1. INTRODUCTION

The first variational formula of the volume for a hypersurface M" in the Euclidean
space R" ! is well-known. The critical points are called minimal hypersurfaces, and
the associated flow is called the mean curvature flow [1]. This classical formula
has been generalized by Pinl and Trapp[4], Reilly and the references cited therein
[5]. Reilly derived the first variational formula of the functional of the elementary
symmetric polynomials of the principal curvatures for hypersurfaces in the space
forms.

In this Master’s dissertation we begin by deriving the first variational formula of
the functional of the traces of the second fundamental form for hypersurfaces in the
Euclidean space. Let X : M"™ — R"! be a compact immersed hypersurface in the
(n+1)-dimensional Euclidean space. Denote by A = (h;;) the second fundamental
form of M™ and by trA™ the trace of AZ41li<tan < n. For a given C? function f

defined on R", we consider the functional J of X,
= / FtrA Tr A% JrA") do,
M

where the integration is with respeet to-the“volume measure dv of M™. Based on
the Newton’s formula, this functional is elese related to the functional that given by
Reilly [5]. We find the first variational formula of J as follows

Theorem 1.1.
Jt = / T Xt -N dU,
M
where
1
T o= Slfumm[(trA™);(tr AF); ALY + S fil[(tr AF) AT 4 2(tr AF) ]25 (trAP) A7)
p=1
-1 1 -1 1-1-p 1
A = (trAP) AT+ Z (trA")i(trA”); AP gAY
S b 1 g=1
D b= q=
—Hf

, H:t’/’A and (Am>w = hiith2i3 ...... himflimhimj‘
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For a given immersion X, : M™ — R""! we consider a smooth variation X :
M"x[0,T) — R"" of X, then the L? gradient flow for this functional is a geometric

evolution equation
Xt = —7N

with the initial condition X|;—o = X (0).
Let ¢;; be the trace free tensor of the second fundamental form, ¢;; = h;; — %(L-j,
and ¢ = Zgb?j. Then the following functional is a natural generalization of the classical

Willmore functional
W(X) = / o> dv
M

[3]. This functional is invariant under conformal mappings of R"*!. In section 3, we
try to find functionals in the type of [ o J(trA, .. trA") dv which are invariant under
conformal transformations of R™*!. We showthat if f satisfies two first order partial

equations, the translation equation

n
E ML m—1fm =0,
m=0

where xy = n, and the homogeneity equation
n
Z MLy, frn, = N f,
m=1

then the functional is invariant under all conformal transformations of R"*!. By
solving these equations, we construct several explicit functionals which are invariant
under all conformal transformations of R"*!. For n being even, or n being large odd,
there are interesting examples.

In final section, section 4, using the general formula of Theorem 1.1, we find the

first variational formula of a generalized Willmore functional as follows

+(n—1)(n—2)P Z H;®; + n(n = Qi(n —4) Z $ij PP,

n(

-2
+TLT)(I) Z ¢zyq)zj}(Xt . N) d'l},

for all n # 3,5. A similar formula for hypersurfaces in the sphere was given by Li [2].



2. THE FIRST VARIATIONAL FORMULA

Let X : M™ — R™""! be an immersiom of a compact surface M™. We shall use the

following ranges of indices
1 S iaja kv l;ilvi% "'7j1aj27 S n.

Then in terms of an orthonormal basis {ey, ..., e, } on the tangent bundle TM and

its dual coframe {wy,...w,}, the structure equations can be written as

dX = W;€;,
de; = wijej; + winN,
dN = Wn+1,i€4,

where N is unit normal of X, w;; is the connection form of M", w;; + wj = 0 and

Wnt1, = —hijwj; hy; = hj;, where (hj) is the second fundamental form of M™.

Let X : M™ x [0,T) — R""! be a'smooth ¥ariation of an initial immersion X,. We

denote by d = d + 2dt the differential operator on M" x [0,T), then we have

(2.2) de; = Qijej + Qi N,
(23) CZN = Qn—l—l,iei -+ QN,

where ;; is the connection form of M™ x [0,T),€;; + ;; = 0.

On the other hand, the structure equations are given by
(24) JX = w;e; + Xtdt,

(2.5) de; = wijej+winpiN + (e:)dt,
(26) dN = u)n+1,i€i+Ntdt.



Comparing (2.1) with (2.4), we get
a = Xt . th,

Similarly, comparing (2.2) with (2.5), and (2.3) with (2.6), we have
Q =0,
Qi = wij+ () - e;dt,
Qint1 = wint1 + (e)r- Ndt.

For simplicity we write these relations*as

X 0 O e i a X
€1 0 Oy Tt an Q1,n+1 €1
di =1 @ % .5 : :
en 0 Qi S Qi €n
N 0 Qui11 - "in 0 N
If we let
0 O Q, a
0 Qp Qin Qi
w=1": : e : : ;
0 Qa - D Qunn
0 Q11 - Qotan 0

and taking differential d to both sides,then we get

X X X

€1 €1 el
0 = dd| : |=dw]| : | -wnAd

€n €n €n



It follows that

dw = w A w.

Hence, we get
da = Qz A Qi,n-‘rl?
dQ] = Q,L A Qz] +aA QnJ’,l’j’

where 1 < 7 < n, and

n+1

dQ;; = Z i Sl
k=1

where 1 <12,7 <n-+1.

Since dX; = (dX);, we compute dX; and (dX)q,

dX, = d((X, e)e;+ (X, - N)N)
= d(Xt . €i>ei + (Xt . ei)(wijej + meN) + d(Xt . N)N —I— (Xt . N)wnﬂﬂ-ei
= (d(X¢- )+ (Xi - ej)wji + (Xo - Nwnir)e; + (d(Xe - N) + (X - €5)wpt1,:) )N,

We define (X; - e;); and (X; - N); by
d(Xy - e) + (Xe - ej)wsi = (Xi - ) jwj,

and

Then we have

(2.7)



dX; = ((X; - e)jw; + (Xi - N)wnyri)es + (Xe - N)jw; + (Xi - €)wing1)N.

On the other hand,

(2.8) (dX); = (wi)ie; + wile;)s.

From (2.7), (2.8) and

d(X;)-e; = (dX);- e,
d(X,)-N = (dX),-N.

We get
(ei)t -N = (Xt : N)z - Z hint . Gj,
(wi)e = [(X¢"e)y=1X - Nhyjlw;.
And
(2.9)

(W1 A e ANwp)y = Zwl/\...(wl-)t.../\wn
= ((Xtel)Z—HXtN)wl/\ ...... /\wn.

Similarly, since

A1 = Qj A Qi1



JQMH = J(wmﬂ + (e;)¢ - Ndt)
= d(hiw; + (&), - Ndt)
= (dhij Nw; + hijwir Awi) +d((e;)e - N) Adt
+(hij)edt AN wj — hij(w;)e A dt
= (dhij ANw; + higwi; Awj) +d((e;)r - N) Adt + (hij)dt A w;j
—hi;i (Xt - ej)kwi + (€)1 - exwi + Xy - Nwpy j) Adt,

and
DU A Qi = [wi + (e - e5dt] Awjner + (e5); - N
J
= Wiy A Wjn+1 - (ej)t : Nu.)z‘j A dt — (ei)t ©€5Wjin+1 A dt
= hjkwij ANwy + (ej)t L Nwij Ndt — (ei)t : ejhjkwk AN dt,
we have

(dhm —+ hkjw;m- + hzkwk]) A (,Uj + [d((ez)t . N) + (ej)t . iji] A dt — (hij)tw]' A dt
+[_hik(Xt . ek)j — hik(ek)t . ej + Xt . thkhkg + (ei)t . ekhjk]wj VAN dt = 0.
We define the covariant derivative of h;; as follows:
(dhw + hkjwkj + hlkwkj /\ wj = Z h”kwk,

where h;ji = higj, and define ((e;), - N); by

d((e:)e - N) + (e5)e - Nwji =1 () - N)jwj.



So we get

(hij)e + ((€)e - N)j — hig(Xe - ex); — hir(ex): - €;
— hygjler)t - e+ Xy - Nhiphi; =0,

and

(hij)e + (Xi - N)ij + higj Xy - e + hin (X - ex)
— ha(Xy-ex); — hin(ew)r - €5 — hij(er)r - € + Xy - Nhihy; = 0.

Hence we have

(2.10)

(hij)e = (Xt N)igFhinXe e hi(er): - €;
—hij(en)t -leiFXe - Nhphr.

Let f be a C® function, by using (2:9):and (2.10),' now we show the derivative of
the functional of X, J(X), with respect to the time variable t.

Jo = [/M [ dvly

= /M fitrAY), dv+/M f (dv),
— /M fl[l(hij)tAé-;l] dv+/M FI(Xs-e)i — HX, - N)] do

= / {Lfil=haler)e - €j — huglen)e - e A + [Lfihip AT Xy - e + (X - )]
M
FLRATH X - Ny + (Lfitr AT — FH)}X, - N dv.

Our computation is complete through the following three steps.



(1) We claim that

/ Lfil—hir(ex): - €j — hij(ex): - ei]AZl dv = 0.
M

By changing the indices,

(haler)e - e)) A5 = (han(er)e - €5)PyigPigisPigiy - -hiy_yi o Piy_yi
= (hjajej)e - er)hmihij By i yeePags s
= (—hi(er)t - €)hjjljpiseePj_i
= —(ha(er)s - ;)AL

We get
(hir (e ) ) Af = 0;
and hence
/M Ll has(ex)s - € g (en)e - il dv = 0.

(2) We claim that

/ [lfthkAélet * €L -+ f(Xt . 61)1] dv = 0.
M

Apply the Stokes’ formula,

/M f(Xy-ep)pdv = —/M filtrAYL(X, - er) dv

= — / Sillhig AT X - ey do,
M
and hence
[ A X e 5K e do=0,
M
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(3) We want to evaluate the term

/M LHAGH (X, - N)ij do.

Apply the Stokes’ formula again,

/ LHAH (X, N)ij dv
M

- / U fue(tr A A + fAS (X, - N) do
M

_ / {U[(tr A™)(tr ALY A i, + 1[(tr A) ;AL

+2(tT‘Ak) Ai]zl]fk | = Z[Al 1]fl}(Xt

lj]’t

Note that

(trAk) Aﬁﬂl
- (trAk)j[hiiﬂhizZS hlz 1J +h%2hi2i3ihi3i4 h’tz Y
= 20tr AP) [ (isiny i Py g+ (i Py iy - Priy 5 +

-1

1 1
— 2(tTAk)jZ]—)(tTAp)iAijl P
p=1
-1 1
AL = AD = () —(trA7), ALY,
p=1 p

1-p

N) dv.

.+ hiiQ hi2i3 "'hil—lji]

+ (PiigPigig - Piy_yi5)]

I
= Zl(tmp AT Z ! trAp )itrAT); AP
p

p=1 p=1 ¢=1
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Hence

/ LHAG (X - N)ij do

-

|_|

1
/ {U[(tr A™);(tr AF); ALY frem + U[(tr AR) i A+ 2(tr AF); ]-Q(trAp)iAQ;l—p] fin
p=1
-1 1 -1 1-1—p 1
HY  —(trAP) AP + — (trAP);(tr A7) AL TP AHX - N) do
=1 P ! p; qzzl pq !

From above three steps, finally we get the first variational formula

-1

[ / fdvl, = / (S fu (1 A7) (1 AR ol [ (1 AP) 5 AL 2(0 A0, 3 S (87A7), AL
M M =1 p
1—1 1 {=1.1i-1-p I
A = (trAP)GATE L NTENT = (1 AP); (tr AT); AP 4 tr AT
1 p e pq
CHFMX, - N) dv

3. CONFORMALLY INVARIANT FUNCTIONALS

Assume that X : M™ — R"*! is conformal to X : M™ — R"*'. Let {ef,...,&,}
be an orthonormal basis, and {&1, ...,w,}, the dual coframe. Then € = %ei, and
w; = pw;. for some positive function p, 1 <7 < n. The volume forms of X and X are
related by

Adv =T N ... N, = p"wi A ... ANw, = p"dv.

Since,

(3.1)
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dw; = d(pw;)
= dp ANw; + pdw;
= pjw; Nw; + pwij N\ wj
= (pwi; — pjwi + piw;) Awj,

and

(3.2) dw; = Wi; Nwj = pwij N\ wj.

Comparing (3.1) with (3.2), the connection forms @w;; and w;; are related by

wij = wij + (log p)iw; — (log p)jwi.

On the other hand,

Win+1l = TWingl (log P)n+1wi

= hjw; — (log p)n+15ijwj‘

We then have the relation between h;; and h_ij,

and hence

A= [fl = (A= A1)

where A = (log p)n+1 and I is the identity matrix.

We consider the transformation, from A maps to A, as the action which is a com-

postion of a translation and a multiplication. If a C® function f, satisfies

frAtrA? .. trA™) = p" f(trA, tTZQ, ...... trA"),
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then the corresponding functional is invariant under conformal transformations of

n+1
R™™,

We need the following two conditions:

(1) The homogeneity condition:
Let A = %A, where p is positive. If p"f(trA, ..trA") = f(trA,trA?, .. trA") for all
positive p, then we have
0 = (p"f(trA, ..trA"),
= nf(trA, .. trA" )kt

+o" ) faltrA A )(~%)trAm
m=1
We get
(3.3) nf(xry..x,) = Z ME o fon(1...2,).
m=1

(2) The translation condition:

Let A=A — ML If f(trA,..trA") = f(trA, trA%, . trA"), for all \, then we have
0 = (f(trA, . trA"),
= Z fm(trA, trA")(trA™),

= — Z mfo(trA, ...tTZn)(ter_l).
Thus we obtain

(3.4) Z M1 frn(T1...2n) = 0,
m=1
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where o = n.
We now solve the homogeneity equation (3.3) and the translation equation (3.4).

For the special case n = 2, the homogeneity equation and the translation equation

are given by

v fi +2x2fy = 2f,
2fi + 2221 = 0.

These partial differential equations can be written as
T1 2@ WY (24
2 2:13'1 f2 0 i
It follows that

(1) zmw (5a0) (7)
fa) 223 —da, \ -2 0)’

and

lo = ——— = (log|2? — 2x5|)1,
(log f)1 22 — 21, (log |7 21
—2
1 = —=(1 2_9 .
(log f)2 22 — 2z, (log |z} Tal)2
This implies
1
f(@1,22) = ez — 5115%),

for constant c.
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We conclude that in the case n=2,
1
fltrA trA?) = c(trA? — 5(157"14)2),

for constant c.

For the case, n = 3, the homogeneity equation and the translation equation are

given by
(3.5) z1f1+202f2 + 33 f5 = 3,
(36) 3f1 + 2I1f2 + 31]2f3 = 0.

Consider he characteristic curve of+(3.5) and (3.6)

$1(t) = 3t7
(3.7) To(t) = 3t2 +¢,,
{L‘3(t) = 3t3 ] 362t + C3.

Then we have

d

af(ﬂfl(t)yxz(t)ax?)(t)) = firh(t) + faxh(t) + faxs(t)
= 3f1+ 2z fa + 322 f5
= 0,

and
f(@1(t), 2(t), 23(t)) = [f(0,ca,c3)
= u(eq, ),

for all t.
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From (3.7), we get

Ty
t o= =
3
2
x
Co = X2 — ?17
2 5
c3 = X3+ §x1 — T1T9.
Hence we have
x% 2 4
(3.8) f(z1, 29, 23) = u(xe — 30 + g1~ T1).

By substituting (3.8) into (3.5), we get

x? 2 ,

El, I3 == 51’? T $1$2)

x 23

= 2(272 — g)ul -+ 3(£L'3 aF 51‘1 -3 1’11’2)U2.

Su(wy —

Let
at
r = 02=$2—§,
2 3
Yy = c3:x3+§x1—a:1x2,
and

9(x,y) = logu(z,y).

(3.5) becomes

(3.9) 22g.(x,y) + 3ygy(x,y) = 3.

Consider the characteristic curve of (3.9)
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2(t) = e coss 6,
(3.10) { y(t) = e* sin 6.
This gives
d
& g(alt).y(0)
= 9.2 () + 99 (1)
= 22(t)9s + 3y(t)gy
and
g(z1(t), 22(t)) = 3t + g(cos? 6, sin 6),
for all t.

From (3.10), we get

¢ = WHErn
cosf =" (a5’ yz)_%x%,
sing = (2 + yz)’%y.

Hence we have .
_ 3 2 1Y
g(I,y) —510g|$ +ty ‘—'_u(](tan {E?’/Q)

The solutions take the form

x? 2 4
u=c\/(zg — 3)3 + (3 + §x1 — x1T9)?,

where c is constant. Here let uy be a constant function. Howerever, this solution u is

not a C? function, and is not the desired functional.
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Now we solve the homogeneity equation (3.3) and the translation equation(3.4) for

general n. Consider the curve

(3.11)

Zo (t) = (o,
z1(t) = nt+c,
To(t) = nt? +cy,

o £
xn.(.t‘) = i (,? > Gin ",

d ;
Ef(xl(t),...xn(t)) = me(t)fm

where xq = n. This shows that

fx1(t), ..., zn(t)) = f(21(0)...2,(0))

for all t.

From (3.11), we get

T
t = =,
n
Ch = n,
6120,
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and

for 2 < m < n, where g = n.

Let
Ym = Cm,y
for 2 <m <mn, and

9(y2, s Yy) = logulys, ... Yo )

Since
f(xla 7'TTL) = U<y27 e yn>,
by the homogeneity condition and using the fact that ?997: = 0, for all k£ > m, then

we have

nu(Yo, s Yn) = nf(zy,...,x,)

k=1 m=2 m
L OYm ., Ou
= k(5= )(5—
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The equation (3.3) can be written as

Z My aym

(3.12)

Consider the characteristic curve of (3.12)

(3.13)
Yyn(t) = cpe™
This gives
d
EQ(ZM (t)7 - ayn(t))
= Yila )yt
2oy,
= MY ()
mZ_Q Yrm
= n7
and hence
g(yl( ): ayn( )) =nt + 9(62’ 7611)
for all t.
Let py, ..., p, are nonnegative numbers such that p;+...4+p,
1. (3.13) gives
n
b2 I —
= (") (i )
L2 o

p2
=n,and c, 2
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and

P2 Pn
2n 2 )—m
Y

= Ym(y3™ - yn

for all 2 < m < n.

In this case, let ¢ is conctant function, then we have

u(y27 ooy yn) = 69(112 ,,,,, Yn)

=3 (1) psoni ™

for all m > 2.
We list some interesting functionals for the'case-2 < m < 7, as follows:

(1) n=2,tr(A—Z1)2

2

(2) n = 3, we have no C*® functionals.

(3) n=4, tr(A— 20 and [tr(A - Z1)42

4 4

(4) n =5, we have no C* functionals.

(5) n =6, tr(A—21)5 [tr(A—Z1)32 [tr(A—Z1)?P, (tr(A—Z1)?)(tr(A— Z1)%).
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(6) n =1, [tr(A— L1)3.

For the special cases of n > 6, po = n, and p; = 0 for all ¢ # 2, the functional takes

the form,

4. THE VARIATION OF THE GENERALIZED WILLMORE FUNCTIONAL

In this finial section, we want to derive the first variation of the generalized Will-

more functional,

[/M 2 dv], = /M ®%’3{(n — WOPAH L@ H + n@22¢ij¢jk¢ki

+n—1)(n =2)0 > Hid, ¥ g~ 22(" —4) Y 6,00,

e ey

First we note that

H H?
4.1 o = 2 _ir(A— )2 =9 -
(4.1 D
where
2
(4.2) S:trA2:<I>+£.
n

For simplifying the computation, we let 222 = (2),,

OH
993 _ (pny. 020F _ (pn
S5 = (®2)2, 5z = (P2 )11, and so on. Then we have

(4.3)
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(%), = —HP:,
(@9, = oI
(@) = (01— ) - ajei
@ = (@8)n = (5 ~DHEI?,
(P22 = g(g—l)¢§_27
@D = (1= D)1= )+ 301 - D)HalR,
(@) = (@) = (@F)an = [(5 (L = D) H>+ (1 - 5)0F 7,
(@22 = (2%)a1z = (PF)am = —(g —1)(5 —2)He:
(@) = 55 -1~ 22

By Theorem 1.1 in section 1, the first variation fomula of the generalized Willmore
functional is
2 2
[ /M 3 dv], = /M {0 1(tr AR (P AR AGH®? )i + > 1(tr AF); AL (D2 )y

1,k,;m=1 1k=1
2

k=1 —

Now we compute term by term directly by using (4.1), (4.2) and (4.3) as follows:
(4.4)

2
D Ut AR)(tr A AL (P ) i
l,k,m=1
= HX(®%)y + 2H;Si(D2) 119 + S2(P2)199

n

+2(HiHjhij) (97 )o11 + 4(H;Sjhij) (P2 )aro + 2(S5:Sihii) (22 )2z

= @F 2y (1 - DNOHH, + 21— D) Hbi+ o5 (5 — 1)(5 - 2)|0:85},

A (trAR)(trA) (92 )y + 2AH(D2)y + Y 1(trAT)(®2), — HO?} (X, -
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2

D U(tr A A @2y

k=1

= AH(®3)1q + S;i(P?) 15 + 2Hwh”(¢§1 + 257 i (P2 )
n__ n

= ®:{—PAH + n(§ — 1)®i;0i5 + 2(5 — 1)y HiHy},

(4.6)
42 tr AR (tr A)y (D2 ) g
k=1
= AH}®y + 4S;H;®py
= @37 {(2n(5 — DOIHDY,
(4.7)
2
Z I(tr AT (D3,
=
= S(® %)1 + 20 hii (9 2);
H? n_ H H H n
= (@4 ) (—H®2 ) + 2(big e —03;) (6 15-038) (Fi + — i) (5P
. H? 3 o
— Pz _HP3 — P2 D2 b s “H® + —
{ n +n [¢zg¢]k¢kl + n + TL2 ]}
= P2 2HP® + n®’¢;;djudni ),
and
(4.8) 2AH(D2), = 023 {nd?AH}.

From (4.4) to (4.8), we conclude that

[/M 3 dv], = /M ®:3{(n - 1)P?AH + ®3H + nq)2z¢ij¢jk¢ki

%*1)

Ho- - 20y me s MRS g,

n(n
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