
1 INTRODUCTION

The study of flows in complex geometries is a difficult task that usually
requires specialized treatment including body-fitted grid generation. The
purpose of this paper is to introduce a flexible method for treating flows
past simple shape bodies. Flow past a stationary or moving bluff body can
be considered as an extreme case of the interaction between two continuum
phases, in which one phase is rigid. The case of a fluid phase interacting
with a deformable elastic phase has been treated by the immersed boundary
IB method developed by Peskin [1], motivated by the problem of flow in the
heart. The case of two immiscible fluid phases separated by an evolving inter-
face has been treated by the volume of fluid VOF method, developed by Hirt
and Nichols [2] for the dynamics of free boundaries. The IB method allows
one to simulate elastic materials interacting with a fluid where the bound-
aries are model as pure force-generators. It involves solving the Navier-Stokes
equation in Eulerian form for the fluid motion, a fiber force density in La-
grangian form for the material and fiber-fluid interaction equations. The
VOF [2], [3], [4] method is an Eulerian scheme which uses the volume frac-
tion field Φ of one phase that is advected by the flow to keep track of the
position of the interface. The function Φ is unity in the region occupied en-
tirely by one particular phase and zero in regions occupied fully by the other
phase. As a consequence, the regions with fractional Φ contain the interface.
The normal to the interface and surface tension effects are parameterized in
terms of Φ and its gradients. Recent papers point to the growing interest in
the problem of incorporating obstacles in flows.

Lai and Peskin [5] applied the IB method directly to the problem of flow
past a cylinder, providing a formally second-order accurate numerical scheme.
Fadlun et al. [6] proposed a second-order scheme for three-dimensional flows
by using the IB principle where the body force is applied at the surface of the
obstacle. In the same spirit but using other techniques, a volume force formu-
lation was used by Xiao [7] for computing three-dimensional flows near sus-
pended moving objects, while Bruneau et al. [8] simulated two-dimensional
turbulence behind an array of cylinders.

In the present paper we describe an embedding method which combines
features from both the IB and the VOF methods in order to compute flows
past simple bodies. Like the IB method, the presence of the solid body is
represented by an external body force density acting in the fluid equations.
The determination of this force density is effected with the help of a volume
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fraction field similar to the one defined in the VOF method. By restricting
one’s attention to rigid bodies, the volume fraction field Φ of the solid phase
is fully determined by knowing the instantaneous position of the solid body.
The computational domain (encompassing both the fluid and the body) is
treated as a continuous fluid medium where the variables are computed in an
Eulerian setting. In this context the fluid may be considered as made up of
two pure phases, one being the rigid-body phase where the volume fraction
is unity and the other the ordinary fluid phase where it is zero. In between,
the medium is partially made up of fluid and solid phases and the variables
vary continuously but steeply near this transition. The body force acts on
the fluid to satisfy the condition that the velocity in the cells occupied by
the solid should match the velocity of the rigid body. We validate the em-
bedding method by solving the canonical problem of vortex shedding from
a single stationary cylinder.We further restrict the current study to interme-
diate Reynolds numbers and quantify our results in terms of characteristic
parameters of the global flow: the Strouhal number, and the lift and drag
coefficients of the cylinder.

2 NUMERICAL METHOD

For simplicity, we consider the model problem of a viscous incompressible
fluid in a two-dimensional square domain Ω = [0, 1]×[0, 1]. And the unsteady
flow is governed by the momentum and continuity equations as following:

∂u

∂t
+ u · ∇u +∇p =

1

Re
∆u, (1)

∇ · u = 0. (2)

Here u(x,t)=(u(x,t),v(x,t)) and p(x,t) are fluid velocity and fluid pressure,
respectively. x=(x,y) is the coordinate, and Re is the Reynolds number.
Hence we express the system to be an explicit form as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

∂p

∂x
=

1

Re
(
∂2u

∂x2
+

∂2u

∂y2
), (3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

∂p

∂y
=

1

Re
(
∂2v

∂x2
+

∂2v

∂y2
), (4)

∂u

∂x
+

∂v

∂y
= 0. (5)
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2.1 Staggered grid

Computational solutions of (3-5) are often obtained on a staggered grid.
This implies that different dependent variables are evaluated at different
grid points. The preferred staggered grid configuration is shown in Figure 1.
It can be seen that pressures are defined at the center of each cell and that
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Figure 1: The staggered grid.

velocity components are defined at the center of the cell faces. Discretization
of (2) on the staggered grid shown in Figure 1 gives

ui+1/2,j − ui−1/2,j

∆x
+

vi,j+1/2 − vi,j−1/2

∆y
= 0 (6)

In addition a Taylor series expansion about the cell center indicates that they
have a truncation error of O(∆x2, ∆y2), even though only four grid points
are involved.

The use of the staggered grid permits coupling of the u, v and p solutions
at adjacent grid points. This in turn prevents the appearance of oscillatory
solutions, particularly for p, that can occur if centered differences are used to
discretize all derivatives on a non-staggered grid. The oscillatory solution is

3



a manifestation of two separate pressure solutions associated with alternate
grid points, which the use of centered differences on a non-staggered grid
permits. The oscillatory behavior is usually worse at high Reynolds number
where the dissipative terms, which do introduce adjacent grid point coupling
for u and v, are small. Clearly, from (3-5), there are no dissipative terms for p.

The use of staggered grids has some disadvantages. Computer programs
based on staggered grids tend to be harder to interpret because it is desirable
to associate a cluster of dependent variables with corresponding storage loca-
tions. Thus arrays storing u, v and p might associate storage location (i, j)
with ui+1/2,j, and vi,j+1/2 and pi,j as Figure 1. Generally boundary conditions
are more difficult to impose consistently with a staggered grid, since at least
one dependent variable, u or v, will not be defined on a particular boundary.
If the grid is non-rectangular, and generalized coordinates are used, the in-
corporation of a staggered grid is more complicated.

In discretizing (3-5) the following finite difference expressions are used:

[
∂u

∂t

]

i+1/2,j

=
un+1

i+1/2,j − un
i+1/2,j

∆t
+ O(∆t),

[
∂u

∂x

]

i+1/2,j

=
ui+3/2,j − ui−1/2,j

2∆x
+ O(∆x2),

[
∂u

∂y

]

i+1/2,j

=
ui+1/2,j+1 − ui+1/2,j−1

2∆y
+ O(∆y2), (7)

[
∂2u

∂x2

]

i+1/2,j

=
ui+3/2,j − 2ui+1/2,j + ui−1/2,j

∆x2
+ O(∆x2),

[
∂2u

∂y2

]

i+1/2,j

=
ui+1/2,j+1 − 2ui+1/2,j + ui+1/2,j−1

∆y2
+ O(∆y2).

In the above expression terms like vi+1/2,j appear, which are not defined in
Figure 1. To evaluate such terms, linear interpolation is employed, that is,

[v]i+1/2,j = 0.25(vi,j−1/2 + vi+1,j−1/2 + vi,j+1/2 + vi+1,j+1/2) (8)

Similarly, ui,j+1/2 is evaluated as

[u]i,j+1/2 = 0.25(ui−1/2,j + ui−1/2,j+1 + ui+1/2,j + ui+1/2,j+1) (9)
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2.2 MAC formulation

One of the earliest, and most widely used, methods for solving (3-5) is the
Marker and Cell (MAC) method [10] due to Amsden and Harlow (1970). The
method is characterized by the use of a staggered grid and the solution of a
Poisson equation for the pressure at every time-step. Although the original
form of the MAC method has certain weakness, the use of a staggered grid
and a Poisson equation for the pressure has been retained in many modern
methods derived from the MAC method.

In the MAC formulation the discretizations (7) allow the following explicit
algorithm to be generated from (3 and 4):

un+1
i+1/2,j = F n

i+1/2,j −
∆t

∆x
(pn+1

i+1,j − pn+1
i,j ), (10)

where

F n
i+1/2,j = un

i+1/2,j + ∆t[
ui+3/2,j − 2ui+1/2,j − ui−1/2,j

Re∆x2

+
ui+1/2,j+1 − 2ui+1/2,j − ui+1/2,j−1

Re∆y2

− ui+1/2,j

ui+3/2,j − ui−1/2,j

∆x

− vi+1/2,j

ui+1/2,j+1 − ui+1/2,j−1

∆y
]n. (11)

Similarly the discretized form of (4) is written as

vn+1
i,j+1/2 = Gn

i,j+1/2 −
∆t

∆y
(pn+1

i,j+1 − pn+1
i,j ), (12)

where

Gn
i,j+1/2 = vn

i,j+1/2 + ∆t[
ui+1,j+1/2 − 2vi,j+1/2 − vi−1,j+1/2

Re∆x2

+
vi,j+3/2 − 2vi,j+1/2 − vi,j−1/2

Re∆y2

− ui,j+1/2

vi+1,j+1/2 − vi−1,j+1/2

∆x

− vi,j+1/2

vi,j+3/2 − vi,j−1/2

∆y
]n. (13)
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In (10 and 12) p appears implicitly; however, pn+1 is obtained before (10 and
12) are used, as follows. The continuity equation is discretized as

un+1
i+1/2,j − un+1

i−1/2,j

∆x
+

vn+1
i,j+1/2 − vn+1

i,j−1/2

∆y
= 0 (14)

Substituting right-hand-side of (10 and 12) into (15), we rewrite (15) as a
discrete Poisson equation for the pressure

[
pi+1,j − 2pi,j − pi−1,j

∆x2
+

pi,j+1 − 2pi,j − pi,j−1

∆y2

]n+1

=
1

∆t

[
F n

i+1/2,j − F n
i−1/2,j

∆x
+

Gn
i,j+1/2 −Gn

i,j−1/2

∆y

]
(15)

The equation is solved at every time-step using direct Poisson solver, and the
solution pn+1 will be substituting into (10 and 12) to obtain un+1 and un+1.

2.3 Projection method

First, we introduce a first-order projection method to complete our prelim-
inary for solving the Navier-Stokes equation. The general procedure for a
projection method is a predictor-corrector approach. In the first step an
intermediate velocity field denoted by u∗ is computed utilizing the momen-
tum equations. This velocity does not satisfy the continuity equation. In
the second step a Poisson equation for the pressure which is derived from
the continuity equation is solved. In the last step u∗ is projected onto a
divergence-free velocity field by the computed pressure. The three step are
now described in more detail for our treatment problem.

Step1: This is a prediction step for u∗.

u∗ = Fn (16)

The components of F = (F, G) are expressed in (11 and 13).

Step2: Solve a Poisson equation for pressure by using the direct Poisson
solver.

∆pn+1 =
1

∆t
∇ · u∗. (17)
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Step3: The projection step.

un+1 = u∗ −∆t∇pn+1. (18)

Note that this procedure has second-order accuracy in space and first-order
accuracy in time. Since the corresponding algorithms for un+1 and vn+1 are
explicit, there is a restriction on the maximum time-step for a stable solution
[11].

0.25(| u | + | v |)2∆tRe ≤ 1 and

∆t/(Re∆x2) ≤ 0.25, assuming that ∆x2 = ∆y2 (19)

In order to improve the restriction on the maximum time step and reduce
the error from the time discretization, we introduce a second-order projection
method to momentum and continuity equations. The detailed procedures are
described as the following steps.

Step1: This is a prediction step to evaluate the intermediate velocity field
u∗ by the Helmholtz-type solver.

3u∗ − 4un + un−1

2∆t
+ 2(un · ∇)un − (un−1 · ∇)un−1 +∇pn =

1

Re
∆u∗ (20)

In this step the unknown u∗ is treated implicitly, so we can relax the re-
striction of maximum time-step. Moreover, this algorithm is second-order
accurate in time.

Step2: By the Hodge decomposition there exist a potential function φ and
a divergence-free velocity field un+1 such that

u∗ = un+1 +
2∆t

3
∆φn+1 (21)

Now taking the divergence operator into (21) and using the divergence-free
property, we have

∆φn+1 =
3

2∆t
∇ · u∗ (22)

Furthermore, a Poisson solver is used again to obtain φn+1.
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Step3: Project u∗ onto un+1 as

un+1 = u∗ − 2∆t

3
∆φn+1. (23)

and ∇pn+1 can be obtained as

∇pn+1 = ∇pn +∇φn+1 − 1

Re
∆u∗. (24)

2.4 Combination of projection method and VOF ap-
proach

The case of two immiscible fluid phases separated by an involving interface
has been treated by the VOF method, developed by Hirt and Nichols [3].
In this section, we shall describe how to combine the VOF and projection
methods to simulate the flow through a solid object. For simplicity, we
consider a cell occupied by fluid and solid as Figure 2. We first define a
volume fraction field Φi,j on the cell center as

Φi,j =
vol(object)

vol(cell)
(25)

where vol(cell) is the area of cell (i, j) and vol(object) is the area of the
object inside cell (i, j). Note that the volume-fraction field Φ is only defined
on cell center.

The embedding method refers to a scheme for computing flows in the
vicinity of stationary or moving solid bodies using the space-filling Cartesian
grid which passes through the solid bodies as well. The governing equations
for the fluid flow (i.e., the Navier-Stokes and continuity equations) are solved
everywhere, including the cells which are occupied by the solid body. The
presence of the solid body is accounted for, however, by adding a force field
to the fluid momentum equation in those cells which are fully or partially
occupied by the solid phase. The magnitude and direction of this body force
density is determined at every time step of the computation by the requiring
the value of the velocity in those cells to match the prescribed velocity of
the solid body. This is done with the aid of a volume-fraction field which
determines what fraction of each computational cell in the Cartesian grid is
occupied by the solid phase. In cells where the solid volume fraction is unity,
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Figure 2: The figure of the volume fraction field.

the velocity is set exactly equal to that of the body, and in those where the
volume fraction is between zero and one, the velocity is only adjusted par-
tially, in proportion to the volume fraction. Cells which which are free from
the solid and have a volume fraction of zero do not posses this body-force
and are not affected in that step of the computation.

More specifically, consider unsteady flow of an incompressible fluid gov-
erned by the continuity and the Navier-Stokes equations:

∂u

∂t
+ u · ∇u +∇p =

1

Re
∆u + f, (26)

∇ · u = 0. (27)

In the current implementation of the embedding method, our treatment sys-
tem has been solved on a staggered grid. In the staggered grid, within cell
(i, j), the pressure and volume fraction field are assigned to the cell center,
while the horizontal and vertical velocity components are respectively as-
signed to the face center of the right and top edges of the cell. The time
integration is performed by the operator splitting technique in three distinct
steps. The three fractional steps for time-evolution of the primitive vari-
ables (velocity and pressure) are now described in more detail for the specific
case of two-dimensional flow past a single stationary cylinder for which the
method has been validated.
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Step1: This prediction step treats only the advection, diffusion and pressure
parts to obtain the first intermediate velocity field u∗. Here the velocity field
is determined in the entire computational domain regardless of the position
of the immersed body. Our current implementation of this step is implicit,
hence the stability consideration is relaxed. And use the Helmholtz-type
solver to march the solution

3u∗ − 4un + un−1

2∆t
+ 2(un · ∇)un − (un−1 · ∇)un−1 +∇pn =

1

Re
∆u∗. (28)

Step2: The second step is a modified step, which contains the essential
component of the embedding method, allows us to take into account the
presence of the cylinder. At this stage, one treats the system as a ”binary”
fluid. One phase is simply the ordinary outside the rigid body while the other
is the cylinder phase itself, within which the velocity is expected to vanish.
To identify exactly the cells assigned to each phase, a volume-fraction field
is defined as the fraction of the area of each cell occupied by the cylinder.
By imposing the body force term f in those cells that are partially or fully
occupied by the cylinder, we modify the velocity field to make it vanish in the
cylinder. Namely, the presence of the body force implies the update velocity:

u∗∗ = u∗ +
2∆t

3
f (29)

where u∗∗ is the second intermediate velocity field. The embedding method
determines the force f to make the updated velocity u∗∗ vanish within the
cylinder. For this purpose and to define exactly which cells are involved in
the modification of the velocity, the volume-fraction field Φ of the cylinder
phase is computed in the entire mesh. For the cells located strictly inside
the cylinder, the volume fraction is unity. It decreases in the vicinity of the
cylinder boundary, which represents the transition region between the two
phases, to a value of zero in the region of the computational domain entirely
within the fluid. With respect to the staggered grid, the volume fraction
function is a cell-centered quantity. However, in this formulation, p(i, j),
u(i + 1/2, j), and v(i, j + 1/2) are respectively assigned to the center, right
edge and top edge of the square cell (i, j). In order to represent accurately
the presence of the cylinder at the nodes where the velocity components u
and v are defined, two similar functions Φx

i+1/2,j and Φy
i,j+1/2 are introduced.
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Φx
i+1/2,j = 0.5(Φi,j + Φi+1,j) if point (i + 1/2, j) outside the object,

Φx
i+1/2,j = 1.0 if point (i + 1/2, j) inside the object,

Φy
i,j+1/2 = 0.5(Φi,j + Φi,j+1) if point (i, j + 1/2) outside the object,

Φy
i,j+1/2 = 1.0 if point (i, j + 1/2) inside the object.

Φ
i,j

Φx
i+1/2,j

Φ
i+1,j

Φ
i,j

Φy
i,j+1/2

Φ
i,j+1

Figure 3: The figure of Φx and Φy.

To make the velocity vanish inside the cylinder but remain unchanged in
the fluid, in the case of the velocity component u, we set

u∗∗i+1/2,j = (1− Φx
i+1/2,j)u

∗
i+1/2,j (30)

Thus, in cells (i, j) inside the cylinder, the velocity along the x-direction is
vanished. In the boundary cells, the updated velocity is partially modified
since Φx is between zero and one. Finally, outside the cylinder u∗∗ is identical
to u∗ so that the flow remains unchanged. By replacing the required velocity
(30) into (29), the value of the body force is deduced:

(fx)i+1/2,j =
−3Φx

i+1/2,ju
∗
i+1/2,j

2∆t
(31)

The force component fx is applied at the same collocation point in cell (i, j)
where u is defined. The force component (fy)i,j+1/2 can be defined similarly.
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Step3: By the Hodge decomposition there exists a potential function φ and
a divergence-free velocity field un+1such that

u∗∗ = un+1 +
2∆t

3
∆φn+1 (32)

Now taking the divergence operator into the above equation and using the
divergence-free property, we have

∆φn+1 =
3

2∆t
∇ · u∗∗ (33)

Furthermore, the Poisson solver is used again to obtain φn+1.

Step4: The last fractional step is the projection step as

un+1 = u∗∗ − 2∆t

3
∇φ∗, (34)

and the pressure can be obtained.

pn+1 = pn + φn+1 − 1

Re
(∇ · u∗∗) (35)

3 Numerical simulations

3.1 Accuracy check

In this section, we will check our Navier-Stokes solver is second-order accu-
rate in both time and space. The following two-dimensional unsteady flow
which is a solution to the Navier-Stokes equations on Ω = [0, 1]× [0, 1]. We
compute this problem in different mesh size and list the maximum norm of
errors of the velocity and pressure in Table 1.

u(x, y, t) = − cos(πx) sin(πy) exp−2π2t/Re

v(x, y, t) = sin(πx) cos(πy) exp−2π2t/Re (36)

p(x, y, t) = −0.25(cos(2πx) + cos(2πy)) exp−4π2t/Re
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The maximum error at T = 10

Grid u order v order p order
10× 10 6.1204e-005 - 6.0240e-005 - 4.4999e-004 -
20× 20 1.4524e-005 2.08 1.4435e-005 2.06 1.1631e-004 1.95
40× 40 3.5976e-006 2.01 3.6321e-006 1.99 2.9128e-005 2.00
80× 80 9.0365e-007 1.99 9.1327e-007 1.99 7.2424e-006 2.01

Table 1: The maximum norm of error of different quantities with Re = 100.

3.2 Flow in a driven cavity

Figure 4 shows the geometry and the boundary conditions for the flow in
a driven cavity. Flow is driven by the upper wall, and several standing
vortices exist inside the cavity whose characteristics are functions of Reynolds
numbers [12]. Our computational domain is still Ω = [0, 1] × [0, 1] and the
result is shown in Figure 5.

u=0
V=0 

u=0
V=0 

u=0
V=0 

u=1
V=0 

Figure 4: The geometry and boundary conditions for a driven cavity.
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The contour figure of streamfunction with Re = 1000 at T = 30

Figure 5: A contour figure of a driven cavity at T = 30.0 with Re = 1000,
∆x = 1/160, and ∆t = 1/400.

3.3 A cylinder in the driven cavity

In this subsection, we add a rigid body into the driven cavity as Figure 6,
which shows the geometry and the boundary conditions for the flow in a
driven cavity. Flow is driven by the upper wall, and several standing vortices
exist inside the cavity like the last example except for the primary vortex
moving to the right-top corner [13]. Our computational domain is the same
as the last example and several results are expressed as the followings:

14



u=0
V=0 

u=0
V=0 

u=0
V=0 

u=1
V=0 

Figure 6: The geometry and boundary conditions for a driven cavity with a
circular cylinder.
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Figure 7: Figure of vorticity at T = 30.0 with ∆x = 1/160, ∆t = 1/400, and
Re = 1000.
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Figure 8: Figures of stream function at T = 6.0 and T = 40.0, respectively.
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Figure 9: Figures of velocities u and v on x = 0.5 and y = 0.5 at T = 12,
respectively.
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3.4 The flow around a cylinder

The flow around a circular cylinder immersed in the fluid stream is studied
as a typical model problem for separated flows and boundary layer theory. It
has been the subject of many theoretical, experimental and computational
works. Depending on the Reynolds number, different kind of flow behaviors
can be characterized. At a lower Reynolds number, the flow is viscosity dom-
inated and is called the creeping flow. At somewhat higher Reynolds number
(up to Re = 40), two symmetrical standing vortices are formed and attached
behind the cylinder. When the Reynolds number gets higher, these vortices
can stretch farther and farther downstream from the cylinder and eventu-
ally become distorted break apart to develop an alternating vortex shedding
called the Kármán vortex street. For Reynolds number up to 200, this flow
is purely laminar and the vortex street is stable and time periodic. Readers
who are interested in more detail about this flow can refer to [3].

Drag coefficient: The drag force on a body submerged in a stream arises
from two sources, the shear stress and the pressure distribution along the
body. The dimensionless drag coefficient is defined by

CD = − 2

ρu2∞D

∫

Γ

fxdA. (37)

where fx is the drag force, u∞ is the free-stream velocity, ρ is the density of
the fluid and D is the diameter of the object. In the present computation,
we have the opportunity to evaluate the drag force.

Lift coefficient: When the body starts shedding a vortex, a lift force on the
body is generated by the fluid. The dimensionless lift coefficient is defined
by

CL = − 2

ρu2∞D

∫

Γ

fydA. (38)

where fy is the lift force.

Strouhal number: When the steady flow becomes unstable and the body
starts shedding vortices, the frequency with which the vortices are shed from
the body can be made dimensionless by formula

St =
fq

u∞D
. (39)
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where fq is the vortex shedding frequency. The new parameter St is called the
Strouhal number. In our computation, it is easy to measure the dimensionless
time period Tp between vortices shedding. Thus, using the fact that fq =
1/Tp and hence St is measured by

St =
2

Tp

. (40)

Related computational results: In all cases, we choose a large compu-
tational domain as Figure 10 and a cylinder with diameter D = 1.0 inside
the domain. The fluid density is 1.0 and the far field velocity u∞ is 1.0. The
mesh size are ∆x = 0.1 and ∆t = 0.02. In Table 2 We choose ∆x = 0.05
and ∆t = 0.01, and show the comparison of different quantities with other
authors. The simulations of the streamfunction and the vorticity of different
Reynolds number are shown in figures behind Table 2.

U=1   
V=0   
Px=0  

Ux=0 
Vx=0 
Px=0 

Uy =0, V=0, Py =0 

Uy=0, V=0, Py=0 

Figure 10: The geometry and boundary conditions for the flow around a
circular cylinder.
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The comparison of drag coefficients for different Reynolds numbers

Re present Lai & Peskin Kim et al. Silva et al. Ye et al. Tritton (exp.)
20 2.18 - - 2.04 2.03 2.22
40 1.64 - 1.51 1.54 1.52 1.48
80 1.41 - - 1.40 1.37 1.29
100 1.38 1.44 1.33 1.39 - -
150 1.36 1.44 - 1.37 - -

The comparison of lift coefficient for different Reynolds numbers

Re present Lai & Peskin Kim et al.
80 0.18 - -
100 0.30 0.33 0.32
150 0.37 - -

The comparison of Strouhal number for different Reynolds numbers

Re present Lai & Peskin Silva et al. Ye et al. Williamson (exp.)
80 0.157 - 0.15 0.15 0.150
100 0.169 0.165 0.16 - 0.166
150 0.186 0.184 0.18 - 0.183

Table 2: The comparison of different quantities.
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Figure 11: The contour figure of streamfunction at Re = 40.
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Figure 12: The contour figure near the rigid body.
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Figure 13: The contour figure of vorticity at Re = 40.
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Figure 14: The contour figure near the rigid body.
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Figure 15: The contour figure of streamfunction at Re = 100.
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Figure 16: The contour near the rigid body.
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Figure 17: The contour figure of vorticity at Re = 100.
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Figure 18: The contour near the rigid body.
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Figure 19: The time evolution of drags and lifts at different Reynolds num-
bers.

25



4 Conclusion

In this thesis, we develop a simple second-order scheme to simulate the flow
around a solid body. The method treats the fluid-solid as a binary fluid
where the volume of fluid is introduced. The fluid equations are solved by
a implicit version of the projection method where the velocity is modified
in the intermediate step by the presence of the solid body. This method
is validated by the simulation of fluid around a stationary solid body and
the physical quantities, for instance, the lift and drag coefficients, and the
Strouhal number, are very close to those quantities from experiments. The
application of this method to more general flow problem such as moving
object flow is under way.
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