2 and Gy; are forbidden graphs.

H:G26

Because Gy is K32. By Lemma 2.1.7, no Gg¢-regular graphs exist.
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By Lemma 2.1.9, no Gag-regular graphs exist.

For the followings cases, we shall use similar technique to prove the nonexistence of an
H-regular graph for H = G17, G1s, G19, Ga3, G3p and G3y. Since their proofs are similar,

we show the proofs of the first two cases.

e H=_Gyy
Let G be a Gyr-regular graph and v € V(G) such that G[Ng(v)] = Gi7. Let
Ng(v) = {z,y,z,w,u} such that * ~ y, x ~ z, x ~ w, z ~ w and w ~ u. By
assumption G[Ng(z)] = Gi7, there exist two vertices p and ¢ which are not in
Ng(v) such that p ~ x and ¢ ~ y. Now, consider G[Ng(y)]. Since dg(v) and
dg(x) are of degree 5, G[Ng(y)}is disconneeted. Hence, G[Ng(y)] # G17. This is a

contradiction and thus G is ferbidden.

o H=0Gis

Let G be a Ghg-regular graph and v € V(G) such that G[Ng(v)] = Gis. Let
Ng(v) = {z,y,z,w,u} such that x ~ y, v ~ w, x ~ u, y ~ z and w ~ u. By
assumption G[Ng(z)] = Gis, there exists a vertex p which is not in Ng(v) such
that p ~ z and p ~ y. Consider G[N¢(y)]. Since dg(v) and dg(z) are of degree 5,

G[N¢(y)] # Gis. This is a contradiction. Hence, Gg is forbidden.

Since we have checked all cases of graphs of order 5, the proof is concluded. Il
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2.4 Extremal problem

Let G be an H-regular graph. Then, we define f(H) as the smallest order for all possible

H-regular graphs. The following result is a trivial lower bound.

Lemma 2.4.1. If a graph G is an H-regular graph, then f(H) > 2|V(H)| — 6(H).
Proof.

fH) = [VH)[ + 1+ (V(H)| = (6(H) + 1)) = 2|V(H)| = 6(H). N

Corollary 2.4.2. f(Cs) =4, f(Cy) =6, f(P) =3, f(Py) =T.
Proof.

By Lemma 2.4.1, f(C3) > 4, f(C4) > 6, f(P) > 3, and f(P,) > 7. Since K, is a
Cs-regular graph, Cig(1,2) is a Cy-régulargraph, K3 is a P,-regular graph and C'iz(1,2)
is a Pj-regular graph, f(C3) < 4, f(C4) < 6, f(£) <3 and f(P,) < 7 respectively. This

concludes the proof. n

Proposition 2.4.3. f(O;) = 2t, for each ¢t > 1.
Proof.

By Lemma 2.4.1, f(O;) > 2t, and K;; is an O-regular graph, hence f(O;) =2t. O

Proposition 2.4.4. f(K,) =n+ 1, for each n > 1.
Proof.
By Lemma 2.4.1, f(K,) > n+ 1, and K, is K,-regular graph, hence f(K,) =

n+ 1. ]
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3 Concluding Remark

The study of neighbor-regular graphs has just begun. So far, not much is known. In this
thesis, we manage to obtain several classes of graphs which are forbidden and for quite
a few graphs H we construct an H-regular graph. But, we also realize the difficulty of
obtaining general results. For example, we can construct H-regular graphs for H = C,
or P, whenever n < 7. How about n > 87 On the other hand, we are able to say
something about forbidden graphs, but there are quite a few forbidden graphs remained
undiscovered. To conclude this thesis, we would like to pose a conjecture on finding

forbidden graphs.

Conjecture. Let H be a tree whichyis not a path. Then H is a forbidden graph.
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