1 Introduction

Let A and B be two n-by-n complex matrices which are unitarily equivalent, that
is, B = U*AU for some unitary matrix U. It is easily seen that matrices A*A and
B*B have equal traces. Trace of the product of a matrix and its own conjugate is
thus an example of a unitary invariant. More generally, consider the multiplicative
semigroup W generated by the noncommuting variables x and y. We call an element
of W a word and denote it by w(z,y). If there is no confusion over the underlying
variables one will also simply denote it by w. For example, w(x,y) = y*z3y is such
a word. In general a word w can always be written as w = y"ta/t ... yz’" where
11,1, - - -, In, Jn are positive integers except that ¢; or j, may be zero. We say that
11, J15+ -+, 1n, Jn are the exponents of a word w and w is of length n if i; and j, are
both different from zero. Otherwise w is said to be of length n — 1. If n = 1 and
11 =71 = 0, we call w an empty word.

Suppose now we substitute x and y by A and A* and regarding w(A, A*) as
an n-by-n matrix. Same thing for w(B, B*). (If the word is empty we assign
w(A, A*) = w(B, B*) = I,,.) One imniediatelysees that tr(w(A, A*)) = tr(w(B, B))
for any word if A and B are unitarily ,equivalent. W. Specht [S] proved that the
converse is also true. That is, the set {tr(w(A;A%)) : w(z,y) is any word in = and
y} completely determines A up-to unitary equivalence, and thus is a complete set of
unitary invariants. There is a similar generalization due to N.Wiegmann [W] that
considers not only two n-by-n matrices A and.B but two finite sets of n-by-n matrices
{A1, Ay, ... A} and {By, By, ... Bg}. In this 8ituation we must consider words w
with noncommuting variables in x1, Yy, @%o, ¥, - . ., Ty, Y. It states that there exists a
unitary matrix U such that U*A;U = B; for i« = 1,2,...,t if and only if for every
word w(x1, Y1, T2, Yo, - - -, Ty, Yp) We have tr(w(Aq, A}, Ag, AL, ..., Ay, AT))=
tr(w(By, BY, B2, B3, ..., By, Bf)).

The result of Specht gives an infinte set of complete unitary invariants for an
n-by-n matrix A since one can form infinitely many words in A and A*. Later, C.
Pearcy showed in [P1] that a finite set of words would suffice. More precisely, let w(k)
denote the set of words in the variables x and y in which the sum of the exponents
does not exceed k. Then A is unitarily equivalent to B if tr(w(A, A*) = tr(w(B, B*))
for every word w in w(2n?). This set contains fewer than 4" elements. Of course,
this upper bound is still far from satisfactory. In the other direction, Bhattarcharya
[B] proved that for matrices whose nonzero singular values have multiplicity one, a
family of about (2n)" traces would suffice. She also showed that there exist n? + 1
complex-valued continuous functions on M,,(C) which form a complete set of unitary
invariants for n-by-n matrices where M, (C) denotes the algebra by all n-by-n copm-
lex matrices . It suggests that one would like to find a complete set of specific unitary



invariants with the size of the set being a polynomial in n. For small n, it is easy to
see three traces of words suffice for 2-by-2 matrices. Pearcy [P2]| showed that a set of
nine words suffices for n = 3 and Sibirskil [Si] improved this by finding a set of seven
words which suffices and forms a minimal set.

In Chapter 2 of this paper, we survey cases for n = 2,3 and show that
tr(A), tr(A?), tr(A*A)

form a complete set of unitary invariants for any n-by-n matrix A with rank 1. This
will cover the 2-by-2 case immediately. We also show that three words are fewest
possible. That is, one cannot find a set with two traces of words that is complete.
For any 3-by-3 matrix A, we prove that

tr(A), tr(A?), tr(A%), tr(A*A), tr(A*?A), tr(A* A%), tr(A? A2 A% A)

form a complete set of unitary invariants. The proof here is quite different from the
computational proof given in [P2] and gives a bit more. The set given above plus
tr(A*A)? is actually complete with respect to'dny n-by-n matrix A with rank 2. This
will cover the case for 3-by-3 mattix readily:

In Chapter 3, we give the result that for-another-special class of matrices (matrix
whose eigenvectors are not orthogonal),d set with né more than n* + 1 words suffices
to determine such matrices up to.unitary equivalence. We denote the algebra gen-
erated by A and A* over the complex numbers by Alg(A, A*). This is the set of all
polynomial expressions p(A, A*), where p(&, ) 1s any polynomial in the noncommut-
ing variables x and y. The method lies in first proving {A*'A7 : 0 < 4,5 < n} spans
Alg(A, A*) for such an A. Then one modifies the method in [P1] somewhat to obtain
that {tr(A*ATA*AY -0 <i,j k1 <n}U{tr(A")} forms a complete set of unitary
invariants for A in this class.



2 Unitary equivalence for 2-by-2 and 3-by-3 Matrices

2.1 2-by-2 Matrices

First we state a basic lemma for general n-by-n matrices that will be applied repeat-
edly later.

Lemma 2.1 Let A and B be two n-by-n matrices. If tr(A") = tr(B") for 1 <i<mn,
then A and B have the same eigenvalues counting algebraic multiplicities and hence
tr(A") = tr(B") for all integers i.

Proof. Let aq,...,a, be eigenvalues of A and by,...,b, be eigenvalues of B, each
repeated according to its algebraic multiplicity. We define two classes of homogeneous
polynomials S,., G, : C" — C for 1 <r <n by

n
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We also define Gg = 1. Note that S}, = Gj.

The statement that tr(A%)=tr(B%.for 1 < i< is the same as  S,(ay,...,a,) =
Sr(b1,...,by) for 1 < r < n. We want'to show that this implies G, (ay,...,a,) =
G.(by,...,b,) for 1 < r < n. In fact, we have the following so-called Newton’s
identities:

rG, —S1G,_1+---+ (—1>TSTG0 =0 (21)
for 1 <r < n (cf. [Pr, p.20]). Using S.(ai,...,a,) = Sp(by,...,b,) for 1 <r <n
together with (2.1), one concludes that G, (a4, ...,a,) = G,(b,...,b,) for 1 <r <n.

Now we have

H(x - i) = Z(_l)iGi(%, oy Q)"

= (=1)'Gi(by, ... bp)a" " = [ (= — o). (2.2)

=0 i=1

So azy, ...,a, and by, ..., b, both represent the zeros of the same polynomial and hence
must coincide.



To prove (2.1) we define another class of homogenous polynomials K™ .cr—C
for integers r and m such that r <n and 1 < m <n by

m _ E
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i1,82,.. 00 M

We also define K™ =1 and K7 = 0.

Notice that G, = xmKﬁT% + K™ for every m such that 1 < m < n and every r
such that 0 < r <n. So we have

ZwG —Zx z; K, —I—K(J)) (2.3)

Substituting (2.3) back into (2.1), we have

rG, +Z )'GrsSi = rG, +Z iy, wia kY + K9
i=1 =1

=G, +Z Z ZH-IKJ)Zl_i_Z J]

=

r—1
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| i=1
[r—1 _
=rG, — Z zi K 1 + Z Z<_1)i$§+le—)z’—1 + Z<_1)i+lx§+lKﬁj—)i—1]
Li=1 i=1
=rG, — Z@K,@l =0
j=1
Hence the assertion is proved. 0

Suppose we know beforehand that A and B have r common eigenvalues (Counting
algebraic multiplicities). Then it is clear that we only have to check tr(A*)=tr(B"*)
for 1 <i <n—r. We will use mostly Lemma 2.1 in the following form:

Corollary 2.2 Let A and B be two n-by-n matrices both of rank r. If tr(A")=tr(B")
for 1 <i <, then tr(A")=tr(B") for all i.

Theorem 2.3 Let A and B be matrices both of rank 1. If tr(A)=tr(B) and tr(A*A)
=tr(B*B), then A is unitarily equivalent to B.



Proof. Since A and B are both of rank 1, tr(A)=tr(B) guarantees that tr(A")=tr(B?)
for any integer 7 and that A and B have equal characteristic polynomials of degree 2.
So all it remains to check are words w with exponents all equal to 1. That is, we still
need to check if tr(A*A)'=tr(B*B)" for any integer i. Similarly, since A*A and B*B
are both of rank 1, tr(A*A)=tr(B*B) guarantees that tr(A*A)'=tr(B*B)" for any in-
teger i. Hence we conclude that for every word w we have tr(w(A, A*))=tr(w(B, B*)).
So by Specht’s theorem A is unitarily equivalent to B. O

Theorem 2.4 Let A and B be 2-by-2 matrices. If tr(A)=tr(B), tr(A?)
=tr(B?) and tr(A*A)=tr(B*B), then A is unitarily equivalent to B.

Proof. Since tr(A)=tr(B) and tr(A?)=tr(B?) it follows that A and B have the same
eigenvalues. Let A be one of the common eigenvalues of A and B and let A’ = A— A,
and B’ = B — Al;. One can easily check that tr(A)=tr(B) and tr(A*A)=tr(B*B)
imply tr(A")=tr(B’) and tr(A”*A")=tr(B”B’). Since both A" and B’ are of rank 1,
using Theorem 2.1 we obtain that A’ is unitarily equivalent to B’. Hence A is uni-
tarily equivalent to B as well. 0

In Theorem 2.4 we use traces ofithree words'to. characterize 2-by-2 matrices up to
unitary equivalence. Can we stillmakejit better?” The answer is no.

Theorem 2.5 Traces of two werds do not-suffice to-determine a 2-by-2 matriz up to
unitary equivalence.

Proof. Let A and B be two 2-by-2‘matrices. Using the property that tr(PQ)=tr(QP)
for any matrices P and @), one needs only to consider words w of the following two
types: (1) w(z,y) = y"a?' ... yx/n with positive integers i1, ji, - ., in, jn and (2)
w(z,y) = y™ with positive integer n.

Take w; and wy to be any two words. First suppose that neither w; nor ws takes
the form (yx)™ for some integer n. This means that if w; is of the first type then
there must exist some exponent of w; which is larger than 1. Now we may give a

counterexample of
0 1 0 0
A:(O 0) ande(O 0).

That tr(w;(B, B*))=tr(ws(B, B*))=0 is trivial. Suppose that w; is of the first type.
Then we have tr(w; (A, A*))=0 because A? = 0. Suppose that w; is of the second type.
Then we still have tr(w;(A, A*))=0 as well. So we conclude that tr(w;(A, A*))=0.
Similarly, we have tr(wq(A, A*))=0. So we have

tr(wi (A, A%)) = tr(wa (A, A%)) = tr(w (B, B*)) = tr(we(B, B*)) =0



while A is NOT unitarily equivalent to B.

Now suppose that we have one of the words, say, w; equal to (yx)". If the sum of
the exponents of ws, is even, we may take

10 1 0
A:(O 1) andB:(O _1>

as a counterexample. It is easily seen that
wy (A, A) = wqi(B, B*) = wy(A, A*) = we(B, B*) = L.
Thus we again have
tr(wi(A, A7) = tr(wy(B, B)) and tr(ws(A, A)) = tr(ws(B, BY))

while A is clearly NOT unitarily equivalent to B.

Finally if we have w; = (yz)" for some integer n and the sum of the exponents of

wy is odd, we may take
1w () ¢ 0
A= (0 _1) and B:= (0 —i) :

One can check that tr(wy (A, A%))=tr(w (B, B*)) and tr(wy(A, A*))=
tr(wq (B, B*)) while A is clearly NOT mnitarily equivalent to B.

Since we have exhausted all possible cases, we conclude that traces of two words
do not suffice to determine any 2-by-2 matrix up to unitary equivalence. U

2.2 3-by-3 Matrices

Let A and B be two n-by-n matrices of rank 2. Then tr(A)=tr(B) and tr(A?)=tr(B?)
guarantee that they have equal characteristic polynomials of degree 3 (unless n = 2,
but this case is already solved). So we only have to check

tr(w(A, A*)) = tr(w(B, B*))

for words w(z,y) = yadt - yirgin with 1 < 43,51, ,in, jn < 2. For the sake of
convenience we denote P, @, R, S words in W by
P(z,y) = yz, Q(z,y) = y*z, R(z,y) = ya?, S(z,y) = y*a. (2.4)

It is clear that every word we need to verify can be written as the product of P,Q,R
and S. Also for w a word in W, we will often denote w(A, A*) and w(B, B*) as w4

6



and wg. Whenever we write tr(w4)"?*=tr(wg)"? it is to be understood that we mean
tr(wa)'=tr(wp)" for i =1, 2.

Let w®, ..., w® be words in W defined by

w(z,y) =2, w(z,y)=2% w(r,y)=2> wP(r,y)=P
wO(z,y)=Q, w9,y =5 w(x,y)=P, w®(@y =5P. (25

We are going to show that tr(w (l)) tr( ) for 1 < ¢ < 8 implies the unitary equiva-
lence of A and B. This can be easily applied to arbitrary 3-by-3 matrices. There is
a small difference in that w(” is actually not needed in the 3-by-3 case.

Lemma 2.6 Let A and B be two n-by-n matrices both of rank 2. Suppose tr (wg)):tr
(wg)) for 1 < i <8 as defined in (2.5). Then for every word w of length 2 we have
tr(ws)=tr(wg).

Proof. Using tr(A*)=tr(A) and tr(AB
(

)
tr(QP)a = tr(QP)p, tr(RQ) s =1tr(RQ)p, tr(QQ)a = tr(QQ)s,
tr(SS) 4 = tr(SS)p,  t5Q)x ZHEGQ) (2.6)

For any complex numbers wand v, uA-+vA* and uB + vB* are both matrices
with rank at most 4 if A and B-both have rank 2. So tr(uA + vA*)'=tr(uB + vB*)'
for 1 <4 <4 and hence tr(uA + UA*).
tr(uB + UB*) for any integer ¢ and any complex numbers v and v. One can check
that tr(w ()) ( ) for 1 <4 < 7 implies tr(uAd + vA*)'=

tr(uB + vB*)’ for 1 < i < 4. Using the equality for ¢ = 5 and comparing the
coefficients of u?v?® one gets

5(tr(A** A?) + tr(QP) 1) = 5(tr(B*’B?) + tr(QP) ).

=tr(BA) we only need to verify

However since tr(A**A?) can be written as a linear combination of tr(S4),tr(Qa)"
and tr(A?) while tr(S,)=tr(Sp) and tr(Q)=tr(Qp), one gets tr(A**A%)=tr(B**B?)
and thus tr(QP)a=tr(QP)p as well.

Next we apply tr(uA + vA*)®=tr(uB + vB*)® and comparing the coefficients of
303 to get

6(tr(SP) 4 + tr(RQ) 4 + tr(A* A%)) 4+ 2 x tr(P?) 4
= 6(tr(SP)p + tr(RQ) s + tr(B**B%)) + 2 x tr(P?)p.

Since tr(Ph?) 4=tr(P"?)p while P4 and Pp are both matrices of rank 2, it implies
that tr(P?) s=tr(P?)p for any integer i. We also have tr(A**A3)=tr(B**B?) which is
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trivial and tr(SP)a=tr(SP)p which is given. So we deduce that tr(RQ)a=tr(RQ)z.

Next we consider matrices uA*A+ vA* and uB*B +vB* for any complex numbers
w and v. Since uA*A+vA* = A*(uA+vl,), uA*A+vA* has rank 2 for any v and v.
Similarly uB*B + vB* has rank 2. So tr(uA*A + vA*)"?=tr(uB*B + vB)"? implies
tr(uA*A + vA*)'=tr(uB*B + vB*)" for any integer i. One could see that

tr(AY?) = tr(B"?), tr(P"?) 4 = tr(P"?) 5, tr(Q4) = tr(Qp)

indeed imply tr(uA*A 4+ vA*)2=tr(uB*B + vB)"?. Using the equality for i=4 and
matching the coefficients of u?v? one gets

Atr(A*P AA* A) + 2tr(Q?) 4 = 4tr(B** BB*B) + 2tr(Q?) 5.
However we have tr(A** AA* A)=tr(B**BB*B) so we infer that tr(Q?)4
=tr(Q*) -

Now we consider uA*?A + vA and uB**B + vB for any complex numbers v and
v. For the same reason as before,

tr(uA*? A oA 2eatr(uB2B + vB)"?

implies tr(uA**A + vA)'=tr(uB*B + vB)’ for any integer i. Using the equality for
i=4 and comparing the coefficiénts of #?¢* one gets

4tr(A*? AAT A3) 4 26e(S?Ya = 4tr(BPAB B®) + 2tr(S?) 5.

Consider matrices uQ 4 +vA? and uQz +vB?for any complex numbers u and v. One
can check that indeed tr(u@Qa + vA?)"2=tr(uQp + vB?)"?, so we have

tr(uQa +vA? = tr(uQp + vB?)

for every integer i. Using the equality for i=3 and matching the coefficients of uv?
one gets tr(A*2AA*?A%)=tr(B**BB**B?). Hence we conclude that tr(S?),=tr(5?)p
as well.

Next we consider uA*2 A2 +vA*A+tA* and uB*>B?+vB*B+tB* for any complex
number u, v and ¢. For the same reason as before,

tr(uA*?A? + vA* A+ tA)? = tr(uB**B* + vB*B + tB*)"?

implies tr(uA*?A? + vA* A+ tA* ) =tr(uB**B? + vB* B +tB*)" for any integer i. One
can check that

tr(A) = tr(B),tr(Pa) = tr(Pg), tr(S4) = tr(Sp),

tr(Qa) = tr(Qp), tr(SP)s = tr(SP)p



indeed guarantee that tr(uA*?A? 4+ vA*A + tA* )" 2=tr(uB**B? + vB*B + wB*)"?.
Using the equality for =3 and matching the coefficients of uvt one gets

3(tr(SQ) 4 + tr(A*A2A* A)) = 3(tr(SQ) s + tr(B**B?B*B)).

Since we have tr(A**A2A* A)=tr(B**B?B*B), we deduce that tr(SQ),=
tI'(SQ)B ]

Lemma 2.7 Let A and B be two n-by-n matrices both of rank 2. Suppose tr(w’)=tr
(wh) for1 <i < 8. Letk be any integer. Assume that for every word w of length k we
have tr(wk®)=tr(wg?). If for every word w' of length k + 1 we have tr(w'y) =tr(wy),
then tr(w'y)*=tr(w’z)? as well.

Proof. Suppose a word w’ of length n+1 can be written as, without loss of generality,
say, Qw with w a word of length n. Since for any complex number u and v matrices
u@Qa + vwy and u@)p + vwpg both have rank 2,

tr(uQ 4 + vwa)'? = tr(uQp + vwg)"?
implies ' .
tr(u@ aF vwa ) =tr(u@Qp -+ vwp)’
for every integer 7. One could check that
tr(Q4) = tr(Qp)ytr(QF)a=1tn(Q*) 5, tr(w,) = tr(wg),
tr(wa)? = tr(wp) Q) 4 = tr(Qw)p

indeed guarantee that tr(u@Qa + vwa)?=tr(uQp + vwg)™?. Using the equality for
i=4 and matching the coefficients of u?v? one gets

tr(QuQw)a + tr(Q*w?) 4 = tr(QuQw)p + tr(Q*w?) 5.
Using the equality for i=3 and matching the coefficients of u?v we get
tr(Q*w) 4 = tr(Q*w)p.
Now we consider u@Q% + wa and uQ% + wp. For the same reason as above,
tr(uQ? + wA)1’2 = tr(u@% + wg)™?
implies A ‘
tr(u@Q? +wa)' = tr(uQ% + wp)’

for every integer . One could check that

tr(Q%) = tr(Qp), tr(Q%) = tr(Q), tr(wa) = tr(ws),

tr(wy)? = tr(wp)?, tr(Q*w) 4 = tr(Q*w)p



imply tr(u@Q? + wa)?=tr(u@Q% + wg)"?. Using the equality for i=3 and match-
ing the coefficients of uv? one gets tr(Q*w?) =tr(Q*w?)p. And thus we deduce
tr(QuwQuw) 4=tr(QwQuw)p as well. This is just tr(w/,)*=tr(w))?. O

We say that two words w and w’ are cyclically equivalent if w' can be obtained
from a cyclic permutation of w. For example, PQRS, QRSP, RSP(Q and SPQR
are all cyclically equivalent. Note that for two cyclically equivalent words w and w’,
tr(wya)=tr(w’y) and tr(wp)=tr(wz). Thus when we check if tr(ws)=tr(wp) we can
always freely change w to any word w’ that is cyclically equivalent to w.

Theorem 2.8 Let A and B be two n-by-n matrices both of rank 2. If tr(wg)):tr(wg))
for 1 <1 <8, then A is unitarily equivalent to B.

Proof. We proceed by induction on the length n of words. From Lemmas 2.6 and 2.7
we see that for words w of length 1 or 2, one has tr(wa)"*=tr(wp)"?. This proves
our assertion for n =1 and n = 2.

Now suppose for n = k, k+1, every word w ofblock n satisfies tr(wa)'?=tr(wg)"?.
Let w’ be any word of length k+2: If w’ isimot anyof the forms (SP)", (PS)", (QR)"
or (RQ)™, then we have w cyclicallylequivalent to one of the following 12 cases:

(1) w = PPK for some wordl K of'length k

Consider for any complex numbers-u and v matrices uP4 + vK 4 and uPg + vKp.
Note that uPy + vK 4 and uPg + vKpg are'both of rank 2. Also,

tr(uPy +vKa)"? = tr(uPp + vKp)"?

implies
tr(uPy + vK4)" = tr(uPg + vKp)'

for every integer i. From tr(P,)=tr(Ppg) we see that the coefficients of u of both sides
are equal. Since K is of length k, by induction hypothesis we have tr(K4)=tr(Kp)
and so the coefficients of v of both sides are equal. From tr(P4)*=tr(Pp)? we see
that the coefficients of u? of both sides are equal. Since PK is of length k + 1, by
induction hypothesis we have tr(PK ) 4=tr(PK)p and so the coefficients of uv of both
sides are equal. Finally, since K is of length k, by the induction hypothesis we have
tr(K4)?=tr(Kp)* and so the coefficients of v* of both sides are equal. Hence we
conclude that tr(uPs + vK4)"? =tr(uPg + vKg)"?. Using the equality for i=3 and
matching the coefficients of uv? we get tr(PPK)s=tr(PPK)p.

(2) w = PRK for some word K of length k:
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Consider for any complex numbers u and v the matrices uPy + vAK 4 and uPp +
vBKp. One could check indeed that tr(uPs+vAK)Y? =tr(uPp+vBKp)'? and this
implies tr(uPs + vAK4)" =tr(uPp + vBKp)" for every integer i. Using the equality
for i = 3 and matching the coefficients of u?v one gets tr(PRK ) =tr(PRK)p.

(3) w = RPK for some word K of length k:

Matching the coefficients of uvt in tr(uPa +vRa + tKa)*=tr(uPg +vRp +tKp)?
one gets tr(PRK ) a+tr(RPK)=tr(PRK)p+tr(RPKp). Thus from (2) we deduce
tr(RPK 4)=tr(RPKp).

(4) w = PQK for some word K of length k:

Note that tr(PQK ) =tr(K*RP) s=tr(RPK*) 4. Applying (3) we obtain tr(PQK) 4

(5) w = QPK for some word K of length k:

Matching the coefficients of uptin tr(u@a vPy+ tK1)>=tr(uQp +vPg +tKp)3,
one gets tr(QPK)a+tr(PQK A)=tr(QPK ) +tt(PQKpg). Thus from (2) we deduce
tr(QPK4)=tr(QPKp).

(6) w = QK for some word K. of length-k:

Consider for any complex numbers u' and@w the matrices u@Q s+vK 4 and u@Q)p+vKp.
One could check indeed that tr(u@Qa + vK4)"? =tr(u@Qp +vKp)"? and this implies
tr(uQa + vKa)' =tr(uQp + vKp)® for every integer i. Using the equality for i = 3
and matching the coefficients of u?v one gets tr(QQK) 4=tr(QQK)p.

(7) w = QSK for some word K of length k:

Consider for any complex numbers v and v the matrices u@Q 4 + vAK 4 and u@Q)p +
vBKp. One could check indeed that tr(u@Qa+vAK 4)"? =tr(uQp+vBKg)"? and this
implies tr(uQa + vAK4)" =tr(uQp + vBKp)® for every integer i. Using the equality
for i = 3 and matching the coefficients of u?v one gets tr(QSK)a=tr(QSK)p.

(8) w = RRK for some word K of length k:

Consider for any complex numbers u and v the matrices uRs+vK 4 and uRg+vKp.

One could check indeed that tr(uRs + vK4)'? =tr(uRp + vKp)"? and this implies
tr(uR4 +vK,4)" =tr(uRp + vKp)" for every integer i. Using the equality for i = 3

11



and matching the coefficients of u?v one gets tr(RRK) 4=tr(RRK)p.
(9) w = SQK for some word K of length k:

Matching the coefficients of uvt in tr(u@Q 4 +vS4 + tKa)*=tr(uQp + vSp + tKp)?
one gets tr(QSK)s+tr(SQK4)=tr(QSK)p+tr(SQKg). Thus from (7) we deduce
tr(SQK4)=tr(SQKp).

(10) w = RSK for some word K of length k:
Note that tr(RSK)=tr(K*SQ)a=tr(SQK™*) 4. Applying (9) we obtain tr(RSK )=
tI‘(RSK)B.

(11) w = SRK for some word K of length k:

Matching the coefficients of uvt in tr(uSs +vRa + tKa)*=tr(uSg + vRp +tKp)?
one gets tr(RSK)a+tr(SRK 4)=tr(RSK)p+tr(SRKp), Thus from (10) we deduce
tr(SRE 4)=tr (SR g).

(12) W = SSK for some wordiK' of lengthnf

Consider for any complex numbers u andw the matrices uS,+vK 4 and uSg+vKp.
One could check indeed that tr{uSa 0K )" =tr{uSs + vKp)"? and this implies
tr(uSy +vK,)" =tr(uSp +vK )t for-eyery-integer ». Using the equality for ¢ = 3 and
matching the coefficients of u*v one gets tr(SSK)4=tr(SSK)p.

For w' = (PS)", we showed in Lemma 2.6 that tr(PS)s=tr(PS)p and tr(PSPS)a
=tr(PSPS)p. Since (PS)4 and (PS)p are both of rank 2, this implies that tr(P.S)"} =
tr(PS)’, for all integers n. Similarly, we have tr(QR)%=tr(QR)% for all integers n. So
we have proved that tr(w’,)=tr(wy) for every word w’ of length k + 2. Finally, from
Lemma 2.7 and the induction hypothesis that tr(wa)'*=tr(wg)"* for every word w
of length k + 1 we conclude that tr(w’y)*=tr(w’)? for every w’ of length k + 2. Thus
we conclude by induction that tr(ws)=tr(wg) for any w of length n,n > 1. So A is
unitarily equivalent to B. 0

Now let us come back to the 3-by-3 cases. First we show that w(” is redundant.

Lemma 2.9 Suppose A and B are two 3-by-3 matrices. If tr(wg)):tr(wg)) for1 <
i <6, then tr(wg)):tr(wg))

Proof. For any complex numbers v and v consider matrices uA +vA* and uB + vB*.
One could check that tr (w))=tr(wy) for 1 <i <5 implies

tr(ud + vA*)*3 = tr(uB + vB*)*3.

12



Hence we have tr(uA + vA*)'=tr(uB + vB*)’ also for every integer i. Using the
equality for i = 4 and matching the coefficients of u?v? one gets

tr(w (6)) + tr(w 7 )) = tr(wg)) + tr(wg)).

From tr (wf)):tr(wg)) we then deduce tr (wg)):tr(wg)) O

Lemma 2.10 Suppose A and B are two 3-by-3 matrices and tr (wg)):tr(wg)) for
=t

1<i<6 andi=38. Then, for any complex number A, tr(w ((j ) = r(w((g_Mg)) for

1<i<6 andi =8 as well.

Proof. The only case we really need to verify is tr(wg)ﬂ\l )) =tr(w EB) N )). This in
turn is equivalent to checking that if tr(A*2AA*A)=tr(B**BB*B). Using

tr(ud + vA*)" = tr(uB + vB*)"
and matching the coefficients of u®v* one gets indeed

tr(A*?AA*A) = tr(B**BB*B).

Theorem 2.11 If A and B aré two.3-by-3_matrices such that tr(wg))
—tr(wB ) for 1 <i <6 and i = 8 then A'is unitarily equivalent to B.

Proof. First from tr(A)"?3=tr(B)"?3"we conclude that A and B have the same
eigenvalues. Subtracting a common eigenvalue A we get A’ = A— )\Ig and B’ = B—\I3

both having rank 2. From Lemma 2.5 we have tr (wg,)) tr(wB/) for 1 <i <6 and

i = 8. From Lemma 2.4 we see tr(w;,)) =tr(w (7)) as well. From Theorem 2.1 we

conclude that A’ is unitarily equivalent to B’. Thus A is also unitarily equivalent to
B. O
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3 Matrices with Eigenvectors Not Orthogonal

We prove in this chapter the most general result in this paper, namely, for any matrix
whose eigenvectors are not orthogonal a set with n* 4+ 1 words suffices to determine
it up to unitary equivalence. For example,

a b
A= (5 %), 0

is such a matrix.

Theorem 3.1 Let A be an n-by-n matriz such that none of its eigenvectors are
orthogonal. Then {A*A7 : 0 < 4,5 < n} is a linearly independent set and spans
Alg(A, A").

Proof. Suppose that
f(l’) = (I - )\1)p1(13 — )\2)1}2 (LE— )\m)pm

is the characteristic polynomial of A*with X1, Ass..., A\, the distinct eigenvalues of A.
Since none of the eigenvectors of A arerorthogonal, we have in particular ker(A —
Ail,) =1 for all i, on 1 < ¢ < ngz This implies that f is also the minimal polynomial
of A. Suppose on the contrary that {A*A}: 0 <%,j < n} is linearly dependent.
Then there exist polynomials g4, g1, «..4' g, 1 of degree < n, not all zero, such that

G 1 (AYAE ! + - £go(A*) = 0. (3.1)

Let h,_1=gcd(f,gn_1) and write g,_1 = gh,_; with ¢ also a polynomial. Then
q(A*) is invertible with its inverse also a polynomial in A*. Thus we can multiply
both sides of (3.1) with j(A*)~! and obtain

B 1 (AF)A™ L o ho(A*) =0 (3.2)

with hg, by, ..., b,y still polynomials of degree < n. Since h,_; divides £, there
is some 7 such that h,_q(z) divides (z — A\)P* -+ (z = A\ )P 1o (@ — Ap)Pm . We
multiply both sides of (3.2) with (A* — A{)Pt--- (A* — N\ )P~ (A% — )\, )P and

obtain for some nonzero polynomial A the relation
(A" = A" (AT = X )P (AT = AP (A) = 0. (3.3)

Similarly, take [=gcd(f, h) and denote h = lu. Then u(A) is invertible with its inverse
also a polynomial in A. So we multiply both sides of (3.3) with u(A)~! and obtain

(A" = APt (A" = APt (A% = A )P (A) = 0, (3.4)
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Since [ divides f and is of degree < n, there is some s such that [ divides (x —
AP (= APt (= A\p)P™. So we multiply both sides of (3.4) with (A —
A PLe (A= X)P==t . (A — )\,,)P™ and obtain

(A —)\_1)”1---(,4* _)\_r)pr_l__.<A* _m)pm
(A= M) (A= D) h (A= NP = 0. (3.5)
Since f is the minimal polynomial of A, there exists some nonzero v in C" which is
not in ker(A— X, )?~! but in ker(A—\,)Pr. So (A—\,)Pr"'v is nonzero and belongs in
ker(A — \,). Let v, in C" be an eigenvector of A corresponding to the eigenvalue A,.
Then for some nonzero complex number a we have (A— \,.)P"'v = av,.. Similarly, for
some nonzero w in C" and nonzero complex number b, we have (A — \,)P* 1w = bu,,

where v is an eigenvector of A corresponding to the eigenvalue \;. From (3.5), we
must have

(A = APl A= AP (A = A0, (A = AP (A= AP (A = AP
= 0.

This in turn implies

<< H (A—)\z)pl> Up, < H (A—/\Z)p’) U5> :0
1<i<myir 1<i<m;i#s

(v,, vs) =0
So we find a pair of eigenvectors of A which are orthogonal, contradicting to our
assumption on A. Thus the set {A* A7 : 0 <4, j < n} must be linearly independent.

Since this set contains n* elements and Alg(A, A*) is of dimension at most n?, this
implies that {A* A7 : 0 < 4,5 < n} spans Alg(A, A%). O

and hence

Suppose now that A and B are two n-by-n matrices with none of the eigenvectors
of A orthogonal. By Theorem 3.1, for any integers p and ¢ we can write APA™ as a
linear combination of A**A7,0 < 14,7 < n. The next theorem shows that if

tr(A") = tr(B") and tr(A*A7A* AY = tr(B*'B’B**BY), 0 <i,j,k,l <n,

then we can also write B?B*? as a linear combination of {B*'B’ : 0 < i,j < n} with
the same coefficients.

Theorem 3.2 Let A and B be two n-by-n matrices and p and q be some integers.
Suppose that there exists a set of complex numbers {a;; : 0 < i,j < n} such that
APAT =S AAT L If

1,j=0

tr(A™) = tr(B") and tr(A* A7 A** AY = tr(B*'B'B**B'), 0 <i,j,k,l < n,

15



then we also have BP B*? = Z?;:lo a;; B*' B
Proof. From APA*? = Z” o @i A* A we have

tr ((APA*‘I Z a A AT (AP A — Z a; A AT ) = 0.

4,j=0 ,7=0

This is the same as

n—1
tr(ATAPAPA) — () a ATAT AT AT)
1,7=0
n—1 n—1
—tr(Y ayATAAIAT) —tr( > aya AT ATATAY) =0, (3.6)
1,7=0 i,7,k,1=0

Since tr(A%) = tr(B?), 1 <i <n, A and B have equal characteristic polynomials and
thus tr(A*ATA** AY) = tr(B* B B** BY0:<4, 7, k, | < n implies tr(A* A7 A Al =
tr(B*' B/ B** B') for all nonnegative integers 4, j,% and [. Substituting this back into
(3.6), we obtain

n—1
tr(B'B*B?B*") — tx() _ a;; B4B*LB*BY)
,7=0
n—1 n—1
—tr(>_ ayB "B'B'B®)tr( Y ajanBYB'B*B') =0 (3.7)
4,j=0 ,5,k,1=0

as well. So we have

tr(BPB*? — Z a; B BY)*(BPB* — Z a; B B) =
i,j=0 i,j=0
Thus B*B* — 3 0" a;; B BI = 0. 0

Now we are ready to prove the main result.

Theorem 3.3 Let A and B be two n-by-n matrices. Assume that no pair of the
eigenvectors of A are orthogonal to each other. If tr(A* A7 A** A = tr(B*' B’ B** B)
for 0 <i,j,k,l <n and tr(A™) = tr(B"), then A is unitarily equivalent to B.
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Proof. We are going to show that for every word w(z,y), tr(w(A, A*)) = tr(w(B, B*))
and then apply Specht’s theorem to conclude that A is unitarily equivalent to B. Us-
ing the property that tr(AB) = tr(BA), it suffices to consider only words w of the
form w(z,y) =y a’t - - - yingin,

We proceed by induction on the length n. For n=1, this is already assumed.
Suppose that the assertion is true for n = k. Consider the case n = k + 1. Then

tr(w(A, A*)) — tr(A*ilAjl e A¥E (AjkA*ikJrl)Aij)

n—1 n—1
= tr (Z apg AT AT -A*“kﬂ’)Aq) =) aptr (A*“Ajl : --A*“HP)AQ) . (3.8)
,q=0 p,q=0
Since A* A ... A*0k+P) Ad ig of length k, by the induction hypothesis we have
tr( A AT . AR A9y — gp(BF B BrORtP) gAY (3.9)

Substituting this back into (3.8), we haye

n—1
tr(w(A’A*)) _ Z apqtr (A*i1Aj1 o _A*(ik+p)Aq>

p,g=0
n—1
_ Z Apg b (B*ille T B*(ik-l-p)Bq)
p,g=0
n—1 . '
p,q=0

— tr(B*™ B ... B (B B**+1) Bik1) = tr(w(B, BY)).

Thus by the mathematical induction we conclude that tr(w(A, A*))=tr(w(B, B*)) for
every word w. So A is unitarily equivalent to B. O

17



References

[B] Bhattarcharya, On the unitary invariants of an n x n matrix, Ph.D. Thesis, Indian
Statis. Inst., New Delhi, 1987.

[P1] C. Pearcy, A complete set of unitary invariants for operators generating finite
W*-algebras of type I, Pacific J. Math. 12:1405-1416 (1962).

[P2] C. Pearcy, A complete set of unitary invariants for 3 x 3 complex matrices, Trans.
Amer. Math. Soc. 104:425-429 (1962).

[Pr] V. V. Praslov, Problems and Theorems in Linear Algebra, Amer. Math. Soc.,
Providence, 1994.

[Sh] H. Shapiro, A survey of canonical forms and invariants for unitary similarity,
Linear Algebra Appl. 147:101-167 (1991).

[Si] K. S. Sibirskii, Unitary and orthogenal invamiants of matrices, Soviet Math. Dokl.
8:36—40 (1967) [English trangl of DokimAkad: Nauk SSSR 172:40-43 (1967)].

[S] W. Specht, Zur Theorie der Matrizen; 11, JahZesber. Deutsch. Math.-Verein.
50:19-23 (1940).

[W] N.Wiegmann, Necessary and ‘sufficient conditions for unitary similarity, J. Aus-
tral. Math. Soc. 2:122-126 (1961/62).

18



