
1 Introduction

Let A and B be two n-by-n complex matrices which are unitarily equivalent, that
is, B = U∗AU for some unitary matrix U . It is easily seen that matrices A∗A and
B∗B have equal traces. Trace of the product of a matrix and its own conjugate is
thus an example of a unitary invariant. More generally, consider the multiplicative
semigroup W generated by the noncommuting variables x and y. We call an element
of W a word and denote it by w(x, y). If there is no confusion over the underlying
variables one will also simply denote it by w. For example, w(x, y) = y2x3y is such
a word. In general a word w can always be written as w = yi1xj1 . . . yinxjn where
i1, j1, . . . , in, jn are positive integers except that i1 or jn may be zero. We say that
i1, j1, . . . , in, jn are the exponents of a word w and w is of length n if i1 and jn are
both different from zero. Otherwise w is said to be of length n − 1. If n = 1 and
i1 = j1 = 0, we call w an empty word.

Suppose now we substitute x and y by A and A∗ and regarding w(A, A∗) as
an n-by-n matrix. Same thing for w(B, B∗). (If the word is empty we assign
w(A, A∗) = w(B, B∗) = In.) One immediately sees that tr(w(A, A∗)) = tr(w(B, B∗))
for any word if A and B are unitarily equivalent. W. Specht [S] proved that the
converse is also true. That is, the set {tr(w(A, A∗)) : w(x, y) is any word in x and
y} completely determines A up to unitary equivalence, and thus is a complete set of
unitary invariants. There is a similar generalization due to N.Wiegmann [W] that
considers not only two n-by-n matrices A and B but two finite sets of n-by-n matrices
{A1, A2, . . . , At} and {B1, B2, . . . , Bt}. In this situation we must consider words w
with noncommuting variables in x1, y1, x2, y2, . . . , xt, yt. It states that there exists a
unitary matrix U such that U∗AiU = Bi for i = 1, 2, . . . , t if and only if for every
word w(x1, y1, x2, y2, . . . , xt, yt) we have tr(w(A1, A

∗
1, A2, A

∗
2, . . . , At, A

∗
t ))=

tr(w(B1, B
∗
1 , B2, B

∗
2 , . . . , Bt, B

∗
t )).

The result of Specht gives an infinte set of complete unitary invariants for an
n-by-n matrix A since one can form infinitely many words in A and A∗. Later, C.
Pearcy showed in [P1] that a finite set of words would suffice. More precisely, let ω(k)
denote the set of words in the variables x and y in which the sum of the exponents
does not exceed k. Then A is unitarily equivalent to B if tr(w(A, A∗) = tr(w(B, B∗))

for every word w in ω(2n2). This set contains fewer than 4n2
elements. Of course,

this upper bound is still far from satisfactory. In the other direction, Bhattarcharya
[B] proved that for matrices whose nonzero singular values have multiplicity one, a
family of about (2n)n traces would suffice. She also showed that there exist n2 + 1
complex-valued continuous functions on Mn(C) which form a complete set of unitary
invariants for n-by-n matrices where Mn(C) denotes the algebra by all n-by-n copm-
lex matrices . It suggests that one would like to find a complete set of specific unitary
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invariants with the size of the set being a polynomial in n. For small n, it is easy to
see three traces of words suffice for 2-by-2 matrices. Pearcy [P2] showed that a set of
nine words suffices for n = 3 and Sibirskïı [Si] improved this by finding a set of seven
words which suffices and forms a minimal set.

In Chapter 2 of this paper, we survey cases for n = 2, 3 and show that

tr(A), tr(A2), tr(A∗A)

form a complete set of unitary invariants for any n-by-n matrix A with rank 1. This
will cover the 2-by-2 case immediately. We also show that three words are fewest
possible. That is, one cannot find a set with two traces of words that is complete.
For any 3-by-3 matrix A, we prove that

tr(A), tr(A2), tr(A3), tr(A∗A), tr(A∗2A), tr(A∗2A2), tr(A∗2A2A∗A)

form a complete set of unitary invariants. The proof here is quite different from the
computational proof given in [P2] and gives a bit more. The set given above plus
tr(A∗A)2 is actually complete with respect to any n-by-n matrix A with rank 2. This
will cover the case for 3-by-3 matrix readily.

In Chapter 3, we give the result that for another special class of matrices (matrix
whose eigenvectors are not orthogonal), a set with no more than n4 +1 words suffices
to determine such matrices up to unitary equivalence. We denote the algebra gen-
erated by A and A∗ over the complex numbers by Alg(A, A∗). This is the set of all
polynomial expressions p(A, A∗), where p(x, y) is any polynomial in the noncommut-
ing variables x and y. The method lies in first proving {A∗iAj : 0 ≤ i, j < n} spans
Alg(A, A∗) for such an A. Then one modifies the method in [P1] somewhat to obtain
that {tr(A∗iAjA∗kAl) : 0 ≤ i, j, k, l < n} ∪ {tr(An)} forms a complete set of unitary
invariants for A in this class.
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2 Unitary equivalence for 2-by-2 and 3-by-3 Matrices

2.1 2-by-2 Matrices

First we state a basic lemma for general n-by-n matrices that will be applied repeat-
edly later.

Lemma 2.1 Let A and B be two n-by-n matrices. If tr(Ai) = tr(Bi) for 1 ≤ i ≤ n,
then A and B have the same eigenvalues counting algebraic multiplicities and hence
tr(Ai) = tr(Bi) for all integers i.

Proof. Let a1, . . . , an be eigenvalues of A and b1, . . . , bn be eigenvalues of B, each
repeated according to its algebraic multiplicity. We define two classes of homogeneous
polynomials Sr, Gr : Cn → C for 1 ≤ r ≤ n by

Sr(x1, x2, . . . , xn) =
n∑

i=1

xi
r

and

Gr(x1, x2, . . . , xn) =
∑

1≤i1<i2<
···<ir≤n

xi1xi2 . . . xir .

We also define G0 = 1. Note that S1 = G1.

The statement that tr(Ai)=tr(Bi) for 1 ≤ i ≤ n is the same as Sr(a1, . . . , an) =
Sr(b1, . . . , bn) for 1 ≤ r ≤ n. We want to show that this implies Gr(a1, . . . , an) =
Gr(b1, . . . , bn) for 1 ≤ r ≤ n. In fact, we have the following so-called Newton’s
identities:

rGr − S1Gr−1 + · · ·+ (−1)rSrG0 = 0 (2.1)

for 1 ≤ r ≤ n (cf. [Pr, p.20]). Using Sr(a1, . . . , an) = Sr(b1, . . . , bn) for 1 ≤ r ≤ n
together with (2.1), one concludes that Gr(a1, . . . , an) = Gr(b1, . . . , bn) for 1 ≤ r ≤ n.

Now we have
n∏

i=1

(x− ai) =
n∑

i=0

(−1)iGi(a1, ..., an)xn−i

=
n∑

i=0

(−1)iGi(b1, ..., bn)xn−i =
n∏

i=1

(x− bi). (2.2)

So a1, ..., an and b1, ..., bn both represent the zeros of the same polynomial and hence
must coincide.
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To prove (2.1) we define another class of homogenous polynomials K
(m)
r : Cn → C

for integers r and m such that r < n and 1 ≤ m ≤ n by

K(m)
r (x1, x2, ..., xn) =

∑
1≤i1<i2<..<ir≤n

i1,i2,..ir 6=m

xi1xi2 . . . xir .

We also define K
(m)
0 = 1 and K

(m)
−1 = 0.

Notice that Gr = xmK
(m)
r−1 + K

(m)
r for every m such that 1 ≤ m ≤ n and every r

such that 0 ≤ r ≤ n. So we have

SiGr =
n∑

j=1

xi
jGr =

n∑
j=1

xi
j(xjK

(j)
r−1 + K(j)

r ). (2.3)

Substituting (2.3) back into (2.1), we have

rGr +
r∑

i=1

(−1)iGr−iSi = rGr +
r∑

i=1

(−1)i

n∑
j=1

xi
j(xjK

(j)
r−i−1 + K

(j)
r−i)

= rGr +
n∑

j=1

[
r∑

i=1

(−1)ixi+1
j K

(j)
r−i−1 +

r∑
i=1

(−1)ixi
jK

(j)
r−i

]

= rGr −
n∑

j=1

xjK
(j)
r−1 +

n∑
j=1

[
r−1∑
i=1

(−1)ixi+1
j K

(j)
r−i−1 +

r∑
i=2

(−1)ixi
jK

(j)
r−i

]

= rGr −
n∑

j=1

xjK
(j)
r−1 +

n∑
j=1

[
r−1∑
i=1

(−1)ixi+1
j K

(j)
r−i−1 +

r−1∑
i=1

(−1)i+1xi+1
j K

(j)
r−i−1

]

= rGr −
n∑

j=1

xjK
(j)
r−1 = 0.

Hence the assertion is proved. �

Suppose we know beforehand that A and B have r common eigenvalues (counting
algebraic multiplicities). Then it is clear that we only have to check tr(Ai)=tr(Bi)
for 1 ≤ i ≤ n− r. We will use mostly Lemma 2.1 in the following form:

Corollary 2.2 Let A and B be two n-by-n matrices both of rank r. If tr(Ai)=tr(Bi)
for 1 ≤ i ≤ r, then tr(Ai)=tr(Bi) for all i.

Theorem 2.3 Let A and B be matrices both of rank 1. If tr(A)=tr(B) and tr(A∗A)
=tr(B∗B), then A is unitarily equivalent to B.
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Proof. Since A and B are both of rank 1, tr(A)=tr(B) guarantees that tr(Ai)=tr(Bi)
for any integer i and that A and B have equal characteristic polynomials of degree 2.
So all it remains to check are words w with exponents all equal to 1. That is, we still
need to check if tr(A∗A)i=tr(B∗B)i for any integer i. Similarly, since A∗A and B∗B
are both of rank 1, tr(A∗A)=tr(B∗B) guarantees that tr(A∗A)i=tr(B∗B)i for any in-
teger i. Hence we conclude that for every word w we have tr(w(A, A∗))=tr(w(B, B∗)).
So by Specht’s theorem A is unitarily equivalent to B. �

Theorem 2.4 Let A and B be 2-by-2 matrices. If tr(A)=tr(B), tr(A2)
=tr(B2) and tr(A∗A)=tr(B∗B), then A is unitarily equivalent to B.

Proof. Since tr(A)=tr(B) and tr(A2)=tr(B2) it follows that A and B have the same
eigenvalues. Let λ be one of the common eigenvalues of A and B and let A′ = A−λI2

and B′ = B − λI2. One can easily check that tr(A)=tr(B) and tr(A∗A)=tr(B∗B)
imply tr(A′)=tr(B′) and tr(A′∗A′)=tr(B′∗B′). Since both A′ and B′ are of rank 1,
using Theorem 2.1 we obtain that A′ is unitarily equivalent to B′. Hence A is uni-
tarily equivalent to B as well. �

In Theorem 2.4 we use traces of three words to characterize 2-by-2 matrices up to
unitary equivalence. Can we still make it better? The answer is no.

Theorem 2.5 Traces of two words do not suffice to determine a 2-by-2 matrix up to
unitary equivalence.

Proof. Let A and B be two 2-by-2 matrices. Using the property that tr(PQ)=tr(QP )
for any matrices P and Q, one needs only to consider words w of the following two
types: (1) w(x, y) = yi1xj1 . . . yinxjn with positive integers i1, j1, . . . , in, jn and (2)
w(x, y) = yn with positive integer n.

Take w1 and w2 to be any two words. First suppose that neither w1 nor w2 takes
the form (yx)n for some integer n. This means that if w1 is of the first type then
there must exist some exponent of w1 which is larger than 1. Now we may give a
counterexample of

A =

(
0 1
0 0

)
and B =

(
0 0
0 0

)
.

That tr(w1(B, B∗))=tr(w2(B, B∗))=0 is trivial. Suppose that w1 is of the first type.
Then we have tr(w1(A, A∗))=0 because A2 = 0. Suppose that w1 is of the second type.
Then we still have tr(w1(A, A∗))=0 as well. So we conclude that tr(w1(A, A∗))=0.
Similarly, we have tr(w2(A, A∗))=0. So we have

tr(w1(A, A∗)) = tr(w2(A, A∗)) = tr(w1(B, B∗)) = tr(w2(B, B∗)) = 0
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while A is NOT unitarily equivalent to B.

Now suppose that we have one of the words, say, w1 equal to (yx)n. If the sum of
the exponents of w2 is even, we may take

A =

(
1 0
0 1

)
and B =

(
1 0
0 −1

)
as a counterexample. It is easily seen that

w1(A, A∗) = w1(B, B∗) = w2(A, A∗) = w2(B, B∗) = I2.

Thus we again have

tr(w1(A, A∗)) = tr(w1(B, B∗)) and tr(w2(A, A∗)) = tr(w2(B, B∗))

while A is clearly NOT unitarily equivalent to B.

Finally if we have w1 = (yx)n for some integer n and the sum of the exponents of
w2 is odd, we may take

A =

(
1 0
0 −1

)
and B =

(
i 0
0 −i

)
.

One can check that tr(w1(A, A∗))=tr(w1(B, B∗)) and tr(w2(A, A∗))=
tr(w2(B, B∗)) while A is clearly NOT unitarily equivalent to B.

Since we have exhausted all possible cases, we conclude that traces of two words
do not suffice to determine any 2-by-2 matrix up to unitary equivalence. �

2.2 3-by-3 Matrices

Let A and B be two n-by-n matrices of rank 2. Then tr(A)=tr(B) and tr(A2)=tr(B2)
guarantee that they have equal characteristic polynomials of degree 3 (unless n = 2,
but this case is already solved). So we only have to check

tr(w(A, A∗)) = tr(w(B, B∗))

for words w(x, y) = yi1xj1 · · · yinxjn with 1 ≤ i1, j1, . . . , in, jn ≤ 2. For the sake of
convenience we denote P, Q, R, S words in W by

P (x, y) = yx,Q(x, y) = y2x, R(x, y) = yx2, S(x, y) = y2x2. (2.4)

It is clear that every word we need to verify can be written as the product of P ,Q,R
and S. Also for w a word in W , we will often denote w(A, A∗) and w(B, B∗) as wA
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and wB. Whenever we write tr(wA)1,2=tr(wB)1,2 it is to be understood that we mean
tr(wA)i=tr(wB)i for i = 1, 2.

Let w(1), . . . , w(8) be words in W defined by

w(1)(x, y) = x, w(2)(x, y) = x2, w(3)(x, y) = x3, w(4)(x, y) = P,

w(5)(x, y) = Q, w(6)(x, y) = S, w(7)(x, y) = P 2, w(8)(x, y) = SP. (2.5)

We are going to show that tr(w
(i)
A )=tr(w

(i)
B ) for 1 ≤ i ≤ 8 implies the unitary equiva-

lence of A and B. This can be easily applied to arbitrary 3-by-3 matrices. There is
a small difference in that w(7) is actually not needed in the 3-by-3 case.

Lemma 2.6 Let A and B be two n-by-n matrices both of rank 2. Suppose tr (w
(i)
A )=tr

(w
(i)
B ) for 1 ≤ i ≤ 8 as defined in (2.5). Then for every word w of length 2 we have

tr(wA)=tr(wB).

Proof. Using tr(A∗)=tr(A) and tr(AB)=tr(BA) we only need to verify

tr(QP )A = tr(QP )B, tr(RQ)A = tr(RQ)B, tr(QQ)A = tr(QQ)B,

tr(SS)A = tr(SS)B, tr(SQ)A = tr(SQ)B. (2.6)

For any complex numbers u and v, uA + vA∗ and uB + vB∗ are both matrices
with rank at most 4 if A and B both have rank 2. So tr(uA + vA∗)i=tr(uB + vB∗)i

for 1 ≤ i ≤ 4 and hence tr(uA + vA∗)i=

tr(uB + vB∗)i for any integer i and any complex numbers u and v. One can check

that tr(w
(i)
A )=tr(w

(i)
B ) for 1 ≤ i ≤ 7 implies tr(uA + vA∗)i=

tr(uB + vB∗)i for 1 ≤ i ≤ 4. Using the equality for i = 5 and comparing the
coefficients of u2v3 one gets

5(tr(A∗3A2) + tr(QP )A) = 5(tr(B∗3B2) + tr(QP )B).

However since tr(A∗3A2) can be written as a linear combination of tr(SA),tr(QA)∗

and tr(A2) while tr(SA)=tr(SB) and tr(QA)=tr(QB), one gets tr(A∗3A2)=tr(B∗3B2)
and thus tr(QP )A=tr(QP )B as well.

Next we apply tr(uA + vA∗)6=tr(uB + vB∗)6 and comparing the coefficients of
u3v3 to get

6(tr(SP )A + tr(RQ)A + tr(A∗3A3)) + 2 ∗ tr(P 3)A

= 6(tr(SP )B + tr(RQ)B + tr(B∗3B3)) + 2 ∗ tr(P 3)B.

Since tr(P 1,2)A=tr(P 1,2)B while PA and PB are both matrices of rank 2, it implies
that tr(P i)A=tr(P i)B for any integer i. We also have tr(A∗3A3)=tr(B∗3B3) which is
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trivial and tr(SP )A=tr(SP )B which is given. So we deduce that tr(RQ)A=tr(RQ)B.

Next we consider matrices uA∗A+vA∗ and uB∗B +vB∗ for any complex numbers
u and v. Since uA∗A+ vA∗ = A∗(uA+ vIn), uA∗A+ vA∗ has rank 2 for any u and v.
Similarly uB∗B + vB∗ has rank 2. So tr(uA∗A + vA∗)1,2=tr(uB∗B + vB)1,2 implies
tr(uA∗A + vA∗)i=tr(uB∗B + vB∗)i for any integer i. One could see that

tr(A1,2) = tr(B1,2), tr(P 1,2)A = tr(P 1,2)B, tr(QA) = tr(QB)

indeed imply tr(uA∗A + vA∗)1,2=tr(uB∗B + vB)1,2. Using the equality for i=4 and
matching the coefficients of u2v2 one gets

4tr(A∗3AA∗A) + 2tr(Q2)A = 4tr(B∗3BB∗B) + 2tr(Q2)B.

However we have tr(A∗3AA∗A)=tr(B∗3BB∗B) so we infer that tr(Q2)A

=tr(Q2)B.

Now we consider uA∗2A + vA and uB∗2B + vB for any complex numbers u and
v. For the same reason as before,

tr(uA∗2A + vA)1,2 = tr(uB∗2B + vB)1,2

implies tr(uA∗2A + vA)i=tr(uB∗2B + vB)i for any integer i. Using the equality for
i=4 and comparing the coefficients of u2v2 one gets

4tr(A∗2AA∗2A3) + 2tr(S2)A = 4tr(B∗2AB∗2B3) + 2tr(S2)B.

Consider matrices uQA +vA2 and uQB +vB2 for any complex numbers u and v. One
can check that indeed tr(uQA + vA2)1,2=tr(uQB + vB2)1,2, so we have

tr(uQA + vA2)i = tr(uQB + vB2)i

for every integer i. Using the equality for i=3 and matching the coefficients of uv2

one gets tr(A∗2AA∗2A3)=tr(B∗2BB∗2B3). Hence we conclude that tr(S2)A=tr(S2)B

as well.

Next we consider uA∗2A2 +vA∗A+tA∗ and uB∗2B2 +vB∗B+tB∗ for any complex
number u, v and t. For the same reason as before,

tr(uA∗2A2 + vA∗A + tA∗)1,2 = tr(uB∗2B2 + vB∗B + tB∗)1,2

implies tr(uA∗2A2 + vA∗A + tA∗)i=tr(uB∗2B2 + vB∗B + tB∗)i for any integer i. One
can check that

tr(A) = tr(B), tr(PA) = tr(PB), tr(SA) = tr(SB),

tr(QA) = tr(QB), tr(SP )A = tr(SP )B
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indeed guarantee that tr(uA∗2A2 + vA∗A + tA∗)1,2=tr(uB∗2B2 + vB∗B + wB∗)1,2.
Using the equality for i=3 and matching the coefficients of uvt one gets

3(tr(SQ)A + tr(A∗3A2A∗A)) = 3(tr(SQ)B + tr(B∗3B2B∗B)).

Since we have tr(A∗3A2A∗A)=tr(B∗3B2B∗B), we deduce that tr(SQ)A=
tr(SQ)B. �

Lemma 2.7 Let A and B be two n-by-n matrices both of rank 2. Suppose tr(wi
A)=tr

(wi
B) for 1 ≤ i ≤ 8. Let k be any integer. Assume that for every word w of length k we

have tr(w1,2
A )=tr(w1,2

B ). If for every word w′ of length k + 1 we have tr(w′
A)=tr(w′

B),
then tr(w′

A)2=tr(w′
B)2 as well.

Proof. Suppose a word w′ of length n+1 can be written as, without loss of generality,
say, Qw with w a word of length n. Since for any complex number u and v matrices
uQA + vwA and uQB + vwB both have rank 2,

tr(uQA + vwA)1,2 = tr(uQB + vwB)1,2

implies
tr(uQA + vwA)i = tr(uQB + vwB)i

for every integer i. One could check that

tr(QA) = tr(QB), tr(Q2)A = tr(Q2)B, tr(wA) = tr(wB),

tr(wA)2 = tr(wB)2tr(Qw)A = tr(Qw)B

indeed guarantee that tr(uQA + vwA)1,2=tr(uQB + vwB)1,2. Using the equality for
i=4 and matching the coefficients of u2v2 one gets

tr(QwQw)A + tr(Q2w2)A = tr(QwQw)B + tr(Q2w2)B.

Using the equality for i=3 and matching the coefficients of u2v we get

tr(Q2w)A = tr(Q2w)B.

Now we consider uQ2
A + wA and uQ2

B + wB. For the same reason as above,

tr(uQ2
A + wA)1,2 = tr(uQ2

B + wB)1,2

implies
tr(uQ2

A + wA)i = tr(uQ2
B + wB)i

for every integer i. One could check that

tr(Q2
A) = tr(Q2

B), tr(Q4
A) = tr(Q4

B), tr(wA) = tr(wB),

tr(wA)2 = tr(wB)2, tr(Q2w)A = tr(Q2w)B
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imply tr(uQ2
A + wA)1,2=tr(uQ2

B + wB)1,2. Using the equality for i=3 and match-
ing the coefficients of uv2 one gets tr(Q2w2)A=tr(Q2w2)B. And thus we deduce
tr(QwQw)A=tr(QwQw)B as well. This is just tr(w′

A)2=tr(w′
B)2. �

We say that two words w and w′ are cyclically equivalent if w′ can be obtained
from a cyclic permutation of w. For example, PQRS, QRSP , RSPQ and SPQR
are all cyclically equivalent. Note that for two cyclically equivalent words w and w′,
tr(wA)=tr(w′

A) and tr(wB)=tr(w′
B). Thus when we check if tr(wA)=tr(wB) we can

always freely change w to any word w′ that is cyclically equivalent to w.

Theorem 2.8 Let A and B be two n-by-n matrices both of rank 2. If tr(w
(i)
A )=tr(w

(i)
B )

for 1 ≤ i ≤ 8, then A is unitarily equivalent to B.

Proof. We proceed by induction on the length n of words. From Lemmas 2.6 and 2.7
we see that for words w of length 1 or 2, one has tr(wA)1,2=tr(wB)1,2. This proves
our assertion for n = 1 and n = 2.

Now suppose for n = k, k+1, every word w of block n satisfies tr(wA)1,2=tr(wB)1,2.
Let w′ be any word of length k+2. If w′ is not any of the forms (SP )n, (PS)n, (QR)n

or (RQ)n, then we have w cyclically equivalent to one of the following 12 cases:

(1) w = PPK for some word K of length k

Consider for any complex numbers u and v matrices uPA + vKA and uPB + vKB.
Note that uPA + vKA and uPB + vKB are both of rank 2. Also,

tr(uPA + vKA)1,2 = tr(uPB + vKB)1,2

implies
tr(uPA + vKA)i = tr(uPB + vKB)i

for every integer i. From tr(PA)=tr(PB) we see that the coefficients of u of both sides
are equal. Since K is of length k, by induction hypothesis we have tr(KA)=tr(KB)
and so the coefficients of v of both sides are equal. From tr(PA)2=tr(PB)2 we see
that the coefficients of u2 of both sides are equal. Since PK is of length k + 1, by
induction hypothesis we have tr(PK)A=tr(PK)B and so the coefficients of uv of both
sides are equal. Finally, since K is of length k, by the induction hypothesis we have
tr(KA)2=tr(KB)2 and so the coefficients of v2 of both sides are equal. Hence we
conclude that tr(uPA + vKA)1,2 =tr(uPB + vKB)1,2. Using the equality for i=3 and
matching the coefficients of uv2 we get tr(PPK)A=tr(PPK)B.

(2) w = PRK for some word K of length k:

10



Consider for any complex numbers u and v the matrices uPA + vAKA and uPB +
vBKB. One could check indeed that tr(uPA+vAKA)1,2 =tr(uPB +vBKB)1,2 and this
implies tr(uPA + vAKA)i =tr(uPB + vBKB)i for every integer i. Using the equality
for i = 3 and matching the coefficients of u2v one gets tr(PRK)A=tr(PRK)B.

(3) w = RPK for some word K of length k:

Matching the coefficients of uvt in tr(uPA + vRA + tKA)3=tr(uPB + vRB + tKB)3

one gets tr(PRK)A+tr(RPKA)=tr(PRK)B+tr(RPKB). Thus from (2) we deduce
tr(RPKA)=tr(RPKB).

(4) w = PQK for some word K of length k:

Note that tr(PQK)∗A=tr(K∗RP )A=tr(RPK∗)A. Applying (3) we obtain tr(PQK)A

=tr(PQK)B.

(5) w = QPK for some word K of length k:

Matching the coefficients of uvt in tr(uQA + vPA + tKA)3=tr(uQB + vPB + tKB)3,
one gets tr(QPK)A+tr(PQKA)=tr(QPK)B+tr(PQKB). Thus from (2) we deduce
tr(QPKA)=tr(QPKB).

(6) w = QQK for some word K of length k:

Consider for any complex numbers u and v the matrices uQA+vKA and uQB+vKB.
One could check indeed that tr(uQA + vKA)1,2 =tr(uQB + vKB)1,2 and this implies
tr(uQA + vKA)i =tr(uQB + vKB)i for every integer i. Using the equality for i = 3
and matching the coefficients of u2v one gets tr(QQK)A=tr(QQK)B.

(7) w = QSK for some word K of length k:

Consider for any complex numbers u and v the matrices uQA + vAKA and uQB +
vBKB. One could check indeed that tr(uQA+vAKA)1,2 =tr(uQB+vBKB)1,2 and this
implies tr(uQA + vAKA)i =tr(uQB + vBKB)i for every integer i. Using the equality
for i = 3 and matching the coefficients of u2v one gets tr(QSK)A=tr(QSK)B.

(8) w = RRK for some word K of length k:

Consider for any complex numbers u and v the matrices uRA+vKA and uRB+vKB.
One could check indeed that tr(uRA + vKA)1,2 =tr(uRB + vKB)1,2 and this implies
tr(uRA + vKA)i =tr(uRB + vKB)i for every integer i. Using the equality for i = 3
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and matching the coefficients of u2v one gets tr(RRK)A=tr(RRK)B.

(9) w = SQK for some word K of length k:

Matching the coefficients of uvt in tr(uQA + vSA + tKA)3=tr(uQB + vSB + tKB)3

one gets tr(QSK)A+tr(SQKA)=tr(QSK)B+tr(SQKB). Thus from (7) we deduce
tr(SQKA)=tr(SQKB).

(10) w = RSK for some word K of length k:
Note that tr(RSK)∗A=tr(K∗SQ)A=tr(SQK∗)A. Applying (9) we obtain tr(RSK)A=
tr(RSK)B.

(11) w = SRK for some word K of length k:

Matching the coefficients of uvt in tr(uSA + vRA + tKA)3=tr(uSB + vRB + tKB)3

one gets tr(RSK)A+tr(SRKA)=tr(RSK)B+tr(SRKB), Thus from (10) we deduce
tr(SRKA)=tr(SRKB).

(12) W = SSK for some word K of length k

Consider for any complex numbers u and v the matrices uSA+vKA and uSB+vKB.
One could check indeed that tr(uSA + vKA)1,2 =tr(uSB + vKB)1,2 and this implies
tr(uSA +vKA)i =tr(uSB +vKB)i for every integer i. Using the equality for i = 3 and
matching the coefficients of u2v one gets tr(SSK)A=tr(SSK)B.

For w′ = (PS)n, we showed in Lemma 2.6 that tr(PS)A=tr(PS)B and tr(PSPS)A

=tr(PSPS)B. Since (PS)A and (PS)B are both of rank 2, this implies that tr(PS)n
A=

tr(PS)n
B for all integers n. Similarly, we have tr(QR)n

A=tr(QR)n
B for all integers n. So

we have proved that tr(w′
A)=tr(w′

B) for every word w′ of length k + 2. Finally, from
Lemma 2.7 and the induction hypothesis that tr(wA)1,2=tr(wB)1,2 for every word w
of length k + 1 we conclude that tr(w′

A)2=tr(w′
B)2 for every w′ of length k + 2. Thus

we conclude by induction that tr(wA)=tr(wB) for any w of length n, n ≥ 1. So A is
unitarily equivalent to B. �

Now let us come back to the 3-by-3 cases. First we show that w(7) is redundant.

Lemma 2.9 Suppose A and B are two 3-by-3 matrices. If tr(w
(i)
A )=tr(w

(i)
B ) for 1 ≤

i ≤ 6, then tr(w
(7)
A )=tr(w

(7)
B )

Proof. For any complex numbers u and v consider matrices uA + vA∗ and uB + vB∗.
One could check that tr (wi

A)=tr(wi
B) for 1 ≤ i ≤ 5 implies

tr(uA + vA∗)1,2,3 = tr(uB + vB∗)1,2,3.
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Hence we have tr(uA + vA∗)i=tr(uB + vB∗)i also for every integer i. Using the
equality for i = 4 and matching the coefficients of u2v2 one gets

tr(w
(6)
A ) + tr(w

(7)
A ) = tr(w

(6)
B ) + tr(w

(7)
B ).

From tr (w
(6)
A )=tr(w

(6)
B ) we then deduce tr (w

(7)
A )=tr(w

(7)
B ) �

Lemma 2.10 Suppose A and B are two 3-by-3 matrices and tr (w
(i)
A )=tr(w

(i)
B ) for

1 ≤ i ≤ 6 and i = 8. Then, for any complex number λ, tr(w
(i)
(A−λI3))=tr(w

(i)
(B−λI3)) for

1 ≤ i ≤ 6 and i = 8 as well.

Proof. The only case we really need to verify is tr(w
(8)
(A−λI3))=tr(w

(8)
(B−λI3)). This in

turn is equivalent to checking that if tr(A∗2AA∗A)=tr(B∗2BB∗B). Using

tr(uA + vA∗)7 = tr(uB + vB∗)7

and matching the coefficients of u3v4 one gets indeed

tr(A∗2AA∗A) = tr(B∗2BB∗B).

�

Theorem 2.11 If A and B are two 3-by-3 matrices such that tr(w
(i)
A )

=tr(w
(i)
B ) for 1 ≤ i ≤ 6 and i = 8, then A is unitarily equivalent to B.

Proof. First from tr(A)1,2,3=tr(B)1,2,3 we conclude that A and B have the same
eigenvalues. Subtracting a common eigenvalue λ we get A′ = A−λI3 and B′ = B−λI3

both having rank 2. From Lemma 2.5 we have tr (w
(i)
A′ )=tr(w

(i)
B′) for 1 ≤ i ≤ 6 and

i = 8. From Lemma 2.4 we see tr(w
(7)
A′ )=tr(w

(7)
B ) as well. From Theorem 2.1 we

conclude that A′ is unitarily equivalent to B′. Thus A is also unitarily equivalent to
B. �
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3 Matrices with Eigenvectors Not Orthogonal

We prove in this chapter the most general result in this paper, namely, for any matrix
whose eigenvectors are not orthogonal a set with n4 + 1 words suffices to determine
it up to unitary equivalence. For example,

A =

(
a b
0 c

)
, b 6= 0

is such a matrix.

Theorem 3.1 Let A be an n-by-n matrix such that none of its eigenvectors are
orthogonal.Then {A∗iAj : 0 ≤ i, j < n} is a linearly independent set and spans
Alg(A, A∗).

Proof. Suppose that

f(x) = (x− λ1)
p1(x− λ2)

p2 . . . (x− λm)pm

is the characteristic polynomial of A with λ1, λ2, ..., λm the distinct eigenvalues of A.
Since none of the eigenvectors of A are orthogonal, we have in particular ker(A −
λiIn) = 1 for all i, on 1 ≤ i ≤ m. This implies that f is also the minimal polynomial
of A. Suppose on the contrary that {A∗iAj : 0 ≤ i, j < n} is linearly dependent.
Then there exist polynomials g0, g1, . . . , gn−1 of degree < n, not all zero, such that

gn−1(A
∗)An−1 + · · ·+ g0(A

∗) = 0. (3.1)

Let hn−1=gcd(f, gn−1) and write gn−1 = qhn−1 with q also a polynomial. Then
q(A∗) is invertible with its inverse also a polynomial in A∗. Thus we can multiply
both sides of (3.1) with j(A∗)−1 and obtain

hn−1(A
∗)An−1 + · · ·+ h0(A

∗) = 0 (3.2)

with h0, h1, . . . , hn−1 still polynomials of degree < n. Since hn−1 divides f , there
is some r such that hn−1(x) divides (x − λ1)

p1 · · · (x − λr)
pr−1 · · · (x − λm)pm . We

multiply both sides of (3.2) with (A∗ − λ1)
p1 · · · (A∗ − λr)

pr−1 · · · (A∗ − λm)pm and
obtain for some nonzero polynomial h the relation

(A∗ − λ1)
p1 · · · (A∗ − λr)

pr−1 · · · (A∗ − λm)pmh(A) = 0. (3.3)

Similarly, take l=gcd(f, h) and denote h = lu. Then u(A) is invertible with its inverse
also a polynomial in A. So we multiply both sides of (3.3) with u(A)−1 and obtain

(A∗ − λ1)
p1 · · · (A∗ − λr)

pr−1 · · · (A∗ − λm)pml(A) = 0. (3.4)
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Since l divides f and is of degree < n, there is some s such that l divides (x −
λ1)

p1 · · · (x − λs)
ps−1 · · · (x − λm)pm . So we multiply both sides of (3.4) with (A −

λ1)
p1 · · · (A− λs)

ps−1 · · · (A− λm)pm and obtain

(A∗ − λ1)
p1 · · · (A∗ − λr)

pr−1 · · · (A∗ − λm)pm

(A− λ1)
p1 · · · (A− λs)

ps−1 · · · (A− λm)pm = 0. (3.5)

Since f is the minimal polynomial of A, there exists some nonzero v in Cn which is
not in ker(A−λr)

pr−1 but in ker(A−λr)
pr . So (A−λr)

pr−1v is nonzero and belongs in
ker(A− λr). Let vr in Cn be an eigenvector of A corresponding to the eigenvalue λr.
Then for some nonzero complex number a we have (A−λr)

pr−1v = avr. Similarly, for
some nonzero w in Cn and nonzero complex number b, we have (A− λs)

ps−1w = bvs,
where vs is an eigenvector of A corresponding to the eigenvalue λs. From (3.5), we
must have〈

(A− λ1)
p1 ...(A− λr)

pr−1...(A− λm)pmv, (A− λ1)
p1 ...(A− λs)

ps−1...(A− λm)pmw
〉

= 0.

This in turn implies〈( ∏
1≤i≤m;i6=r

(A− λi)
pi

)
vr,

( ∏
1≤i≤m;i6=s

(A− λi)
pi

)
vs

〉
= 0

and hence
〈vr, vs〉 = 0.

So we find a pair of eigenvectors of A which are orthogonal, contradicting to our
assumption on A. Thus the set {A∗iAj : 0 ≤ i, j < n} must be linearly independent.
Since this set contains n2 elements and Alg(A, A∗) is of dimension at most n2, this
implies that {A∗iAj : 0 ≤ i, j < n} spans Alg(A, A∗). �

Suppose now that A and B are two n-by-n matrices with none of the eigenvectors
of A orthogonal. By Theorem 3.1, for any integers p and q we can write ApA∗q as a
linear combination of A∗iAj, 0 ≤ i, j < n. The next theorem shows that if

tr(An) = tr(Bn) and tr(A∗iAjA∗kAl) = tr(B∗iBjB∗kBl), 0 ≤ i, j, k, l < n,

then we can also write BpB∗q as a linear combination of {B∗iBj : 0 ≤ i, j < n} with
the same coefficients.

Theorem 3.2 Let A and B be two n-by-n matrices and p and q be some integers.
Suppose that there exists a set of complex numbers {aij : 0 ≤ i, j < n} such that

ApA∗q =
∑n−1

i,j=0 aijA
∗iAj. If

tr(An) = tr(Bn) and tr(A∗iAjA∗kAl) = tr(B∗iBjB∗kBl), 0 ≤ i, j, k, l < n,
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then we also have BpB∗q =
∑n−1

i,j=0 aijB
∗iBj.

Proof. From ApA∗q =
∑n−1

i,j=0 aijA
∗iAj, we have

tr

(
(ApA∗q −

n−1∑
i,j=0

aijA
∗iAj)∗(ApA∗q −

n−1∑
i,j=0

aijA
∗iAj)

)
= 0.

This is the same as

tr(AqA∗pApA∗q)− tr(
n−1∑
i,j=0

aijA
qA∗pA∗iAj)

− tr(
n−1∑
i,j=0

aijA
∗iAjAqA∗p)− tr(

n−1∑
i,j,k,l=0

aijaklA
∗jAiA∗kAl) = 0. (3.6)

Since tr(Ai) = tr(Bi), 1 ≤ i ≤ n, A and B have equal characteristic polynomials and
thus tr(A∗iAjA∗kAl) = tr(B∗iBjB∗kBl), 0 ≤ i, j, k, l < n implies tr(A∗iAjA∗kAl) =
tr(B∗iBjB∗kBl) for all nonnegative integers i, j, k and l. Substituting this back into
(3.6), we obtain

tr(BqB∗pBpB∗q)− tr(
n−1∑
i,j=0

aijB
qB∗pB∗iBj)

− tr(
n−1∑
i,j=0

aijB
∗iBjBqB∗p)− tr(

n−1∑
i,j,k,l=0

aijaklB
∗jBiB∗kBl) = 0 (3.7)

as well. So we have

tr(BpB∗q −
n−1∑
i,j=0

aijB
∗iBj)∗(BpB∗q −

n−1∑
i,j=0

aijB
∗iBj) = 0.

Thus BpB∗q −
∑n−1

i,j=0 aijB
∗iBj = 0. �

Now we are ready to prove the main result.

Theorem 3.3 Let A and B be two n-by-n matrices. Assume that no pair of the
eigenvectors of A are orthogonal to each other. If tr(A∗iAjA∗kAl) = tr(B∗iBjB∗kBl)
for 0 ≤ i, j, k, l < n and tr(An) = tr(Bn), then A is unitarily equivalent to B.
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Proof. We are going to show that for every word w(x, y), tr(w(A, A∗)) = tr(w(B, B∗))
and then apply Specht’s theorem to conclude that A is unitarily equivalent to B. Us-
ing the property that tr(AB) = tr(BA), it suffices to consider only words w of the
form w(x, y) = yi1xj1 · · · yinxjn .

We proceed by induction on the length n. For n=1, this is already assumed.
Suppose that the assertion is true for n = k. Consider the case n = k + 1. Then

tr(w(A, A∗)) = tr(A∗i1Aj1 · · ·A∗ik(AjkA∗ik+1)Ajk+1)

= tr

(
n−1∑

p,q=0

apqA
∗i1Aj1 · · ·A∗(ik+p)Aq

)
=

n−1∑
p,q=0

apqtr
(
A∗i1Aj1 · · ·A∗(ik+p)Aq

)
. (3.8)

Since A∗i1Aj1 · · ·A∗(ik+p)Aq is of length k, by the induction hypothesis we have

tr(A∗i1Aj1 · · ·A∗(ik+p)Aq) = tr(B∗i1Bj1 · · ·B∗(ik+p)Bq). (3.9)

Substituting this back into (3.8), we have

tr(w(A, A∗)) =
n−1∑

p,q=0

apqtr
(
A∗i1Aj1 · · ·A∗(ik+p)Aq

)
=

n−1∑
p,q=0

apqtr
(
B∗i1Bj1 · · ·B∗(ik+p)Bq

)
= tr

(
n−1∑

p,q=0

apqB
∗i1Bj1 · · ·B∗(ik+p)Bq

)
= tr(B∗i1Bj1 · · ·B∗ik(BjkB∗ik+1)Bjk+1) = tr(w(B, B∗)).

Thus by the mathematical induction we conclude that tr(w(A, A∗))=tr(w(B, B∗)) for
every word w. So A is unitarily equivalent to B. �
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