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Global Consensus for Discrete-time
Competitive System

Student: Jui-Pin Tseng Advisors: Dr. Chih-Wen Shih

Department (Institute) of Applied Mathematics
National Chiao Tung University

ABSTRACT
A discrete-time competitive system is studied. We are interested in
how the dynamics of the system.reach global consensus. Analytical
arguments are developed to conclude thatevery orbit converges to a point
as time tends to infinity, without knowing.a Lyapunov function.
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Abstract

A discrete-time competitive system is studied. We are interested in how
the dynamics of the system reach global consensus. Analytical arguments are
developed to conclude that every orbit cénverges to a point as time tends to
infinity, without knowing a:liyapuney-function.

1 Introduction

One of the commonest ways to. guarantee convergence of dynamics is to find a
Lyapunov function for the system, ‘that is, a continuous real valued function V'
on state space, which is nonincreasing along trajectories of the system. One then
applies the LaSalle’s invariance principle to conclude the convergence. For example,
Cohen and Grossberg (1983) [1] proved one convergence theorem for neural network

systems of the form
iy = ai(x)bi(xs) = Y _wigi(x;)], =1, n, (1)

where a; > 0, the matrix [w;;] of coupling weights is symmetric, and g;- > 0 for all

j. There exists a Lyapunov function

Z/ €)g;()dé + Zzwmgz )95 ().

11]1



They showed that if a; > 0 and g; > 0 for every i, then V is a strict Liapunov
function and therefore the system is quasi-convergent, see also [9]. Forti et. al.

(1995) [2] proved global stability of Hopfield-type neural network of the form

T = _dixi+2ﬂjgj<xj> + I, (1.2)

j=1
where d; > 0, g; is nondecreasing function. Again, the results obtained therein
employed a Lyapunov function of the so-called generalized Lur’e-Postnikov type.
However, it is not always easy to find a suitable Lyapunov function when considering
convergent dynamics. Grossberg (1978) [3] proved a convergence theorem for a class
of “competitive systems” for which no Lyapunov functions are known. He considered

systems of the form
@i = ai(x)[bi(;) — c(x)], (1.3)

where a; > 0, 8‘9—; > 0, for ¢ = 1,--- ,n. Herein, each b; is a function of only
one variable x;, and the function ¢ does not depend on ¢. In this kind of system,
population z; at neuron i competes indirectly with other z; through a scalar ¢(x),
i.e., the interaction among neurons.are through function ¢(x). Worth noticed, it is
difficult to find a suitable Lyapunov function for (1.3). In fact, systems (1.1), (1.2)

both can be written in the form
B = ai(X)bilzs). — al(x)],

which has a crucial difference from (1.3).
The “competition” for (1.3) by Grossberg means a; > O,% > 0, for all 7, j
J

and therefore has a little different sense from the commonly used one. Usually , a

system #; = Gi(x1, 9, -+ ,2,) is competitive if gf; < 0, for i # j. The sense of
competition in Grossberg’s paper can be seen if we consider functions a; as positive
constants. The assumption on a; for the studied dynamics is more general though.

Let us give more details to Grossberg’s model. In (1.3), n is any integer
greater than 1, x(t) = (xy(t), z2(t), -+, -+ ,x,(t)) € R™. Such a system can have
any number of competing populations, any interpopulation signal functions b;(z;),
any mean competition function, or adaptation level ¢(x), and any state-dependent
amplifications a;(x) of the competitive balance. That work in [3] proved that any
initial value x(0) > 0 (i.e. z;(0) > 0, for any ¢) generates a limiting pattern x(co) =

(21(00), 22(00), -+ ,xp(00)) with 0 < x;(00) = limy_o x;(t) < o0, under some



conditions on a;, b;, c. We shall summarize the main ideas of Grossberg’s work in
Section 4.

Recently, discrete-time systems have attracted much scientific interests, cf. [5],
[6], [8]. In this study, we consider the following discrete-time version of Grossberg’s

model
zi(k + 1) = 2i(k) + Ba;(x(k))[bi(zi(k)) — c(x(k))], (1.4)

where i = 1,2,--+ n, k € Ny := {0} UN. Viewing from the J-operator, (1.3) can
be approximated by

zi((k +1)0) = zi(kd) + 0a;(x(kd))[bi(z:(kd)) — c(x(k))]. (1.5)

One usually takes z;[k]s := z;(kd) as the k-th iteration of x; and
x[kls := (z1[k]s, xalk]s, - - -, xn[k]s) as the k-th iteration of x.

In this presentation, we mainly consider (1.4) with § =1, i.e.
zi(k+ 1) = x;(k) + a;(x(k))[bi(x;(k)) — e(x(k))]. (1.6)

We define Az;(k) := x;(k + 1) — z;(k), hence system (1.6) can be rewritten in the

form
Az;(k) = aix(k)) (b (@i(k)).— c(x(k))]. (1.7)

The main purpose of this investigation is to find out under what conditions on
functions a;, b;, and ¢, systems. (L#4)or(16) possesses a global limiting pattern
x(00) = (21(00), 22(00), - -+, xn(00)) With =60 < x;(00) = lim; - x;(t) < oo for
every i, given any initial value x(0).

Below, in Section 2, we state the main results of this presentation. In Section
3, we prove three key lemmas for our main result Theorem 1. In Section 4, we
summarize the work of Grossberg [3] and make a generalization. A comparison
of the analysis in deriving the global consensus for the continuous-time and the

discrete-time competitive systems is also made.

2 Main Results

Definition 2.1. (Global Consensus) A discrete-time competitive system is said
to achieve global consensus (or global pattern information) if, given any initial value

x(0) € R™, the limit x;(00) := limg_.o, x;(k) exist, for alli=1,2,--- n.



The main results require the following conditions :

Condition (I): Each a;(x) is continuous, and

0<ai(x)<1, forallxeR"i=1,---,n. (2.1)
Condition (I)": Each a;(x) is continuous, and

0<aix) <A, forallx e R"i=1,--- n. (2.2)

Condition (II): ¢(x) is bounded and continuously differentiable with bounded deriva-

tives; namely, there exist constants M, My, r; such that

forallx e R", and j =1,2,--- ,n
Condition (III): b;(£) is continuously differentiable, strictly decreasing and there
exist d; > 0, [; € R, u; € R such that

—d; < b(§) <0, for all € € R, (2.5)
and
bi(&) >pMy, for £< 1;, (2.6)
bi(€) < Mg for € >u;. (2.7)
Condition (IV): For i =1,---%m,
0<dSH=Dry <1 (2.8)
j=1
Condition (IV): Fori=1,--- n,
0<di< L i <! (2.9)
— =) <= :
T
Condition (IV)": Fori=1,--- ,n,
1 < 1
0 < d; <——Zr]<— (2.10)
Set
d = min{d;:i=1,2,--- ,n}, (2.11)
M = maz{|M],| M|} (2.12)



Theorem 1. System (1.6) with functions a;,b;,and c satisfying Conditions (1), (I1I),
(III), and (1V) achieves global consensus.

The proof of Theorem 1 consists of three lemmas stated below. For system

(1.4), the following corollary can be derived.

Corollary 2. System (1.4) with functions a;, b;, and ¢ satisfying Conditions (1), (1),
(II1), and (IV) achieves global consensus.

In fact, we only need that function a; is continuous, positive and bounded
above by some real number, say A, for all ¢, instead of Condition (I). It is due to

that (1.6) can be rewritten as

zi(k +1) = zi(k) + “"(’j’“)) [Ab(:(k)) — Ac(x(k))].

We thus derive the following Corollary.

Corollary 3. System (1.4) whose functions a;, b;,and ¢ satisfy Condition (1), (II),
(III), and (1V)" achieves global consensus.

Remark 2.1. From Corollary 3; we find that the smaller 3 in (1.4) (6 in (1.5)) is,
the weaker restrictions on funétions-ay; by, ¢ are. In other words, when we consider
(1.4) in stead of (1.3), and want to have the global consensus proposition, we must

choose sufficiently small 3 in(1.4); basteally:

In order to state the key lemmas for otir-main result, Theorem 1, we introduce

some notations and definition as follows:



Notation 2.2.

gi(k) = bi(wi(k)) — c(x(k)),

Agi(k) = gi(k+1) — gi(k),
g(k) = max{gi(k):i=1,2,-- ,n},
g(k) = min{gi(k) :i=1,2,--- ,n},
I(k) = min{i: gi(k) = g(k)},
J(k) = min{i: gi(k) = g(k)},
z(k) = (k)
B(k) = $J(k (k),
b(k) = brgy((k)),
b(k) = bJ(k: (#(k)),

Ab(k) = b(k+1) —b(k),

Ab(k) = b(k+ 1) — b(k),

Abi(zi(k)) = bi(wi(k +1)) = bi(zi(k)).

Definition 2.3. (i) A jump of dype-1_is said to. occur from i to j at k-th iteration
if I(k) = 1, I(k+1)=j, (ii) A jump-of type-2. 1s said to occur from i to j at k-th
iteration if J(k) =1, J(k + 1)-=17.

Lemma 1. Consider system (1.6) with-a;;"b;, and c¢ satisfying (2.1), (2.3), (2.5),
(2.6) and (2.7). Given any initial velue x(0). € R", {x(k)} will be attracted to some
compact set contained in R™. Hence sequence {x;(k) | k € Ng} are bounded above
and below for alli =1,2,--- 'n

If Lemma 1 is valid, consider an arbitrary orbit {x(k)}. Then {|a;(x(k))| |
k € Ny} is bounded below by some positive number, say 0 < p; < |a;(x(k))| for all

k € Ny and {b;(2;(k)) | k € Ny} are bounded above by some negative number, say
b;(z:(k)) < —€; < 0 for all k € Ny. We define

p:=min{p;:i=1,2,--- n}, (2.13)
e:=min{e; :i=1,2,--- ,n}. (2.14)

Lemma 2. Consider system (1.6) with a;, b;, and ¢ satisfying (2.1), (2.4), (2.5)
and (2.8). Then



(1) for function g, either case (g-(1)) or case (g-(ii)) holds, where
(g-(1)): g(k) <0, for all k € Ny,
(g-(i1)): g(k) > 0, for all k > K, for some K; € Ny;

(II) for function g, either case (g-(i)) or case (g-(ii)) holds, where
(g-(1)): g(k) > 0, for all k € Ny,
(g-(i1)): g(k) <0, for all k > Ko, for some Ky € Ny.

If Lemma 2 is valid, there are only four possibilities to consider.
case (i): Both (¢-(i)) and (g-(i)) hold. This case is impossible from our definition
of g and g¢.
case (ii): Both (g-(i)) and (g-(ii)) hold, then sequence {z;(k)} will always decrease
as k increases, for all i = 1,2,--- 'n. By Lemma 1, {x;(k)} are bounded below for
every i, hence the limit z;(00) exists, for every i = 1,2,--- n.
case (iii): Both (g-(ii)) and (g-(i)) hold, then sequence {z;(k)} will always increase
as k increases, for all i = 1,2,--- 'n. By Lemma 1, {x;(k)} are bounded above for
every i, hence the limit z;(c0) exists, for every i = 1,2,--- n.
case (iv): Both (g-(ii)) and (g-(ii)) hold.

Accordingly, we are left with the case ease (iv) only, for the conclusion of
global consensus for (1.6). Welthus agsume that §(0) > 0, §(0) < 0, without loss of

generality.

Lemma 3. Consider system (1.6) withias; 05 and c satisfying Conditions (1), (1),
(II1), and (IV) then,

(i) limg_oo b(K) eists, denoted by B and limg_o c(x(k)) = B,

(i1) limg_o b(k) exists, denoted by B, and limy_o c(x(k)) = B.

If Lemma 3 holds, we find that

lim b(k) = lim b(k) =: B, (2.15)

k—o0 k—oo

since limy,_.o ¢(x(k))=B=B. For any i = 1,2,--- ,n, §(k) < gi(k) < §(k), for all
k € Ny. Equivalently,

b(k) — c(x(k)) < bili(k)) — e(x(k)) < b(k) = c(x(k)),
for all k € Ny. Thus, b(k) < b;(z;(k)) < b(k), for all k € Ny. Therefore

lim b(k) < lim b;(z;(k)) < lim b(k).

k—oo k—o0 k—o00



We obtain

lim b(k) = lim b;(z;(k)) = lim b(k) = B,

k—o0 k—oo k—oo

by (2.15). Therefore we conclude that

lim b;(z;(k)) = B,foralli =1,2,--- ,n. (2.16)

k—o0
Moreover, limy_,, z;(k) exists, for every i = 1,2,--- ,n, by (2.5) and (2.16). Hence,
global consensus of system (1.6) is achieved, if functions a;, b;, and ¢ satisfy Condi-

tions (I), (IT), (III), (IV).

3 Proofs of Lemmas

Proof of Lemma 1 : For any initial vale x(0), we consider the iteration sequence
{z;(k)} and their components z;(k). We divide the proof into several steps.
(i) By (2.3) and(2.7),

bi(x;) — c(x) < 0, (3.1)

for all #; > u;. Therefore
Ax;i(k) = ay(@(k))[bi (xi(k)).— c(x(k))] <0, (3:2)

if 2;(k) > u;. Similarly, By (2:3).and (2.6,
by — () > 0 (3.3)

for all ; < I;. Therefore

Azi(k) = ai(x(k))[bi(xi(k)) — c(x(k))] > 0, (3-4)

if z;(k) < ;. We claim that for all k € Ny,
[bi(@i(k))| < dilzi(k)| + [b:(0)]. (3.5)

This follows from

/

bi(xi(k)) — bi(0) = b;(-)xs(k),

means some real number between x;(k) and 0. Thus, by (2.5),

[A3%2

where

[bi(zi (k)] = [5:(0) + by(-): (k)|
< [Bi(0)] + (b ()i (k)]
< b (0)| + di]xi (k).

8



(ii) Next, we show that for fixed constant L;, there exist some constants u;

and d;,

where u; > 0, 0 < d; < d; < 1 such that

Let us verify this. Notably,

di|zi| + L;

(3.6)

L;

—d; <1,
|4]

_dA_f_

|24]

as |z;| — oo. Therefore, there exist some u; and d;, where u; > 0,0 < d; < d; < 1
such that (d;|z;| + L;)/ |z < d, if |z3] > u;.

(iii)

| Az (k)]

IANIA CIA

IN

Hence, by (3.6), we choose

|ai(x(k))[bi(:(k)) — c(x(k))]]
[bi(:(k)) = e(x(k))| (by (2.1))
i (i (k)| + le(x(k))|

difi (k)| + [0:(0)] + |e(x(K))] (by (3.5))
dilzi (k)| £J0:0)] + M (by (2.3), (2.12)).

|b;(0)| M= L, there exist some constants u, and d,

where u; > 0, 0 < d; < d; < 1*sueh that

|Ai (k)| <dyjoistmath )|t |2i(k)| > ;.

(iv) Set, for each 1,

Let Q' :=
is bounded on ', say
for all x € @', for all i. Set

q;
Q

We shall utilize (3.2),

sions.

[—a1, qi] < -+ x [—

(3.7)

q, := max{|w, |l;], u;}. (3.8)

q,,q.]. @ is a compact set, hence |a;(x)[b;(z;) — c¢(x)]|

|a;(x)[bi(2;) — c(x)]| < K, (3.9)
= ¢ +K, 3.10)
= [—q,q] ¥ X [~Gn, @n)- (3.11)

(3.4), (3.7), (3.8), (3.9), (3.10) in the following discus-

(v) If —q; < x;(0) < ¢, then —¢; < x;(k) < g;, for all k € Ny.

9



case (a): If 2;(0) € [—q, —q;], then Az;(0) > 0, due to z;(0) < —q; < [;, and
|Az;(0)| < |2;(0)], due to x;(0) < —u;, hence x;(1) still stays in (—g;, —¢;], or moves
into (—gq;,q;). If the former case occurs, we consider x;(1) as case (a) again. If the
latter case occurs, we consider z;(1) as in the following case (b).

case (b): If 2;,(0) € (—q;, q;), then |Az;(0)| < K, by (3.9), hence 2;(1) will stay
n [—q,—q;] or (—¢q;,q) or [g;,q;]. Then we can still consider z;(1) as in case (a),
case (b), and case (c), respectively.

case (c): If 2;(0) € [q;, ¢], then Az;(0) < 0, by z;(0) > ¢; > u;, and |Az;(0)] <
12;(0)], by ;(0) > wu;, hence x;(1) still stays in [q;, ¢;), or moves into (—q;,q;). If
the former case occurs, we consider z;(1) as in case (c¢) again. If the latter case
occurs, we consider x;(1) as in case (b). From the above arguments, we find that if
—q¢; < z;(0) < ¢, then —¢; < z;(1) < ¢;, and we can prove that —¢; < z;(k) < g;,
for all £ > 2, by induction.

(vi): If ;(0) < —g;, then

case (d): {z;(k)} either increases as k increases and remains bounded above
by —g;, or

case (e): {x;(k)} enter [—¢;,q] at some iteration, and never leaves [—g;, ¢;]
again.

(vii) if 2;(0) > ¢;, then

case (f): {x;(k)} either-decreases as'k increases and remains bounded below
by g;, or

case (g): {z;i(k)} enters J—=g;, q;] at some iteration, and never leaves [—g;, q;]
again.

We find that no matter which case above occurs, {z;(k)} are bounded above
and below for all 7. Therefore, {|a;(x(k))|} are bounded below by some positive
number, say 0 < p; < |a;(x(k))|, and {b;(x;(k))} are bounded above by some nega-
tive number, say b;(z;(k)) < —e¢; < 0. In fact, it is impossible for the above case (d)
and case (f) to occur. This is due to that if case (d) occurs, then

bi(wi(k)) — c(x(k)) = bi(xi(k)) = bi(ls) + bi(li) — e(x(k))
) =

> bi(zi(k) bi(l;)
= b ()as(k) — 1]
> K,

for all x;(k) < —¢; < l; — K, by (2.5), (3.3), where “-” means some real number
between z;(k) and ;. Therefore Az;(k) = a;(x(k))[bi(zi(k)) — c(x(k))] > ;K p;.

10



Hence {z;(k)} will increase unboundedly, and this yields a contradiction. Therefore
case (d) never occurs. Similarly, case (f) never occurs, either. By the arguments

above, we can find that given any initial value x(0), {x(k)} will be attracted by Q.

Proof of Lemma 2:

For function ¢, if g(k) > 0 for some k, say I(k) = 14, then g;(k) < g;(k), for all
j # 4. Consider two possibilities |Ag;(k)| < gi(k), and |Ag; (k)| > g:(k).
case (i) |Agi(k)| < g;(k): Tt follows that

gk +1) = gi(k + 1) = gi(k) + Agi(k) = 0.
case (ii) |Ag;(k)| > ¢;(k): Let us elaborate.

Agi(k) = gi(k+1)— g;(k)
= bi(zi(k+1)) —c(x(k+1)) — [bi(z;(k)) — c(x(k))]
= bi(zi(k+1)) = bi(zi(k)) — [e(x(k + 1)) — c(x(k))]

= BOh 1) =k = 3 S+ 1) = (1),

means some real number between z;(k + 1) and z;(k), “®” means some

W

where

vector between x(k + 1) and x(k)s Thus,

Aalh) = B GO = ST (o) ) ()
> dzaz(x(k))gz(k) L : Tja’](x<k))gl(k)
(by (2.3), (2.5) and g;(k) < g;(k) > 0)
> —digi() = 3 ryai(h) (by (2.1)
= (=di=_)ailk)

> —gi(k) (by (2.8)).

Hence Ag;(k) > 0, since |Ag;(k)| > gi(k) and Ag;(k) > —g;(k). Therefore, g(k+1) >
gi(k +1) = gi(k) + Agi(k) > 0.

For function g, if g(k) < 0 for some k, say J(k) = ¢. Then g;(k) > g;(k), for
all j # 4. Then either |Ag;(k)| < —gi(k) or |Ag;(k)| > —g;(k) holds.

11



case (1) |Agi(k)| < —gi(k): It follows that g(k+1) < gi(k+1) = ¢;(k) + Agi(k) < 0.
case(ii) |Agi(k)| > —g:(k):

Agi(k) = gi(k+1)— gi(k)
= bi(zi(k+1)) — c(x(k+1)) — [bi(zi(k)) — c(x(k))]
= bi(zi(k+1)) = bi(wi(k)) — [e(x(k + 1)) — c(x(k))]
= bk +1) — (k)] =D a—c,(°)[$j(k +1) — x;(k)],

(132 (1))

where means some real number between z;(k + 1) and z;(k), “®” means some

vector between x(k + 1) and x(k). Thus

[Agi()l = b()ai(x(k))gi(k) —Zaa—;j(°)aj(x(k))9j(/f)
< —diai(x(k))gi(k) — ZTjaj(X(/f))gi(k)
(by (2.3), (2.5) and g;(k) > ¢;(k) <0)
< —digi(k) = duyrgi(k) (by (2.1))

j=1

= (A DL r)ca,0)
< —gilk) @y 28N

Hence Ag;(k) < 0, since |Ag;(k)} >.—g;(k)and Ag;(k) < —g;(k). So, gk + 1) <
g9i(k +1) = gi(k) + Agi(k) < 0.

From the above arguments, we find that function ¢ may keep negative at all
iterations. But once it becomes nonnegative at some iteration, it will always remain
nonnegative after this iteration. Similarly, § may keep positive at all iterations. But
once it get nonpositive at some iteration, it will always be nonpositive after this
iteration. This completes the proof of Lemma 2. With Lemma 2, we assume that
G(0) >0, g(0) <0, without loss of generality.

Proof for Lemma 3:

We assert that limy_ b(k) exists, and denote it by B; moreover, limy_.., ¢(x(k))=B.
Case (i): There exist finitely many jumps of type-1.

In this case, there exist some K3 € N, some 4, say 1, such that g(k) = ¢;(k) > 0,

for all £ > K3. Hence {x1(k)} will be non-decreasing as k increases. By Lemma 1,

12



{z1(k)} are bounded above. Therefore, limy_.o, 1 (k) exists, hence limy_, by (z1(k))
exists, denoted by B. Restated, limy_, b(k) = B.

Next, we justify that lim,_. c(x(k))=B. Assume otherwise, limy_. c(x(k)) #
B. Tt follows from g(k) = gy(k) > 0, for all k > Kj, that by(z1(k)) > c(x(k)),
for all & > Kj3. There exists some ¢ > 0, and subsequence {k;};°, of positive
integer numbers with &, > K such that |e(x(k)) — B| > ¢, for all [ € N. Because
limy, o0 by (21(k)) = B, for such e, there exists K; € N, such that |by (z(k))—B| < 5
for all k& > Ky4. Therefore gi(k;) = bi(z1(k;)) — c(x(k;)) > 5, for all ki > K. We
find that {x;(k)} is always increasing after Kj-th iteration. In fact,

Ay (ki) = ar(x(k)) (b1 (21 (k) — e(x(kr))] > P%

if k; > K4. Hence {x;(k)} will increase unboundedly, and yields a contradiction to
Lemma 1.
Case (ii): There exist infinitely many jumps of type-1.
We shall justify that {b(k)} decreases as {k} T co. Consider a fixed k € Ny.
Subcase (ii-a): no jump of type-1 occurs at k-th iteration.
Suppose (k) = I(k+ 1) =i, then g;(k).> 0,¢;(k + 1) > 0. In addition,

~

(k¥ 1) =

< bi(wi(k))
(%),

thank to (2.5), and Az;(k) = ai(x(k))g:(k)=0. Thus {b(k)} decreases as k in-

creases.

e

Subcase (ii-b): jump of type-1 occurs at k-th iteration and g;(k) > 0, g;(k) > 0,
where I(k) =i # I[(k+1)=].
It follows that

~

b(k+1) =

VAN VAN
> S“ S [yl
— :
8
—
oy
~
~—

due to (2.5), Az;((k)) = a;(x(k))g;j(k) > 0, and by I(k) =1 # j.
Subcase (ii-c): jump of type-1 occurs at k-th iteration and g;(k) > 0, g;(k) < 0,
where I(k) =1 # I(k+1) = j.

13



Notably, we still have g;(k + 1) > 0. We claim that

bj(w;(k 4 1)) = bj(z;(k)) < bi(wi(k)) — b;(x; (k). (3.12)
Indeed,
LHS = b(-)Az;(k)
= b;()a;(x(k))g;(k)
< b;(-)g;(k) (by (2.1))
< —d;g;(k) (by (2.5), and g;(k) < 0))
< gi(k) = g;(k) (by (1 —d;)g;(k) <0 < gi(k))
= bi(zi(k)) — b;(x; (k)

= RHS.

~

Herein, “-” is defined as before. Hence, b(k + 1) = b;(z;(k+1)) < b;(x:(k)) = b(k).
All these cases indicate that {b(k)} decreases as {k} increases. By Lemma 1, {x(k)}
are attracted into some compact set () contained in R"™. Therefore, {b;(x;(k))} are
bounded below, and so are {b(k)}«sHeneéb(k)} decreases and converges to some
number B as k tends to infinitg (denotedsby. {b(k)} | B).

Next, we verify that limpe o ¢(x(k))=B. Assume otherwise: limy_o c(x(k)) #

A

B. There exist some positivesqu, subsequence {k;}2°, of positive integers, such that

lee(k)) — BiS L, (3.13)

€p

Where ¢, p are defined in (2.13) and (2.14). Because {b(k)} | B, for i/ := min{%, u} >
0, there exists L € N such that

E < b[(k)(l’[(k)(k’)) < B + LL/, (314)
for all £k > L. Moreover
9(€) = by (w10 (£) — e(x(£)) = 0, (3.15)

for all £ € N. Consider the kr-th iteration. Notably, k;, > L. By (3.13), (3.14), and
(3.15), we have
ke) = brlan (b)) = e(x(he)) >

14



where, for convenience, we set I(kr)=1 without loss of generality. There are two
possibilities at kp-th iteration, either jump of type-1 occurs or not. If it does not

occur, then

[Ab(k)| = |b(ky + 1) = b(kz))|
= |bi(z1 (ke + 1)) = bi2a (k)|
= [0 Ol (kp + 1) — @ (kr)|
\bi(')l\al(X(kL))\|91(er)|
(.

!

6,0 (k) L)
> 6,0ﬂ

€p
L.

But it is impossible, because of (3.14).

If jump of type-1 occurs at kp-th iteration. Assume that I(k; + 1)=2. Below
we consider three different cases for by(zo(kyr)):

Case (a): B < by(xo(ky)) < by(a1(kg)). Then g(kz) > £, and |Aby(z2 (k)| =
10y () [|az(x(k))| g2 (k)| > epl- = p. It is impossible, due to (3.14).

Case (b): B > by(za(kp)) > e(x{ky)). ' Then go(kr) > 0, and xo(kr + 1) >
xo(kr). Thus,

~

b(kp# 1) = by(aglkr + 1))
< bs(wa(kr))

A

B.

A\

It is impossible, since {b(k)} | B.
Case (c): ba(wa(kr)) < e(x(kr)). Then go(k) < 0, and

Aby(wa(kr)) = ba(wa(kr +1)) — ba(wa(kr))
by(-)az(x(kL)) g2 (kL)
—d292(kL)

—g2(kL).

IA

A

Thus, be(za(krs1)) = ba(xa(kr)) + Aba(x2(kr)) < bo(za(kr)) — ga(kr) = c(x(kr)).
Hence b(ky+1) = by(xo(kr +1)) < e(x(kr)) < B. It is impossible, since {b(k)} | B.
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~

From the above discussions, we conclude that limy_ ¢(x(k)) = B.

The second part of the lemma asserts that limy_., b(k) exists, denoted by B,
and limy_.o, c(x(k))=B. The proof for the assertion resembles the first part. Let us
elaborate.

Case (i): There exist finitely many jumps of type-2.

In this case, there exists some K5 € N, some i, say 1, such that g(k) = ¢;(k) <0,
for all & > K5. Hence {z1(k)} will be non-increasing as k increases. By Lemma 1,
{x1(k)} are bounded below. Therefore, limy .o, x1(k) exists, hence limy_. o by (z1(k))
exists, denoted by B. Restated, limg .o b(k) = B.

Next,we justify that lim,_. ¢(x(k))=B. Assume otherwise, limy_, c(x(k)) #
B. Tt follows from g(k) = g1(k) < 0, for all k > Ks, by (z1(k)) < c(x(k)), for all k >
K. There exists some ¢ > 0, and subsequence {k;};°; of positive integer numbers
with k; > K such that |c(x(k;))— B| > ¢, for all | € N. Because limy, .o, by (z1(k)) =
B, for such e, there exists K¢ € N, such that |by(21(k)) — B| < &, for all k > K.
Therefore g1 (k;) = bi(x1(k;)) — c(x(ky)) < —35, for all ky > K. We find that {x,(k)}

are always decreasing after K¢ — th iteration. In fact,

Ay (ki) = a (aelke) af s (s ex(k))] < —p3,
if ky > K. Hence, {z1(k)} will decrease unboundedly, and yields a contradiction to
Lemma 1.
Case (ii): There exist infinitely' many jumps of type-2.
We shall justify that {b(k)} increasesjas{k} 1 oo. Consider a fixed k € Ny,
Subcase (ii-a): no jump of type-2 occurs at k-th iteration. Suppose J(k) =

J(k+1) =14, then g;(k) <0,¢;(k+1) <0. In addition,

bk +1)

AV
Se o S
_ :\
N> =
~

o

+

—_

S~—

S~—

thank to (2.5), and Az;((k)) = a;(x(k))g;(k) < 0. Thus {b(k)} increases as {k}
increases.

Subcase (ii-b): jump of type-2 occurs at k-th iteration and g¢;(k) < 0, g;(k) <0,
where J(k) =i # J(k+1) =j.
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It follows that

b(k+1) =

v v

S o S S
—~ - N

oy

~—

due to (2.5), Az;((k)) = a;(x(k))g;(k) <0 and J(k) =1 # j.

Subcase (ii-c): jump of type-2 occurs at k-th iteration and ¢;(k) < 0, g;(k) > 0,
where J(k) =i # J(k+1) = j.
Notably, we still have g;(k + 1) < 0. We claim that

bi(z;(k + 1)) — bj(x;(k)) > bi(wi(k)) — bj(x; (k). (3.16)
Indeed,
LHS = b;(-)Az;(k)
= b;()a;(x(k))g;(k)
> b;()g; (k) (byp(2:L))
> —djgik) (by(2.5), and g;(k) > 0))
> gi(k)—gi(k) (by (X = dj)g; (k) > 0 > g;(k))

= bi(zilk)) = bilx;(k))
= RHS.

Herein, “-” is defined as before. Hence, b(k + 1) = b;(z;(k + 1)) > bi(x;i(k)) = b(k).
All these cases indicate that {b(k)} increase as {k} increases. By Lemma 1, {x(k)}
are attracted into some compact set () contained in R". Therefore, {b;(z;(k))} are
bounded above, and so are {b(k)}. Hence {b(k)} increase and converge to some
number, say B as {k} tend to infinity (denoted by b(k)} 1 B).
Next, we verify that limy_.., c(x(k))=B. Assume otherwise: limy_, c(x(k)) #
B. There exist some positive u, subsequence {ki}2, of positive integers, such that
le(x(k:)) — B| > é. (3.17)
Where ¢, p are defined in (2.13) and (2.14). Because b(k)} T B, for p' = min{%, u} >
0, there exists L € N, such that

B > bJ(k)(xJ(k)(/{Z)) > B— /L/, (3.18)
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for all kK > L. Moreover
9() = by (x0)(€) — c(x(£)) <0, (3.19)

for all £ € N. Consider the kp-th iteration. Notably, k;, > L. By (3.17), (3.18),and

(3.19), we have

(ke) = by (2 () = elx(e)) < =2,
where, for convenience, we set J(kr)=1 without loss of generality. There are two
possibilities at kj — th iteration, either jump of type-2 occurs or not. If it dose not

occur, then

|Ab(kL)| = [b(kr + 1) — b(ky)]
= |bi(@i(kr + 1)) — bi(z1(kL))]
= by ()lea(kp + 1)) = (w1(kr))]
= by ()llax (x(k))lg1 (k)]
by ()l|ar (x(kr))[|g(kL)]|

> 6,0ﬂ

€p

But it is impossible, because {3.18).

If jump of type-2 occurs'at kp—th-iteration.- Assume that J(k+1)=2. Below
we consider three different cases for be(z2(kr)):

Case (a): B > by(wa(kr)) > b1{21(kz)). Then gy(kz) < — L, and [Aby(22(kr))| =
|0y (|| ag (x (k)| g2 (k)| > epL; = p. It is impossible, due to (3.18).

Case (b): B < bo(wa(kr)) < c(x(kr)). Then go(kr) < 0, and zo(kr + 1) <
xo(kr). Thus

b(kp +1)

bg(l‘g(l{L + 1))
ba(z2(kr))

B.

v

V

It is impossible, since {b(k)} T B.
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Case (¢): bo(xo(kr)) > c(x(kr)). Then go(kr) > 0, and

Aby(xo(kr)) = bo(za(kr + 1)) — ba(xa(kr))
= by()as(x(kr))ga (k)
—dag2(kr)
—g2(kL).
Thus, by(z2(kry1)) = ba(xa(kr)) + Aba(z2(kr)) > bo(xa(kr)) — ga(kr) = e(x(kp)).
Hence b(kg +1) = by(xa(kr +1)) > c(x(kz)) > B. It is impossible, since {b(k)} 1 B.

From the above discussions, we conclude that limy_.o c¢(x(k)) = B.

v

V

4 A Comparison between Continuous-time and
Discrete-time Models

We first introduce the results for (1.3) stated in Grossberg’s paper [4].

Definition 4.1. A competitive system is said to achieve weak global consensus (or
weak global pattern formation), if given any initial value x(0) > 0, all the limits
bi(x(00)) := limy o0 bi(24(t)) existofor alli=1,2,--- n.

Definition 4.2. A competitive:system 18 said. to-achieve strong global consensus (or
strong global pattern formation)yif, giwen any tnitial value x(0) > 0, all the limits

x;(00) = limy_, o ;(t) exist, for all t =1,2;---  n

The following conditions are needed for.the main results in Grossberg’s paper
[4].
Condition (G1):
(a): a;(x) is continuous for x > 0,
(b): b;(x;) is either continuous with piecewise derivative for x; > 0, or is continuous
with piecewise derivative for z; > 0 and b;(0) = oo,

(c): ¢(x) is continuous with piecewise derivative for x > 0.

Condition (G2):
a;(z) > 0if z; > 0 and z; > 0, j # d,and a;(z) = 0 if ; = 0 and z; > 0,

J # i. Moreover, there exist a function @;(x;) such that, for sufficiently small A > 0,

a;(x;) > a;(z;) if x € [0, A\]" and
A dw
/o a:l(w) =00 (4.1)




Condition (G3): limsup,,_, ., b;(w) < ¢(0,0,--- ,00,---,0), where ”00” occurs in the

tth entry, 1 =1,2,--- ,n.

Condition (G4): 2 >0,j=1,2,---,n

i =

Theorem 4 (Grossberg). Any system of the form (1.3) satisfying Conditions
(G1), (G2), (G3) and(G4) achieves weak global consensus. Moreover, b;(x;(c0)) =

c(x(00)), for every i.

Similar to proof of Theorem 1, the one of Theorem 4 consists of three main
parts which we describe as follows:

First, the theorem will be proved for the case that b; = b, then this proof can
be adapted to the case of i-dependent b;.

Part (I): (This part works as Lemma 1)
By Conditions (G1) and (G2), if ;(0) > 0, then x;(t) > 0 fort > 0. If 2;(0) = 0, then
component z; can be deleted from the network without loss of generality [4]. By (4.1)
and Condition (G3), there exist a B such that z;(t) € [0, B] for all i = 1,2,--- | n,
t > 0. Hence our attention is restricted to pesitive initial values. It is then derived
that x(¢) stays in some compact subset in R™, for all time ¢ > 0.

Part (II): (This part works as Lemia 2)
Define

g9i(t) = bla(t))—e(x(t)) (4.2)
g@) = ma:c{gJ@) :j=12,--- 7n} (43)

Then either g(t) < 0, for all ¢ > 0, or there exists t = T such that ¢(7") > 0 implies
G(t) > 0, for t > T. This is due to Condition (G4). If at any time t = s, §(s) = 0,
say g(s) = gi(s), then

(#a))i(s) = 3 g (x(s)is(s) 0. ()

s —(s) /
t—0t

> gi(s) =

If g(t) < 0 for all t > 0, it is a trivial case. Hence g(t) > 0 are assumed below
without loss of generality
Part (III): (This part works as Lemma 3)

To state this part, we introduce the following definitions.
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Definition 4.3. (i): A jump is said to occur from i to j at time t = T, if there
exists time s and u such that §(t) = g¢;(t), for s <t < T, and §(t) = g¢;(t), for
T <t<u. (i): I(t)=min{i: §(t) = gi(t)}. (ii): b(t)=b(z1)(t)).

If Part (I)and (IT) are valid, then we have the following three conclusions.
(i): b(t) is monotone at all large time, hence lim,_ b(t) exists , and denoted by
B, (ii): limy_e c(x(t))=B, (iii): limy_oo b(x;(t))=B, for all i = 1,2,--- ,n. Hence,

weak global consensus is achieved.

Corollary 5 (Grossberg). Any system of the form (1.3) whose functions satisfy
Condition(G1)-(G4) and whose b; possess finitely many local maxima, or intervals

of local maxima ,within the range of x;, achieves strong global consensus.

From the process of the proof above, we can find that Part (I) and (II) play
very dominant roles for Theorem 4. From this view point, we can extend Theorem
4 to Theorem 6, i.e. the phase space for (1.3) can be extended to R".

We need some conditions for the theorem.

Condition (A): (a): a;(x) is continuous and positive for all x € R",

(b): b;(€) is continuously differentiable for &€ R,

(c): ¢(x) is continuously differentiableformx'c R™.

Condition (B): Given any initial,value x(0)s x(¢) will be attracted by some compact
set contained in R".

Condition (B)": (a): limg . bi(§) ==0adime s o b;(€) = 00 ;i = 1,2, ,n, (b):
¢(x) is bounded below.

Condition (C)
8(: —
_k > 0 , k ,2’ SEN )

Theorem 6. Any system of form (1.3) whose functions satisfy Condition (A), (B),
(C) achieves weak global consensus (herein, I mean that given any initial value
x(0) € R", all the limits b;(x;(00)) = limy_o b;(x;(t)) exist , for alli =1,2,--- ,n.).

Moreover, each b;(z;(c0)) = ¢(x(0)).

The proof of the Theorem 6 is mainly because that Condition (B) works as
Part (I) in the proof of Theorem 4, Condition (C) works as Part (III) in the proof of
Theorem 4 (because of (4.4), mainly). Therefore the work as Part (III) in the proof

of Theorem 4 will also be done, and weak global consensus will be achieved. By the
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arguments above, for the purpose of comparing the difference of convergence theo-
rems for continuous-time and discrete-time competitive network (details in Section
4), we can see that the proof of Theorem 6 can also be completed by the parallel

three parts, just as in Theorem 4.

Corollary 7. Any system of form (1.3) whose functions satisfies Condition (A),
(B), (C) and whose b; possess finitely many local mazima, or intervals of local max-

ima, within the range of x;, achieves strong global consensus.

Remark 4.1. In Theorem 6, Condition (B) is a more abstract condition, and it can

be achieved by the more concrete one as Condition (B').

Proof. By Condition (B)" and (C). For each i, there exist p;, ¢; € R, such that
74(t) = as(e())[bi (1)) — c(x(2))] < 0, i (t) > g, and 4(t) = as(x(8))[bi(t)) —
c(x(t))] > 0, if x;(t) < p;. Hence, given initial valve x(0), x(¢) will be bounded,
for all ¢. Then both |a;(x(t))|, |[bi(x:(t)) — c(x(t))]| are bounded below from some
positive number, and so is |Z;(¢)|. Therefore if z;(¢) > ¢; at some time, say .S;, then
x;(t) must be decreasing until x;(t) enters [p1, ¢;] and never leave it again, as time
goes by after S;. If x;(t) < p; at_some tinie, say T;, then x;(t) must be increasing
until x;(t) enters [p;, ¢;] and never leaverit-again, as time goes by after 7;. Hence
x(t) will be attracted by [p1, ¢a] X X [s Gl O

Below, let us compare the difference of convergence theorems for continuous-
time and discrete-time competifive network via' Theorem 1 and Theorem 6 (with
Condition (B)").

In the process of proving Theorem 1, we can find that different from (1.3) with
“continuous solution”, the behavior of solution{x(k)} is much unpredictable. Hence
we have to control Az;(k) at each iteration. Details are shown as follows:

(I): Different from Part (I) for Theorem 6 (just as Remark 4.1 for Theorem 6), we
need more conditions as those function a;, ¢ ,b; must be bounded; namely, “0 <
(x) <17, “bi(¢)| < d; 7 and “M; < ¢(x) < My” to achieve Lemma 1 ,

(IT): Different from Part (II) for Theorem 6 with continuous §(t), {g(k)}, {g(k)}
in Lemma 2 are sequences. We must control functions b;, ¢ in addition to make
the same work as Part (II). Hence we need more conditions ,“b}(§) > —d; and
0<d; <1->7" r <1 to achieve Lemma 2,

(III): Different from Part (III) for Theorem 6, Lemma 1 and Lemma 2 are “not
sufficient” for Theorem 1. To achieve the “monotonicity” of {b(k)} and {b(k)}, we
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need function b; to be decreasing; namely 0 > b.(£) > —d; > —1. For the purpose

“limy_o0 c(x(k)) = B = B”, we demand function b; to be strictly decreasing; namely
0>0b(¢) >—d; >—1.
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