
Introduction

Fig.1 Disk-shaped ferrite resonator with a small thickness to diameter ratio.

Ferromagnetic resonators with magnetostrictive (MS) oscillations can
be considered in microwaves as point (with respect to the external electro-
magnetic �elds) particles. MS oscillations in a small ferrite disk resonator
can be characterized by a discrete spectrum of energy levels [4]. This fact
allows analyzing the MS oscillations similarly to quantum mechanical prob-
lems. A special interest of energy spectra of such a small structural element
- arti�cial magnetic atoms - may be found in the �elds of microwave arti-
�cial composite materials, microwave spectroscopy, and, probably, quantum
computation.
Let sizes of ferromagnetic resonator be much less than the electromag-

netic wavelength, but much more than the spin-wave wavelength taking into
account the exchange interaction. Based on our model, we will consider a
structure shown in Fig.1 as a section of an open cylindrical MS waveguide
with the longitudinal z axis, restricted by two planes z = 0 and z = h.
In a case of an axially magnetized cylinder, we have MS waveguide modes,
that is, every mode propagating in the positive direction of the z axis has
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a counterpart-the same mode propagating in the negative direction of the z
axis [1,12]. So, one can consider eigen MS oscillations in a normally magne-
tized ferrite disk as standing MS waves in a cylindrical waveguide. This fact
will allow us to formulate the energy spectral problem for MS oscillations in
a disk-form ferrite resonator. We have four main regions: region F-a ferrite
and regions I-III-dielectrics. The role of the corner regions is supposed to be
neglected. It is relevant to point out that in experiments [6,13] we have a mul-
tiresonance regime of MS modes just in ferrite disks with a small thickness
to diameter ratio (approximately 1/15-1/20). In this case, the magnetostatic
approximation can be successfully used [8]. For the irrotational rf magnetic
�eld of the magnetostatic modes,

�!
H = ��!r (1)

where  is the magnetostatic potential and the rf magnetization �!m is de�ned
as

�!m = � !� (!) � �!r (2)

where  !� is a tensor of susceptibility.
Taking into account Eq. (1) for the rf magnetic �eld, the equation for rf

magnetic �ux density

�!
B = � !� (!) � �!r (3)

where  !� (!) =  !I + 4� !� (!) is the tensor of permeability,  !I is the unit
matrix and the equation

�!r � �!B = 0 (4)

one can write the following operator equation [3]:

bL (!)V = 0 (5)

where

bL (!)= ( !� (!))�1 �!r
��!r 0

!
(6)

is a di¤erential-matrix operator,
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V=

� �!
B
 

�
(7)

is a vector function included in the domain of de�nition of the operator bL.
Equation (6) describes the �eld inside a ferrite. Outside of a ferrite medium
we have the same equation, but with  !� =

 !
I . Based on the Eq. (6) inside

a ferrite, analogous equation with  !� =
 !
I outside a ferrite and taking

into account homogeneous boundary condition, one can formulate a spectral
problem for MS waveguide modes.
A special featuer of an MS waveguide structure based on axially magne-

tized ferrite cylinder (that does not take place in such types of electromagnetic-
wave waveguide structures as closed hollow or open dielectric waveguides) is
the fact that in the frequency region !1 � ! � !2 between two cuto¤
frequencies !1 = 0Hi and !2 = 0 [Hi (Hi + 4�Ms)]

1=2, where 0 is the gyro-
magnetic ratio, Hi is the internal dc magnetic �eld, andMs is the saturation
magnetization, we have a complete discrete spectrum of propagating ( = i�)
MS modes [1,12].
Together with a system of two �rst-order homogeneous Eq. (6), a second-

order homogeneous di¤erential equation for a MS waveguide can be consid-
ered as well. This is the so-called Walker equation in a ferrite [8]:

bG = 0 (8)

where

bG = ��!r � � !� �!r� (9)

is the Walker operator. For a ferrite magnetized along the z axis the tensor
of permeability has a form [1]

 !� = �0

24 � i�a 0
�i�a � 0
0 0 1

35 (10)

where � = 1 � !1!m= (!2 � !21) ; �a = !!m= (!
2
1 � !2) ; !m = 04�Ms; and

�0 is the permeability of vacuum.
In some cases of MS waveguides, the knowledge of the MS potential wave

function  give a possibility to de�ne every state of the physical quantities.
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1 Derivation of Numerical Model

In [4], the walker equation (8) is simpli�ed to 1D equation by means of
separation of variables. That is an approximate model. We consider here
instead the full model of (8) in cylindrical coordinates due to the disk shape
of the resonator. We begin by writing (8) in the rectangular coordinates in
a more detailed form :

�!
B = � !� � �!r 

= ��0

24 � i�a 0
�i�a � 0
0 0 1

3524 @ 
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We have �
�
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+
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�
+
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�
 = 0 (11)
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The boundary conditions at surfaces of disk are continuity of MS potential
 and the normal components of magnetic �ux density

�!
B . Further,  ! 0

at in�nity. Note that a physically acceptable solution for (11) is possible
only for � < 0 in the ferrite region. This makes Eq. (11) mathematically
interesting and challenging since it is a mixed type PDE, i.e., it changes its
type form hyperbolic in the ferrite to elliptic in the dielectric. Moreover, we
together with the interface continuity conditions for both  and

�!
B . We now

transform (11) to cylindrical coordinates.
Let

x = � cos �; y = � sin �; z = z

We have
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Similarly,

) h
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Using the fact that the ferrite is cylindrical and letting

 = �(�; z)eil�; l = 0;�1;�2; :::
Eq. (16) can thus be written as�

�

�
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We proceed to derive the interface conditions. By de�nition,
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z � direction :

@�

@z
(�; zD�) =

@�

@z
(�; zD+) (18)

�� direction :

�
@�

@�
(�D� ; z)�

�al

�D
� (�; z) =

@�

@�

�
�D+;z

�
(19)

Boundary conditions:

� (�; zmax) = � (�max; z) = 0 (20)

@�

@�
(0; z) = 0;

@�

@z
(�; 0) = 0 (21)
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2 Numerical methods

2.1 Finite Di¤erence discretization

We now use the central di¤erence method to approximate the model (17) �
(19). Let the domain of the model


 = (0; �max)� (0; zmax) = f(�; z) : 0 < � < �max; 0 < z < zmaxg
be partioned as

�1 = 0 < �2 < ::: < �i < ::: < �m�1 < �m = �max;
z1 = 0 < z2 < ::: < zj < ::: < zn�1 < zn = zmax

Where h, k are mesh sizes of �-axis, and z-axis with m > 0 and n > 0,
such that h = �max

m
, k = zmax

n
; �i = ih and zj = jk for each i = 1; 2; :::;m and

j = 1; 2; :::; n. At any interior mesh point (�i; zj), the Eq. (17) becomes

�
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1

�i

@�

@�
(�i; zj)�

l2

�2i
� (�i; zj)

�
+
@2�

@z2
(�i; zj) = 0 (22)

The di¤erence method is obtained using the centered-di¤erence quotient for
the partial derivatives given by

@�
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�
where �j 2 [zj�1; zj+1]. Substituting these into Eq. (22) gives

�
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+
� (�i; zj+1)� 2� (�i; zj) + � (�i; zj�1)
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= �

�
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6
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Neglecting the error term
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6
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�
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�
Let �i;j be an approximation of � at (�i; zj), the �nite di¤erence equation at
(�i; zj) then reads

�

�
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2h
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�
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)
�
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+
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�
�

h2
� �
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�
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+

�
1

k2

�
�i;j+1 +

�
1

k2

�
�i;j�1 = 0 (23)

When � = 1

�
�i+1;j � 2�i;j + �i�1;j

h2
+
1

�i

�i+1;j � �i�1;j
2h
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)
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�
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�
1
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� 1
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�
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�
1
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�
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�
1
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�
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For the interface condition:
z � direction :
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�i;j+1 � �i;j
k

=
�i;j � �i;j�1

k

) 1

k
�i;j+1 �

2

k
�i;j +

1

k
�i;j�1 = 0 (25)

�� direction :

�

�
�i;j � �i�1;j

h

�
� �al

�D
�i;j =

�i+1;j � �i;j
h

)
�
�+ 1

h
� �al

�D

�
�i;j �

�

h
�i�1;j �

1

h
�i+1;j = 0 (26)

2.2 Eigenvalue problem

Written in matrix form,

A�!x = 0 (27)

We move the matrix components of A that involve the unknown coe¢ cient �
in the ferrite to Eq. (27) right side to get the following generalized eigenvalue
problem

eA�!x = �B�!x
Note that most of components in B are zeros. By rearranging the order of
the components in �!x ; we can decompose the matrixs eA and B areeA =  eA11 eA12eA21 eA22

!
, B =

�
B11 0
0 0

�
, �!x =

� �!x 1�!x 2
�
; where eA11 and

B11 are submatrixs correspond to the ferrite region, eA12 and eA21 correspond-
ing to the interface, and eA22 corresponding to the dielectric region.
The equation can thus be decomposed to one eigenvalue problem and one

algebraic problem

eA11�!x 1 + eA12�!x 2 = �B11
�!x 1 (28)

eA21�!x 1 + eA22�!x 2 = 0 (29)
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Move eA21�!x 1 to right side of equation (29). We have eA22�!x 2 = � eA21�!x 1.
Then, we have

�!x 2 = eA�122 �� eA21��!x 1 (30)

By solving the smaller-size generalized eigenvalue problem for �!x 1 and the
substituting back to (30), Eq. (28) can consequently be solved.h eA11 + eA12 eA�122 �� eA21�i�!x 1 = �B11

�!x 1 (31)
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3 Numerical results

The numerical data of various parameters of the model problem are shown
in Table 1. We divide our numerical results.

Table 1 Numerical data for parameters

Disk data 2RD 3:98mm

Disk data hD 0:284mm

4�Ms 1792Gass

The working ferquency !
2�

9:51GHZ

� 1� !1!m
!2�!21

!1 rH

!m r4�Ms

r g�B
g 2

�B 9:27� 10�24

E 4�MsH

E joule
meter3

�
joule
meter3

=
1
100

erg

mm3

�

As noted, the eigenvalue � is unknow and it is correct only for negative
value. This means that the admissible frequency region is restricted as !1 �
! � !2: We now give a few energy levels in the solutions. Here, the energy
is de�ned as E = 4�MsH where H = !1=r and !1 is implicitly given in �:
The energy levels are shown in Table 2. The corresponding MS potential

wave function are shown in Fig.2, 3, 4, 5, 6 and 7.
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� l = 0

Table 2 Energy spectrum and MS potential
permeability � magnetic �eld H Energy E  
�0:1595 2710:5;�4256 4:857216� 106 Fig:2(a); F ig:2(b)
�0:2004 2731:1;�4223:9 4:8941312� 106 Fig:3(a); F ig:3(b)
�0:2875 2771:1;�4162:9 4:9658112� 106 Fig:4(a); F ig:4(b)
�0:2973 2775:3;�4156:6 4:9733376� 106 Fig:5(a); F ig:5(b)
�0:2994 2776:2;�4155:2 4:9749504� 106 Fig:6(a); F ig:6(b)
�0:9710 2972:1;�3881:3 5:3260032� 106 Fig:7(a); F ig:7(b)
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