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摘 要       

本論文討論一個離散時間型競爭系統，我們的興趣在於這個系統如何

達到全局一致性。不用 Lyapunov 函數，而使用分析的討論去推論出

隨著時間趨近於無限，每個解的軌跡收斂到某個定值 。 
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Global Consensus for Discrete-time
Competitive System

Jui Pin Tseng
Department of Applied Mathematics

National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

*

January 29, 2005

Abstract

A discrete-time competitive system is studied. We are interested in how
the dynamics of the system reach global consensus. Analytical arguments are
developed to conclude that every orbit converges to a point as time tends to
infinity, without knowing a Lyapunov function.

1 Introduction

One of the commonest ways to guarantee convergence of dynamics is to find a

Lyapunov function for the system, that is, a continuous real valued function V

on state space, which is nonincreasing along trajectories of the system. One then

applies the LaSalle’s invariance principle to conclude the convergence. For example,

Cohen and Grossberg (1983) [1] proved one convergence theorem for neural network

systems of the form

ẋi = ai(x)[bi(xi)−
n∑

j=1

ωijgj(xj)], i = 1, · · · , n, (1.1)

where ai ≥ 0, the matrix [ωij] of coupling weights is symmetric, and g
′
j ≥ 0 for all

j. There exists a Lyapunov function

V (x) = −
n∑

i=1

∫ xi

0

bi(ξ)g
′
i(ξ)dξ +

1

2

n∑
i=1

n∑
j=1

ωijgi(xi)gj(xj).
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They showed that if ai > 0 and g
′
i > 0 for every i, then V is a strict Liapunov

function and therefore the system is quasi-convergent, see also [9]. Forti et. al.

(1995) [2] proved global stability of Hopfield-type neural network of the form

ẋi = −dixi +
n∑

j=1

Tijgj(xj) + Ii, (1.2)

where di > 0, gj is nondecreasing function. Again, the results obtained therein

employed a Lyapunov function of the so-called generalized Lur’e-Postnikov type.

However, it is not always easy to find a suitable Lyapunov function when considering

convergent dynamics. Grossberg (1978) [3] proved a convergence theorem for a class

of “competitive systems” for which no Lyapunov functions are known. He considered

systems of the form

ẋi = ai(x)[bi(xi)− c(x)], (1.3)

where ai ≥ 0, ∂c
∂xi

≥ 0, for i = 1, · · · , n. Herein, each bi is a function of only

one variable xi, and the function c does not depend on i. In this kind of system,

population xi at neuron i competes indirectly with other xj through a scalar c(x),

i.e., the interaction among neurons are through function c(x). Worth noticed, it is

difficult to find a suitable Lyapunov function for (1.3). In fact, systems (1.1), (1.2)

both can be written in the form

ẋi = ai(x)[bi(xi)− ci(x)],

which has a crucial difference from (1.3).

The “competition” for (1.3) by Grossberg means ai ≥ 0, ∂c
∂xj

≥ 0, for all i, j

and therefore has a little different sense from the commonly used one. Usually , a

system ẋi = Gi(x1, x2, · · · , xn) is competitive if ∂Gi

∂xj
≤ 0, for i 6= j. The sense of

competition in Grossberg’s paper can be seen if we consider functions ai as positive

constants. The assumption on ai for the studied dynamics is more general though.

Let us give more details to Grossberg’s model. In (1.3), n is any integer

greater than 1, x(t) = (x1(t), x2(t), · · · , · · · , xn(t)) ∈ Rn. Such a system can have

any number of competing populations, any interpopulation signal functions bi(xi),

any mean competition function, or adaptation level c(x), and any state-dependent

amplifications ai(x) of the competitive balance. That work in [3] proved that any

initial value x(0) ≥ 0 (i.e. xi(0) ≥ 0, for any i) generates a limiting pattern x(∞) =

(x1(∞), x2(∞), · · · , xn(∞)) with 0 ≤ xi(∞) := limt→∞ xi(t) < ∞, under some

2



conditions on ai, bi, c. We shall summarize the main ideas of Grossberg’s work in

Section 4.

Recently, discrete-time systems have attracted much scientific interests, cf. [5],

[6], [8]. In this study, we consider the following discrete-time version of Grossberg’s

model

xi(k + 1) = xi(k) + βai(x(k))[bi(xi(k))− c(x(k))], (1.4)

where i = 1, 2, · · · , n, k ∈ N0 := {0}⋃
N. Viewing from the δ-operator, (1.3) can

be approximated by

xi((k + 1)δ) = xi(kδ) + δai(x(kδ))[bi(xi(kδ))− c(x(kδ))]. (1.5)

One usually takes xi[k]δ := xi(kδ) as the k-th iteration of xi and

x[k]δ := (x1[k]δ, x2[k]δ, · · · , xn[k]δ) as the k-th iteration of x.

In this presentation, we mainly consider (1.4) with β = 1, i.e.

xi(k + 1) = xi(k) + ai(x(k))[bi(xi(k))− c(x(k))]. (1.6)

We define ∆xi(k) := xi(k + 1) − xi(k), hence system (1.6) can be rewritten in the

form

∆xi(k) = ai(x(k))[bi(xi(k))− c(x(k))]. (1.7)

The main purpose of this investigation is to find out under what conditions on

functions ai, bi, and c, systems (1.4) or (1.6) possesses a global limiting pattern

x(∞) := (x1(∞), x2(∞), · · · , xn(∞)) with −∞ < xi(∞) := limt→∞ xi(t) < ∞ for

every i, given any initial value x(0).

Below, in Section 2, we state the main results of this presentation. In Section

3, we prove three key lemmas for our main result Theorem 1. In Section 4, we

summarize the work of Grossberg [3] and make a generalization. A comparison

of the analysis in deriving the global consensus for the continuous-time and the

discrete-time competitive systems is also made.

2 Main Results

Definition 2.1. (Global Consensus) A discrete-time competitive system is said

to achieve global consensus (or global pattern information) if, given any initial value

x(0) ∈ Rn, the limit xi(∞) := limk→∞ xi(k) exist, for all i = 1, 2, · · · , n.

3



The main results require the following conditions :

Condition (I): Each ai(x) is continuous, and

0 < ai(x) ≤ 1, for all x ∈ Rn, i = 1, · · · , n. (2.1)

Condition (I)′: Each ai(x) is continuous, and

0 < ai(x) ≤ A, for all x ∈ Rn, i = 1, · · · , n. (2.2)

Condition (II): c(x) is bounded and continuously differentiable with bounded deriva-

tives; namely, there exist constants M1, M2, rj such that

M1 ≤ c(x) ≤ M2, (2.3)

0 ≤ ∂c

∂xj

(x) ≤ rj, (2.4)

for all x ∈ Rn, and j = 1, 2, · · · , n.

Condition (III): bi(ξ) is continuously differentiable, strictly decreasing and there

exist di > 0, li ∈ R, ui ∈ R such that

−di ≤ b′i(ξ) < 0, for all ξ ∈ R, (2.5)

and

bi(ξ) > M2, for ξ ≤ li, (2.6)

bi(ξ) < M1, for ξ ≥ ui. (2.7)

Condition (IV): For i = 1, · · · , n,

0 < di ≤ 1−
n∑

j=1

rj < 1. (2.8)

Condition (IV)′: For i = 1, · · · , n,

0 < di ≤ 1

β
−

n∑
j=1

rj <
1

β
. (2.9)

Condition (IV)′′: For i = 1, · · · , n,

0 < di ≤ 1

Aβ
−

n∑
j=1

rj <
1

Aβ
. (2.10)

Set

d := min{di : i = 1, 2, · · · , n}, (2.11)

M := max{|M1|, |M2|}. (2.12)

4



Theorem 1. System (1.6) with functions ai,bi,and c satisfying Conditions (I), (II),

(III), and (IV) achieves global consensus.

The proof of Theorem 1 consists of three lemmas stated below. For system

(1.4), the following corollary can be derived.

Corollary 2. System (1.4) with functions ai, bi, and c satisfying Conditions (I),(II),

(III), and (IV)′ achieves global consensus.

In fact, we only need that function ai is continuous, positive and bounded

above by some real number, say A, for all i, instead of Condition (I). It is due to

that (1.6) can be rewritten as

xi(k + 1) = xi(k) +
ai(x(k))

A
[Abi(xi(k))− Ac(x(k))].

We thus derive the following Corollary.

Corollary 3. System (1.4) whose functions ai, bi,and c satisfy Condition (I)′, (II),

(III), and (IV)′′ achieves global consensus.

Remark 2.1. From Corollary 3, we find that the smaller β in (1.4) (δ in (1.5)) is,

the weaker restrictions on functions a1, bi, c are. In other words, when we consider

(1.4) in stead of (1.3), and want to have the global consensus proposition, we must

choose sufficiently small β in (1.4), basically.

In order to state the key lemmas for our main result, Theorem 1, we introduce

some notations and definition as follows:

5



Notation 2.2.

gi(k) = bi(xi(k))− c(x(k)),

∆gi(k) = gi(k + 1)− gi(k),

ĝ(k) = max{gi(k) : i = 1, 2, · · · , n},
ǧ(k) = min{gi(k) : i = 1, 2, · · · , n},
I(k) = min{i : gi(k) = ĝ(k)},
J(k) = min{i : gi(k) = ǧ(k)},
x̂(k) = xI(k)(k),

x̌(k) = xJ(k)(k),

b̂(k) = bI(k)(x̂(k)),

b̌(k) = bJ(k)(x̌(k)),

∆b̂(k) = b̂(k + 1)− b̂(k),

∆b̌(k) = b̌(k + 1)− b̌(k),

∆bi(xi(k)) = bi(xi(k + 1))− bi(xi(k)).

Definition 2.3. (i) A jump of type-1 is said to occur from i to j at k-th iteration

if I(k) = i, I(k+1)=j, (ii) A jump of type-2 is said to occur from i to j at k-th

iteration if J(k) = i, J(k + 1) = j.

Lemma 1. Consider system (1.6) with ai, bi, and c satisfying (2.1), (2.3), (2.5),

(2.6) and (2.7). Given any initial value x(0) ∈ Rn, {x(k)} will be attracted to some

compact set contained in Rn. Hence sequence {xi(k) | k ∈ N0} are bounded above

and below for all i = 1, 2, · · · , n.

If Lemma 1 is valid, consider an arbitrary orbit {x(k)}. Then {|ai(x(k))| |
k ∈ N0} is bounded below by some positive number, say 0 < ρi ≤ |ai(x(k))| for all

k ∈ N0 and {b′i(xi(k)) | k ∈ N0} are bounded above by some negative number, say

b
′
i(xi(k)) ≤ −εi < 0 for all k ∈ N0. We define

ρ := min{ρi : i = 1, 2, · · · , n}, (2.13)

ε := min{εi : i = 1, 2, · · · , n}. (2.14)

Lemma 2. Consider system (1.6) with ai, bi, and c satisfying (2.1), (2.4), (2.5)

and (2.8). Then
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(I) for function ĝ, either case (ĝ-(i)) or case (ĝ-(ii)) holds, where

(ĝ-(i)): ĝ(k) < 0, for all k ∈ N0,

(ĝ-(ii)): ĝ(k) ≥ 0, for all k ≥ K1, for some K1 ∈ N0;

(II) for function ǧ, either case (ǧ-(i)) or case (ǧ-(ii)) holds, where

(ǧ-(i)): ǧ(k) > 0, for all k ∈ N0,

(ǧ-(ii)): ǧ(k) ≤ 0, for all k ≥ K2, for some K2 ∈ N0.

If Lemma 2 is valid, there are only four possibilities to consider.

case (i): Both (ĝ-(i)) and (ǧ-(i)) hold. This case is impossible from our definition

of ĝ and ǧ.

case (ii): Both (ĝ-(i)) and (ǧ-(ii)) hold, then sequence {xi(k)} will always decrease

as k increases, for all i = 1, 2, · · · , n. By Lemma 1, {xi(k)} are bounded below for

every i, hence the limit xi(∞) exists, for every i = 1, 2, · · · , n.

case (iii): Both (ĝ-(ii)) and (ǧ-(i)) hold, then sequence {xi(k)} will always increase

as k increases, for all i = 1, 2, · · · , n. By Lemma 1, {xi(k)} are bounded above for

every i, hence the limit xi(∞) exists, for every i = 1, 2, · · · , n.

case (iv): Both (ĝ-(ii)) and (ǧ-(ii)) hold.

Accordingly, we are left with the case case (iv) only, for the conclusion of

global consensus for (1.6). We thus assume that ĝ(0) ≥ 0, ǧ(0) ≤ 0, without loss of

generality.

Lemma 3. Consider system (1.6) with ai, bi, and c satisfying Conditions (I), (II),

(III), and (IV) then,

(i) limk→∞ b̂(k) exists, denoted by B̂, and limk→∞ c(x(k)) = B̂,

(ii) limk→∞ b̌(k) exists, denoted by B̌, and limk→∞ c(x(k)) = B̌.

If Lemma 3 holds, we find that

lim
k→∞

b̂(k) = lim
k→∞

b̌(k) =: B̄, (2.15)

since limk→∞ c(x(k))=B̂=B̌. For any i = 1, 2, · · · , n, ǧ(k) ≤ gi(k) ≤ ĝ(k), for all

k ∈ N0. Equivalently,

b̌(k)− c(x(k)) ≤ bi(xi(k))− c(x(k)) ≤ b̂(k)− c(x(k)),

for all k ∈ N0. Thus, b̌(k) ≤ bi(xi(k)) ≤ b̂(k), for all k ∈ N0. Therefore

lim
k→∞

b̌(k) ≤ lim
k→∞

bi(xi(k)) ≤ lim
k→∞

b̂(k).
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We obtain

lim
k→∞

b̂(k) = lim
k→∞

bi(xi(k)) = lim
k→∞

b̌(k) = B̄,

by (2.15). Therefore we conclude that

lim
k→∞

bi(xi(k)) = B̄, for all i = 1, 2, · · · , n. (2.16)

Moreover, limk→∞ xi(k) exists, for every i = 1, 2, · · · , n, by (2.5) and (2.16). Hence,

global consensus of system (1.6) is achieved, if functions ai, bi, and c satisfy Condi-

tions (I), (II), (III), (IV).

3 Proofs of Lemmas

Proof of Lemma 1 : For any initial vale x(0), we consider the iteration sequence

{xi(k)} and their components xi(k). We divide the proof into several steps.

(i) By (2.3) and(2.7),

bi(xi)− c(x) < 0, (3.1)

for all xi ≥ ui. Therefore

∆xi(k) = ai(x(k))[bi(xi(k))− c(x(k))] < 0, (3.2)

if xi(k) ≥ ui. Similarly, By (2.3) and (2.6),

bi(xi)− c(x) > 0, (3.3)

for all xi ≤ li. Therefore

∆xi(k) = ai(x(k))[bi(xi(k))− c(x(k))] > 0, (3.4)

if xi(k) ≤ li. We claim that for all k ∈ N0,

|bi(xi(k))| ≤ di|xi(k)|+ |bi(0)|. (3.5)

This follows from

bi(xi(k))− bi(0) = b
′
i(·)xi(k),

where “·” means some real number between xi(k) and 0. Thus, by (2.5),

|bi(xi(k))| = |bi(0) + b
′
i(·)xi(k)|

≤ |bi(0)|+ |b′i(·)xi(k)|
≤ |bi(0)|+ di|xi(k)|.

8



(ii) Next, we show that for fixed constant Li, there exist some constants u
′
i and d

′
i,

where u
′
i > 0, 0 < di < d

′
i < 1 such that

di|xi|+ Li < d
′
i|xi|, if |xi| ≥ u

′
i. (3.6)

Let us verify this. Notably,

di|xi|+ Li

|xi| = di +
Li

|xi| → di < 1,

as |xi| → ∞. Therefore, there exist some u
′
i and d

′
i, where u

′
i > 0, 0 < di < d

′
i < 1

such that (di|xi|+ Li)/|xi| < d′i, if |xi| ≥ u
′
i.

(iii)

|∆xi(k)| = |ai(x(k))[bi(xi(k))− c(x(k))]|
≤ |bi(xi(k))− c(x(k))| (by (2.1))

≤ |bi(xi(k))|+ |c(x(k))|
≤ di|xi(k)|+ |bi(0)|+ |c(x(k))| (by (3.5))

≤ di|xi(k)|+ |bi(0)|+ M (by (2.3), (2.12)).

Hence, by (3.6), we choose |bi(0)| + M = Li, there exist some constants u
′
i and d

′
i

where u
′
i > 0, 0 < di < d

′
i < 1 such that

|∆xi(k)| < d
′
i|xi(k)| < |xi(k)|, if |xi(k)| ≥ u

′
i. (3.7)

(iv) Set, for each i,

q′i := max{|ui|, |li|, u′i}. (3.8)

Let Q′ := [−q′1, q
′
1]× · · · × [−q′n, q′n]. Q′ is a compact set, hence |ai(x)[bi(xi)− c(x)]|

is bounded on Q′, say

|ai(x)[bi(xi)− c(x)]| ≤ K, (3.9)

for all x ∈ Q
′
, for all i. Set

qi := q
′
i + K, (3.10)

Q := [−q1, q1]× · · · × [−qn, qn]. (3.11)

We shall utilize (3.2), (3.4), (3.7), (3.8), (3.9), (3.10) in the following discus-

sions.

(v) If −qi ≤ xi(0) ≤ qi, then −qi < xi(k) < qi, for all k ∈ N0.
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case (a): If xi(0) ∈ [−qi,−q
′
i], then ∆xi(0) > 0, due to xi(0) ≤ −q

′
i ≤ li, and

|∆xi(0)| < |xi(0)|, due to xi(0) ≤ −u
′
i, hence xi(1) still stays in (−qi,−q

′
i], or moves

into (−q
′
i, q

′
i). If the former case occurs, we consider xi(1) as case (a) again. If the

latter case occurs, we consider xi(1) as in the following case (b).

case (b): If xi(0) ∈ (−q
′
i, q

′
i), then |∆xi(0)| < K, by (3.9), hence xi(1) will stay

in [−qi,−q
′
i] or (−q

′
i, q

′
i) or [q

′
i, qi]. Then we can still consider xi(1) as in case (a),

case (b), and case (c), respectively.

case (c): If xi(0) ∈ [q
′
i, qi], then ∆xi(0) < 0, by xi(0) ≥ q

′
i ≥ ui, and |∆xi(0)| <

|xi(0)|, by xi(0) ≥ u
′
i, hence xi(1) still stays in [q

′
i, qi), or moves into (−q

′
i, q

′
i). If

the former case occurs, we consider xi(1) as in case (c) again. If the latter case

occurs, we consider xi(1) as in case (b). From the above arguments, we find that if

−qi ≤ xi(0) ≤ qi, then −qi < xi(1) < qi, and we can prove that −qi < xi(k) < qi,

for all k ≥ 2, by induction.

(vi): If xi(0) < −qi, then

case (d): {xi(k)} either increases as k increases and remains bounded above

by −qi, or

case (e): {xi(k)} enter [−qi, qi] at some iteration, and never leaves [−qi, qi]

again.

(vii) if xi(0) > qi, then

case (f): {xi(k)} either decreases as k increases and remains bounded below

by qi, or

case (g): {xi(k)} enters [−qi, qi] at some iteration, and never leaves [−qi, qi]

again.

We find that no matter which case above occurs, {xi(k)} are bounded above

and below for all i. Therefore, {|ai(x(k))|} are bounded below by some positive

number, say 0 < ρ
′
i ≤ |ai(x(k))|, and {b′i(xi(k))} are bounded above by some nega-

tive number, say b
′
i(xi(k)) ≤ −ε

′
i < 0. In fact, it is impossible for the above case (d)

and case (f) to occur. This is due to that if case (d) occurs, then

bi(xi(k))− c(x(k)) = bi(xi(k))− bi(li) + bi(li)− c(x(k))

> bi(xi(k))− bi(li)

= b
′
i(·)[xi(k)− li]

≥ ε
′
iK,

for all xi(k) ≤ −qi ≤ li − K, by (2.5), (3.3), where “·” means some real number

between xi(k) and li. Therefore ∆xi(k) = ai(x(k))[bi(xi(k)) − c(x(k))] > ε
′
iKρ

′
i.
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Hence {xi(k)} will increase unboundedly, and this yields a contradiction. Therefore

case (d) never occurs. Similarly, case (f) never occurs, either. By the arguments

above, we can find that given any initial value x(0), {x(k)} will be attracted by Q.

Proof of Lemma 2:

For function ĝ, if ĝ(k) ≥ 0 for some k, say I(k) = i, then gj(k) ≤ gi(k), for all

j 6= i. Consider two possibilities |∆gi(k)| ≤ gi(k), and |∆gi(k)| > gi(k).

case (i) |∆gi(k)| ≤ gi(k): It follows that

ĝ(k + 1) ≥ gi(k + 1) = gi(k) + ∆gi(k) ≥ 0.

case (ii) |∆gi(k)| > gi(k): Let us elaborate.

∆gi(k) = gi(k + 1)− gi(k)

= bi(xi(k + 1))− c(x(k + 1))− [bi(xi(k))− c(x(k))]

= bi(xi(k + 1))− bi(xi(k))− [c(x(k + 1))− c(x(k))]

= b
′
i(·)[xi(k + 1)− xi(k)]−

n∑
j=1

∂c

∂xj

(•)[xj(k + 1)− xj(k)],

where “·” means some real number between xi(k + 1) and xi(k), “•” means some

vector between x(k + 1) and x(k). Thus,

∆gi(k) = b
′
i(·)ai(x(k))gi(k)−

n∑
j=1

∂c

∂xj

(•)aj(x(k))gj(k)

≥ −diai(x(k))gi(k)−
n∑

j=1

rjaj(x(k))gi(k)

(by (2.3), (2.5) and gj(k) ≤ gi(k) ≥ 0)

≥ −digi(k)−
n∑

j=1

rjgi(k) (by (2.1))

= (−di −
n∑

j=1

rj)gi(k)

≥ −gi(k) (by (2.8)).

Hence ∆gi(k) > 0, since |∆gi(k)| > gi(k) and ∆gi(k) ≥ −gi(k). Therefore, ĝ(k+1) ≥
gi(k + 1) = gi(k) + ∆gi(k) > 0.

For function ǧ, if ǧ(k) ≤ 0 for some k, say J(k) = i. Then gj(k) ≥ gi(k), for

all j 6= i. Then either |∆gi(k)| ≤ −gi(k) or |∆gi(k)| > −gi(k) holds.

11



case (i) |∆gi(k)| ≤ −gi(k): It follows that ǧ(k +1) ≤ gi(k +1) = gi(k)+∆gi(k) ≤ 0.

case(ii) |∆gi(k)| > −gi(k):

∆gi(k) = gi(k + 1)− gi(k)

= bi(xi(k + 1))− c(x(k + 1))− [bi(xi(k))− c(x(k))]

= bi(xi(k + 1))− bi(xi(k))− [c(x(k + 1))− c(x(k))]

= b
′
i(·)[xi(k + 1)− xi(k)]−

n∑
j=1

∂c

∂xj

(•)[xj(k + 1)− xj(k)],

where “·” means some real number between xi(k + 1) and xi(k), “•” means some

vector between x(k + 1) and x(k). Thus

|∆gi(k)| = b
′
i(·)ai(x(k))gi(k)−

n∑
j=1

∂c

∂xj

(•)aj(x(k))gj(k)

≤ −diai(x(k))gi(k)−
n∑

j=1

rjaj(x(k))gi(k)

(by (2.3), (2.5) and gj(k) ≥ gi(k) ≤ 0)

≤ −digi(k)−
n∑

j=1

rjgi(k) (by (2.1))

= (di +
n∑

j=1

rj)(−gi(k))

≤ −gi(k) (by (2.8)).

Hence ∆gi(k) < 0, since |∆gi(k)| > −gi(k) and ∆gi(k) ≤ −gi(k). So, ǧ(k + 1) ≤
gi(k + 1) = gi(k) + ∆gi(k) < 0.

From the above arguments, we find that function ĝ may keep negative at all

iterations. But once it becomes nonnegative at some iteration, it will always remain

nonnegative after this iteration. Similarly, ǧ may keep positive at all iterations. But

once it get nonpositive at some iteration, it will always be nonpositive after this

iteration. This completes the proof of Lemma 2. With Lemma 2, we assume that

ĝ(0) ≥ 0, ǧ(0) ≤ 0, without loss of generality.

Proof for Lemma 3:

We assert that limk→∞ b̂(k) exists, and denote it by B̂; moreover, limk→∞ c(x(k))=B̂.

Case (i): There exist finitely many jumps of type-1.

In this case, there exist some K3 ∈ N, some i, say 1, such that ĝ(k) = g1(k) ≥ 0,

for all k ≥ K3. Hence {x1(k)} will be non-decreasing as k increases. By Lemma 1,

12



{x1(k)} are bounded above. Therefore, limk→∞ x1(k) exists, hence limk→∞ b1(x1(k))

exists, denoted by B̂. Restated, limk→∞ b̂(k) = B̂.

Next, we justify that limk→∞ c(x(k))=B̂. Assume otherwise, limk→∞ c(x(k)) 6=
B̂. It follows from ĝ(k) = g1(k) ≥ 0, for all k ≥ K3, that b1(x1(k)) ≥ c(x(k)),

for all k ≥ K3. There exists some ε > 0, and subsequence {kl}∞l=1 of positive

integer numbers with k1 > K3 such that |c(x(kl)) − B̂| > ε, for all l ∈ N. Because

limk→∞ b1(x1(k)) = B̂, for such ε, there exists K4 ∈ N, such that |b1(x1(k))−B̂| ≤ ε
2
,

for all k ≥ K4. Therefore g1(kl) = b1(x1(kl)) − c(x(kl)) > ε
2
, for all kl ≥ K4. We

find that {x1(k)} is always increasing after K4-th iteration. In fact,

∆x1(kl) = a1(x(kl))[b1(x1(kl)− c(x(kl))] > ρ
ε

2
,

if kl ≥ K4. Hence {x1(k)} will increase unboundedly, and yields a contradiction to

Lemma 1.

Case (ii): There exist infinitely many jumps of type-1.

We shall justify that {b̂(k)} decreases as {k} ↑ ∞. Consider a fixed k ∈ N0.

Subcase (ii-a): no jump of type-1 occurs at k-th iteration.

Suppose I(k) = I(k + 1) = i, then gi(k) ≥ 0, gi(k + 1) ≥ 0. In addition,

b̂(k + 1) = bi(xi(k + 1))

≤ bi(xi(k))

= b̂(k),

thank to (2.5), and ∆xi(k) = ai(x(k))gi(k) ≥ 0. Thus {b̂(k)} decreases as k in-

creases.

Subcase (ii-b): jump of type-1 occurs at k-th iteration and gi(k) ≥ 0, gj(k) ≥ 0,

where I(k) = i 6= I(k + 1) = j.

It follows that

b̂(k + 1) = bj(xj(k + 1))

≤ bj(xj(k))

≤ bi(xi(k))

= b̂(k),

due to (2.5), ∆xj((k)) = aj(x(k))gj(k) ≥ 0, and by I(k) = i 6= j.

Subcase (ii-c): jump of type-1 occurs at k-th iteration and gi(k) ≥ 0, gj(k) < 0,

where I(k) = i 6= I(k + 1) = j.

13



Notably, we still have gj(k + 1) ≥ 0. We claim that

bj(xj(k + 1))− bj(xj(k)) ≤ bi(xi(k))− bj(xj(k)). (3.12)

Indeed,

LHS = b
′
j(·)∆xj(k)

= b
′
j(·)aj(x(k))gj(k)

≤ b
′
j(·)gj(k) (by (2.1))

≤ −djgj(k) (by (2.5), and gj(k) < 0))

≤ gi(k)− gj(k) (by (1− dj)gj(k) < 0 ≤ gi(k))

= bi(xi(k))− bj(xj(k))

= RHS.

Herein, “ · ” is defined as before. Hence, b̂(k + 1) = bj(xj(k + 1)) ≤ bi(xi(k)) = b̂(k).

All these cases indicate that {b̂(k)} decreases as {k} increases. By Lemma 1, {x(k)}
are attracted into some compact set Q contained in Rn. Therefore, {bi(xi(k))} are

bounded below, and so are {b̂(k)}. Hence {b̂(k)} decreases and converges to some

number B̂ as k tends to infinity (denoted by {b̂(k)} ↓ B̂).

Next, we verify that limk→∞ c(x(k))=B̂. Assume otherwise: limk→∞ c(x(k)) 6=
B̂. There exist some positive µ, subsequence {kl}∞l=1 of positive integers, such that

|c(x(kl))− B̂| > µ

ερ
, (3.13)

Where ε, ρ are defined in (2.13) and (2.14). Because {b̂(k)} ↓ B̂, for µ′ := min{ µ
ερ

, µ} >

0, there exists L ∈ N such that

B̂ ≤ bI(k)(xI(k)(k)) ≤ B̂ + µ′, (3.14)

for all k ≥ L. Moreover

ĝ(`) = bI(`)(xI(`)(`)− c(x(`)) ≥ 0, (3.15)

for all ` ∈ N. Consider the kL-th iteration. Notably, kL > L. By (3.13), (3.14), and

(3.15), we have

ĝ(kL) = b1(x1(kL))− c(x(kL)) >
µ

ερ
,
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where, for convenience, we set I(kL)=1 without loss of generality. There are two

possibilities at kL-th iteration, either jump of type-1 occurs or not. If it does not

occur, then

|∆b̂(kL)| = |b̂(kL + 1)− b̂(kL)|
= |b1(x1(kL + 1))− b1(x1(kL))|
= |b′1(·)||x1(kL + 1)− x1(kL)|
= |b′1(·)||a1(x(kL))||g1(kL)|
= |b′1(·)||a1(x(kL))||ĝ(kL)|
> ερ

µ

ερ
= µ.

But it is impossible, because of (3.14).

If jump of type-1 occurs at kL-th iteration. Assume that I(kL + 1)=2. Below

we consider three different cases for b2(x2(kL)):

Case (a): B̂ ≤ b2(x2(kL)) < b1(x1(kL)). Then g2(kL) > µ
ερ

, and |∆b2(x2(kL))| =
|b′2(·)||a2(x(kL))||g2(kL)| > ερ µ

ερ
= µ. It is impossible, due to (3.14).

Case (b): B̂ > b2(x2(kL)) ≥ c(x(kL)). Then g2(kL) ≥ 0, and x2(kL + 1) ≥
x2(kL). Thus,

b̂(kL + 1) = b2(x2(kL + 1))

≤ b2(x2(kL))

< B̂.

It is impossible, since {b̂(k)} ↓ B̂.

Case (c): b2(x2(kL)) < c(x(kL)). Then g2(kL) < 0, and

∆b2(x2(kL)) = b2(x2(kL + 1))− b2(x2(kL))

= b
′
2(·)a2(x(kL))g2(kL)

≤ −d2g2(kL)

< −g2(kL).

Thus, b2(x2(kL+1)) = b2(x2(kL)) + ∆b2(x2(kL)) < b2(x2(kL)) − g2(kL) = c(x(kL)).

Hence b̂(kL +1) = b2(x2(kL +1)) < c(x(kL)) < B̂. It is impossible, since {b̂(k)} ↓ B̂.
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From the above discussions, we conclude that limk→∞ c(x(k)) = B̂.

The second part of the lemma asserts that limk→∞ b̌(k) exists, denoted by B̌,

and limk→∞ c(x(k))=B̌. The proof for the assertion resembles the first part. Let us

elaborate.

Case (i): There exist finitely many jumps of type-2.

In this case, there exists some K5 ∈ N, some i, say 1, such that ǧ(k) = g1(k) ≤ 0,

for all k ≥ K5. Hence {x1(k)} will be non-increasing as k increases. By Lemma 1,

{x1(k)} are bounded below. Therefore, limk→∞ x1(k) exists, hence limk→∞ b1(x1(k))

exists, denoted by B̌. Restated, limk→∞ b̌(k) = B̌.

Next,we justify that limk→∞ c(x(k))=B̌. Assume otherwise, limk→∞ c(x(k)) 6=
B̌. It follows from ǧ(k) = g1(k) ≤ 0, for all k ≥ K5, b1(x1(k)) ≤ c(x(k)), for all k ≥
K5. There exists some ε > 0, and subsequence {kl}∞l=1 of positive integer numbers

with k1 > K5 such that |c(x(kl))−B̌| > ε, for all l ∈ N. Because limk→∞ b1(x1(k)) =

B̌, for such ε, there exists K6 ∈ N, such that |b1(x1(k)) − B̌| ≤ ε
2
, for all k ≥ K6.

Therefore g1(kl) = b1(x1(kl))− c(x(kl)) < − ε
2
, for all kl ≥ K6. We find that {x1(k)}

are always decreasing after K6 − th iteration. In fact,

∆x1(kl) = a1(x(kl))[b1(x1(kl)− c(x(kl))] < −ρ
ε

2
,

if kl ≥ K6. Hence, {x1(k)} will decrease unboundedly, and yields a contradiction to

Lemma 1.

Case (ii): There exist infinitely many jumps of type-2.

We shall justify that {b̌(k)} increases as {k} ↑ ∞. Consider a fixed k ∈ N0,

Subcase (ii-a): no jump of type-2 occurs at k-th iteration. Suppose J(k) =

J(k + 1) = i, then gi(k) ≤ 0, gi(k + 1) ≤ 0. In addition,

b̌(k + 1) = bi(xi(k + 1))

≥ bi(xi(k))

= b̌(k)

thank to (2.5), and ∆xi((k)) = ai(x(k))gi(k) ≤ 0. Thus {b̌(k)} increases as {k}
increases.

Subcase (ii-b): jump of type-2 occurs at k-th iteration and gi(k) ≤ 0, gj(k) ≤ 0,

where J(k) = i 6= J(k + 1) = j.
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It follows that

b̌(k + 1) = bj(xj(k + 1))

≥ bj(xj(k))

≥ bi(xi(k))

= b̌(k)

due to (2.5), ∆xj((k)) = aj(x(k))gj(k) ≤ 0 and J(k) = i 6= j.

Subcase (ii-c): jump of type-2 occurs at k-th iteration and gi(k) ≤ 0, gj(k) > 0,

where J(k) = i 6= J(k + 1) = j.

Notably, we still have gj(k + 1) ≤ 0. We claim that

bj(xj(k + 1))− bj(xj(k)) ≥ bi(xi(k))− bj(xj(k)). (3.16)

Indeed,

LHS = b
′
j(·)∆xj(k)

= b
′
j(·)aj(x(k))gj(k)

≥ b
′
j(·)gj(k) (by (2.1))

≥ −djgj(k) (by (2.5), and gj(k) > 0))

≥ gi(k)− gj(k) (by (1− dj)gj(k) > 0 ≥ gi(k))

= bi(xi(k))− bj(xj(k))

= RHS.

Herein, “ · ” is defined as before. Hence, b̌(k + 1) = bj(xj(k + 1)) ≥ bi(xi(k)) = b̌(k).

All these cases indicate that {b̌(k)} increase as {k} increases. By Lemma 1, {x(k)}
are attracted into some compact set Q contained in Rn. Therefore, {bi(xi(k))} are

bounded above, and so are {b̌(k)}. Hence {b̌(k)} increase and converge to some

number, say B̌ as {k} tend to infinity (denoted by b̌(k)} ↑ B̌).

Next, we verify that limk→∞ c(x(k))=B̌. Assume otherwise: limk→∞ c(x(k)) 6=
B̌. There exist some positive µ, subsequence {kl}∞l=1 of positive integers, such that

|c(x(kl))− B̌| > µ

ερ
. (3.17)

Where ε, ρ are defined in (2.13) and (2.14). Because b̌(k)} ↑ B̌, for µ
′
:= min{ µ

ερ
, µ} >

0, there exists L ∈ N, such that

B̌ ≥ bJ(k)(xJ(k)(k)) ≥ B̌ − µ
′
, (3.18)
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for all k ≥ L. Moreover

ǧ(`) = bJ(`)(xJ(`)(`)− c(x(`)) ≤ 0, (3.19)

for all ` ∈ N. Consider the kL-th iteration. Notably, kL > L. By (3.17), (3.18),and

(3.19), we have

ǧ(kL) = b1(x1(kL))− c(x(kL)) < − µ

ερ
,

where, for convenience, we set J(kL)=1 without loss of generality. There are two

possibilities at kL − th iteration, either jump of type-2 occurs or not. If it dose not

occur, then

|∆b̌(kL)| = |b̌(kL + 1)− b̌(kL)|
= |b1(x1(kL + 1))− b1(x1(kL))|
= |b′1(·)||x1(kL + 1))− (x1(kL))|
= |b′1(·)||a1(x(kL))||g1(kL)|
= |b′1(·)||a1(x(kL))||ǧ(kL)|
> ερ

µ

ερ
= µ.

But it is impossible, because (3.18).

If jump of type-2 occurs at kL− th iteration. Assume that J(kL +1)=2. Below

we consider three different cases for b2(x2(kL)):

Case (a): B̌ ≥ b2(x2(kL)) > b1(x1(kL)). Then g2(kL) < − µ
ερ

, and |∆b2(x2(kL))| =
|b′2(·)||a2(x(kL))||g2(kL)| > ερ µ

ερ
= µ. It is impossible, due to (3.18).

Case (b): B̌ < b2(x2(kL)) ≤ c(x(kL)). Then g2(kL) ≤ 0, and x2(kL + 1) ≤
x2(kL). Thus

b̌(kL + 1) = b2(x2(kL + 1))

≥ b2(x2(kL))

> B̌.

It is impossible, since {b̌(k)} ↑ B̌.
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Case (c): b2(x2(kL)) > c(x(kL)). Then g2(kL) > 0, and

∆b2(x2(kL)) = b2(x2(kL + 1))− b2(x2(kL))

= b
′
2(·)a2(x(kL))g2(kL)

≥ −d2g2(kL)

> −g2(kL).

Thus, b2(x2(kL+1)) = b2(x2(kL)) + ∆b2(x2(kL)) > b2(x2(kL)) − g2(kL) = c(x(kL)).

Hence b̌(kL +1) = b2(x2(kL +1)) > c(x(kL)) > B̌. It is impossible, since {b̌(k)} ↑ B̌.

From the above discussions, we conclude that limk→∞ c(x(k)) = B̌.

4 A Comparison between Continuous-time and

Discrete-time Models

We first introduce the results for (1.3) stated in Grossberg’s paper [4].

Definition 4.1. A competitive system is said to achieve weak global consensus (or

weak global pattern formation), if given any initial value x(0) ≥ 0, all the limits

bi(xi(∞)) := limt→∞ bi(xi(t)) exist, for all i = 1, 2, · · · , n.

Definition 4.2. A competitive system is said to achieve strong global consensus (or

strong global pattern formation) if, given any initial value x(0) ≥ 0, all the limits

xi(∞) := limt→∞ xi(t) exist, for all i = 1, 2, · · · , n.

The following conditions are needed for the main results in Grossberg’s paper

[4].

Condition (G1):

(a): ai(x) is continuous for x ≥ 0,

(b): bi(xi) is either continuous with piecewise derivative for xi ≥ 0, or is continuous

with piecewise derivative for xi > 0 and bi(0) = ∞,

(c): c(x) is continuous with piecewise derivative for x ≥ 0.

Condition (G2):

ai(x) > 0 if xi > 0 and xj ≥ 0, j 6= i,and ai(x) = 0 if xi = 0 and xj ≥ 0,

j 6= i. Moreover, there exist a function āi(xi) such that, for sufficiently small λ > 0,

āi(xi) ≥ ai(xi) if x ∈ [0, λ]n and
∫ λ

0

dω

āi(ω)
= ∞ (4.1)

19



Condition (G3): lim supω→∞ bi(ω) < c(0, 0, · · · ,∞, · · · , 0), where ”∞” occurs in the

ith entry, i = 1, 2, · · · , n.

Condition (G4): ∂c
∂xj

≥ 0 , j = 1, 2, · · · , n

Theorem 4 (Grossberg). Any system of the form (1.3) satisfying Conditions

(G1), (G2), (G3) and(G4) achieves weak global consensus. Moreover, bi(xi(∞)) =

c(x(∞)), for every i.

Similar to proof of Theorem 1, the one of Theorem 4 consists of three main

parts which we describe as follows:

First, the theorem will be proved for the case that bi ≡ b, then this proof can

be adapted to the case of i-dependent bi.

Part (I): (This part works as Lemma 1)

By Conditions (G1) and (G2), if xi(0) > 0, then xi(t) > 0 for t ≥ 0. If xi(0) = 0, then

component xi can be deleted from the network without loss of generality [4]. By (4.1)

and Condition (G3), there exist a B such that xi(t) ∈ [0, B] for all i = 1, 2, · · · , n,

t ≥ 0. Hence our attention is restricted to positive initial values. It is then derived

that x(t) stays in some compact subset in Rn, for all time t ≥ 0.

Part (II): (This part works as Lemma 2)

Define

gi(t) = b(xi(t))− c(x(t)) (4.2)

ĝ(t) = max{gj(t) : j = 1, 2, · · · , n} (4.3)

Then either ĝ(t) < 0, for all t ≥ 0, or there exists t = T such that ĝ(T ) ≥ 0 implies

ĝ(t) ≥ 0, for t ≥ T . This is due to Condition (G4). If at any time t = s, ĝ(s) = 0,

say ĝ(s) = gi(s), then

lim
t→0+

ĝ(s + t)− ĝ(s)

t
≥ ġi(s) = b

′
(xi(s))ẋi(s)−

n∑
j=1

∂c

∂xj

(x(s))ẋj(s) ≥ 0. (4.4)

If ĝ(t) < 0 for all t ≥ 0, it is a trivial case. Hence ĝ(t) ≥ 0 are assumed below

without loss of generality

Part (III): (This part works as Lemma 3)

To state this part, we introduce the following definitions.
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Definition 4.3. (i): A jump is said to occur from i to j at time t = T , if there

exists time s and u such that ĝ(t) = gi(t), for s ≤ t ≤ T , and ĝ(t) = gj(t), for

T ≤ t ≤ u. (ii): I(t)=min{i : ĝ(t) = gi(t)}. (iii): b̂(t)=b(xI(t)(t)).

If Part (I)and (II) are valid, then we have the following three conclusions.

(i): b̂(t) is monotone at all large time, hence limt→∞ b̂(t) exists , and denoted by

B̂, (ii): limt→∞ c(x(t))=B̂, (iii): limt→∞ b(xi(t))=B̂, for all i = 1, 2, · · · , n. Hence,

weak global consensus is achieved.

Corollary 5 (Grossberg). Any system of the form (1.3) whose functions satisfy

Condition(G1)-(G4) and whose bi possess finitely many local maxima, or intervals

of local maxima ,within the range of xi, achieves strong global consensus.

From the process of the proof above, we can find that Part (I) and (II) play

very dominant roles for Theorem 4. From this view point, we can extend Theorem

4 to Theorem 6, i.e. the phase space for (1.3) can be extended to Rn.

We need some conditions for the theorem.

Condition (A): (a): ai(x) is continuous and positive for all x ∈ Rn,

(b): bi(ξ) is continuously differentiable for ξ ∈ R,

(c): c(x) is continuously differentiable for x ∈ Rn.

Condition (B): Given any initial value x(0), x(t) will be attracted by some compact

set contained in Rn.

Condition (B)
′
: (a): limξ→∞ bi(ξ) = −∞ , limξ→−∞ bi(ξ) = ∞ ,i = 1, 2, · · · , n, (b):

c(x) is bounded below.

Condition (C):

∂c
∂xk

≥ 0 , k = 1, 2, · · · , n

Theorem 6. Any system of form (1.3) whose functions satisfy Condition (A), (B),

(C) achieves weak global consensus (herein, I mean that given any initial value

x(0) ∈ Rn, all the limits bi(xi(∞)) := limt→∞ bi(xi(t)) exist , for all i = 1, 2, · · · , n.).

Moreover, each bi(xi(∞)) = c(x(∞)).

The proof of the Theorem 6 is mainly because that Condition (B) works as

Part (I) in the proof of Theorem 4, Condition (C) works as Part (III) in the proof of

Theorem 4 (because of (4.4), mainly). Therefore the work as Part (III) in the proof

of Theorem 4 will also be done, and weak global consensus will be achieved. By the
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arguments above, for the purpose of comparing the difference of convergence theo-

rems for continuous-time and discrete-time competitive network (details in Section

4), we can see that the proof of Theorem 6 can also be completed by the parallel

three parts, just as in Theorem 4.

Corollary 7. Any system of form (1.3) whose functions satisfies Condition (A),

(B), (C) and whose bi possess finitely many local maxima, or intervals of local max-

ima, within the range of xi, achieves strong global consensus.

Remark 4.1. In Theorem 6, Condition (B) is a more abstract condition, and it can

be achieved by the more concrete one as Condition (B
′
).

Proof. By Condition (B)
′

and (C). For each i, there exist pi, qi ∈ R, such that

ẋi(t) = ai(x(t))[bi(xi(t))− c(x(t))] < 0, if xi(t) ≥ qi, and ẋi(t) = ai(x(t))[bi(xi(t))−
c(x(t))] > 0, if xi(t) ≤ pi. Hence, given initial valve x(0), x(t) will be bounded,

for all t. Then both |ai(x(t))|, |[bi(xi(t)) − c(x(t))]| are bounded below from some

positive number, and so is |ẋi(t)|. Therefore if xi(t) > qi at some time, say Si, then

xi(t) must be decreasing until xi(t) enters [p1, qi] and never leave it again, as time

goes by after Si. If xi(t) < pi at some time, say Ti, then xi(t) must be increasing

until xi(t) enters [pi, qi] and never leave it again, as time goes by after Ti. Hence

x(t) will be attracted by [p1, q1]× · · · × [pn, qn].

Below, let us compare the difference of convergence theorems for continuous-

time and discrete-time competitive network via Theorem 1 and Theorem 6 (with

Condition (B)
′
).

In the process of proving Theorem 1, we can find that different from (1.3) with

“continuous solution”, the behavior of solution{x(k)} is much unpredictable. Hence

we have to control ∆xi(k) at each iteration. Details are shown as follows:

(I): Different from Part (I) for Theorem 6 (just as Remark 4.1 for Theorem 6), we

need more conditions as those function ai, c ,b′i must be bounded; namely, “0 <

(x) ≤ 1”, “|b′i(ξ)| ≤ di ” and “M1 ≤ c(x) ≤ M2” to achieve Lemma 1 ,

(II): Different from Part (II) for Theorem 6 with continuous ĝ(t), {ǧ(k)}, {ǧ(k)}
in Lemma 2 are sequences. We must control functions bi, c in addition to make

the same work as Part (II). Hence we need more conditions ,“b′i(ξ) ≥ −di and

0 < di ≤ 1−∑n
i=1 ri < 1” to achieve Lemma 2,

(III): Different from Part (III) for Theorem 6, Lemma 1 and Lemma 2 are “not

sufficient” for Theorem 1. To achieve the “monotonicity” of {b̂(k)} and {b̌(k)}, we
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need function bi to be decreasing; namely 0 ≥ b′i(ξ) ≥ −di > −1. For the purpose

“limk→∞ c(x(k)) = B̂ = B̌”, we demand function bi to be strictly decreasing; namely

0 > b′i(ξ) ≥ −di > −1 .
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