
GARCH Models With Jumps

Student : Ming-Chi Chang Advisor: Dr. Yuan-Chung Sheu

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, 300, Taiwan, R.O.C.

June 2005

Abstract

In this paper, we mainly use the GARCH model with Jumps to describe the
exchange rates market and compare the performance of models with jumps and
without jumps. In addition, we will use the martingale theory and the argument of
the utility maximization to derive the risk-neutral process and use the Monte Carlo
simulation to find the option price.
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1 Introduction

Up to now, there are many studies concerned on the dynamic of finances. Early,

Black, Sholes and Merton(1973) assume that the stock price is followed by the geometric

Brownian motion and derive the European pricing formula. Subsequently, Many studies

argue that the distribution of log returns of stock prices does not follow the normal

distribution because of the phenomenons of skewness and fat tails. In addition, the

volatility, σ, may not be a constant and has the phenomenon of clustering. These findings

make us understand that the finance market is very complex especially in volatilities

because it is not observable.

Modelling the dynamic of volatilities is very difficult until 1982. Engle brings up

the autoregressive conditional heteroscedastic(ARCH) model to describe the dynamic of

the volatilities and get good performances. Later, there are many models that improve

the ARCH model appearing. For example, the generalized ARCH(GARCH) model of

Bollerslev(1986), the exponential GARCH(EGARCH) model of Nelson(1991), the con-

ditional heteroscedastic autoregressive moving-average(CHARMA) model of Tsay(1987),

and so on. Further, the family of ARCH models will be improved such that the model

can present the non-symmetric impact, for example, the non-linear GARCH(NGARCH)

model of Duan(1995), the GARCH model of Heston and Nandi(2000) and the the asym-

metric ARCH of Engle(2004).

To improve Black-Scholes-Merton model, in addition to the volatility parameter, σ,

is not a constant and the distribution of log-returns does not follow the normal distribu-

tion, recent researches suggest that the path of the log-price is not continuous and use a

model containing jumps to describe the path should be fitter. For example, Duan(2004)

uses a model whose jumps followed a compounded Poisson process to describe the dynamic

of the S&P 500 index and gets satisfied results in the convergence and option pricing.

The phenomenons of volatilities we mentioned above are not only in the stock mar-

ket, we can also find these properties in other financial markets. J. Duan and Jason

Z. Wei(1999) use GARCH models to describe the exchange rates market and follow the

assumption of LRNVR(locally risk-neutral valuation relationship) to price the foreign

currency and cross-currency option. Engle(2002) uses the GARCH model with a random

variable followed the exponential distribution to test the realized volatilities of the ex-
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change rates market and also have some better results. In this paper, we will continue

using Engle’s(2002) suggest and Duan’s(2004) idea to construct a GARCH Model with

jumps to describe the dynamic of the exchange rate.

The paper proceeds as follows: In section 2, we will describe our model that will

use to test the exchange rate market and calculate some basic statistics about our model

such that we can make our model more better as we restrict the parameter of our model.

In section 3, we will introduce the martingale theory to price the option and find the

risk-neutral process of our model in some assumption. In section 4, we will use the real

data to test the performance of our model. Finally, we will conclude in section 5.

2 Model

2.1 Setup

Assume that the economical environment we consider is discrete time for a period [0, T ]

where the uncertainty is described by a complete filtered probability space (Ω, {Ft}T
t=0, P )

where F0 contains all P-null sets. Moreover, we assume that the market is friction-free.

Denote that Et is the exchange rate between two countries, which are called Country A

and Country B, that is represented as the value of B currencies that per unit A currency

can be exchanged (i.e CurrencyB/CurrencyA) at time t. Furthermore, we assume that

the process of {Et}t=1,2,··· ,T follows:

ln Et = ln Et−1 + Rt + htXt (1)

h2
t = σ2

t Jt

σ2
t = ω + ασ2

t−1 + β(ht−1Xt−1 − c)2 (2)

Jt =
Nt+1∑
j=1

=j
t

where

=j
t ∼ Exponential(λ) (i.i.d.)

Nt ∼ Poisson(µ) (i.i.d.)

Xt ∼ N(0, 1) (i.i.d.)

In addition, we assume that =j
t , Nt, Xt are independent for all t and j. and Rt, an
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Ft−1−measurable random variable, is the expected logarithm return at time t-1.

Let rA
t and rB

t ,Ft−1−measurable random variables, are represented as the continuous

risk-free interest rates in Country A and Country B, respectively. As an investor in

Country B holds Et−1 units of B currencies at time t-1, if he invests to the risk-less bond

in Country B, then at time t, the value will become Et−1e
rB
t . But, if he exchanges to A

currencies and invests to the risk-less bond in Country A, at time t, he exchanges the A

currencies back to B, then the value will become Ete
rA
t . Because in the physical world,

the latter will exposure to the exchange rate risk, therefore, it is natural to expect that

Ete
rA
t ≥ Et−1e

rB
t

which implies

ln
Et

Et−1

≥ (rB
t − rA

t )

therefore, Rt must be greater than (rB
t − rA

t ). The result is very similar to the stock

market if we view per unit of A currency as a share of stock and the risk-less interest rate

as (rB
t − rA

t ).

But on the other hand, for the investor in Country A, if he holds one unit of A

currency at time t − 1, then he will have erB
t at time t as he invest in the risk-less bond

at time t − 1. If he exchanges the one currency to B currencies and then invests to the

risk-less investment in Country B. At time t, he exchanges the B currencies he earned

back to A currencies. then the value of A currencies that he has are Ete
rB
t /Et+1. Of

course, we will expect that

Et−1e
rB
t /Et ≥ erA

t

which implies

ln
Et

Et−1

≤ (rB
t − rA

t )

Combine the two results, we can get that

Rt = EP
t−1[ln

Et

Et−1

] = rB
t − rA

t (3)

The result is not like other financial market such as the stock market. Many models

describing the stock market will assume that the trend, Rt is equal to the risk-less interest

rate plus a term of the risk premium. But in the exchange rate market, the drift term is
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only the difference between rB
t and rA

t . This implies that as we invest in the exchange rate

market, the expected return seems still only a ”risk-less” interest rate, not adding any

additional risk premiums. But In fact, if we want to earn the ”risk-less” return rB
t − rA

t ,

we must exposure in the risk of the exchange rates not like the risk-less interest rate in

the stock market. Therefore, rB
t − rA

t is not a risk-less rate because the risk premium is

included in this term.

h2
t , the square of the volatility term of logarithm return of exchange rates, follows

a specially form of GARCH(1,1). In order to guarantee ht ≥ 0 for all t, we need restrict

the parameters ω > 0, α, β ≥ 0, and in addition adding α + βλ(µ + 1) < 1 for the

stationarity. The ’leverage effect’ parameter, c, plays a role that make the residuals have

non-symmetry affections to {σ2
t }. Many finance markets, such as stock markets, have

been proved that the impact of ’bad news’ is stronger than ’good news’ on conditional

variance. Therefore, we can find the papers discussing the stock markets, for example,

Steven L. Heston and Saikat Nandi(2000), will usually make c is non-negative even if

non-constant. Other studies also have similar settings. Giovanni Barone-Adesi, Robert

Engle, and Loriano Mancini(2004) use the Asymmetric GARCH(1,1) model to describe

this phenomenon by taking the parameter of the asymmetric term positive. Besides,

Heston(1993) have mentioned that the leverage effect parameter will control the skewness

or the asymmetry of the distribution of the log returns. In particular, if c is zero, the

distribution is symmetric.

Finally, whether the process of logarithm exchange rates or volatilities, the two

process contains jumps because of Nt. The jump term is followed a compound Poisson

process like Duan’s model(2004). Conditional on Nt, Jt will follow a Gamma distribution

with two parameters (Nt + 1) and λ. Especially, if we turn off the jump (i.e. µ = 0) and

take λ = 1, then the volatility process is similar to the model that R. Engle(2002) have

mentioned and used to test the volatility of exchange rates.

2.2 Statistics Description

There are some phenomenons in financial markets that have been pointed out in many

studies. For example, the distribution of returns have fat tails and non-symmetry, volatil-

ity may be not a constant, volatility has the clustering phenomenon and so on. In this
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subsection, we will simply discuss some basic statistics about our model and find out how

those parameters in our model effect these phenomenons.

Proposition I

The conditional variance of logarithm return is

VarP
t−1[ln

Et

Et−1

] = λ(µ + 1)σ2
t

The conditional covariance between ln Et

Et−1
and σ2

t is

CovP
t−1(ln

Et

Et−1

, σ2
t+1) = −2βcλ(µ + 1)σ2

t

Proof: See Appendix

From these above statistics, we can understand that the conditional variance of

exchange rates is not a constant and followed by the dynamic of σ2
t which is belong to

the family of GARCH models. Of course, GARCH models can catch lots of phenomenons

about volatilities. Besides, from the conditional variance between ln Et

Et−1
and σ2

t+1, we

can know that as β 6= 0 (i.e. the affection of ARCH exists), the parameter c will decide

the sign of conditional variance. If the ’leverage effect’ parameter, c, is non-negative,

then it mean that the conditional variance between ln Et

Et−1
and σ2

t+1 will be negative.

Indeed, many studies such as Steven L. Heston and Saikat Nandi(2000) and Giovanni

Barone-Adesi, Robert Engle, and Loriano Mancini(2004) have pointed out that the stock

market is better, the volatility is smaller and vise versa. Our model can also match this

phenomenon if the exchange rates markets have. On the other hand, in addition to λc 6= 0

the conditional variance is not a constant because of σ2
t .

3 Option Pricing in Risk-Neutral

In the aspect of option pricing, martingale theory plays a very important role. But

in the theory, there are three problems. First, when does the risk-neutral probability

measure exist? Second, Is the risk-neutral probability measure unique? Finally, how do

we find the risk-neutral probability measure? The first problem can be solved by the

fundamental theorem of asset pricing
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Theorem (Fundamental Theorem of Asset Pricing)

The market is arbitrage-free if and only if there exists an equivalent martingale measure.

Therefore, if we assume that the market is arbitrage-free, the risk-neutral proba-

bility measure will exist. Furthermore, if the market is complete ( i.e. every contingent

claim is attainable ), then the risk-neutral probability measure is unique and we can use

the technique of replications to find it. Hence, in Black-Scholes model, the market is

complete and arbitrage-free, so we can find a fair and unique option price. But in our

model, the market is incomplete. The problem we face is how to decide the risk-neutral

probability measure. Thus, for using the argument of utility functions, we need to add

some assumption.

Definition: (Utility Function)

A continuous function U : (0,∞) → < that is strictly increasing, strictly concave and

continuously differentiable with limx→∞U ′(x) = 0,limx→0U
′(x) = ∞ is called a utility

function.

Here, if we assume that the representative agent is an expected utility maximizer

and the utility function is time separable and additive. By the Euler equation from the

standard expected utility maximization argument, we can get the conclusion:

Et−1 = EP
t−1[Et

U ′(Et)

U ′(Et−1)
]

EP
t−1[

U ′(Et)

U ′(Et−1)
] = e−rt

where rt is the ”true” risk-less interest rate in the period [t − 1, t] in the exchange rate

market.

Proposition II

Let

dQ = e
PT

t=1 rt
U ′(ET )

U ′(E0)
dP
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then Q is a probability measure and the discount process of exchange rates is a martingale

process with respect to measure Q

Proof: The proof is similar to Duan(2004), See Duan(2004).

In this paper, we suppose that the above assumptions also hold in our economy.

Furthermore, we assume that the utility function is

U(x) =
xa

a
if a < 1

U(x) = ln x if a = 0

where a is a parameter whose range is (−∞, 1)

Proposition III

the ”true” risk-less interest rate rt is

rt = (1− a)(rB
t − rA

t )− ln
2

2− λ(a− 1)2σ2
t

− µλ(a− 1)2σ2
t

2− λ(a− 1)2σ2
t

(4)

Proof: See Appendix.

Proposition IV
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Under Q-measure, the process of the exchange rates is

if a = 0

ln Et = ln Et−1 + (rB
t − rA

t )− ln
2

2− λσ2
t

− µλσ2
t

2− λσ2
t

(5)

σ2
t = ω + βc2 + ασ2

t−1 (6)

if a 6= 0

ln Et = ln Et−1 + R̃t + h̃tX̃t (7)

R̃t = (rB
t − rA

t )− ln
2

2− λ(a−1
a

)2σ̃2
t

− µλ(a−1
a

)2σ̃2
t

2− λ(a−1
a

)2σ̃2
t

(8)

h̃2
t = σ̃2

t J̃t

σ̃2
t = ω̃ + α̃σ̃2

t−1 + β̃(h̃t−1X̃t−1 − c̃)2 (9)

J̃t =

eNt+1∑
j=1

=̃j
t

where

=̃j
t ∼ Exponential(λ) (i.i.d.)

Ñt ∼ Poisson(µ) (i.i.d.)

X̃t ∼ N(0, 1) (i.i.d.)

and

ω̃ = a2ω

α̃ = α

β̃ = β

c̃ = |a|c
σ̃t = |a|σt

Proof: See Appendix.

In the risk-neutral process, the form of the overall dynamic is almost the same as

the physical process. Whether the logarithm return or the volatility, the two processes

still contain the jump term. The distribution of J̃t is unchanged, which is also followed

a compound Poisson process that the parameter of Ñt is µ and the parameter of =̃j
t is

λ. X̃t remains a standard normal distribution. The drift term R̃t becomes a determined
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function of σ̃t if we have given the parameters µ and λ. This result is similar to many

studies, like Duan(1995). Even the Black-Scholes model, the result is the same but σ̃t is

a constant. In the process of volatilities, {σ2
t }, the equation is still the same except the

parameters. the parameters, α and β, is unchanged. This implies that the affections of

ARCH and GARCH are invariable. But ω changes to ω̃ = (1 − a)2ω and c changes to

c̃ = (1−a)c. For our restriction, a is smaller than 1. The sign of the two parameters is not

change. If 0 ≤ a < 1, then the two risk-neutral parameters, ω̃ and c̃ will be smaller and

if a < 0, the result is opposite. As we mentioned above, c̃ is represented as the ’leverage

effect’ in the risk-neutral process. In our model, we can understand that a will effect to

c̃. It implies that in finance, the investor’s risk version will impact the leverage effect.

4 Empirical Research

Given any contingent claim with payoff function ψ(ST ) and the maturity at time T.

For example, the payoff function of the European call option with the maturity at time

T is (ST −K)+ = max(ST −K, 0) where ST is the price of the underlying asset and K is

the exercise price. Under the martingale theory, we can get the result

p̂t = e−
PT

k=t+1 rkEQ
t [ψ(ST )]

where rt is the risk-less interest rate from time t-1 to time t and p̂t is the value of the

contingent claim at time t. In simple conditions like the Black-Scholes model, p̂t has a

closed form. Steven L. Heston and Saikat Nandi(2000) also derived a closed form about

some GARCH model. But in many more complex models, it is very difficult to find the

closed form, even the closed form may be not exist. The alternative way to find p̂t is the

Monte Carlo simulation.

In the above section, we have derived the risk-neutral process by the argument of

utility maximizers. Thus, we can use the Monte Carlo simulation to find the approx-

imately value of p̂t where the underlying asset of the contingent claim is the exchange

rate. In this section, we will present the performance about our model and analyze it.

But before we going on, the first work we need to do is to estimate the parameters about

our model.
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4.1 Estimation About Parameters

About parameters model, the method to estimate the model parameters in most studies

is the Maximum Likelihood Estimation (MLE). Here, we will also use the method to

estimate our parameters.

Let

Yt = ln Et − ln Et−1 −Rt = htXt = σt

√
JtXt

where σ2
t is a function of σ2

t−1 and yt−1 as the parameters is given.

Proposition IV

The conditional probability density function, lYt|t−1(x), of Yt is

lYt|t−1(x) =
∞∑

k=0

e−µ µk

k!

∫ ∞

0

1

σt

√
s
fXt(

x

σt

√
s
)fGk

t
(s)ds (10)

where fXt(x) is the density function of Xt that Xt ∼ N(0, 1) and fGk
t
(x) is the density

function of Gk
t that Gk

t ∼ Gamma(k + 1, λ).

Proof: See Appendix.

The log-likelihood function of the sample is

L(θ; y1, y2, · · · , yT )
T∑

t=2

ln lYt|t−1(yt)

and all we to do is to find θ∗ where

θ∗ = {ω∗, α∗, β∗, c∗, µ∗, λ∗}

such that θ∗ will maximize the above log-likelihood function.

4.2 Data Description

The market data we use in this study contains JPY/USD, GBP/USD, DEM/USD, EUR/USD,

and NTD/USD. The sources of data mainly come from the Bloomberg database and the

central bank of each region. The period of each market is at least ten years, except

EUR/USD. This is because Euro starts at 1999/1/1. JPY/USD, and NTD/USD are
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from 1993/1/1 to 2004/12/31. DEM/USD is from 1983/10/6 to 1997/12/31. EUR/USD

is from 1999/1/1 to 2004/12/31. Data in a week we consider don’t contain Saturday and

Sunday. Besides, if no trading occurs on other days, we will fill the data of the day before

the non-trading day. Therefore, the number of the data in a week we have is five. As

we gather these data, we can estimate the parameters of our model. Furthermore, we

can test the prediction of our model by the market price of the options whose maturity

is after the above time periods.

4.3 Empirical Analysis

In this part, we will not only observe the performances of the GARCH models with

jumps in the exchange rates markets we have mentioned above, but also compare with

other models. These models are as following:

Case I ( ht is precipitable)

ln Et = ln Et−1 + Rt + σtXt

Case II ( ht is adapted without jumps)

ln Et = ln Et−1 + Rt + htXt

h2
t = σ2

t=t

where =t ∼ Exponential(λ) (i.i.d.)

Regardless of cases, we all assume that the dynamics of σt follow the equation (2). By

the same techniques, we can get the risk-neutral processes of the two cases as following,

respectively:

Case I:

If a = 0

ln Et = ln Et−1 + (rB
t − rA

t )− 1

2
σ2

t

If a 6= 0

ln Et = ln Et−1 + (rB
t − rA

t )− 1

2
(
1− a

a
)2σ̃2

t + σ̃tX̃t

Case II:

If a = 0

ln Et = ln Et−1 + (rB
t − rA

t )− ln
2

2− λσ2
t
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If a 6= 0

ln Et = ln Et−1 + (rB
t − rA

t )− ln
2

2− λ(1−a
a

)2σ̃2
t

+ h̃tX̃t

h̃2
t = σ̃2

t =̃t

where =̃t ∼ Exponential(λ) (i.i.d.)

And {σt} follows the equation (6) if a = 0 and if a 6= 0, {σ̃t} follows the equation (9).

Exchange Rate and Risk Version

As using MLE to find the appreciate parameters, this does not mean that we can examine

the performance of our model because of the parameter, a. In our assumption, a is

represented as the degree of the representative agent’s risk version. a is smaller, the

change rate of the utility function is greater. The graphs from figure(1) to figure(4) are

the exchange markets of JPY/USD, DEM/USD, EUR/USD, and TWD/USD. The x axis

is the value of a and the y axis is represented as the value of exchange rate we simulate

as a is given. Each point is the mean of 5000 simulations. As we see, a and the exchange

rate have the monotone relation, except case I. The relation is very natural. From case I,

we understand that the assumption of the utility function is indeed too strong such that

in the simple model like case I, the relation is default. Compare Case II and Jump case,

we can find the effect of the negative relation is not apparent as we add the jump term. In

addition, the simulation values will diverge as a is removed from 0. The reason is because

the value of a will effect the volatility. As |a| is larger, the variance of the stochastic term

will be greater. In particular, if a = 0, then the stochastic term will disappear.

Mean and Numbers of Simulations

By laws of large numbers, we understand that as we simulate more, the average value will

more approximate to the expectation. But how many times of simulations are enough?

The graphs from figure(5) to figure(7) are the error with the average value of 100000

simulations, and the graphs form figure(8) to figure(11) are represented as the relative

error. The order of markets is the same as above. The x axis is the numbers of simula-

tions. As we see, regardless of cases, the convergence rate will have the exponential decay

phenomenons. Besides, the jump case is faster than others. This means that if reader

cares about the time of computations very much, then the jump case is very efficient. To
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understand this, we can calculate the variance of each case as the following:

Jump Case:

Vart−1[ln
Et

Et−1

] = λ(µ + 1)σ2
t

Case I:

Vart−1[ln
Et

Et−1

] = σ2
t

Case II:

Vart−1[ln
Et

Et−1

] = λσ2
t

If reader concerns the risk-neutral process, then using σ̃t to substitute σt.

Therefore, we can know if the variance is smaller, the convergence rate should be faster.

Hence, the parameter we estimate will play an important role in the aspect of the con-

vergence.

Prediction

Finally, we will examine the prediction of the three models. The first graph of figure(12)

is the prediction of the three models in the Yen/USD market. The x axis is the time

to maturity of the option price. y axis is the relative error. From the figure, we can

compare the performance of the three models. Jump case is better than case II, and

case II is better than case I. The second graph of figure(12) is to show the average error

with different strike prices. The x axis is the strike price, and the y axis is the average

error. From the figure, we can find adapted cases (i.e. jump case and case II) have better

performances than predictable case. In addition, although jump case is not superior than

case II absolutely, in overall, the jump case still have better than case II.

5 Conclusion

In this study, we mainly use a GARCH model with jumps described by a compounded

Poisson random variable to examine exchange rates markets. Furthermore, depending on

the fundamental theorem of asset pricing and the argument of the utility maximization
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that the utility function we set is the most common function, we can calculate the er-

ror of the option price of simulations and discuss the efficiency of the models containing

jumps. In addition, we also compare the model including jumps with models without

jumps and models that the volatility is predictable. From the empirical researches, we

can find adapted cases are better than predictable case. The result tells us that although

in two cases, the volatilities are both stochastic, not constants, the performance will be

very different. In addition, in two adapted cases, the model with jump is better than the

model without jump in overall. Maybe reader believe that the price path is continuous,

but at least, in the aspect of predictions which is the main interesting in modelling, the

jump case indeed have better results than the model without jump in the markets we

consider.

Besides the empirical results, the contribution of this paper mainly presents to the im-

portance of jumps and provide a standard procedure to price the derivatives. In fact, we

also have many problems that readers can research. First, what is the ’true’ dynamic of

jumps? Compounded Poisson processes may suit but may not be correct. Second, what

is the ’true’ utility function in the market? Even reader believes that the utility function

is belong to the family we assume in the exchange rate market, is the utility function the

same in others? These questions in our model are only included in our assumption. We

believe that if the questions can be solved, then the results will be ideal.
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Appendices

Lemma I

MJt(θ) = EP
t−1[e

θJt ] = (
1

1− λθ
) exp{ µλθ

1− λθ
} if θ <

1

λ

M√
JtXt

(θ) = EP
t−1[e

θ
√

JtXt ] =
2

2− λθ2
exp{ µλθ2

2− λθ2
} if | θ |<

√
2

λ

Proof:

MJt(θ) = EP
t−1[e

θJt ] = EP
t−1[e

θ
PNt+1

j=1 =j
t ]

= EP
t−1[E

P
t−1[e

θ
PNt+1

j=1 =j
t | Nt]] = EP

t−1[(
1

1− λθ
)Nt+1]

= (
1

1− λθ
)EP

t−1[e
Nt ln( 1

1−λθ
)]

= (
1

1− λθ
) exp{µ(eln( 1

1−λθ
) − 1)}

= (
1

1− λθ
) exp{µ(

1

1− λθ
− 1)}

Corollary

EP
t−1[Jt] = λ(µ + 1)

VarP
t−1(Jt) = λ2(2µ + 1)

EP
t−1[

√
JtXt] = 0

VarP
t−1(

√
JtXt) = λ(µ + 1)

Proof of Proposition I

VarP
t−1(ln

Et

Et−1

) = VarP
t−1(htXt) = σ2

t VarP
t−1(

√
JtXt)

= λ(µ + 1)σ2
t
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CovP
t−1(σ

2
t+1, ln

Et

Et−1

) = CovP
t−1(ω + ασ2

t + β(htXt − c)2, Rt + htXt)

= βCovP
t−1((htXt − c)2, htXt)

= β[CovP
t−1(h

2
t X

2
t , htXt)]− 2cCovP

t−1(htXt, htXt)]

= β{EP
t−1[h

3
t X

3
t ]− EP

t−1[h
2
t X

2
t ]EP

t−1[htXt]− 2c[EP
t−1[h

2
t X

2
t ]− (EP

t−1[htXt])
2]}

= −2βcEP
t−1[h

2
t X

2
t ] = −2βcEP

t−1[h
2
t ] = −2βcσ2

t E
P
t−1[Jt]

= −2βcλ(µ + 1)σ2
t

Proof of Proposition III

EP
t−1[

U ′(Et)

U ′(Et−1)
] = EP

t−1[
(Et)

a−1

(Et−1)a−1
]

= EP
t−1[(e

(rB
t −rA

t )+htXt)a−1]

= e(a−1)(rB
t −rA

t )EP
t−1[e

(a−1)σt
√

JtXt ]

= e(a−1)(rB
t −rA

t ) 2

2− λ(a− 1)2σ2
t

e
µλ(a−1)2σ2

t
2−λ(a−1)2σ2

t = e−rt

Hence

rt = (1− a)(rB
t − rA

t )− ln
2

2− λ(a− 1)2σ2
t

− µλ(a− 1)2σ2
t

2− λ(a− 1)2σ2
t

Proof of Proposition IV
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EQ
t−1[Et] = EP

t−1[Et
U ′(Et)

U ′(Et−1)
ert ]

= EP
t−1[Et(

Et

Et−1

)a−1ert ]

= EP
t−1[Et(e

Rt+htXt)a−1ert ]

= EP
t−1[Et−1(e

Rt+htXt)aert ]

if a = 0 then the risk-neutral process is

ln Et = ln Et−1 + rt

= ln Et−1 + (rB
t − rA

t )− ln
2

2− λσ2
t

− µλσ2
t

2− λσ2
t

because the residual term is zero, the GARCH model becomes

σ2
t = ω + βc2 + ασ2

t−1

if a 6= 0

= EP
t−1[Et−1e

aRt+ahtXt+rt ]

= EP
t−1[Et−1e

a(rB
t −rA

t )+(1−a)(rB
t −rA

t )−ln 2

2−λ(a−1)2σ2
t
− µλ(a−1)2σ2

t
2−λ(a−1)2σ2

t
+ahtXt

]

= EP
t−1[Et−1e

(rB
t −rA

t )−ln 2

2−λ(a−1)2σ2
t
− µλ(a−1)2σ2

t
2−λ(a−1)2σ2

t
+|a|htsgn(a)Xt

]

= EP
t−1[Et−1e

(rB
t −rA

t )−ln 2

2−λ(a−1)2σ2
t
− µλ(a−1)2σ2

t
2−λ(a−1)2σ2

t
+|a|ht

eXt

]

= EP
t−1[Et−1e

(rB
t −rA

t )−ln 2

2−λ( a−1
a )2(|a|σt)

2
− µλ( a−1

a )2(|a|σt)
2

2−λ( a−1
a )2(|a|σt)

2
+(|a|σt)

√
Jt
eXt

]

= EP
t−1[Et−1e

eRt+eht
eXt ]

where

X̃t = sgn(a)Xt ∼ N(0, 1) , sgn(a) =

{
1 if a > 0

−1 if a < 0

R̃t = (rB
t − rA

t )− ln
2

2− λ(a−1
a

)2σ̃2
t

− µλ(a−1
a

)2σ̃2
t

2− λ(a−1
a

)2σ̃2
t

σ̃t = |a|σt

h̃2
t = σ̃2

t Jt
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and

σ2
t = ω + ασ2

t−1 + β(ht−1Xt−1 − c)2

implies

σ̃2
t = ω̃ + α̃σ̃2

t−1 + β̃(h̃t−1X̃t−1 − c̃)2

where

ω̃ = a2ω

α̃ = α

β̃ = β

c̃ = |a|c
σ̃t = |a|σt

Proof of Proposition V

FYt|t−1(x) = Pt−1(Yt ≤ x) = Pt−1(σt

√
JtXt ≤ x) = Pt−1(σt

√√√√
Nt+1∑
j=1

=j
tXt ≤ x)

=
∞∑

k=0

Pt−1(σt

√√√√
k+1∑
j=1

=j
tXt ≤ x)Pt−1(Nt = k)

=
∞∑

k=0

e−µ µk

k!
Pt−1(σt

√
Gk

t Xt ≤ x) Gk
t ∼ Gamma(k + 1, λ)

=
∞∑

k=0

e−µ µk

k!

∫ ∞

0

Pt−1(Xt ≤ x

σt

√
s
)fGk

t
(s)ds

=
∞∑

k=0

e−µ µk

k!

∫ ∞

0

FXt(
x

σt

√
s
)fGk

t
(s)ds

where FXt(x) is the distribution function of Xt and fGk
t
(x) is the density function of Gk

t

lYt|t−1(x) =
d

dx
FYt|t−1(x)

=
∞∑

k=0

e−µ µk

k!

∫ ∞

0

1

σt

√
s
fXt(

x

σt

√
s
)fGk

t
(s)ds
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Figure 1:
Relation between a and exchange rate in Yen/USD (simulation:5000)
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Figure 2:
Relation between a and exchange rate in DEM/USD (simulation:5000)
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Figure 3:
Relation between a and exchange rate in EUR/USD (simulation:5000)
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Relation between a and exchange rate in NTD/USD (simulation:5000)
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Expected exchange rates of simulations in DEM/USD
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Relative error between expected exchange rates of simulations and market(Yen/USD)
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Relative error between expected exchange rates of simulations and market(DEM/USD)
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Relative error between expected exchange rates of simulations and market(EUR/USD)
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Relative error between expected exchange rates of simulations and market(NTD/USD)
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Figure 12:
Prediction of models in Yen/USD

First: error between option price of simulations and markets
that the strike price is 103 Yen/USD.

Second:the magnification of the first graph.
Third: the average error between option price of simulations and markets in different strike

prices.
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