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ROBUST FACE TRACKING CONTROL OF A MOBILE ROBOT USING

SELF-TUNING KALMAN FILTER AND ECHO STATE NETWORK

Chi-Yi Tsai, Xavier Dutoit, Kai-Tai Song, Hendrik Van Brussel, and Marnix Nuttin

ABSTRACT

This paper presents a novel design of face tracking algorithm and visual
state estimation for a mobile robot face tracking interaction control system.
The advantage of this design is that it can track a user’s face under several
external uncertainties and estimate the system state without the knowledge
about target’s 3D motion-model information. This feature is helpful for the
development of a real-time visual tracking control system. In order to overcome
the change in skin color due to light variation, a real-time face tracking algo-
rithm is proposed based on an adaptive skin color search method. Moreover,
in order to increase the robustness against colored observation noise, a new
visual state estimator is designed by combining a Kalman filter with an echo
state network-based self-tuning algorithm. The performance of this estimator
design has been evaluated using computer simulation. Several experiments on
a mobile robot validate the proposed control system.

Key Words: Visual tracking control, visual state estimation, echo state
network, face tracking, illumination variation.

I. INTRODUCTION

One of the questions of autonomous mobile robots
is how the robot can interact with people naturally. In
other words, the way for a mobile robot to interact with
people will be an essential factor for the mboxapplica-
tions of a home/service robotic system. In recent years,
vision systems have been widely adopted as percep-
tion sensors for autonomous intelligent robots. Among-
various applications of vision systems, visual tracking
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plays an important role in autonomous robot navigation
and control. Thus the research on visual tracking control
of a mobile robot to track a target of interest has been
an active area of robotic research [1–6].

The purpose of this study is to develop a robust
face tracking interaction control system using visual
tracking control techniques for a wheeled mobile
robot in human-robot interaction scenarios. The visual
tracking task of a mobile robot encompasses several key
factors such as target detection, robot motion control,
depth estimation, image Jacobian estimation, target
state estimation, etc. We divide these key factors into
three fields: target detection, visual tracking control
and visual state estimation. In target detection, in order
forthe mobile robot to interact with people, an impor-
tant factor is human identification and recognition,
in which face analysis is one of the most interested
research areas in computer vision [7]. This paper will
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focus on the design of face tracking which is an impor-
tant issue in face analysis research. Traditional face
tracking techniques need several cues such as shape,
color, features and motion for processing. Nowadays,
color-based object tracking has gained much attention
because color is a sufficient cue to segment the face
from background imagery [8–12]. However, color
segmentation suffers from color variation caused by
irregular illumination as well as the view of the camera.

In visual tracking control, the reported methods
can be categorized into two groups based on motion
constraints: the visual servoing for holonomic manipu-
lators and the visual tracking for nonholonomic mobile
robots. Visual servoing technique for holonomic manip-
ulators has been investigated extensively and many
powerful tools can be found in the literature [13, 14].
However, the results used in holonomic manipulators
are not suitable for most mobile robots due to the
nonholonomic motion constraints on the mobile plat-
form. On one hand, many efforts have been made to
deal with the design of mobile robot visual tracking
controllers to track a static object [1–3, 15–17]. On
the other hand, only a few efforts focus on the visual
tracking control design of tracking a moving (non-
static) target [4–6]. Notably, in order to enhance the
tracking performance in the case of tracking a moving
target, Xu and Hogg suggested that the prediction of
target motion can help the visual tracking system to
track the target within the camera’s field of view [18].
Therefore, one of the challenges in visual tracking
of a moving target is how to predict or estimate the
motion of the moving target during visual tracking
task execution. This problem motivates us to design a
visual state estimator to provide the knowledge about
target motion for enhancing the performance of a visual
tracking control system.

The visual state estimation problem is well
defined in machine vision, which aims to determine the
position and velocity of an object moving in the 3D
space by observing its motion in the 2D image plane
of a perspective vision system (or pinhole camera).
Traditionally, the existing methods usually suppose
that the pinhole camera is fixed and the target is
moving under Riccati dynamics in 3D space [19–23].
However, these assumptions cannot be satisfied in
the issue addressed in this paper, since the camera
and target both are moving with different dynamics.
Recently, a dual-Jacobian visual interaction model
has been proposed in [24, 25]. Based on this visual
interaction model, the target image velocities can be
used instead of the 3D motion velocities, and the visual
state estimation problem can be resolved in the 2D
image plane directly. In [24], the authors proposed

two visual state estimators: one was developed under
the condition of knowing the target 3D velocity, and
the other was designed by releasing this condition. In
[25], a self-tuning Kalman filter algorithm is proposed
to estimate the target state and target image velocity
without the knowledge about its motion in 3D space.
It is well known that Kalman filter is one of the best
linear estimators for a linear plant model with Gaussian
white noise [26]; however, if the noise statistics are
unknown, it will be difficult to determine suitable
covariance matrices for computing the Kalman gain
matrix [27]. Thanks to the neural network techniques,
the observation noise statistics can be estimated by
an artificial neural network without the knowledge of
noise statistics [28]. Therefore, a neural network based
self-tuning algorithm is helpful for a Kalman filter to
work in an environment with unknown observation
noise statistics.

There exist numerous neural network architec-
tures. Amongst them, feedforward neural networks
(FNNs) are the most popular models. However, FNNs
only implement static input-output mappings. On the
contrary, recurrent neural networks (RNNs) are better
fit for time-dependent and non-reactive tasks, such as
the one considered here, as the recurrent connections
allow for some short-term memory. However, a major
issue with RNNs is the training complexity. Recently,
a new technique to use RNNs has been proposed: the
echo state networks (ESNs) [29]. The idea of ESN is to
use a large RNN while training only the readout layer.
The recurrent part is created a priori and left fixed,
and a simple linear memory-less readout is trained to
project the state of the recurrent part onto the desired
output. Thus the training complexity comes down to a
one-step linear training, guaranteed to find the global
optimum for a given ESN. This advantage motivates us
to adopt ESN technique to filter the noise and estimate
the noise variance.

In this paper, a novel visual state estimator is
proposed by using the ESN-based self-tuning Kalman
filter technique. The ESN aims to filter the observa-
tion noise and provide the corresponding covariance
matrix for the Kalman filter to estimate the optimal
system state. In the case of colored observation noise,
traditional approaches need to extend the dimension of
the original Kalman filter [30] or adjust the original
observation equation [28] by a colored noise shaping
filter. In contrast, the colored observation noise can be
filtered into Gaussian white noise through the proposed
ESN noise filter; thus, the robustness of the original
Kalman filter can be improved without dimension
extension or observation equation adjustment. More-
over, in order to overcome the irregular illumination
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problem during the visual tracking process, a real-time
face tracking algorithm based on a novel adaptive skin
color searching method is proposed for face tracking
under illumination variation. Therefore, a robust face
tracking interaction control system can be achieved
by combining the proposed real-time face tracking
algorithm with the proposed ESN-based self-tuning
Kalman filter. Simulation and experimental results will
be presented to validate the estimation performance as
well as the robustness of the proposed mobile robot
face tracking interaction control system.

The rest of this paper is organized as follows.
Section II describes the problem formulation and
controller design for a wheeled mobile robot visual
tracking control system. In Section III, the proposed
ESN-based self-tuning Kalman filter and the design
of ESN for noise filtering and variance estimation are
presented. Section IV presents the proposed real-time
face tracking algorithm under illumination variation.
Simulation and experimental results are reported in
Section V. Several simulations and experimental obser-
vations will be presented and discussed. Section VI
concludes the contributions of this paper.

II. PROBLEM FORMULATION AND
CONTROLLER DESIGN

Fig. 1 shows the visual tracking problem consid-
ered in this paper. In Fig. 1, a wheeled mobile robot

equipped with a tilt camera on top of it aims to track
a moving target, such as a human face, in the image
plane. The optical-axis of the camera faces the target of

interest. Fig. 1(a) illustrates the model of the unicycle-
modeled mobile robot and the target in the world coor-
dinate frame Ff , in which the motion of the target is
supposed to be holonomic with zero angular motion
relative to the robot. Fig. 1(b) is the side view of the
scenario under consideration, in which the tilt angle �
gives the relationship between the camera coordinate
frame Fc and the mobile coordinate frame Fm .

2.1 Dual-Jacobian visual interaction model

In order for the mobile robot to interact with the
target in the image coordinate frame, a dual-Jacobian
visual interaction model was proposed in the authors’
previous work [25]. Fig. 2 shows the definition of
observed system states in the image plane used for the
visual interaction model. In Fig. 2, xi and yi are the
horizontal and vertical position of the centroid of target
in the image plane, respectively, and dx is the width
of target in the image plane. Let Xi =[xi yi dx ]T
denote the system states in the image plane, and
( fx , fy) represent fixed focal length along the image
x-axis and y-axis, respectively, The visual interaction
between robot and target in the image plane can be
modeled as a dual-Jacobian equation such that

Ẋi = Ẋ t
i + Ẋm

i =Ji V t
f +Bi u, (1)

where
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⎡
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,

kx =dx/W and ky =kx fy/fx are two scalars, W is
the actual width of the target, u=[vmf wm

f wm
t ]T

is the vector of control velocities for the mobile
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Fig. 1. (a) A model of the wheeled mobile robot and the target in the world coordinate frame and (b) Side view of the mobile
robot with a tilt camera mounted on top of it to track a dynamic target.

robot and the tilt camera, and V t
f =[vxf v

y
f vzf ]T

is the vector of target velocity in Cartesian coordi-
nates. Expression (1) shows that the visual interaction
model consists of two parts: the part of target motion
Ẋ t
i =[ẋ ti ẏti ḋ tx ]T =Ji V t

f , and the effect of mobile

robot motion Ẋm
i =[ẋmi ẏmi ḋmx ]T =Bi u. Thus, matrix

Ji is termed as ‘target image Jacobian’ transforming
the target velocity V t

f into target image velocity Ẋ t
i ,

and matrix Bi is termed as ‘robot image Jacobian’
transforming the mobile robot control velocity u into
robot image velocity Ẋm

i . In other words, the image
velocity Ẋi is caused by a combination of target image
velocity Ẋ t

i and robot image velocity Ẋm
i . Therefore,

the visual interaction between robot and target in image
coordinate frame can be modeled as a ‘dual-Jacobian’
visual interaction model (1).

2.2 Visual tracking control design

Based on the visual interaction model (1), a feed-
back control law can be designed by using feedback
linearization such that

u =B−1
i (Kg Xe−Ji V t

f ), (2a)

=B−1
i (Kg Xe− Ẋ t

i ). (2b)

where Xe=[xe ye de]T =[x̄i −x∗
i ȳi − y∗

i d̄x −d∗
x ]T

is the error coordinates defined in the image plane, in
which X̄i =[x̄i ȳi d̄x ]T is the vector of fixed desired
states in the image plane, and X∗

i =[x∗
i y∗

i d∗
x ]T is the

vector of estimated states from a visual estimator (see
later). Kg =diag(�1,�2,�3)>0 is a 3-by-3 positive gain

Fig. 2. Definition of the observed system state in image
plane: xi and yi are the horizontal and vertical
position of the centroid of target, respectively, and dx
is the width of target.

matrix, where diag(a,b,c) denotes a 3-by-3 diagonal
matrix with diagonal element a, b, and c.

The visual tracking control law (2) indicates
that the controller requires information about target
3D velocity V t

f or target image velocity Ẋ t
i . If V

t
f is

known, the first visual tracking control law (2a) only
needs an estimate of target status Xi to calculate the
control signal u. However, in practical applications, it
is difficult to estimate V t

f on-line in real time when
using only one camera. In this situation, the second
visual tracking control law (2b) provides a useful
solution which only needs the target image velocity
Ẋ t
i in the image plane. Since the estimation of target

3D velocity is not considered in the current design,
only the estimation of both target status Xi and target
image velocity in the image space is realized for the
later implementation of the visual tracking controller.
This advantage will facilitate more general applications
of the proposed tracking control scheme in the image
plane. Note that the proposed visual tracking controller
(2) can possess some degree of robustness against
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system model uncertainties. For the discussion on the
robustness analysis of the proposed controller, please
refer to [31] for more technical details.

2.3 Visual state estimation problem

Because actual image processing is discrete, the
first step of visual state estimator design is to discretize
the system model (1) into the corresponding discrete
form such that

Xi [n] = Xi [n−1]+TẊ t
i [n−1]+TBi un−1,

for n=1,2, . . . (3)

where T denotes the sampling time of the discrete
system, and un =[vmf wm

f wm
t ]T is the discrete-time

control signal at time step n. Suppose that the target’s
motion can be approximated as a smooth motion during
a sampling period, then the target image velocity has
the following result

Ẋ t
i [n]= Ẋ t

i [n−1]. (4)

Based on (3) and (4), the propagation model can be
obtained such that

Xn =
[
I3 TI3

03 I3

]
Xn−1+

[
TBi

03

]
un−1

≡Aest Xn−1+Bestun−1, (5)

where Xn =[(Xi [n])T (Ẋ t
i [n])T ]T is the vector of

system estimates at time step n, I3 is a 3-by-3 identity
matrix, and 03 is a 3-by-3 zero matrix. Next, since the
observed image contains only information about target
status Xi at each time step, the observation model is
given by

Zn =[I3 03]Xn ≡Hest Xn . (6)

Based on (5) and (6), the visual state estimation problem
is defined as finding the state estimate X∗

n that mini-
mizes the weighted least square criterion:

X∗
n = argmin

X
[(Xn−X)TP−1

n (Xn−X)

+(Zn−Hest X)TR−1
n (Zn−Hest X)], (7)

where Pn =AestPn−1AT
est is the covariance matrix of

propagation model (5) at time step n, and Rn is the
covariance matrix of observation model (6) at time
step n.

III. SELF-TUNING KALMAN FILTER
USING ECHO STATE NETWORK

This section presents the design of the proposed
ESN-based self-tuning Kalman filter to resolve the
visual state estimation problem based on the perfor-
mance criterion (7) described in Section 2.3.

3.1 ESN-based self-tuning Kalman filter

Define that (Xn,Pn) are the propagation state and
the corresponding covariance matrix at time step n,
(X∗

n−1,P
∗
n−1) are the optimal estimate and the corre-

sponding covariance matrix at time step n−1, �Xn =
[(�Xi [n])T (�Ẋ t

i [n])T ]T represents Gaussian propaga-
tion uncertainty with zero mean and covariance matrix
Qn at time step n, and �Zn represents Gaussian observa-
tion uncertainty with zero mean and covariance matrix
Rn at time step n. Then, when the linear propagation
model (5) and the linear observationmodel (6) both have
Gaussian propagation and observation uncertainties

Propagation: Xn

=Aest X
∗
n−1+Bestun−1+�Xn−1, (8)

Covariance Propagation: Pn

=AestP∗
n−1A

T
est+Qn−1, (9)

Observation: Zn

=Hest Xn+�Zn, (10)

a Kalman filter will provide the local minimum solu-
tion of performance criterion (7) and the corresponding
covariance matrix at time step n such that [26]

X∗
n = X p

n +Kn(Zn−Hest X
p
n )

and P∗
n =(I6−KnHest)Pn, (11)

where X p
n =Aest X∗

n−1+Bestun−1 is the ideal propa-
gation state, Kn =PnHT

est(HestPnHT
est+Rn)

−1 is the
Kalman gain matrix, and I6 is a 6-by-6 identity matrix.

According to [27], the filter performance of a
Kalman filter is determined by the covariance matrices
Qn and Rn . Thus, a difficult problem in Kalman filter
applications is how to determine the values of matrices
Qn and Rn for computing the Kalman gain matrix
Kn . Typically, this problem is left up to engineering
intuition by a trial-and-error method. However, the
observation uncertainty usually varies with the condi-
tions of target motion (such as orientation and rotation
of a tracked human face) and working environment
(such as light variation and occlusion), and the corre-
sponding covariance matrix Rn are time-varying for
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Fig. 3. Proposed ESN-based self-tuning Kalman filter.

different operating conditions. In order to deal with
this problem, neural network techniques are useful
to filter the observation noise and estimate the noise
variance without the knowledge of noise statistics [28].
Therefore, this advantage motivates us to combine
a neural network based self-tuning algorithm with
a Kalman filter to filter the observation noise and
provide a suitable observation covariance matrix Rn in
varying environmental conditions. In this paper, ESN
technique is adopted into the design of self-tuning
algorithm due to the advantages described in Section I.
Fig. 3 shows the block diagram of the proposed ESN-
based self-tuning Kalman filter, in which Ẑn denotes
the measurement with observation noise, and (Zn ,
�Rn) are the filtered measurement and the estimated
noise covariance matrix. The covariance matrix of the
observation signal is then updated such that

Rn =R0+�Rn, (12)

where R0 is a fixed initial covariance matrix to avoid
the covariance matrix becoming zeros. In the following
section, we will present the design of ESN-based self-
tuning algorithm. Note that because we do not have an
exact mathematic model to describe the propagation of
the uncertainty, the propagation covariance matrix Qn
is supposed to be fixed without updating in this design.

Remark 1. The observation noise usually is supposed
to be Gaussian white noise in the Kalman filter design;
however, the observation noise may be colored rather
than white in most practical applications. In this case,
the traditional method requires extending the dimen-
sions of the original Kalman filter [30] or adjusting the
original observation equation [28] by using a shaping
filter in order to transform the colored noise into white
noise. But this approach also needs the knowledge of
colored noise statistics a priori. On the contrary, the
proposed method employs ESN technique to filter the

Fig. 4. General architecture of an ESN.

colored noise directly without knowledge of colored
noise statistics. If the reservoir of the ESN contains
sufficiently many neurons and those neurons are suffi-
ciently decorrelated, due to the central limit theorem,
the output noise correlation will decrease and the output
noise will then tend to be Gaussian white noise. Since
these two conditions are usually met in practice, the
output of ESN can be directly used by Kalman filter
without dimension extension or observation equation
adjustment. Thus, the robustness of the original Kalman
filter can be improved against not only Gaussian white
noise, but also colored noise without any modification.
This robustness property of the proposed ESN-based
self-tuning Kalman filter will be validated in Section
5.1 and Section 5.3.

3.2 Creation and training of echo state network

We will now describe the neural network used in
the current scenario. An ESN is described by an input
matrixWin , a connection matrixW and a linear readout
Wout (see Fig. 4).

3.2.1 Activation function

At each time step, the state vector s[n] (describing
the activation level of every neuron) is updated
according to

s[n+1] = f (m ·(Win ·i[n]+W·s[n])+(1−m) ·s[n]),
∀n>0 (13)

where i[n] is the current input vector, s[n] is the current
state (with s[0]=0), f (.) is a non-linear function (here
we use a hyperbolic tangent) and m (0<m≤1) is a
parameter controlling the leak rate of each neuron. The
output associated with the current state is given by

o[n]=Wout ·
[
s[n]
1

]
. (14)

Note that the leak rate allows one to tune the short-
term memory of each neuron and thus to change the
dynamics of the reservoir. It has been observed [32, 33]
that a crucial point to obtain good performance is to
make the dominant time scale of the reservoir match
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the dominant time scale of the input data. However, it
is hard to say a priori what is the dominant time scale
of the input data, so the usual approach is to find the
optimal m by ranging through 0 and 1.

3.2.2 Network creation

The matrices Win and W are created randomly.
The connection from the inputs should have weights
large enough to have sufficient effect inside the reser-
voir and small enough not to drive the reservoir to satu-
ration [34]. An efficient trade-off has been found by
setting the elements of Win to −0.1 or +0.1 with equal
probability. The reservoir connections must guarantee
the echo state property [29]. This property states that
the initial conditions have an asymptotically decreasing
influence on the current state of the network. To do so,
the elements of W are drawn from a normal distribu-
tion, and the whole matrix is then re-scaled to make
its spectral radius smaller than 1 (here we use a value
of 0.9).

3.2.3 Network training

The output matrix Wout is created then during the
training. As the output at each time step is given by
(14), the output matrix should satisfy

Wout ·
[
s[1] s[2] · · · s[nt ]
1 1 · · · 1

]

=[ô[1] ô[2] · · · ô[nt ]], (15)

where nt is the number of time samples and ô[n] is the
desired output at time step n. Originally, this equation
is solved in the least square sense. However, in order
to achieve a better generalization to new situations, we
applied here ridge regression and solved instead

Wout=argmin
W

⎛
⎝
∥∥∥∥∥W·

[
s[1] s[2] · · · s[nt ]
1 1 · · · 1

]
−[ô[1] ô[2] · · · ô[nt ]]

∥∥∥∥∥
2

+�·‖W‖2
⎞
⎠ , (16)

where � is a regression parameter. The optimal value of
� is found via grid-search, by leaving out a validation
set during training.

3.3 ESN-Based Self-Tuning Algorithm

In the current implementation, we use 3 indepen-
dent ESNs, one for each parameter xi , yi and dx . Each
ESN receives as input the corresponding measurement

Fig. 5. Inputs and outputs of the ESNs (detail of the ESN box
from Fig. 3).

with noise Ẑn and the corresponding robot image
velocity Ẋm

i . It is then trained to output at each time
step an estimate of the actual measurement Zn (see
Fig. 5).

To estimate the variance of the noise at time step
n, we take in the present design the variance of the time
series (recorded over time with length N) of observation
noise �Zn = Ẑn−Zn . Let �Zx , �Zy and �Zd denote the
time series of observation noise corresponding to xi , yi
and dx , the covariance matrix of observation noise at
time step nis estimated by

�Rn =diag(var(�Zx ),var(�Zy),var(�Zd)), (17)

where var(x) denotes the variance value of vector x . In
the current design, the time series length N is set as 9.
The cross-covariance values of Zn are supposed to be
zero since three independent ESNs are used.

IV. REAL-TIME FACE TRACKING
UNDER ILLUMINATION VARIATION

This section presents the face tracking algorithm
used in the proposed face tracking interaction control

system. The proposed face tracking algorithm is a video
color object tracker. Color is an efficient cue for face
tracking, but skin color can easily depend on illumi-
nation and this can make face tracking fail [11]. To
overcome this problem, the proposed face tracking algo-
rithm utilizes YCrCb 3D color distribution model to
effectively segment the skin color from other objects
under illumination variation.
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Fig. 6. The flowchart of the face tracking algorithm.

4.1 Face tracking algorithm overview

Fig. 6 shows the flowchart of the proposed face
tracking algorithm, which consists of a face detection
function and a face tracking function. In the initial state,
the face detection function detects a face within the
image frame and passes the position, width and height
of the face to the face tracking function. With this infor-
mation, the face tracking function determines a region
of interest (ROI) to locate the face in the center of ROI.
In order to obtain the optimal color distribution model
(CDM) of the skin color in ROI for color segmenta-
tion, a novel adaptive skin color search (ASCS) method
is proposed to accomplish this task. If the current skin
color area extracted by ASCS method is within a certain
proportion of ROI (termed as Tracking Condition, TC),
the face tracking task will be regarded as a successful
operation. Otherwise, the face tracking algorithm will
be re-initialized into face detection stage.

If TC is satisfied, the optimal CDM parameters
will be used to generate a binary image in ROI by color
segmentation and will also be stored for use in the next
tracking iteration. After obtaining a binary image of
the skin color segmentation, a 2D histogram projec-
tion is generated to find the position, width and height
of the face in ROI. Next, the information about the
observed face in the current image will be stored for
setting up the ROI in the next tracking iteration and
will also be sent to the visual state estimator presented
in Section III. Finally, the visual tracking controller

presented in Section 2.2 controls the mobile robot and
tilt-camera to track the user by using the estimation
results from the visual state estimator.

4.2 Face detection function

If the face tracking function turns off, the face
detection function will start to find the user’s face. In
our design, any existing face detection algorithm, e.g.
[35, 36], can be applied to detect the human face in the
current image. In this paper, the face detection algo-
rithm proposed in [35] is adopted. When the user’s face
is detected, the information about the detected face in
the current image will be stored for ROI decision in
the face tracking function. Next, the CDM parameters
(the color distribution thresholds) of user’s skin color
in the current image will be calculated by the Y, Cb, Cr
histograms of the detected face and stored for use in the
proposed ASCSmethod. Finally, the face tracking func-
tion enables to track the user’s face in the next sampled
image.

4.2.1 Proposed CDM parameters analysis method

Selecting a proper CDM is favorable not only for
color segmentation, but also reduces the undesired error
in the segmented result. To do so, we propose a statis-
tical method to decide the proper threshold values for
each color channel of the image. Let Y1(Y2) is the
lower(upper) threshold of Y channel, Cr1(Cr2) is the
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Fig. 7. The lower and upper thresholds of each color channel: (a) Y1 and Y2 of Y channel; (b) Cb1 and Cb2 of Cb channel; and
(c) Cr1 and Cr2 of Cr channel.

lower(upper) threshold of Cr channel and Cb1(Cb2) is
the lower(upper) threshold of Cb channel (see Figs 7(a),
(b) and (c)). These threshold values are obtained by the
following equations:

C1 = argmin
i

[(
Cmax∑

i=Cmin

Chist(i)

)
−Ntotal×S

]
>0, (18)

C2 = argmin
i

[(
Cmin∑

i=Cmax

Chist(i)

)
−Ntotal×S

]
>0, (19)

where C denotes one of three color channels, Y, Cb or
Cr.Chist is the histogram ofC channel. S is a scale factor
between 0 and 1. In this paper, S is set as 0.9. Ntotal is
the total pixel number of a sub-search window (SSW,
which will be defined in Section 4.4) in ROI. Fig. 7
shows an example of computing the threshold values
for a local CDM of the skin color in a SSW located in
ROI. When the threshold values for each color channel
are founded, the color segmentation can be done in ROI
by these threshold values such that

I YCbCrskin (x, y)|(x,y)∈ROI

=

⎧⎪⎨
⎪⎩
1, if the pixel (x,y)∈ROI satisfies C1≤C≤C2

for each color channel C

0, otherwise,

(20)

where I YCbCrskin is a binary image of the skin color region
segmented by CDM parameters (Y1,Y2,Cb1,Cb2,Cr1,
Cr2). Note that the benefit of the proposed statistical
scheme (18) and (19) is that the color distribution
thresholds are adapted dependent on the current skin
color information. Therefore, there is no limitation
on the skin color by adopting the proposed statistical
method.

4.3 Face tracking function

Suppose that the position, width and height of
the user’s face, (xi [0], yi [0],dx [0],dy[0]), in the image
plane have been detected by the face detection function,
and the face tracking function is enabled to track the
detected face. The execution steps of the proposed face
tracking function are described as follows:

1. ROI decision: The purpose of ROI is to shrink
the face searching area and locate the face in
the center area of ROI. The position, width and
height of ROI, (ROI xi [n], ROI yi [n], ROI dx [n],
ROI dy[n]), are given by

ROI xi [n] = xi [n−1],
ROI yi [n] = yi [n−1],
ROI dx [n] = dx [n−1]×2,

ROI dy[n] = dy[n−1]×2,

(21)

where the initial position, width and height of ROI
are defined such that

ROI xi [0] = xi [0],
ROI yi [0] = yi [0],
ROI dx [0] = dx [0]×2,

ROI dy[0] = dy[0]×2.

(22)

Please see Section 4.3.1 for more discussions on
the advantages of ROI.

2. Adaptive skin color search (ASCS): Re-calculate
the Y, Cb, Cr histograms of the detected face to
find the optimal CDM parameters of the current
skin color in ROI. The details of the proposed
ASCS method are presented in Section 4.4.
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Fig. 8. The setting of the ROI: (a) the test image and (b) the image processed by color segmentation. The window of dotted line is
ROI. The solid line in the ROI indicates the detected face.

3. Check the tracking condition (TC): Suppose
that SA∗

skin denotes the skin color area in ROI
segmented by the optimal CDM parameters
obtained from ASCS, and T AROI denotes the
total area of ROI. If the following condition

(TC) T AROI/8<SA∗
skin<T AROI/2

is satisfied, the face tracking event is successful,
then go to both Step 4 and Step 5. Otherwise, the
face tracking event is failed, and the face tracking
algorithm is re-initialized into face detection stage
to detect the user’s face in the next sampled image.

4. CDM parameters update: Store the optimal CDM
parameters obtained from ASCS for use in the
next tracking iteration.

5. Color segmentation: Segment the skin color
region in ROI by using the optimal CDM param-
eters obtained from ASCS. Please see Section
4.2 for the descriptions of the color segmentation
method used in this paper.

6. 2D histogram projection: Find the position, width
and height of the skin color region in ROI by using
2D histogram projection method [35]. Then the
new information about the detected face, (xi [n],
yi [n], dx [n], dy[n]), in the current sampled image
will be updated for the next ROI decision and
passed to the visual tracking control system for
the task of face tracking interaction control. For
more technical details of 2D histogram method,
the interested readers may refer to [35].

4.3.1 Advantages of ROI

In order to obtain CDM parameters of the skin
color in real-time, the idea of ROI is applied to achieve

this goal. The advantages of using ROI are listed
below:

1. Reduce the computation cost: Because the face
tracking focuses inside the ROI, the computation
outside the ROI is unnecessary.

2. Shrink the face tracking area: Fig. 8 shows that
the areas containing the same color distribution
of the current skin color will increase the search
areas of face tracking. By searching only in ROI,
the undesired areas outside ROI can be neglected
for tracking the face efficiently and precisely.

3. Select proper thresholds for the skin color segmen-
tation: In Section 4.2, two thresholds are assigned
to each color channel for the skin color segmen-
tation. If the thresholds are selected improperly, it
may make the face tracking system not work. To
resolve this problem, the proper threshold values
are determined based on the information inside
the ROI only.

Assume that the face is located at the center area of
ROI during face tracking procedure (see Fig. 8(a)), then
the proposedASCS, which selects at least one SSWnear
the center area of the detected face, is exploited to get an
optimal CDMof the current skin color for color segmen-
tation. Furthermore, the position, width and height of
current ROI are set according to the previous ones of
the detected face area (see the expression (21)). By this
way, the trail of face tracking will follow the previous
successful face tracking result.

4.4 Proposed ASCS method

The purpose of the proposed ASCS method is to
get the optimal CDM parameters of the current skin
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color in ROI even as the color distribution of the skin
color is changed due to the illumination variation. The
execution steps of the proposed ASCS method are
described as follows:

1. Sub-search window (SSW) decision: The purpose
of SSW is to re-calculate CDM parameters of
the current skin color in ROI. There are two
principles to select SSW in ROI. First, the size
of SSW is smaller than the detected face, but
cannot be too small in order to prevent the loss
of most color distribution information. Second,
the position, width and height of each SSW
are obtained according to the information about
the previous detected face. For example, let k
denote the number of SSW used in ROI, where
k≥1. By the two principles of selecting SSW
mentioned before, the width and height of each
SSW, (SSW j dx [n],SSW j dy[n]) for j =1∼k,
are dependent on the information about previous
detected face such that

SSW j dx [n] = dx [n−1]/2,
SSW j dy[n] = dy[n−1]/2, for j=1∼k.

(23)

The position of the first SSW, (SSW1 xi [n],
SSW1 yi [n]), is defined the same as the position
of the previous detected face:

SSW1 xi [n] = xi [n−1],
SSW1 yi [n] = yi [n−1]. (24)

The position of other SSWs can be assigned to
any different position around the center of SSW1
such that

SSW j xi [n] = SSW1 xi [n]+�d j
x ,

SSW j yi [n] = SSW1 yi [n]+�d j
y ,

(25)

where 0<�d j
x<dx [n−1]/4, 0<�d j

y<dy[n−
1]/4, for j =2∼k, and (�d p

x ,�d p
y ) 
=(�dqx ,�dqy ),

for p 
=q , p,q∈[1,k].
2. Re-calculate CDM parameters for each SSW:

Each SSW is corresponding to a CDM of
the skin color, which can be obtained by the
proposed CDM analysis method presented in
Section 4.2.1. Therefore, let YCbCr|SSWj denote
the CDM parameters corresponding to SSW j , and
YCbCr|−opt is the previous optimal CDM param-
eters obtained in last sampled image. We then
have k+1 groups of CDM parameters needed to
be examined.

3. Search for the optimal CDM parameters of the
current skin color in ROI: By the color segmenta-
tion method (20), each group of CDM parameters
is able to obtain a corresponding skin color area
in ROI such that

SAskin(YCbCr)

=∑
x

∑
y
I YCbCrskin (x, y)|(x,y)∈ROI, (26)

where I YCbCrskin is a binary image of the skin color
in ROI segmented using (20) by CDM parameters
YCbCr. Thus, the optimal CDMparameters can be
obtained by choosing the parameters maximizing
the skin color area in ROI such that

YCbCr|∗opt=arg max
YCbCr|−opt,
YCbCr|SSWj,

j=1∼k

SAskin(YCbCr). (27)

Let SA∗
skin(YCbCr|∗opt) denote the maximum

skin color area in ROI obtained by the optimal
CDM parameters YCbCr|∗opt. The face tracking
event then can be validated as succeeded or
failed by tracking condition (TC) presented in
Section 4.3.

Fig. 9 shows an example of the proposed ASCS
method. In this example, four SSWs are used to gather
four statistics CDMs on the center (SSW1), right
(SSW2), bottom (SSW3) and left (SSW4) positions
of the user’s face, respectively. For each SSW, the
proposed CDM analysis method, (18) and (19), is
applied to obtain the corresponding CDM parameters.
Using the previous optimal CDM parameters and four
re-calculated ones, the new optimal CDM parameters
then can be found by (27) and will be used in the next
tracking iteration.

Remark 2. The originality of the proposed face
tracking algorithm is twofold. First, the proposed CDM
parameters analysis method presented in Section 4.2.1
can efficiently integrate a face detection function into a
color-object-based face tracking algorithm without the
restriction on the skin color due to the advantage of
the proposed statistical scheme (18) and (19). Second,
existing color-object based face tracking algorithms,
such as CamShift algorithm [37], usually fail in the
problem of rapid illumination variation. In contrast,
the proposed real-time face tracking algorithm can
efficiently overcome this problem due to the advantage
of the proposed ASCS method presented in Section 4.4.
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Fig. 9. An example of the proposed ASCS method. This example uses 4 SSWs to re-calculate the optimal CDM parameters of the
current skin color in ROI.

V. SIMULATION AND EXPERIMENTAL
RESULTS

5.1 Simulation setup

In order to evaluate the performance of the
proposed visual state estimator, a simulation environ-
ment was setup using MATLAB. Fig. 10 shows the
architecture of the simulation setup. In Fig. 10, Xn
denotes the reference signal needed to be estimated by
a visual state estimator. The input of the visual state
estimator is the observation signal Ẑn with random
noise (RN)

RN =
{
Kn�1(0.5−�2), if (�3<�)

(1+�1)(0.5−�2), otherwise
(28)

where Kn>1 is the noise gain; �i ∈[0,1], i=1∼3, are
three random signals with uniform distribution; and �∈
[0,1] is a constant threshold value. Expression (28)

indicates that the intensity of the noise is time-varying
and dependent on a random condition. If the condition
(�3<�) is satisfied, then the random noise will have
large noise gain; otherwise the random noise will only
have noise gain smaller than 2. Thus, the threshold value
� determines the probability of the event of appearing
large observation noise. For example, if �=1, then the
observation signal will always have the largest noise
intensity. This kind of random noise usually happens
during practical visual tracking process of the mobile
robot, since the intensity of the observation uncertainty
usually is position-dependent and light-dependent.

In the following, a visual state estimator is utilized
to filter the random noise and provide the optimal esti-
mation. The performance of the visual state estimator is
then validated by mean-squared-error (MSE) criterion
between the ideal signal Xn and the estimated signal X∗

n .
Table I shows the parameters used in the simulations.
Note that we use a threshold �=0.75 when generating
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Fig. 10. Simulation setup for the performance evaluation of
the visual state estimator.

the training data for the ESNs. Moreover, the param-
eters used to create the ESNs (found empirically) are
nr =90 neurons (for all three ESNs) and m=0.5, 0.6
and 0.8 for xi , yi and dx respectively.

5.2 Simulation results

There are three visual state estimators used to
compare the performance: Kalman filter (KF), self-
tuning Kalman filter using linear regression (STKF-LR)
[25], and the proposed self-tuning Kalman filter using
ESN (STKF-ESN). Table II shows the average results
of MSE measurements as the threshold value �=1 and
�=0 in the simulations (out of 40 simulations for each
�). In Table II, the bold font denotes the smallest value
of the MSE measurement across each row.

From Table II, we observe that the estimation
results of KF and STKF-LR are very sensitive to the
intensity of the observation noise. As the threshold value
� increases from 0 to 1, the average MSE measure-
ments also increase apparently. Moreover, when the
threshold value �=1 (the observation signal always has
the largest noise intensity), the proposed STKF-ESN
provides the best estimation results compared with
the other two estimators. Note that STKF-LR uses the
measurement offset for the computation of observation
variance. Please refer to [25] for more details.

Table II also records the MSE gap between �=1
and �=0. A small MSE gap implies a large robustness
against the intensity of observation noise. Table II shows
that the MSE gaps of KF and STKF-LR for all esti-
mates are larger than that of STKF-ESN. This implies
that the proposed STKF-ESN provides high robustness
against the observation uncertainty compared with KF
and STKF-LR. Therefore, the simulation results vali-
date the performance and robustness of the proposed
ESN-based visual state estimator.

5.3 Experiment setup

Fig. 11 shows the experimental mobile robot,
RoLA, used in the experiments. RoLA stands for robot

of living aid, designed to provide immediate medical
care for the elderly. It includes several functions such
as location-aware detection, pose estimation, visual
tracking and video transmission. For visual tracking and
video transmission functions, a pan-tilt USB camera is
mounted on the robot to detect and track the user’s face.
In the experiments, the linear and angular command
velocities (vmf ,wm

f ) are used to control the motion
of the mobile robot and the tilt command velocity
wm
t is used to control the tilt angle of the pan-tilt

camera (the pan angle of the camera is constant).
Fig. 12 depicts the implemented visual tracking control
system utilizing the proposed ESN-based visual state
estimator to estimate the system state and target image
velocity. The processing time of the visual tracking
system is less than 80ms including face tracking algo-
rithm, estimator and controller computations. Thus,
the overall tracking system can track the user’s face in
real-time.

5.3.1 Experimental results of face tracking under
illumination variation

In the experiments, RoLA aims to track the user’s
face in a practical environment with hand-controlled
light-variation situations, which make the intensity
of observation noise position-dependent. Thus, the
proposed ESN-based visual state estimator plays an
important role in overcoming the position-dependent
observation noise. Note that the ESN parameters used
in the experiments are the same as that used in the
simulations.

Fig. 13 shows the experimental results of the
implemented visual tracking control system given in
Fig. 12. Figs 13(a1)–(a3) illustrate recorded pictures
from a digital video (DV) camera, and Figs 13(b1)–
(b3) show the corresponding pictures recorded by
the on-board USB camera. In Figs 13(a1)–(a3), the
tracked person was walking in an environment with
light-variation, and the robot tracked the person’s face
as expected. As shown in Figs 13(b1–b3), the person’s
face suddenly became darker due to a rapid decrease
in illumination. In such situations, the proposed face
tracking algorithm works to adapt to the change in
the skin color. However, the update of new skin color
model results rapid random noises in the observation of
system state. To overcome this problem, the ESNs work
to provide a stable output even when the observation
contains rapid random noises. Therefore, the robot still
estimated and tracked the person’s face in the image
plane stably. Note that the image sequence shown in
Fig. 13 is about 1 second.
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Table I. Parameters used in the simulations and experiments.

Symbol Quantity Description

(fx , fy) (393.4, 391.8) pixels Camera focal length in retinal coordinates
W 12 cm Width of the target
D 40 cm Distance between two drive wheels
T 80ms Sampling period of the control system
�y 10 cm Distance between the robot head and the camera
(x̄i , ȳi , d̄x ) (0,0,35) Desired system state in image plane
(�1,�2,�3) (1, 3/2, 2/5) Three distinct positive constants
Q0 diag(5, 5, 5, 20, 20, 20) Initial propagation covariance matrix

Table II. Average MSE measurements of computer simulations.

MSE Value KF STKF-LR STKF-ESN

xi �=1 1.1979 1.8969 0.7885
�=0 0.1766 0.6639 0.1720

MSE Gap 1.0212 1.2330 0.6164
yi �=1 1.1488 1.3223 0.5644

�=0 0.1544 0.3160 0.3076
MSE Gap 0.9944 1.0063 0.2568

dx �=1 4.4150 2.7493 0.9879
�=0 0.1825 0.1951 0.1404

MSE Gap 4.2324 2.5542 0.8476
ẋ ti �=1 18.0588 23.5390 16.0603

�=0 13.6167 17.2235 13.4824
MSE Gap 4.4421 6.3155 2.5778

ẏti �=1 6.1635 5.2398 2.2938
�=0 1.4735 2.0022 1.6126

MSE Gap 4.6900 3.2376 0.6812
ḋ tx �=1 14.9345 6.1500 1.5352

�=0 0.6867 0.7696 0.4380
MSE Gap 14.2479 5.3805 1.0972

Fig. 11. An elder-care mobile robot, Rola, used in the
experiments.

Subsequently, the tracked person was walking in
the environment with a low illumination. Fig. 14 illus-
trates the experimental results under this situation. As

shown in Figs 14(a1)–(a3) and Figs 14(b1)–(b3), the
environment and person’s face suddenly became lighter
due to a rapid increase in illumination, and the proposed
face tracking algorithm still works to obtain an optimal
skin color model to keep tracking the detected face.
In this case, the proposed face tracking algorithm and
ESNs both have stable outputs even when the illumina-
tion is suddenly changed. Therefore, the experimental
results show that the proposed face tracking algorithm
and ESN-based visual state estimator can track the face
under illumination variation and remove the undesired
noise in observation, respectively. Note that the image
sequence shown in Fig. 14 is about 2 seconds.

Fig. 15 presents the recorded experimental
results of face tracking under illumination variation.
Figs 15(a)–(c) show a comparison between the observed
error states (the dotted lines with spikes) and the
corresponding ESN outputs (the solid lines), and the
estimated ones (denoted by x∗

e , y∗
e , and d∗

e ). From
Figs 15(a)–(c), we see that the observation noise caused
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Fig. 12. Block diagram of the implemented visual tracking control system, which includes the proposed ESN-based visual state
estimator.

(a1) (a2) (a3)

(b1) (b2) (b3)

Fig. 13. Experimental results. (a1)–(a3): Image sequence recorded from a DV camera. (b1)–(b3): Corresponding image sequence
recorded from on-board USB camera. In the pictures (b1)–(b3), the green window indicates the observation, and the blue
window is the corresponding output of ESNs.
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(a1) (a2) (a3)

(b1) (b2) (b3)

Fig. 14. Experimental results. (a1)–(a3): Image sequence recorded from a DV camera. (b1)–(b3): Corresponding image sequence
recorded from on-board USB camera. In the pictures (b1)–(b3), the green window indicates the observation, and the blue
window is the corresponding output of ESNs.

by the effect of illumination variation is removed
efficiently by utilizing the proposed ESN-based visual
state estimator. Fig. 15(d) shows the control velocities
of both mobile robot and tilt camera.

Remark 3. In Fig. 15(a), we observe that the ESN
output of tracking error xe is bounded in (−60,60).
This is caused by that the reference (or teacher output)
of training data used in training process is bounded
in the same range. The main reason to do this is as
follows. Empirically, a large tracking error value leads
a large control velocity output. Because there is usually
a velocity limitation on the motion of a practical mobile
robot (≤20cm/s in the experiments), a mechanism is
required to guarantee that the control velocity output
satisfies the velocity limitation. This can be achieved by
bounding the output of system estimator, which usually
leads a bounded command output of system controller.
With ESN, this can be achieved in a strict way by post-
processing the output given by (14) with a bounding
function or by putting a hard limit on the weights of the
readout matrix Wout (as the activity of each neuron is
bounded due to the hyperbolic tangent non-linearity).
However, it is usually sufficient to only use a bounded
training dataset when training the ESN, and this is the
approach we use here. The boundary of the ESN output
can then be adjusted by the boundary of the training
dataset.

5.3.2 Experimental results of face tracking with
occlusion robustness

Fig. 16 shows the recorded images of the mobile
robot interacting with a walking person in the exper-
iment of face tracking with temporary occlusion.
Figs 16(a1)–(a3) and 16(b1)–(b3), respectively, show
the recorded photos of the experimental scenario by
a DV camera and the on-board USB camera. In the
experiment, the person walked around in the room,
and the mobile robot kept tracking the person’s face
by the tilt camera (Figs 16(a1) and 16(b1)). When the
person was walking, another person passed between the
tracked person and the robot temporarily (Fig. 16(a2)).
Thus, in Fig. 16(b2), the person’s face was temporarily
fully blocked by the passing person. Based on the
proposed self-tuning Kalman filter algorithm, the
propagation information will dominate the estima-
tion results in this situation even if the target is fully
unobservable. Therefore, the visual state estimator
still estimated the positions and velocities of the
person’s face in the image plane successfully even
during full occlusion conditions (Figs 16(a3) and (b3)).
Therefore, based on the above experiments of face
tracking with illumination variation and occlusion, the
robust estimation performance of the proposed face
tracking interaction control system is verified. Several
video clips of mobile robot visual tracking experimental
results are available online in [38].
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Fig. 15. Experimental results of the proposed visual tracking controller combined with ESN-based visual state estimator. The
observed tracking errors (a) xe, (b) ye, (c) de (dotted lines) compared with the corresponding ESN outputs (solid lines),
and the estimated tracking errors (a) xe, (b) ye, (c) de. (d) Command velocities of mobile robot and tilt camera.

5.4 Robustness property of ESN noise filter

Although conventional Kalman filters have a
little robustness against some special disturbances, the
optimality of the Kalman filter cannot be guaranteed
under the condition that the statistics of the obser-
vation noise is non-Gaussian and colored. In order
to overcome this problem, the proposed self-tuning
Kalman filter employs an ESN noise filter to filter
the colored observation noise and output the filtered
observation with Gaussian white noise, which satisfies
the optimal condition of the Kalman filter. In other
words, the robustness of the conventional Kalman filter
can be enhanced without any modification to handle

colored observation noise by combining an ESN noise
filter with a self-tuning algorithm. This section utilizes
the colored random noise defined in (28) and three
general types of noises, the Gaussian white noise,
uniform white noise, and colored noise, to validate
the noise filtering capability of ESN noise filter. The
colored noise 	(k) is modeled by a shaping filter with
a Gaussian white noise such that

	(k+1)=
	(k)+ε(k), (29)

where 
=0.95 is the transition matrix of the shaping
filter, and ε(k)∈[−1,1] is a Gaussian white noise with
zero mean and variance 1.
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(a1) (a2) (a3)

(b1) (b2) (b3)

Fig. 16. Experimental results. (a1)–(a3): Image sequence recorded from a DV camera. (b1)–(b3): Corresponding image sequence
recorded from on-board USB camera. In the pictures (b1)–(b3), the green window indicates the estimation result of the
proposed ESN-based visual state estimator.

One of the three independent ESNs used in the
experiments is used to demonstrate the noise filtering
capability. The simulation results are shown in Fig. 17,
which presents the error distribution of ESN input and
output data. In Fig. 17, the red curves are the fitting
results of the actual distribution by a polynomial curve
fitting method. Figs 17(a), (b), (c), and (d) show the
results of Gaussian white noise, uniform white noise,
shaping filter colored noise (29), and colored random
noise given by (28), respectively. In Fig. 17, x denotes
the normalized random variable of error distribution,
and p(x) is the corresponding probability density func-
tion. From Fig. 17, we have the following findings.

1. The error distributions of all ESN output data (the
filtered observation) are close to Gaussian white
noise.

2. In Fig. 17(a), the error distributions of ESN input
and output data are all Gaussian. This means that
the optimal condition of the Kalman filter will not
be changed by directly using the output measure-
ment of the ESN noise filter.

3. Since the colored random noise (28) was used in
the training data set, the ESN noise filter provides
the best filtering results (the minimum variance of
output error distribution) compared to the others.
This result also explains why the proposed STKF-
ESN has stronger robustness than the general KF
and STKF-LR shown in Table II.

4. Because the colored random noise (28) is gener-
ated by uniformwhite noise, the trained ESN noise
filter also has good performance to filter uniform
white noise as shown in Fig. 17(b).

Therefore, based on the above findings, the conventional
Kalman filter can guarantee to provide the optimal esti-
mation for ESN output measurement, which implies that
the robustness of the conventional Kalman filter can be
improved to handle Gaussian white noise and colored
random noise as we expected.

VI. CONCLUSION

In this paper, a robust visual tracking control
system for a wheeled mobile robot is proposed based
on ESN-based self-tuning Kalman filter algorithm and
visual tracking control techniques. This design can be
applied to several visual tracking applications, such as
visual tracking control, visual surveillance, and visual
navigation, etc. for a wheeled mobile robot to interact
with a target in the image plane. One of the main contri-
butions of the proposed ESN-based self-tuning Kalman
filter is that the robustness of the original Kalman filter
can be improved against not only white noise, but also
colored noise without any modification. In order for the
robot to interact with the user by visual tracking control,
the proposed system is combined with a real-time
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Fig. 17. Error distribution of ESN input and ESN output data. ESN Input data with (a) Gaussian white noise, (b) uniform white
noise, (c) colored noise modeled by the shaping filter (29), and (d) colored noise given by (28). It is clear that the error
distributions of all ESN output data are close to Gaussian white noise. Note that all distributions were normalized.

face tracking algorithm to detect and track the user’s
face in the image plane. One merit of the proposed
real-time face tracking algorithm is that the proposed
ASCS method can overcome the problem of illumi-
nation variation during visual tracking processing. By
combining the proposed real-time face tracking algo-
rithm with the robust visual tracking control system,
the performance of the mobile robot face tracking
interaction control is thus enhanced to cope with the
observation uncertainty caused by colored noise, illu-
mination variation and occlusion. This advantage is
very useful in robotic applications, since the obser-
vation uncertainty usually varies with the conditions
of target motion and working environment. Computer

simulations show that the proposed ESN-based visual
state estimator provides high robustness against the
colored observation noise with time-varying intensity
by comparing with the conventional Kalman filter and
the linear regression based self-tuning Kalman filter.
Moreover, experimental results also verify the tracking
performance of the proposed mobile robot face tracking
interaction control system in a practical environment
under light-varying and occlusion conditions.
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