1 Introduction

Let A and B be two n-by-n complex matrices which are unitarily equivalent, that is, $B = U^*AU$ for some unitary matrix U. It is easily seen that matrices A^*A and $B[*]B$ have equal traces. Trace of the product of a matrix and its own conjugate is thus an example of a unitary invariant. More generally, consider the multiplicative semigroup W generated by the noncommuting variables x and y. We call an element of W a word and denote it by $w(x, y)$. If there is no confusion over the underlying variables one will also simply denote it by w. For example, $w(x, y) = y^2 x^3 y$ is such a word. In general a word w can always be written as $w = y^{i_1}x^{j_1} \dots y^{i_n}x^{j_n}$ where $i_1, j_1, \ldots, i_n, j_n$ are positive integers except that i_1 or j_n may be zero. We say that $i_1, j_1, \ldots, i_n, j_n$ are the *exponents* of a word w and w is of *length* n if i_1 and j_n are both different from zero. Otherwise w is said to be of length $n-1$. If $n=1$ and $i_1 = j_1 = 0$, we call w an *empty word*.

Suppose now we substitute x and y by A and A^* and regarding $w(A, A^*)$ as an *n*-by-*n* matrix. Same thing for $w(B, B^*)$. (If the word is empty we assign $w(A, A^*) = w(B, B^*) = I_n$. One immediately sees that $tr(w(A, A^*)) = tr(w(B, B^*))$ for any word if A and B are unitarily equivalent. W. Specht $[S]$ proved that the converse is also true. That is, the set $\{tr(w(A, A^*)) : w(x, y)$ is any word in x and $y\}$ completely determines A up to unitary equivalence, and thus is a *complete* set of unitary invariants. There is a similar generalization due to N.Wiegmann [W] that considers not only two n -by- n matrices A and B but two finite sets of n -by- n matrices $\{A_1, A_2, \ldots, A_t\}$ and $\{B_1, B_2, \ldots, B_t\}$. In this situation we must consider words w with noncommuting variables in $x_1, y_1, x_2, y_2, \ldots, x_t, y_t$. It states that there exists a unitary matrix U such that $U^*A_iU = B_i$ for $i = 1, 2, ..., t$ if and only if for every word $w(x_1, y_1, x_2, y_2, \ldots, x_t, y_t)$ we have $\text{tr}(w(A_1, A_1^*, A_2, A_2^*, \ldots, A_t, A_t^*))$ $tr(w(B_1, B_1^*, B_2, B_2^*, \ldots, B_t, B_t^*)).$

The result of Specht gives an infinte set of complete unitary invariants for an n -by-n matrix A since one can form infinitely many words in A and A^* . Later, C. Pearcy showed in [P1] that a finite set of words would suffice. More precisely, let $\omega(k)$ denote the set of words in the variables x and y in which the sum of the exponents does not exceed k. Then A is unitarily equivalent to B if $tr(w(A, A^*) = tr(w(B, B^*))$ for every word w in $\omega(2n^2)$. This set contains fewer than 4^{n^2} elements. Of course, this upper bound is still far from satisfactory. In the other direction, Bhattarcharya [B] proved that for matrices whose nonzero singular values have multiplicity one, a family of about $(2n)^n$ traces would suffice. She also showed that there exist $n^2 + 1$ complex-valued continuous functions on $\mathbb{M}_{n}(\mathbb{C})$ which form a complete set of unitary invariants for *n*-by-*n* matrices where $\mathbb{M}_{n}(\mathbb{C})$ denotes the algebra by all *n*-by-*n* copmlex matrices . It suggests that one would like to find a complete set of specific unitary invariants with the size of the set being a polynomial in n. For small n, it is easy to see three traces of words suffice for 2-by-2 matrices. Pearcy [P2] showed that a set of nine words suffices for $n = 3$ and Sibirskii [Si] improved this by finding a set of seven words which suffices and forms a minimal set.

In Chapter 2 of this paper, we survey cases for $n = 2, 3$ and show that

$$
tr(A), tr(A^2), tr(A^*A)
$$

form a complete set of unitary invariants for any n -by-n matrix A with rank 1. This will cover the 2-by-2 case immediately. We also show that three words are fewest possible. That is, one cannot find a set with two traces of words that is complete. For any 3-by-3 matrix A, we prove that

$$
\text{tr}(A), \text{tr}(A^2), \text{tr}(A^3), \text{tr}(A^*A), \text{tr}(A^{*2}A), \text{tr}(A^{*2}A^2), \text{tr}(A^{*2}A^2A^*A)
$$

form a complete set of unitary invariants. The proof here is quite different from the computational proof given in [P2] and gives a bit more. The set given above plus $\text{tr}(A^*A)^2$ is actually complete with respect to any n-by-n matrix A with rank 2. This will cover the case for 3-by-3 matrix readily.

$$
\equiv |E|S \setminus \delta
$$

In Chapter 3, we give the result that for another special class of matrices (matrix whose eigenvectors are not orthogonal), a set with no more than $n^4 + 1$ words suffices to determine such matrices up to unitary equivalence. We denote the algebra generated by A and A^* over the complex numbers by $\text{Alg}(A, A^*)$. This is the set of all polynomial expressions $p(A, A^*)$, where $p(x, y)$ is any polynomial in the noncommuting variables x and y. The method lies in first proving $\{A^{*i}A^j: 0 \le i, j < n\}$ spans $\text{Alg}(A, A^*)$ for such an A. Then one modifies the method in [P1] somewhat to obtain that $\{\text{tr}(A^{*i}A^{j}A^{*k}A^{l}) : 0 \leq i, j, k, l < n\} \cup \{\text{tr}(A^{n})\}\$ forms a complete set of unitary invariants for A in this class.

2 Unitary equivalence for 2-by-2 and 3-by-3 Matrices

2.1 2-by-2 Matrices

First we state a basic lemma for general n -by- n matrices that will be applied repeatedly later.

Lemma 2.1 Let A and B be two n-by-n matrices. If $tr(A^i) = tr(B^i)$ for $1 \leq i \leq n$, then A and B have the same eigenvalues counting algebraic multiplicities and hence $tr(Aⁱ) = tr(Bⁱ)$ for all integers i.

Proof. Let a_1, \ldots, a_n be eigenvalues of A and b_1, \ldots, b_n be eigenvalues of B, each repeated according to its algebraic multiplicity. We define two classes of homogeneous polynomials $S_r, G_r : \mathbb{C}^n \to \mathbb{C}$ for $1 \leq r \leq n$ by

$$
S_r(x_1, x_2, \ldots, x_n) = \sum_{i=1}^n x_i^r
$$

and

$$
G_r(x_1, x_2, \ldots, x_n) = \sum_{1 \le i_1 < i_2 < \cdots < i_r \le n} x_{i_1} x_{i_2} \ldots x_{i_r}.
$$

Note that $S_1 = G_1$.

We also define $G_0 = 1$. Note that $S_1 = G_1$.

The statement that $tr(A^i) = tr(B^i)$ for $1 \leq i \leq n$ is the same as $S_r(a_1, \ldots, a_n) =$ $S_r(b_1,\ldots,b_n)$ for $1 \leq r \leq n$. We want to show that this implies $G_r(a_1,\ldots,a_n)$ $G_r(b_1,\ldots,b_n)$ for $1 \leq r \leq n$. In fact, we have the following so-called Newton's identities:

$$
rG_r - S_1G_{r-1} + \dots + (-1)^r S_rG_0 = 0 \tag{2.1}
$$

for $1 \le r \le n$ (cf. [Pr, p.20]). Using $S_r(a_1, ..., a_n) = S_r(b_1, ..., b_n)$ for $1 \le r \le n$ together with (2.1), one concludes that $G_r(a_1, \ldots, a_n) = G_r(b_1, \ldots, b_n)$ for $1 \le r \le n$.

Now we have

$$
\prod_{i=1}^{n} (x - a_i) = \sum_{i=0}^{n} (-1)^i G_i(a_1, ..., a_n) x^{n-i}
$$

$$
= \sum_{i=0}^{n} (-1)^i G_i(b_1, ..., b_n) x^{n-i} = \prod_{i=1}^{n} (x - b_i).
$$
(2.2)

So $a_1, ..., a_n$ and $b_1, ..., b_n$ both represent the zeros of the same polynomial and hence must coincide.

To prove (2.1) we define another class of homogenous polynomials $K_r^{(m)}: \mathbb{C}^n \to \mathbb{C}$ for integers r and m such that $r < n$ and $1 \le m \le n$ by

$$
K_r^{(m)}(x_1, x_2, ..., x_n) = \sum_{\substack{1 \le i_1 < i_2 < ... < i_r \le n \\ i_1, i_2, ... i_r \ne m}} x_{i_1} x_{i_2} ... x_{i_r}.
$$

We also define $K_0^{(m)} = 1$ and $K_{-1}^{(m)} = 0$.

Notice that $G_r = x_m K_{r-1}^{(m)} + K_r^{(m)}$ for every m such that $1 \leq m \leq n$ and every r such that $0 \leq r \leq n$. So we have

$$
S_i G_r = \sum_{j=1}^n x_j^i G_r = \sum_{j=1}^n x_j^i (x_j K_{r-1}^{(j)} + K_r^{(j)}).
$$
 (2.3)

Substituting (2.3) back into (2.1) , we have

$$
rG_r + \sum_{i=1}^r (-1)^i G_{r-i} S_i = rG_r + \sum_{i=1}^r (-1)^i \sum_{j=1}^n x_j^i (x_j K_{r-i-1}^{(j)} + K_{r-i}^{(j)})
$$

\n
$$
= rG_r + \sum_{j=1}^n \left[\sum_{i=1}^r (-1)^i x_j^{i+1} K_{r-i-1}^{(j)} + \sum_{i=1}^r (-1)^i x_j^i K_{r-i}^{(j)} \right]
$$

\n
$$
= rG_r - \sum_{j=1}^n x_j K_{r-1}^{(j)} + \sum_{j=1}^n \left[\sum_{i=1}^{r-1} (-1)^i x_j^{i+1} K_{r-i-1}^{(j)} + \sum_{i=2}^r (-1)^i x_j^i K_{r-i}^{(j)} \right]
$$

\n
$$
= rG_r - \sum_{j=1}^n x_j K_{r-1}^{(j)} + \sum_{j=1}^n \left[\sum_{i=1}^{r-1} (-1)^i x_j^{i+1} K_{r-i-1}^{(j)} + \sum_{i=1}^{r-1} (-1)^{i+1} x_j^{i+1} K_{r-i-1}^{(j)} \right]
$$

\n
$$
= rG_r - \sum_{j=1}^n x_j K_{r-1}^{(j)} = 0.
$$

Hence the assertion is proved. \Box

Suppose we know beforehand that A and B have r common eigenvalues (counting algebraic multiplicities). Then it is clear that we only have to check $tr(A^i)=tr(B^i)$ for $1 \leq i \leq n-r$. We will use mostly Lemma 2.1 in the following form:

Corollary 2.2 Let A and B be two n-by-n matrices both of rank r. If $tr(A^i) = tr(B^i)$ for $1 \leq i \leq r$, then $tr(A^i) = tr(B^i)$ for all i.

Theorem 2.3 Let A and B be matrices both of rank 1. If $tr(A)=tr(B)$ and $tr(A^*A)$ $=\text{tr}(B^*B)$, then A is unitarily equivalent to B.

Proof. Since A and B are both of rank 1, $tr(A)=tr(B)$ guarantees that $tr(A^i)=tr(B^i)$ for any integer i and that A and B have equal characteristic polynomials of degree 2. So all it remains to check are words w with exponents all equal to 1. That is, we still need to check if $tr(A^*A)^i=tr(B^*B)^i$ for any integer i. Similarly, since A^*A and B^*B are both of rank 1, $tr(A^*A)=tr(B^*B)$ guarantees that $tr(A^*A)^i=tr(B^*B)^i$ for any integer *i*. Hence we conclude that for every word w we have $tr(w(A, A^*))=tr(w(B, B^*))$. So by Specht's theorem A is unitarily equivalent to B.

Theorem 2.4 Let A and B be 2-by-2 matrices. If $tr(A)=tr(B)$, $tr(A^2)$ $=\text{tr}(B^2)$ and $\text{tr}(A^*A)=\text{tr}(B^*B)$, then A is unitarily equivalent to B.

Proof. Since $tr(A)=tr(B)$ and $tr(A^2)=tr(B^2)$ it follows that A and B have the same eigenvalues. Let λ be one of the common eigenvalues of A and B and let $A' = A - \lambda I_2$ and $B' = B - \lambda I_2$. One can easily check that $\text{tr}(A) = \text{tr}(B)$ and $\text{tr}(A^*A) = \text{tr}(B^*B)$ imply $tr(A')=tr(B')$ and $tr(A'^*A')=tr(B'^*B')$. Since both A' and B' are of rank 1, using Theorem 2.1 we obtain that A' is unitarily equivalent to B' . Hence A is unitarily equivalent to B as well. \square

AMMAR

In Theorem 2.4 we use traces of three words to characterize 2-by-2 matrices up to unitary equivalence. Can we still make it better? The answer is no.

Theorem 2.5 Traces of two words do not suffice to determine a 2-by-2 matrix up to unitary equivalence. X 1896

Proof. Let A and B be two 2-by-2 matrices. Using the property that $tr(PQ)=tr(QP)$ for any matrices P and Q , one needs only to consider words w of the following two types: (1) $w(x,y) = y^{i_1}x^{j_1} \dots y^{i_n}x^{j_n}$ with positive integers $i_1, j_1, \dots, i_n, j_n$ and (2) $w(x, y) = y^n$ with positive integer *n*.

Take w_1 and w_2 to be any two words. First suppose that neither w_1 nor w_2 takes the form $(yx)^n$ for some integer n. This means that if w_1 is of the first type then there must exist some exponent of w_1 which is larger than 1. Now we may give a counterexample of

$$
A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
$$

That $tr(w_1(B, B^*))=tr(w_2(B, B^*))=0$ is trivial. Suppose that w_1 is of the first type. Then we have $tr(w_1(A, A^*))=0$ because $A^2=0$. Suppose that w_1 is of the second type. Then we still have $tr(w_1(A, A^*))=0$ as well. So we conclude that $tr(w_1(A, A^*))=0$. Similarly, we have $tr(w_2(A, A^*))=0$. So we have

$$
tr(w_1(A, A^*)) = tr(w_2(A, A^*)) = tr(w_1(B, B^*)) = tr(w_2(B, B^*)) = 0
$$

while A is NOT unitarily equivalent to B .

Now suppose that we have one of the words, say, w_1 equal to $(yx)^n$. If the sum of the exponents of w_2 is even, we may take

$$
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

as a counterexample. It is easily seen that

$$
w_1(A, A^*) = w_1(B, B^*) = w_2(A, A^*) = w_2(B, B^*) = I_2.
$$

Thus we again have

$$
tr(w_1(A, A^*)) = tr(w_1(B, B^*))
$$
 and $tr(w_2(A, A^*)) = tr(w_2(B, B^*))$

while A is clearly NOT unitarily equivalent to B .

Finally if we have $w_1 = (yx)^n$ for some integer n and the sum of the exponents of <u>щи,</u> w_2 is odd, we may take

$$
A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ and } B = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.
$$

One can check that $tr(w_1(A, A^*))=tr(w_1(B, B^*))$ and $tr(w_2(A, A^*))=$ $tr(w_2(B, B^*))$ while A is clearly NOT unitarily equivalent to B.

Since we have exhausted all possible cases, we conclude that traces of two words do not suffice to determine any 2-by-2 matrix up to unitary equivalence. \Box

2.2 3-by-3 Matrices

Let A and B be two n-by-n matrices of rank 2. Then $tr(A)=tr(B)$ and $tr(A^2)=tr(B^2)$ guarantee that they have equal characteristic polynomials of degree 3 (unless $n = 2$, but this case is already solved). So we only have to check

$$
tr(w(A, A^*)) = tr(w(B, B^*))
$$

for words $w(x,y) = y^{i_1}x^{j_1}\cdots y^{i_n}x^{j_n}$ with $1 \leq i_1, j_1, \ldots, i_n, j_n \leq 2$. For the sake of convenience we denote P, Q, R, S words in W by

$$
P(x, y) = yx, Q(x, y) = y^{2}x, R(x, y) = yx^{2}, S(x, y) = y^{2}x^{2}.
$$
 (2.4)

It is clear that every word we need to verify can be written as the product of P,Q,R and S. Also for w a word in W, we will often denote $w(A, A^*)$ and $w(B, B^*)$ as w_A

and w_B . Whenever we write $tr(w_A)^{1,2} = tr(w_B)^{1,2}$ it is to be understood that we mean $\text{tr}(w_A)^i = \text{tr}(w_B)^i$ for $i = 1, 2$.

Let $w^{(1)}, \ldots, w^{(8)}$ be words in W defined by

$$
w^{(1)}(x,y) = x, \quad w^{(2)}(x,y) = x^2, \quad w^{(3)}(x,y) = x^3, \quad w^{(4)}(x,y) = P,
$$

$$
w^{(5)}(x,y) = Q, \quad w^{(6)}(x,y) = S, \quad w^{(7)}(x,y) = P^2, \quad w^{(8)}(x,y) = SP.
$$
 (2.5)

We are going to show that $tr(w_A^{(i)})$ $_{A}^{(i)}$)=tr $(w_{B}^{(i)}$ $\binom{v_i}{B}$ for $1 \leq i \leq 8$ implies the unitary equivalence of A and B . This can be easily applied to arbitrary 3-by-3 matrices. There is a small difference in that $w^{(7)}$ is actually not needed in the 3-by-3 case.

Lemma 2.6 Let A and B be two n-by-n matrices both of rank 2. Suppose $\text{tr} (w_A^{(i)})$ $_{A}^{(i)}$)=tr $(w_R^{(i)}$ $\binom{v}{B}$ for $1 \leq i \leq 8$ as defined in (2.5). Then for every word w of length 2 we have $tr(w_A)=tr(w_B)$.

Proof. Using $tr(A^*) = \overline{tr(A)}$ and $tr(AB) = tr(BA)$ we only need to verify

$$
\text{tr}(QP)_A = \text{tr}(QP)_B, \quad \text{tr}(RQ)_A = \text{tr}(RQ)_B, \quad \text{tr}(QQ)_A = \text{tr}(QQ)_B,
$$

$$
\text{tr}(SS)_A = \text{tr}(SS)_B, \quad \text{tr}(SQ)_A = \text{tr}(SQ)_B.
$$

$$
(2.6)
$$

For any complex numbers u and v, $uA + vA^*$ and $uB + vB^*$ are both matrices with rank at most 4 if A and B both have rank 2. So $tr(uA + vA^*)^i = tr(uB + vB^*)^i$ for $1 \leq i \leq 4$ and hence $tr(uA + vA^*)^i$

 $\text{tr}(uB + vB^*)^i$ for any integer i and any complex numbers u and v. One can check that $tr(w_A^{(i)}$ $_{A}^{(i)}$)=tr $(w_{B}^{(i)}$ $\mathcal{L}_{B}^{(i)}$) for $1 \leq i \leq 7$ implies $tr(uA + vA^*)^i =$

 $\text{tr}(uB + vB^*)^i$ for $1 \leq i \leq 4$. Using the equality for $i = 5$ and comparing the coefficients of u^2v^3 one gets

$$
5(\text{tr}(A^{*3}A^2) + \text{tr}(QP)_A) = 5(\text{tr}(B^{*3}B^2) + \text{tr}(QP)_B).
$$

However since $tr(A^{*3}A^2)$ can be written as a linear combination of $tr(S_A), tr(Q_A)^*$ and $tr(A^2)$ while $tr(S_A)=tr(S_B)$ and $tr(Q_A)=tr(Q_B)$, one gets $tr(A^{*3}A^2)=tr(B^{*3}B^2)$ and thus $tr(QP)_A=tr(QP)_B$ as well.

Next we apply $tr(uA + vA^*)^6 = tr(uB + vB^*)^6$ and comparing the coefficients of u^3v^3 to get

$$
6(\text{tr}(SP)_A + \text{tr}(RQ)_A + \text{tr}(A^{*3}A^3)) + 2 * \text{tr}(P^3)_A
$$

= 6(\text{tr}(SP)_B + \text{tr}(RQ)_B + \text{tr}(B^{*3}B^3)) + 2 * \text{tr}(P^3)_B.

Since $tr(P^{1,2})_A=tr(P^{1,2})_B$ while P_A and P_B are both matrices of rank 2, it implies that $tr(P^i)_A=tr(P^i)_B$ for any integer i. We also have $tr(A^{*3}A^3)=tr(B^{*3}B^3)$ which is trivial and $tr(SP)_A=tr(SP)_B$ which is given. So we deduce that $tr(RQ)_A=tr(RQ)_B$.

Next we consider matrices $uA^*A + vA^*$ and $uB^*B + vB^*$ for any complex numbers u and v. Since $uA^*A + vA^* = A^*(uA + vI_n)$, $uA^*A + vA^*$ has rank 2 for any u and v. Similarly $uB^*B + vB^*$ has rank 2. So $tr(uA^*A + vA^*)^{1,2} = tr(uB^*B + vB)^{1,2}$ implies $tr(uA^*A + vA^*)^i = tr(uB^*B + vB^*)^i$ for any integer *i*. One could see that

$$
\text{tr}(A^{1,2}) = \text{tr}(B^{1,2}), \text{tr}(P^{1,2})_A = \text{tr}(P^{1,2})_B, \text{tr}(Q_A) = \text{tr}(Q_B)
$$

indeed imply $tr(uA^*A + vA^*)^{1,2} = tr(uB^*B + vB)^{1,2}$. Using the equality for *i*=4 and matching the coefficients of u^2v^2 one gets

$$
4\text{tr}(A^{*3}AA^*A) + 2\text{tr}(Q^2)_A = 4\text{tr}(B^{*3}BB^*B) + 2\text{tr}(Q^2)_B.
$$

However we have $\text{tr}(A^{*3}AA^*A)=\text{tr}(B^{*3}BB^*B)$ so we infer that $\text{tr}(Q^2)_A$ $=$ tr $(Q^2)_B$.

Now we consider $uA^{*2}A + vA$ and $uB^{*2}B + vB$ for any complex numbers u and v. For the same reason as before,

$$
\text{tr}(uA^{*2}A + vA)^{1,2} = \text{tr}(uB^{*2}B + vB)^{1,2}
$$

implies $tr(uA^{*2}A + vA)^i = tr(uB^{*2}B + vB)^i$ for any integer *i*. Using the equality for $i=4$ and comparing the coefficients of u^2v^2 one gets

$$
4\text{tr}(A^{*2}AA^{*2}A^3) + 2\text{tr}(S^2)_A = 4\text{tr}(B^{*2}AB^{*2}B^3) + 2\text{tr}(S^2)_B.
$$

Consider matrices $uQ_A + vA^2$ and $uQ_B + vB^2$ for any complex numbers u and v. One can check that indeed $tr(uQ_A + vA^2)^{1,2} = tr(uQ_B + vB^2)^{1,2}$, so we have

$$
\text{tr}(uQ_A + vA^2)^i = \text{tr}(uQ_B + vB^2)^i
$$

for every integer i. Using the equality for $i=3$ and matching the coefficients of uv^2 one gets $tr(A^*^2AA^*A^3)=tr(B^*^2BB^*^2B^3)$. Hence we conclude that $tr(S^2)_A=tr(S^2)_B$ as well.

Next we consider $uA^{*2}A^2 + vA^*A + tA^*$ and $uB^{*2}B^2 + vB^*B + tB^*$ for any complex number u, v and t . For the same reason as before,

$$
\text{tr}(uA^{*2}A^2 + vA^*A + tA^*)^{1,2} = \text{tr}(uB^{*2}B^2 + vB^*B + tB^*)^{1,2}
$$

implies $tr(uA^{*2}A^2 + vA^*A + tA^*)^i = tr(uB^{*2}B^2 + vB^*B + tB^*)^i$ for any integer *i*. One can check that

$$
tr(A) = tr(B), tr(P_A) = tr(P_B), tr(S_A) = tr(S_B),
$$

$$
tr(Q_A) = tr(Q_B), tr(SP)_A = tr(SP)_B
$$

indeed guarantee that $tr(uA^{*2}A^2 + vA^*A + tA^*)^{1,2} = tr(uB^{*2}B^2 + vB^*B + wB^*)^{1,2}$. Using the equality for $i=3$ and matching the coefficients of uvt one gets

$$
3(\text{tr}(SQ)_A + \text{tr}(A^{*3}A^2A^*A)) = 3(\text{tr}(SQ)_B + \text{tr}(B^{*3}B^2B^*B)).
$$

Since we have $tr(A^{*3}A^2A^*A)=tr(B^{*3}B^2B^*B)$, we deduce that $tr(SQ)_A=$ $\operatorname{tr}(SQ)_{B}.$

Lemma 2.7 Let A and B be two n-by-n matrices both of rank 2. Suppose $tr(w_A^i) = tr$ (w_B^i) for $1 \leq i \leq 8$. Let k be any integer. Assume that for every word w of length k we have $tr(w_A^{1,2})$ $\binom{1,2}{A} = \text{tr}(w_B^{1,2})$ ^{1,2}). If for every word w' of length $k+1$ we have $tr(w'_A) = tr(w'_B)$, then $tr(w_A^{\prime})^2 = tr(w_B^{\prime})^2$ as well.

Proof. Suppose a word w' of length $n+1$ can be written as, without loss of generality, say, Qw with w a word of length n. Since for any complex number u and v matrices $uQ_A + vW_A$ and $uQ_B + vw_B$ both have rank 2,

$$
\text{tr}(uQ_A + vw_A)^{1,2} = \text{tr}(uQ_B + vw_B)^{1,2}
$$

implies

$$
\operatorname{tr}(uQ_A + v\overline{w_A})^i = \operatorname{tr}(uQ_B + vw_B)^i
$$

for every integer *i*. One could check that

$$
tr(Q_A) = tr(Q_B), tr(Q^2)_A = tr(Q^2)_B, tr(w_A) = tr(w_B),
$$

$$
tr(w_A)^2 = tr(w_B)^2 tr(Qw)_A = tr(Qw)_B
$$

indeed guarantee that $tr(uQ_A + vw_A)^{1,2} = tr(uQ_B + vw_B)^{1,2}$. Using the equality for $i=4$ and matching the coefficients of u^2v^2 one gets

$$
\operatorname{tr}(QwQw)_A + \operatorname{tr}(Q^2w^2)_A = \operatorname{tr}(QwQw)_B + \operatorname{tr}(Q^2w^2)_B.
$$

Using the equality for $i=3$ and matching the coefficients of u^2v we get

$$
\operatorname{tr}(Q^2 w)_A = \operatorname{tr}(Q^2 w)_B.
$$

Now we consider $uQ_A^2 + w_A$ and $uQ_B^2 + w_B$. For the same reason as above,

$$
\text{tr}(uQ_A^2 + w_A)^{1,2} = \text{tr}(uQ_B^2 + w_B)^{1,2}
$$

implies

$$
\operatorname{tr}(uQ_A^2 + w_A)^i = \operatorname{tr}(uQ_B^2 + w_B)^i
$$

for every integer i. One could check that

$$
tr(Q_A^2) = tr(Q_B^2), tr(Q_A^4) = tr(Q_B^4), tr(w_A) = tr(w_B),
$$

$$
tr(w_A)^2 = tr(w_B)^2, tr(Q^2 w)_A = tr(Q^2 w)_B
$$

imply $tr(uQ_A^2 + w_A)^{1,2} = tr(uQ_B^2 + w_B)^{1,2}$. Using the equality for $i=3$ and matching the coefficients of uv^2 one gets $tr(Q^2w^2)_{A} = tr(Q^2w^2)_{B}$. And thus we deduce $\text{tr}(QwQw)_{A}=\text{tr}(QwQw)_{B}$ as well. This is just $\text{tr}(w'_{A})^{2}=\text{tr}(w'_{B})^{2}$.

We say that two words w and w' are cyclically equivalent if w' can be obtained from a cyclic permutation of w. For example, $PQRS$, $QRSP$, $RSPQ$ and $SPQR$ are all cyclically equivalent. Note that for two cyclically equivalent words w and w' , $tr(w_A)=tr(w'_A)$ and $tr(w_B)=tr(w'_B)$. Thus when we check if $tr(w_A)=tr(w_B)$ we can always freely change w to any word w' that is cyclically equivalent to w .

Theorem 2.8 Let A and B be two n-by-n matrices both of rank 2. If $tr(w_A^{(i)})$ $_{A}^{(i)}$) = tr $(w_{B}^{(i)}$ $\binom{\binom{v}{l}}{B}$ for $1 \leq i \leq 8$, then A is unitarily equivalent to B.

Proof. We proceed by induction on the length n of words. From Lemmas 2.6 and 2.7 we see that for words w of length 1 or 2, one has $tr(w_A)^{1,2} = tr(w_B)^{1,2}$. This proves our assertion for $n = 1$ and $n = 2$.

Now suppose for $n = k, k+1$, every word w of block n satisfies $tr(w_A)^{1,2} = tr(w_B)^{1,2}$. Let w' be any word of length $k+2$. If w' is not any of the forms $(SP)^n$, $(PS)^n$, $(QR)^n$ or $(RQ)^n$, then we have w cyclically equivalent to one of the following 12 cases:

(1)
$$
w = PPK
$$
 for some word K of length k

Consider for any complex numbers u and v matrices $uP_A + vK_A$ and $uP_B + vK_B$. Note that $uP_A + vK_A$ and $uP_B + vK_B$ are both of rank 2. Also,

$$
\text{tr}(uP_A + vK_A)^{1,2} = \text{tr}(uP_B + vK_B)^{1,2}
$$

implies

$$
\text{tr}(uP_A + vK_A)^i = \text{tr}(uP_B + vK_B)^i
$$

for every integer i. From $tr(P_A)=tr(P_B)$ we see that the coefficients of u of both sides are equal. Since K is of length k, by induction hypothesis we have $tr(K_A)=tr(K_B)$ and so the coefficients of v of both sides are equal. From $tr(P_A)^2 = tr(P_B)^2$ we see that the coefficients of u^2 of both sides are equal. Since PK is of length $k + 1$, by induction hypothesis we have $tr(PK)_A=tr(PK)_B$ and so the coefficients of uv of both sides are equal. Finally, since K is of length k , by the induction hypothesis we have $tr(K_A)^2 = tr(K_B)^2$ and so the coefficients of v^2 of both sides are equal. Hence we conclude that $tr(uP_A + vK_A)^{1,2} = tr(uP_B + vK_B)^{1,2}$. Using the equality for $i=3$ and matching the coefficients of uv^2 we get $\text{tr}(PPK)_A=\text{tr}(PPK)_B$.

(2) $w = PRK$ for some word K of length k:

Consider for any complex numbers u and v the matrices $uP_A + vAK_A$ and $uP_B + vAH_A$ vBK_B . One could check indeed that $tr(uP_A + vAK_A)^{1,2} = tr(uP_B + vBK_B)^{1,2}$ and this implies $tr(uP_A + vAK_A)^i = tr(uP_B + vBK_B)^i$ for every integer *i*. Using the equality for $i = 3$ and matching the coefficients of u^2v one gets $\text{tr}(PRK)_A = \text{tr}(PRK)_B$.

(3) $w = RPK$ for some word K of length k:

Matching the coefficients of uvt in $tr(uP_A + vR_A + tK_A)^3 = tr(uP_B + vR_B + tK_B)^3$ one gets $tr(PRK)_{A}+tr(RPK)_{A}=tr(PRK)_{B}+tr(RPK)_{B}$. Thus from (2) we deduce $tr(RPK_A)=tr(RPK_B).$

(4) $w = PQK$ for some word K of length k:

Note that $tr(PQK)^{*}_{A} = tr(K^{*}RP)_{A} = tr(RPK^{*})_{A}$. Applying (3) we obtain $tr(PQK)_{A}$ $=\mathop{\mathrm{tr}}(PQK)_B.$

(5) $w = QPK$ for some word K of length k:

Matching the coefficients of uvt in $tr(uQ_A + vP_A + tK_A)^3 = tr(uQ_B + vP_B + tK_B)^3$, one gets $tr(QPK)_A+tr(PQK_A)=tr(QPK)_B+tr(PQK_B)$. Thus from (2) we deduce $tr(QPK_A)=tr(QPK_B).$

(6) $w = QQK$ for some word K of length k:

Consider for any complex numbers u and v the matrices uQ_A+vK_A and uQ_B+vK_B . One could check indeed that $tr(uQ_A + vK_A)^{1,2} = tr(uQ_B + vK_B)^{1,2}$ and this implies $tr(uQ_A + vK_A)^i = tr(uQ_B + vK_B)^i$ for every integer *i*. Using the equality for $i = 3$ and matching the coefficients of u^2v one gets $tr(QQK)_A=tr(QQK)_B$.

(7) $w = QSK$ for some word K of length k:

Consider for any complex numbers u and v the matrices $uQ_A + vAK_A$ and $uQ_B + vA$ vBK_B . One could check indeed that $tr(uQ_A + vAK_A)^{1,2} = tr(uQ_B + vBK_B)^{1,2}$ and this implies $tr(uQ_A + vAK_A)^i = tr(uQ_B + vBK_B)^i$ for every integer *i*. Using the equality for $i = 3$ and matching the coefficients of u^2v one gets $tr(QSK)_A = tr(QSK)_B$.

(8) $w = RRK$ for some word K of length k:

Consider for any complex numbers u and v the matrices uR_A+vK_A and uR_B+vK_B . One could check indeed that $tr(uR_A + vK_A)^{1,2} = tr(uR_B + vK_B)^{1,2}$ and this implies $tr(uR_A + vK_A)^i = tr(uR_B + vK_B)^i$ for every integer *i*. Using the equality for $i = 3$ and matching the coefficients of u^2v one gets $tr(RRK)_A=tr(RRK)_B$.

(9) $w = SQK$ for some word K of length k:

Matching the coefficients of uvt in $tr(uQ_A + vS_A + tK_A)^3 = tr(uQ_B + vS_B + tK_B)^3$ one gets $tr(QSK)_{A}+tr(SQK_{A})=tr(QSK)_{B}+tr(SQK_{B})$. Thus from (7) we deduce $tr(SQK_A)=tr(SQK_B).$

(10) $w = RSK$ for some word K of length k: Note that $tr(RSK)^*_{A} = tr(K^*SQ)_{A} = tr(SQK^*)_{A}$. Applying (9) we obtain $tr(RSK)_{A} =$ $tr(RSK)_{B}$.

(11) $w = SRK$ for some word K of length k:

Matching the coefficients of uvt in $tr(uS_A + vR_A + tK_A)^3 = tr(uS_B + vR_B + tK_B)^3$ one gets $tr(RSK)_A+tr(SRK)_A=tr(RSK)_B+tr(SRK)_B)$, Thus from (10) we deduce $tr(SRK_A)=tr(SRK_B).$

(12) $W = SSK$ for some word K of length k

Consider for any complex numbers u and v the matrices uS_A+vK_A and uS_B+vK_B . One could check indeed that $tr(uS_A + vK_A)^{1,2} = tr(uS_B + vK_B)^{1,2}$ and this implies $\text{tr}(uS_A + vK_A)^i = \text{tr}(uS_B + vK_B)^i$ for every integer i. Using the equality for $i = 3$ and matching the coefficients of u^2v one gets $tr(SSK)_A=tr(SSK)_B$.

For $w' = (PS)^n$, we showed in Lemma 2.6 that $\text{tr}(PS)_A = \text{tr}(PS)_B$ and $\text{tr}(PSPS)_A$ $=\text{tr}(PSPS)_{B}$. Since $(PS)_{A}$ and $(PS)_{B}$ are both of rank 2, this implies that $\text{tr}(PS)_{A}^{n}$ $\text{tr}(PS)_B^n$ for all integers n. Similarly, we have $\text{tr}(QR)_A^n = \text{tr}(QR)_B^n$ for all integers n. So we have proved that $tr(w'_A)=tr(w'_B)$ for every word w' of length $k+2$. Finally, from Lemma 2.7 and the induction hypothesis that $tr(w_A)^{1,2} = tr(w_B)^{1,2}$ for every word w of length $k+1$ we conclude that $tr(w'_A)^2 = tr(w'_B)^2$ for every w' of length $k+2$. Thus we conclude by induction that $tr(w_A)=tr(w_B)$ for any w of length $n, n \ge 1$. So A is unitarily equivalent to B .

Now let us come back to the 3-by-3 cases. First we show that $w^{(7)}$ is redundant.

Lemma 2.9 Suppose A and B are two 3-by-3 matrices. If $tr(w_A^{(i)})$ $A^{(i)}_{A}$ = tr $(w_B^{(i)}$ $_B^{(i)}$ for $1 \leq$ $i \leq 6$, then $\text{tr}(w_A^{(7)})$ $\binom{(7)}{A}$ =tr $(w_B^{(7)}$ $\binom{(\ell)}{B}$

Proof. For any complex numbers u and v consider matrices $uA + vA^*$ and $uB + vB^*$. One could check that $\text{tr}(w_A^i) = \text{tr}(w_B^i)$ for $1 \leq i \leq 5$ implies

$$
\text{tr}(uA + vA^*)^{1,2,3} = \text{tr}(uB + vB^*)^{1,2,3}.
$$

Hence we have $tr(uA + vA^*)^i = tr(uB + vB^*)^i$ also for every integer *i*. Using the equality for $i = 4$ and matching the coefficients of u^2v^2 one gets

$$
\text{tr}(w_A^{(6)}) + \text{tr}(w_A^{(7)}) = \text{tr}(w_B^{(6)}) + \text{tr}(w_B^{(7)}).
$$

From tr $(w_A^{(6)}) = \text{tr}(w_B^{(6)})$ we then deduce tr $(w_A^{(7)}) = \text{tr}(w_B^{(7)})$

Lemma 2.10 Suppose A and B are two 3-by-3 matrices and tr $(w_A^{(i)})$ $_{A}^{(i)}$)=tr $(w_{B}^{(i)}$ $\binom{v}{B}$ for $1 \leq i \leq 6$ and $i = 8$. Then, for any complex number λ , $tr(w_{iA}^{(i)})$ $_{(A-\lambda I_3)}^{(i)}) =$ tr $(w_{(B)}^{(i)}$ $\binom{(i)}{(B-\lambda I_3)}$ for $1 \leq i \leq 6$ and $i = 8$ as well.

Proof. The only case we really need to verify is $tr(w_{(A)}^{(8)})$ $_{(A-\lambda I_3)}^{(8)}$)=tr $(w_{(B)}^{(8)}$ $\binom{(8)}{(B-\lambda I_3)}$. This in turn is equivalent to checking that if $tr(A^*{}^2A A^*A)=tr(B^*{}^2BB^*B)$. Using

$$
tr(uA + vA^*)^7 = tr(uB + vB^*)^7
$$

and matching the coefficients of u^3v^4 one gets indeed

$$
\operatorname{tr}(A^{*2}AA^*A) = \operatorname{tr}(B^{*2}BB^*B).
$$

Theorem 2.11 If A and B are two 3-by-3 matrices such that $tr(w_A^{(i)})$ $\binom{\binom{v}{l}}{A}$ $=\mathrm{tr}(w_B^{(i)}$ $\binom{n}{B}$ for $1 \leq i \leq 6$ and $i = 8$, then A is unitarily equivalent to B.

Proof. First from $tr(A)^{1,2,3}=tr(B)^{1,2,3}$ we conclude that A and B have the same eigenvalues. Subtracting a common eigenvalue λ we get $A' = A - \lambda I_3$ and $B' = B - \lambda I_3$ both having rank 2. From Lemma 2.5 we have $\text{tr} (w_{A}^{(i)}) = \text{tr}(w_{B'}^{(i)})$ for $1 \leq i \leq 6$ and $i = 8$. From Lemma 2.4 we see $tr(w_{A'}^{(7)}) = tr(w_B^{(7)}$ $\binom{N}{B}$ as well. From Theorem 2.1 we conclude that A' is unitarily equivalent to B' . Thus A is also unitarily equivalent to $B.$

3 Matrices with Eigenvectors Not Orthogonal

We prove in this chapter the most general result in this paper, namely, for any matrix whose eigenvectors are not orthogonal a set with $n^4 + 1$ words suffices to determine it up to unitary equivalence. For example,

$$
A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, \ b \neq 0
$$

is such a matrix.

Theorem 3.1 Let A be an n-by-n matrix such that none of its eigenvectors are orthogonal. Then $\{A^{*i}A^j : 0 \le i, j \le n\}$ is a linearly independent set and spans $\text{Alg}(A, A^*)$.

Proof. Suppose that

$$
f(x) = (x - \lambda_1)^{p_1}(x - \lambda_2)^{p_2}\dots(x - \lambda_m)^{p_m}
$$

is the characteristic polynomial of A with $\lambda_1, \lambda_2, ..., \lambda_m$ the distinct eigenvalues of A. Since none of the eigenvectors of A are orthogonal, we have in particular ker($A \lambda_i I_n$ = 1 for all i, on $1 \leq i \leq m$. This implies that f is also the minimal polynomial of A. Suppose on the contrary that $\{A^{*i}A^j: 0 \leq i, j \leq n\}$ is linearly dependent. Then there exist polynomials $g_0, g_1, \ldots, g_{n-1}$ of degree $\lt n$, not all zero, such that

$$
g_{n-1}(A^*)A^{n-1} + \dots + g_0(A^*) = 0.
$$
 (3.1)

Let $h_{n-1}=\gcd(\overline{f},g_{n-1})$ and write $g_{n-1}=qh_{n-1}$ with q also a polynomial. Then $q(A^*)$ is invertible with its inverse also a polynomial in A^* . Thus we can multiply both sides of (3.1) with $j(A^*)^{-1}$ and obtain

$$
h_{n-1}(A^*)A^{n-1} + \dots + h_0(A^*) = 0
$$
\n(3.2)

with $h_0, h_1, \ldots, h_{n-1}$ still polynomials of degree $\lt n$. Since h_{n-1} divides \overline{f} , there is some r such that $h_{n-1}(x)$ divides $(x - \overline{\lambda_1})^{p_1} \cdots (x - \overline{\lambda_r})^{p_r-1} \cdots (x - \overline{\lambda_m})^{p_m}$. We multiply both sides of (3.2) with $(A^* - \overline{\lambda_1})^{p_1} \cdots (A^* - \overline{\lambda_r})^{p_r-1} \cdots (A^* - \overline{\lambda_m})^{p_m}$ and obtain for some nonzero polynomial h the relation

$$
(A^* - \overline{\lambda_1})^{p_1} \cdots (A^* - \overline{\lambda_r})^{p_r - 1} \cdots (A^* - \overline{\lambda_m})^{p_m} h(A) = 0.
$$
 (3.3)

Similarly, take $l = \gcd(f, h)$ and denote $h = lu$. Then $u(A)$ is invertible with its inverse also a polynomial in A. So we multiply both sides of (3.3) with $u(A)^{-1}$ and obtain

$$
(A^* - \overline{\lambda_1})^{p_1} \cdots (A^* - \overline{\lambda_r})^{p_r - 1} \cdots (A^* - \overline{\lambda_m})^{p_m} l(A) = 0.
$$
 (3.4)

Since l divides f and is of degree $\lt n$, there is some s such that l divides $(x (\lambda_1)^{p_1}\cdots(x-\lambda_s)^{p_s-1}\cdots(x-\lambda_m)^{p_m}$. So we multiply both sides of (3.4) with $(A-\lambda_1)^{p_1}$ $(\lambda_1)^{p_1} \cdots (A - \lambda_s)^{p_s - 1} \cdots (A - \lambda_m)^{p_m}$ and obtain

$$
(A^* - \overline{\lambda_1})^{p_1} \cdots (A^* - \overline{\lambda_r})^{p_r - 1} \cdots (A^* - \overline{\lambda_m})^{p_m}
$$

$$
(A - \lambda_1)^{p_1} \cdots (A - \lambda_s)^{p_s - 1} \cdots (A - \lambda_m)^{p_m} = 0. \quad (3.5)
$$

Since f is the minimal polynomial of A, there exists some nonzero v in \mathbb{C}^n which is not in ker $(A - \lambda_r)^{p_r-1}$ but in ker $(A - \lambda_r)^{p_r}$. So $(A - \lambda_r)^{p_r-1}v$ is nonzero and belongs in $\ker(A-\lambda_r)$. Let v_r in \mathbb{C}^n be an eigenvector of A corresponding to the eigenvalue λ_r . Then for some nonzero complex number a we have $(A - \lambda_r)^{p_r-1}v = av_r$. Similarly, for some nonzero w in \mathbb{C}^n and nonzero complex number b, we have $(A - \lambda_s)^{p_s - 1}w = bv_s$, where v_s is an eigenvector of A corresponding to the eigenvalue λ_s . From (3.5), we must have

$$
\langle (A - \lambda_1)^{p_1} ... (A - \lambda_r)^{p_r - 1} ... (A - \lambda_m)^{p_m} v, (A - \lambda_1)^{p_1} ... (A - \lambda_s)^{p_s - 1} ... (A - \lambda_m)^{p_m} w \rangle
$$

= 0.

<u>ALLILLER</u>

This in turn implies

$$
\left\langle \left(\prod_{1 \le i \le m; i \ne r} (A - \lambda_i)^{p_i} \right) v_r, \left(\prod_{1 \le i \le m; i \ne s} (A - \lambda_i)^{p_i} \right) v_s \right\rangle = 0
$$

and hence

So we find a pair of eigenvectors of A which are orthogonal, contradicting to our assumption on A. Thus the set $\{A^{*i}A^j: 0 \le i, j < n\}$ must be linearly independent. Since this set contains n^2 elements and Alg(A, A^{*}) is of dimension at most n^2 , this implies that $\{A^{*i}A^j: 0 \leq i, j < n\}$ spans $\text{Alg}(A, A^*)$). $\qquad \qquad \Box$

Suppose now that A and B are two n -by- n matrices with none of the eigenvectors of A orthogonal. By Theorem 3.1, for any integers p and q we can write $A^p A^{*q}$ as a linear combination of $A^{*i}A^j, 0 \leq i, j < n$. The next theorem shows that if

$$
tr(A^n) = tr(B^n)
$$
 and $tr(A^{*i}A^jA^{*k}A^l) = tr(B^{*i}B^jB^{*k}B^l)$, $0 \le i, j, k, l < n$,

then we can also write $B^p B^{*q}$ as a linear combination of $\{B^{*i} B^j : 0 \le i, j < n\}$ with the same coefficients.

Theorem 3.2 Let A and B be two n-by-n matrices and p and q be some integers. Suppose that there exists a set of complex numbers $\{a_{ij} : 0 \le i, j \le n\}$ such that $A^p A^{*q} = \sum_{i,j=0}^{n-1} a_{ij} A^{*i} A^j$. If

$$
tr(A^{n}) = tr(B^{n})
$$
 and $tr(A^{*i}A^{j}A^{*k}A^{l}) = tr(B^{*i}B^{j}B^{*k}B^{l}), 0 \le i, j, k, l < n,$

then we also have $B^p B^{*q} = \sum_{i,j=0}^{n-1} a_{ij} B^{*i} B^j$.

Proof. From $A^p A^{*q} = \sum_{i,j=0}^{n-1} a_{ij} A^{*i} A^j$, we have

$$
\text{tr}\left((A^p A^{*q} - \sum_{i,j=0}^{n-1} a_{ij} A^{*i} A^j)^* (A^p A^{*q} - \sum_{i,j=0}^{n-1} a_{ij} A^{*i} A^j)\right) = 0.
$$

This is the same as

$$
\text{tr}(A^q A^{*p} A^p A^{*q}) - \text{tr}(\sum_{i,j=0}^{n-1} a_{ij} A^q A^{*p} A^{*i} A^j)
$$

$$
- \text{tr}(\sum_{i,j=0}^{n-1} a_{ij} A^{*i} A^j A^q A^{*p}) - \text{tr}(\sum_{i,j,k,l=0}^{n-1} a_{ij} a_{kl} A^{*j} A^i A^{*k} A^l) = 0. \quad (3.6)
$$

Since $tr(A^i) = tr(B^i), 1 \leq i \leq n$, A and B have equal characteristic polynomials and thus $tr(A^{*i}A^{j}A^{*k}A^{l}) = tr(B^{*i}B^{j}B^{*k}B^{l}), 0 \leq i, j, k, l < n$ implies $tr(A^{*i}A^{j}A^{*k}A^{l}) =$ $\text{tr}(B^{*i}B^jB^{*k}B^l)$ for all nonnegative integers i, j, k and l. Substituting this back into (3.6) , we obtain FFRIX

$$
tr(B^{q}B^{*p}B^{p}B^{*q}) - tr(\sum_{i,j=0}^{n-1} a_{ij}B^{q}B^{*p}B^{*i}B^{j})
$$

-
$$
tr(\sum_{i,j=0}^{n-1} a_{ij}B^{*i}B^{j}B^{q}B^{*p}) - tr(\sum_{i,j,k,l=0}^{n-1} a_{ij}a_{kl}B^{*j}B^{i}B^{*k}B^{l}) = 0
$$
 (3.7)

as well. So we have

$$
\operatorname{tr}(B^p B^{*q} - \sum_{i,j=0}^{n-1} a_{ij} B^{*i} B^j)^* (B^p B^{*q} - \sum_{i,j=0}^{n-1} a_{ij} B^{*i} B^j) = 0.
$$

Thus $B^p B^{*q} - \sum_{i,j=0}^{n-1} a_{ij} B^{*i} B^j = 0.$

Now we are ready to prove the main result.

Theorem 3.3 Let A and B be two n-by-n matrices. Assume that no pair of the eigenvectors of A are orthogonal to each other. If $tr(A^{*i}A^jA^{*k}A^l) = tr(B^{*i}B^jB^{*k}B^l)$ for $0 \leq i, j, k, l < n$ and $tr(A^n) = tr(B^n)$, then A is unitarily equivalent to B.

Proof. We are going to show that for every word $w(x, y)$, $tr(w(A, A^*)) = tr(w(B, B^*))$ and then apply Specht's theorem to conclude that A is unitarily equivalent to B . Using the property that $tr(AB) = tr(BA)$, it suffices to consider only words w of the form $w(x, y) = y^{i_1} x^{j_1} \cdots y^{i_n} x^{j_n}$.

We proceed by induction on the length n. For $n=1$, this is already assumed. Suppose that the assertion is true for $n = k$. Consider the case $n = k + 1$. Then

$$
tr(w(A, A^*)) = tr(A^{*i_1} A^{j_1} \cdots A^{*i_k} (A^{j_k} A^{*i_{k+1}}) A^{j_{k+1}})
$$

= tr $\left(\sum_{p,q=0}^{n-1} a_{pq} A^{*i_1} A^{j_1} \cdots A^{*(i_k+p)} A^q\right) = \sum_{p,q=0}^{n-1} a_{pq} tr\left(A^{*i_1} A^{j_1} \cdots A^{*(i_k+p)} A^q\right).$ (3.8)

Since $A^{*i_1}A^{j_1}\cdots A^{*(i_k+p)}A^q$ is of length k, by the induction hypothesis we have

$$
\text{tr}(A^{*i_1}A^{j_1}\cdots A^{*(i_k+p)}A^q) = \text{tr}(B^{*i_1}B^{j_1}\cdots B^{*(i_k+p)}B^q). \tag{3.9}
$$

Substituting this back into (3.8) , we have

$$
tr(w(A, A^*)) = \sum_{p,q=0}^{n-1} a_{pq} tr\left(A^{*i_1} A^{j_1} \cdots A^{*(i_k+p)} A^q\right)
$$

=
$$
\sum_{p,q=0}^{n-1} a_{pq} tr\left(B^{*i_1} B^{j_1} \cdots B^{*(i_k+p)} B^q\right)
$$

=
$$
tr\left(\sum_{p,q=0}^{n-1} a_{pq} B^{*i_1} B^{j_1} \cdots B^{*(i_k+p)} B^q\right)
$$

=
$$
tr(B^{*i_1} B^{j_1} \cdots B^{*i_k} (B^{j_k} B^{*i_{k+1}}) B^{j_{k+1}}) = tr(w(B, B^*)).
$$

Thus by the mathematical induction we conclude that $tr(w(A, A^*))=tr(w(B, B^*))$ for every word w. So A is unitarily equivalent to B.

References

- [B] Bhattarcharya, On the unitary invariants of an $n \times n$ matrix, Ph.D. Thesis, Indian Statis. Inst., New Delhi, 1987.
- [P1] C. Pearcy, A complete set of unitary invariants for operators generating finite W^{*}-algebras of type I, Pacific J. Math. 12:1405–1416 (1962).
- [P2] C. Pearcy, A complete set of unitary invariants for 3×3 complex matrices, *Trans.* Amer. Math. Soc. 104:425–429 (1962).
- [Pr] V. V. Praslov, Problems and Theorems in Linear Algebra, Amer. Math. Soc., Providence, 1994.
- [Sh] H. Shapiro, A survey of canonical forms and invariants for unitary similarity, Linear Algebra Appl. 147:101–167 (1991).
- [Si] K. S. Sibirski¨ı, Unitary and orthogonal invariants of matrices, Soviet Math. Dokl. 8:36–40 (1967) [English transl. of *Dokl. Akad. Nauk SSSR* 172:40–43 (1967)].
- [S] W. Specht, Zur Theorie der Matrizen, II, Jahresber. Deutsch. Math.-Verein. 50:19–23 (1940). 1896
- [W] N.Wiegmann, Necessary and sufficient conditions for unitary similarity, J. Austral. Math. Soc. 2:122–126 (1961/62).