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Abstract

Let X be a square matrix. We say..X.is weak cyclic when each of the entries
in the lower diagonal and in the last column of the lower diagonal are

nonzero and all the other nondiagonal entries of X are zero. Let V denote a
vector space over C with finite positive dimension. By a weakly cyclic pair

on V we mean an ordered pair of linear transformations A V - Vand B

V - V that satisfies conditions (i), (ii) below.

().  There exists a basis for V with respect to which the matrix
representing A is diagonal and the matrix representing B is weakly
cyclic.

(i).  There exists a basis for V with respect to which the matrix
representing B is diagonal and the matrix representing A is weakly
cyclic.

We give two necessary conditions among the eigenvalues and the
coefficients in some representing matrix of a weak cyclic pair.
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1 Introduction

The study of a pair of linear transformations with specified properties oc-
curred in [1]—[18]. In [3], a pair of linear transformations called cyclic pair
is given. We generalize the idea of cyclic pairs to weakly cyclic pairs. See
Section 2 for formal definition.

We choose a nice basis such that the matrix forms of these two linear trans-
formations are simplified. Theorem 2.5 is the result. In Theorem 2.6, we find
two constraints on the entries of these two matrices. Together with previ-
ous result from [3], we can complete determine all the cyclic pairs. We also

characterized the cyclic pair by their multiplication rules.



2 Weakly Cyclic Pair

Let C denote the field of complex numbers and let Matg;1(C) denote the

set of (d+ 1) x (d + 1) matrices over C with index set {0,1,--- ,d}.

Definition 2.1. For A € Mat,,1(C), We say A is weakly cyclic when each
of the entries Ajg, Ao, -+, Adgd—1, Aoa is nonzero and all other nondiagonal

entries of A are zero.

Lemma 2.2. Let A be a weakly cyclic matriz. The minimal polynomial of

A is the characteristic polynomial of A.

Proof. Using the nonzero coefficients A, A1, ..., Ag4—1, one can find for each
i (1 <i<d), Aly # 0 ands4’; = 0 (1'£.j < i). Hence A’ is not in the
span of I,A,A% ... A1 (1=< 4 <'d). That implies I,A4,A%,..., A4 are linear
independent. Since A is a:(d + 1) X (d + 1) mdtrix, the minimal polynomial
of A has degree d + 1 . m

Definition 2.3. Let V denote a vector space over C with finite positive
dimension. By a weakly cyclic pair on V' we mean an ordered pair of linear
transformations A: V — V and B : V — V that satisfies conditions (i), (ii)

below.

(i) There exists a basis for V' with respect to which the matrix representing

A is diagonal and the matrix representing B is weakly cyclic.

(ii) There exists a basis for V' with respect to which the matrix representing

B is diagonal and the matrix representing A is weakly cyclic.

2



Lemma 2.4. Let (A, B) be a weakly cyclic pair on V. Then the eigenvalues

of A (resp. B) are distinct.

Proof. By the above lemma the minimal polynomial of A is the characteristic
polynomial of A and by definition of weakly cyclic pair, A is diagonalizable.

So A has distinct eigenvalues. m

Theorem 2.5. Let V' denote a vector space over C with dimension d + 1.
Let A:V —V and B : V — V denote linear transformations. Then the

following are equivalent.
(i) (A, B) is a weakly cyclic pair on V.

(ii) There exists a basis vy, v ..., Vg for Viawith respect to which the matrices

representing A and B, have the following forms,

(ag 0 0= ... 0. 5] [ 0 0 ... 0]
A-10 1 a 0 0| vB:|0 0 n ... Of
00 0 ... 1 a4 0 0 0 ... ng

and there exists a basis wy,ws, ..., wq for V with respect to which the

matrices representing A and B have the following forms,

[0, 0 0 ... 0 by 0 0 0 t

0 6 0 ... 0 1 b 0 0 0
A: 0 0 92 O , B: 0 1 b2 0 0 ,

0 0 0 ... 64 0 0 0 ... 1 by

where s,t € C are nonzero scalars, and 0; are eigenvalues of A and n;

are etgenvalues of B for 0 <1 < d.

3



Proof. (ii)—(i) This is clear. (i)—(ii) Suppose that (A, B) is a weakly cyclic

pair. Find a basis ug, u, ..., ug such that the matrices representing A and B

are as follows.

Qo 0 0 ... 0 Co To 0 0

cg ap O .0 0 0O m O
A-10 ¢ a ... 0 0 ., B: 0 0 n
i 0 0 0 €4 Q] i 0 0 O

where ¢; are not zero (0 < i < d). So we know that

AUZ‘ = a;u; + Cit1Uj4+1 (0 S 1 S d— 1)
and
Aud = Colp + QqUq-
Set
Vo = Ug
and
Vi = C1 - Ciuy; (1<’L§d)
So we have

Avi:aivi+vi+1 (nggd—l)

e}

Td |

(2.1)

(2.2)

(2.3)



and

Avg = cpcy -+ - gy + agqug.

On the other hand,

Buyg = Bug = noug = 1novo

and

Bvi = Cl"'CiBUi = 1iC1 - - CiU; = T);U; (1 S ) S d)

Hence in the basis vy, - - - , vgq, the matrices representing A, B as follows.

(a, 0 0 0 s ] [0 0 0 0]
1 a 0 0 0 0 m O 0
0 0 0 .5 Liag 00 0 ... mg]
where s = ¢o---cq # 0. Similarly there exists a basis wg, wq, - ,wg of V'
such that the matrix representing A,B as follows
(6, 0 0 0] by 0 0 0 t]
0 6, 0 0 1 b 0 0 0
A=10 0 6, 0], B=1]0 1 b 0 0
00 0 Hd_ 00 0 1 ba]
for some nonzero t € C. n

Theorem 2.6. As the notation in Theorem 2.5, suppose Theorem 2.5 (i) —

(#7) hold. Then



(05 — ajr1) (M1 = bim1) = (0 = bi)(Oic1 —aj1) (1<i<d,0<j<d-1).
(2.6)
(0 — ai)(niv1 —bj) = (Oj1 —a)(m —b;) (0<i<d—11<j<d). (27)

Proof. Let vy, vy, ,vq and wq, wy, - ,wy be the two bases described in

Theorem 2.5(i7). Suppose
d
Ww; = ZCUU]' (28)
=0

for some ¢;; € C. So we have

w; = O;w; = ZCUHUJ (0<i<d) (2.9)
and
d—1
= Z cij(ajv; + 0550 ) Fcia(svg + aquq) (2.11)
§=0
d
= (Cioao + CidS)Uo + Z(Cijaj + ¢ jfl)Uj (O < 7 < d) (212)
j=1

Comparing (2.9) — (2.12),

cijth = cija; +ci o1 (1<7<d,0<4<d),

Cigei = C;nQo —f- CidS (O < S d)

Hence

cij(QZ- — aj) =C j—1 (1 S] S d,O S [ S d)a (21?))



Similarly
d d
Bw; = ZCZJBU] = Zcijnjvj (0<i<d)
§=0 =0
and
Bw; = bjw; + wiy
d d
= bz Z CijVj + Z Cit1 jUj
=0 §=0

d
= Z(blCU + Cit+1 j)vj- (O < 1 < d— 1),
d
Bwg = bywg + twg = Z<bdcdj + tCoj)Uj.

=0
Comparing (2.15) — (2.19),

ciiny = bicij Heip1 5 (051 <d—1,0<j <d),

Caill;"— bdcdj + Cojt (0 S j S d)

Thus
cii(nj—b) =cip1; (0<i<d—1,0<j7<d).

By (2.13)(2.20)

cj = ¢ (0 —aj)

= ¢i—1 4100 —ajs1) (M1 —0;i21)(0< 57 <d—1,1<i<d),

cij = cio1i(n—bic1)

Cic1 j41(n; — bic1)(Oic1 —aj41)(1 <i <d,0< j <d—1).

7

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)



Fix i (0 < ¢ < d). Observe ¢;q # 0, otherwise ¢;; = 0 by (2.13) and then
w; = 0 by (2.8). Observe ¢;o # 0, otherwise ¢;4 = 0 by (2.14) and since s # 0.
Hence ¢;; # 0 by (2.13).

By above comments and by (2.21)-(2.22), we have for 1 <i<d,0<j <
d—1,

(05 — aj1)(j1 — bic1) = (5 — bi1)(0i1 — aj41). (2.23)
By the same step with supposing
d
V; = Z dijwj, (224)
=0
we have for 0 <i < d—1,1 <75 <d,
(0; — ai)(miv1 — by) = (0t~ @)l bih, (0<i<d—1,1<j<d). (2.25)

O



3 Cyclic Pair

We consider a special case of weakly cyclic pair in this section.

Definition 3.1. Let V denote a vector space over C with finite positive
dimension. By a cyclic pair on V we mean an ordered pair of linear trans-
formations A : V. — V and B : V — V that satisfy conditions (i), (ii)

below.

(i) There exists a basis for V with respect to which the matrix representing

A is diagonal and the matrix representing B is cyclic.

(ii) There exists a basis for V' withrespect to which the matrix representing

B is diagonal and the'matrixireprésenting A is cyclic.

Lemma 3.2. Cyclic matrices are diagonalizable with nonzero eigenvalues.

Proof. For any cyclic matrix

0 0 O 0 ap
a, 0 0 0 0
A=10 ay O 0 0},
(00 0 ... as O]
the characteristic polynomial of A is
d
fl@)=a"" — ] a (3.1)
i=0
Since ay,- - ,aq are not zeros, f(x) has d + 1 distinct roots. Hence A has
d + 1 distinct eigenvalues. This implies A is diagonalizable. O]

9



Lemma 3.3. Suppose

00 0 «
100 ... 00
A=1010 ... 0 0f(a0)
000 ... 1 0]

and 0 is an eigenvalue of A. Let u be an eigenvector corresponding to 6.

Then 0% = o and ) )
Ug
U09_1

u = UO0_2

UO@_d

for some scalar ug € C.

Proof. Suppose L
o
uy

u-= U2

Ugq

and Au = Ou for ug,uy, -+ ,uq € C. Then

Uy U
Uop U

Au=0]| W1 | =0 |Uu2

Uq—1 Uq

0d+1
Hence u; = Qu; 1 (0 <i<d—1)and uy = —up. Then uy = 0%y = —uy.
a o

Note that ug # 0 since u # 0 and 6 # 0. Hence 0! = o and u; = 0",

(0 <i<d). O

10



Theorem 3.4. Let V denote a vector space over C with dimension d + 1.
Let A:V —V and B : V — V denote linear transformations. Then the

following (i)-(iii) are equivalent.

(i) (A, B) is a cyclic pair on' V.

(11) There exists a basis vy, vy, ..., vq for V with respect to which the matrices

representing A and B have the following forms,

000 0 «a (3 0 0 0
100 ... 00 0 B¢ 0 ... 0
A:[001 0 ... 00|, pB:|0 0 B ... 0],
000 ... 1.0 0 0 0 Bq’]

where a, B € C are wonzerotsealdars and q € C is a primitive root of

unity of order d + 1z

(iii) There exists two nonzere compler numbers o, 3 such that A = oI, B! =

B, BA = qAB, where ¢ is @ primitive root of unity of order d + 1.

Proof. (i)—(ii) Suppose that (A, B) is a cyclic pair. Find a basis ug, u1, ..., ug
such that the matrices representing A and B are as follows.
(0 0 0 0 ap] [ bo 0 0]
ap 0 0 0 O 0 0 0
A-10 a2 O 0 0 0 by 0 (3.2)
00 0 ag 0 | 0 0 0 by

So we know that




A’U,i = Aj11Ui41 (0 S ) S d— ].)

and
Aug = aguyg.
Set
Vo = Up
and

Vi = a1+ ;U (].Slgd)

So by (3.3)—(3.6),

and

Avg = aq -+ a1 aplp.

On the other hand,

B’U() = BUO = b()’LL() = boUO

and

B’Ui = al---aiBui = bial---aiui = bivi (1 S 1 S d)

12



Hence in the basis v, - - -

00 0 0 o bo 0 0
100 0 0 0 b 0
A=1010 0 0, B=1{0 0 b
0 00 1 0] 0 0 0

where a = ag - - -

aq. Similarly there exists a basis wg, wy, - - -

ba

, Vg, the matrices representing A, B as follows,

,wg of V', such

that the matrix representing A is diagonal and the matrix representing B is

(0 0 0 0 ~]
100 0 0
010 0 0],
[ A

(3.7)

for some v € C. Note that for each 7, w; isan eigenvector of A. Let 6; be

the corresponding eigenvalue. Then by Lemma 3.3,

d

wi ey )y

=0
for some scalar ¢; € C. From (3.7), (3.8),

Bwg = ywy = ’yCOZ(HD Yv
=0

On the other hand, by (3.2), (3.8),

Bwy = cdz ]B’uj = cdz )b, jVj
Comparing coefficients in (3.9)—(3.10),
co ba,;
b, —
J ,y Cd ( 90 )

13

(3.9)

(3.10)
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0
Note that bg,---,bg is a geometric sequence with common ratio ¢ = e—d.
0

Hence b; = 3¢/ where 8 = by. Observe ¢! = 1 by Lemma 3.3 and ¢ is

primitive since by, - - - , by are distinct by Lemma 3.2.
(13) — (i44) This is clear by direct computation.

(73i) — (i) Let v # 0 be an eigenvector to B with corresponding eigenvalue

6. Note that @ # 0. Let v; = Av. Suppose for some ¢y, - ,cq € C,
CoVg + C1U1 + CoUg + - - - + CqUg = 0. (312)

Then
d
== Zcivi
’Lzo
= ZciAiv.
i=0

Applying B and using the assumption BA = ¢AB, we obtain

d
0 = BZciAiv
dz:O
= Zciinti
i=0

d
= (Z ciq' AN Ov.
i=0

14



Hence

d
> agtAl=0. (3.13)

i=0
Observe z%*! — o is the minimal polynomial of A, since o # 0. Hence
co=c = =cq=0. We have shown vy, --- , v, is a basis of V. Observe

Av; = vi41, i@ < d, and Avg = AA% = alv = avg. On the other hand,

Bv; = BA'w = ¢!A'Bv = 0¢*A'v = 0q¢'v;. Hence with respect to the basis

Vg, -+ ,Uq, the matrices representing A, B has the following forms,
[0 0 0 0 «f 0 0 0 0]

100 0 0 0 6g 0 ... O

A=10 10 0 0], B=1]0 0 0¢> ... 0
00 0 ... Ls0} o0 0 .. qu_

15
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