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ABSTRACT: The uncertainty of the availability of water resources during the boreal winter has led to significant economic
losses in recent years in Taiwan. A modified support vector machine (SVM) based prediction framework is thus proposed
to improve the predictability of the inflow to Shihmen reservoir in December and January, using climate data from the prior
period. Highly correlated climate precursors are first identified and adopted to predict water availability in North Taiwan. A
genetic algorithm based parameter determination procedure is implemented to the SVM parameters to learn the non-linear
pattern underlying climate systems more flexibly. Bagging is then applied to construct various SVM models to reduce
the variance in the prediction by the median of forecasts from the constructed models. The enhanced prediction ability of
the proposed modified SVM-based model with respect to a bagged multiple linear regression (MLR), simple SVM, and
simple MLR model is also demonstrated. The results show that the proposed modified SVM-based model outperforms
the prediction ability of the other models in all of the adopted evaluation scores. Copyright © 2009 Royal Meteorological

Society
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1. Introduction

In Taiwan, water resource availability is greatly influ-
enced by the variation of East Asia Monsoon activities
which contribute to well marked wet and dry seasons
(Chang, 2004). The unanticipated fluctuations of water
availability in the spring growing season have led the
water authority to expend a lot of its budget towards com-
pensation of the losses caused by its failure to deliver
water allocated for irrigation (Shu, 2003). Forecasts of
streamflow in the winter season are desirable to mitigate
such possible negative impacts, through better allocation
of water for domestic and irrigation use.

In recent years, the unusual behaviour of East Asian
Monsoon has led to occurrence of extensive drought/flood
disasters in East Asia. As mentioned in Chang (2004),
these extreme events include the 2-month long persis-
tent excessively heavy rainfall/floods over the Yangtze-
Huaihe River Basins during the 1991 Meiyu season
(Ding, 1993) and the prolonged unprecedented heavy
rainfall/floods over the Yangtze River Basins during the
1998 Meiyu season. Both events caused the loss of
numerous human lives and billions of Chinese Yuan. Dur-
ing the spring and the summer seasons of 2002, Northern
Taiwan experienced the most severe drought in several
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decades. Faced with two nearly empty major water-
supply reservoirs, emergency water restrictions, such as
suspending nonessential water uses and cutting irrigation
supplies, were implemented to save water for domestic
consumption (Shiau and Lee, 2005).

In North Taiwan, which is the social and technical
centre, the mean annual rainfall is 2,934mm, but dis-
tributed unevenly, with 62% coming during the wet sea-
son, May through October, and 38% during the dry sea-
son, November through April. Therefore, reservoirs are
widely installed in this area to retain excess water for dry
seasons. However, they do not have the capacity to deal
with inter-annual drought. Public water supply takes pri-
ority over irrigation and water restrictions are imposed to
mitigate the impact of drought (Huang and Chou, 2005).
Critical decisions for a water release strategy need to be
made before allocating water for the irrigation scheduled
for two seasons in this area. The first season starts in
late January (spring growing season) and the second in
mid-July (summer growing season). A lack of stream-
flow predictors, however, often leads to the termination
of irrigation in the middle of the spring growing season.
About twenty million dollars was paid to farmers for crop
yield losses due to the termination of irrigation during the
severe drought of 2002 (Shu, 2003).

Climate-based forecasts of streamflow have been
shown to improve the reliability of water supply (Kim
and Palmer, 1997; Hamlet et al., 2002; Westphal et al.,
2003). There are many studies that have used climate
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signals such as El Nifio-Southern Oscillation (ENSO)
as reasonable predictors to forecast seasonal streamflow
and rainfall (Chiew et al. 1998; Liu et al., 1998; Ham-
let and Lettenmaier, 1999; Piechota et al., 1999; Fowler
and Kilsby, 2002; Harshburger et al., 2002; Eldaw et al.,
2003; Souza Filho and Lall, 2003; Karamouz and Zahraie,
2004; Xu et al., 2007). However, for the complex weather
systems in East Asia, predictability of the streamflow has
received limited attention and no previous studies have
been focused on Taiwan where catchments area is rela-
tively small and hence predictability is not expected to
be high at seasonal to inter-annual time scales.

The streamflow in Taiwan has been shown to be mainly
because of localized rainfall over Taiwan (Yu et al., 2006)
with limited contributions from groundwater. There are
many studies on the climatic mechanisms responsible for
the rainfall in East Asia during the winter monsoon sea-
son (Yang et al., 2002; Wu et al., 2003; Chang, 2004),
but studies focused on the precipitation in Taiwan during
boreal winter, which is crucial for the available water
resource during the driest season, are few. Chen et al.
(1983) investigated the relationship between the diurnal
cycle of local circulation and precipitation of North Tai-
wan. Chen and Chen (2003) addressed the general charac-
teristics of the rainfall and the evolution of the mean cir-
culation patterns for all seasons. However, these studies
only considered local or regional circulation around Tai-
wan, and predictability using global or regional climate
indicators was not assessed. In this study, we directly
focus on the prediction of the December—January flow
into the Shihmen reservoir in North Taiwan as illustrated
in Figure 1, recognizing that the streamflow is a mea-
sure of the spatially averaged rainfall over the catchment
during the two months, given the predominantly over-
land flow response to rainfall and the runoff travel time,
which is about 1-4 h (Chang and Chang, 2006) and is
substantially less than the 2 month window.

Although climate information is potentially valuable
in improving hydrologic prediction in support of water

TAIWAN

Figure 1. The Shihmen reservoir basin and Tahan River in North
Taiwan.
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resources management, there are still some challenges in
developing such predictions:

e Deterministic climate-hydrologic model-based fore-
casts seem to have rather limited success in many
instances.

e Given the acceptance of the idea that the climate is
changing, there is concern that the statistical models
built for forecasting streamflow using climate indica-
tors are unlikely to work as conditions change.

e Hydrologic records at places of interest are usually
short and building a reliable statistical model, including
predictor identification, poses a challenge.

e The relationships between streamflow or local precip-
itation and climate indicators of the sort identified in
this study are often expected to be nonlinear — both
from the exploratory data analysis and from an exam-
ination of the governing equations of atmospheric
dynamics as they apply to convection, moisture advec-
tion, and precipitation dynamics.

Collectively, these constitute a formidable challenge,
particularly if assessing the uncertainty of forecasts is
also a goal. A more robust prediction framework should
thus be proposed to mitigate the difficulties.

Support vector machines (SVMs) are an advanced
machine learning technique based on structural risk
minimization (SRM) which minimizes expected error of
a learning model and reduces the problem of overfitting
(Yu et al., 2006). SVM was developed in the early
1990s (Boser et al., 1992; Vapnik, 1998) and has been
successfully applied in many hydrologic studies, such as
runoff prediction problems (Dibike ef al., 2001; Asefa
et al., 2006; Yu and Liong, 2007), flood forecasting
problems (Liong and Sivapragasam, 2002; Yu et al.,
2006), groundwater monitoring network design (Asefa
et al., 2004), and lake water level prediction (Asefa et al.,
2005; Khan and Coulibaly, 2006). However, SVM has
not hitherto been applied in the climate based streamflow
prediction problem. Ensemble modelling approaches,
in addition, are widely adopted techniques in climatic
modelling related studies to reduce the variance of
predictive uncertainty (Colman and Davey, 2003; Raftery
et al., 2005; Chowdhury and Sharma, 2009). In view
of the relative short hydrologic records available in this
study, we therefore enhance the usual application of SVM
with bagging (Breiman, 1996), which is a technique for
reducing the variability in statistical models through the
averaging of candidate models formulated with the same
data set, to improve the predictive performance of the
constructed models. We also adopted a genetic algorithm
for SVM parameterization.

In the following sections, proper predictors for the
streamflow forecast and the possible mechanisms are first
selected and investigated. A SVM based prediction model
is proposed to learn and predict the streamflow at Shih-
men reservoir with the selected predictors. Genetic algo-
rithm (GA) based parameter determination and bagging
technique are also introduced to improve the performance
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of the constructed SVM model. Consequently, the pre-
dicted results of SVM model are compared with those
forecasted by bagged multiple linear regression (MLR),
simple SVM, and simple MLR based prediction model
to present the superiority of the proposed model and to
explore the predictability of streamflow in this area.

2. Study area and data

The Shihmen reservoir built in 1964 is located on the
upstream reaches of the Tahan River (Figure 1) and is
one of the largest water reservoirs in Taiwan. The Tahan
River is 126 km long with a drainage area of 1163 km?
and an average slope of 1/37. The Shihmen reservoir has
effective capacity of 234 million cubic meters (MCM)
and its catchment area is 754 km?. The total demand
supplied by Shihmen reservoir is 1,163.59 MCM/yr in
2001. About 529.09 MCM/yr of the supply is used for
irrigation over the Taoyuan area and public water supply
takes 634.50 MCM/yr for the people living in nearby
Taipei city (Huang et al., 2002). The streamflow data
were recorded at the Shihmen reservoir gauge station
from 1964. As illustrated in Figure 2, the annual cycle
of monthly streamflow presents obvious wet and dry sea-
sons in a year. The variation of monthly streamflow also
varies in different seasons. As shown in Figure 3, the
time series of 2-month averaged streamflow at Shihmen
reservoir in December and January (Dec—Jan) was used
in this study (Huang and Chou, 2005). Larger fluctuations
are observed in recent years. The predictors considered
for the December—January flow were past streamflow,
from October and November (Oct—Nov) and a suite of
climate predictors. Monthly climate data including global
sea surface temperature (SST), sea level pressure (SLP),
and outgoing longwave radiation (OLR) were extracted
from NCDC extended reconstructed analysis, the NCEP
reanalysis, and the interpolated OLR dataset, respec-
tively. SST and SLP datasets were collected from KNMI
web site (http://climexp.knmi.nl/) and the OLR dataset
from the data archive of NOAA/ESRL Physical Sci-
ences Division (http://www.cdc.noaa.gov/PublicData/).
The SST, SLP and OLR datasets are available from 1880,
1948, and 1974, respectively. Only the common data
from 1974 to 2005 were used in this study.

3. Methodology
3.1

First, potential predictors for the Dec—Jan inflow into the
Shihmen reservoir are screened by using linear correla-
tion as a criterion. Only a limited number of potential
predictors, such as some regions with a statistically sig-
nificant correlation with Dec—Jan streamflow, have been
found for the SST, SLP, and OLR fields, as illustrated
in Figure 4. The averages of the respective fields over
these areas, as indicated by the boxes in the figure and
also identified in Table I, are then selected as climatic

Climatic predictors

Copyright © 2009 Royal Meteorological Society
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Figure 2. Annual cycle of percentiles and mean of monthly streamflow

at Shihmen reservoir in North Taiwan. This figure is available in colour
online at www.interscience.wiley.com/ijoc
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Figure 3. The 1964-2004 time series of 10-day averaged streamflow
in Dec—Jan at Shihmen reservoir in North Taiwan.

Table I. Correlation coefficient between Dec—Jan streamflow
and the selected climatic predictors.

Climatic Zone selected Lag time Correlation
predictors (month) coefficient
with Dec—Jan
streamflow

Oct—Nov - 2 0.648

streamflow

SST 25°N-35°N; 6 0.516
140°E - 160°E

SLP 15°N-30°N; 2 —0.460
115°E - 125°E

OLR —10°N to 2 —0.610
—25°N;

135°E-160°E

predictors. These predictors are selected because they
are persistently correlated to the Dec—Jan streamflow
and the mechanism contributing to the streamflow can
be explained in the manner of global circulation rea-
sonably. Although the selected SST predictor is from

Int. J. Climatol. 30: 1256—1268 (2010)
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Figure 4. Correlation analysis between Dec—Jan streamflow and (a) Jun—Jul SST, (b) Oct—Nov SLP, and (c) Oct—Nov OLR. Climatic predictors
at given locations are indicated by boxes. This figure is available in colour online at www.interscience.wiley.com/ijoc

6 months prior to Dec—Jan, the SST around the same area
persistently retains a high correlation with the streamflow
in Dec—Jan at Shihmen reservoir throughout the follow-
ing six months. As for the case of numerous potential
predictors, the approaches for partial dependence, such as
the partial mutual information criterion (Sharma, 2000),
are recommended to select proper predictors that offer
new information.

During the East Asian winter monsoon (EAWM) sea-
son, the East Asian region is dominated by the Siberian

Copyright © 2009 Royal Meteorological Society

high and the Aleutian low over the Eurasian continents
and the Northern Pacific at middle and high latitudes.
Northeasterly winds bring cold and dry air across Tai-
wan from the continent (Xue et al., 2005; Wang, 2006).
As shown in Figure 4(a), the region of the selected
SST predictor near Japan is positively related with the
streamflow at Shihmen reservoir. The higher SST over
this region will contribute higher moisture near Japan area
and together with the northerly monsoon winds, the mois-
ture would be gradually drawn southward towards Taiwan

Int. J. Climatol. 30: 1256—1268 (2010)
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Figure 5. The differences between (a) anomalous wind vector and (b) anomalous specific humidity at 850 mb pressure level in 5 years with

lowest SLP and those in five years with highest SLP over selected area near Taiwan in Dec—Jan. The area with larger speed difference of wind

flows and difference of specific humidity are shaded in different colors in (a) with the direction indicated by arrows and in (b) respectively. This
figure is available in colour online at www.interscience.wiley.com/ijoc

in Dec—Jan and could contribute to rainfall. On the other
hand, as shown in Figure 4(b), the streamflow has a neg-
ative correlation with the sea level pressure near Taiwan.
Clearly, a local high pressure would suppress convections
and block fronts or migrating systems that may bring
rainfall. The difference between the anomaly of wind
vector in five years with lowest SLP and that in 5 years
with the highest SLP is composited as illustrated in

Copyright © 2009 Royal Meteorological Society

Figure 5(a). Easterly anomaly winds converged over Tai-
wan region is observed (Figure 5(a)) for the lower SLP
over Taiwan area. This strengthens/increases the convec-
tion activities and lead to more precipitation over Taiwan
region. Increase of water vapour at lower atmosphere
(Figure 5(b)) also contributes to the increase of precipi-
tation over Taiwan region. The difference of anomalous
specific humidity at 850 mb pressure level between years

Int. J. Climatol. 30: 1256—1268 (2010)
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with lowest SLP and highest SLP over the Taiwan area
is drawn as Figure 5(b) to show the moisture brought in.

OLR is a measure of cloudiness and strong convection.
In this study, OLR over the ocean is used to identify areas
where SSTs are sufficiently high in a sustained manner
such that convection is sustained. Therefore, OLR in an
ocean region that is a potential moisture source, or by
virtue of its temperature influences circulation patterns,
is a useful measure of SST levels exceeding a physically
important threshold. According to the correlation analysis
between the streamflow at Shihmen reservoir and OLR,
a strong relationship exists between the convection in
the Australian monsoon rainfall region and the stream-
flow at Shihmen reservoir as illustrated in Figure 4(c).
The stronger the convection over Australia the higher the
streamflow at Shihmen reservoir would be. To explore
the possible mechanism contributing to the connection
between the selected predictor and the Shihmen stream-
flow, anomalous wind flows and anomalous OLR in the
5 years with highest OLR in Australian monsoon area
in Oct—Nov are composited as shown in Figure 6(a)
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and (b), respectively. For comparison, the same com-
posite plots for anomalous wind flows and anomalous
OLR in the five years with lowest OLR are plotted as
in Figure 6(c) and (d), respectively. In the wettest years,
strong easterly anomalous winds from the Pacific Ocean
and strong westerly anomalous winds from Indian Ocean
prevailed in Oct—Nov. These strong anomalous winds
constructed a strong eastern Walker cell (EWC) and
western Walker cell (WWC) to the Maritime Continent
region and converged over that region resulting in strong
convection and a negative OLR anomaly (Meehl and
Arblaster, 2002). The equatorial Rossby wave propagates
westwards along the equator accompanied by large vari-
ations in the rotational wind (Wheeler er al., 2000) and
the symmetric circulation cells of anomalous winds are
therefore observed on either side of the equator (Allan,
1983; Wang, 2006), as also shown in Figure 6(a). The
observed anticyclone over the Northern Hemisphere then
advects the OLR anomaly northwards across the Tai-
wan area to the southern area of Japan in the wettest
years, as shown in Figure 6(b). The moisture brought
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Figure 6. The composite of (a) anomalous wind flows at 850 mb pressure level and (b) anomalous OLR in five years with lowest OLR in

Oct—Nov over selected Australian area, and the composite of (c) anomalous wind flows and (d) anomalous OLR in 5 years with highest OLR

in Oct—Nov over selected Australian area. The area with stronger wind flows are shaded in different colors in (a) and (c) with the direction

indicated by arrows. The degree of anomalous OLR is shaded in various colors in (b) and (d). This figure is available in colour online at
www.interscience.wiley.com/ijoc
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in increases the possibility of rainfall over the Taiwan
area. Conversely, in the driest five years, because of the
weaker EWC and WWC, neither the anomalous anticy-
clone nor anomalous OLR over the Maritime Continent
region could be constructed (Meehl and Arblaster, 2002),
as shown in Figure 6(c). Consequently, as illustrated in
Figure 6(d), no anomalous moisture was brought into the
Taiwan area to increase the possibility of rainfall events
over Taiwan. Therefore, the OLR over the highly corre-
lated region could be a reliable precursor and was selected
as a predictor in this study.

3.2. Approach

In the practical situation, the water authority would use
historical data to predict the streamflow for the next year
and improve the accuracy of the developed model each
year as more data become available. Consequently, the
procedure we used and tested in this study corresponds to
this sequential data acquisition and model re-calibration
process as illustrated in Figure 7. Given T years of
data to predict the inflows in year T + 1, first a Monte
Carlo procedure is used to build the forecast. A sample
of random size m < T is drawn randomly from the
T years of available data. A SVM regression model

P.-H. LI ET AL.

for predicting the inflow is then built using these m
years of data, with parameters estimated using a genetic
algorithm (GA) and leave-one-out cross validation. This
procedure is repeated 100 times, providing 100 candidate
forecast models that cover the variability in sampling
and parameter estimation with the fixed set of potential
predictors. Each of these models is then applied to a
forecast of the flow for the 7 4 1 year and the median
of these forecasts is used as the forecast. The entire
forecast ensemble of 100 is also available to estimate
the uncertainty in the forecast. The details of the SVM,
the GA, and the resampling approach are presented next.

3.3.

The principal and methodology of SVM based regression
technique is briefly provided below. Consider a general
regression model that relates the predictors v; to the
streamflow y; in year i:

Support vector machines

yi=fu)+e (D
and denote by f (v) the estimate of the regression
function f(v). The function f(v) can be any non-
linear function and in the SVM literature it is typically
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Figure 7. Proposed procedure for streamflow prediction, where T is the current year; n is the number of constructed models; the other symbols
are the same as those defined in Section 3.3.
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considered to be estimated through the sum of a set
of kernel functions. Using these kernel functions, the
input vector v; is mapped into a new feature space in
which linear regression is performed rather than non-
linear regression. Given this mapping, the estimate of
the regression model could be expressed as follows.

A

f) =(w,v) +b @)
where w represents the support vector weights (basis
functions), angle brackets denote a dot product and b
is a bias term, similar to an intercept in linear regression.
The parameters of f (v) are estimated by minimizing the
followingregularized risk function (Vapnik, 1998).

1 N
Min  —llwl®+C ) (& +§)

i=1

3

subject to

f)—(w,v)—b<ec+§
(w,v)+b— f(v) <e+§
gi*v‘i:i 20

“
&)
(6

Where &; and & are slack variables that determine
the degree to which state space samples with error more
than & be penalized; and ¢ is the degree to which one
would like to tolerate errors in constructing the predictor
f(v) (Figure 8). The above formulation is referred as the
e-insensitive approach.

The objective function given in Equations (3, 4, 5 and
6) minimizes the complexity (i.e., the magnitude of w) of
the Shihmen streamflow estimator (i.e., the estimator will
tend to be flat if no other considerations are imposed),
leading to regularization of the solution, and penalizes
errors in estimation that lie outside an ¢ tube (goodness
of fit). In other words, for any (absolute) error smaller
than ¢, & =& = 0. The constant C>0 trades off the
importance between the complexity of f and the amount
to which deviations larger than ¢ are tolerated.

Usually, the optimization problem given in Equa-
tions (3, 4, 5 and 6) is solved in its dual form using
Lagrange multipliers. Maximizing Equations (3, 4, 5 and
6) in its dual form, differentiating with respect to primal

® Support vector

Figure 8. The ¢ -insensitive loss function.
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variables (w, b, §;, &), and rearranging the following is
obtained (Asefa et al., 2004, Appendix):

N
Max W(e*, @) =—¢ » (& +0of)
i=1

N N
1
+) Zi(ai—a?)—§ > (i — )
i=1 ij=1

(7

x (ej — a)k(vi, v))

subject to

N
daf—a)=0 0=<ofe=<C (®)
i=1

to obtain

f) =Y (@ —a)k(,v)+b )

i=1

where «f and «; are Lagrange multipliers, k(v, v;) is
a kernel that measures non-linear dependence between
two state space realizations, and m is the number
of selected state space points that are outside the ¢
tube and explain the underlying dynamic relationship.
From the Kuhn-Tucker condition it follows that only
for |f(v) — y;| > ¢ the Lagrange multipliers may be
nonzero. Therefore, for points inside the ¢ tube, o] and o;
would vanish. The data points outside the ¢ tube are kept
and are therefore called ‘support vectors’ to facilitate the
learning process; hence the name SVMs.

By using different kernel functions for inner product
evaluations, various types of non-linear models in the
original space can be constructed. Radial-basis functions
(RBF) are a reasonable choice of kernel functions with
more flexibility and fewer parameters (Hua et al., 2007)
than other choices. The RBF kernel function can be
expressed as follows.

k(v vi) = exp (y* v, vill) (10)
where yis user specified kernel parameter. This kernel
is translation invariant, and can be written as Gaussian
covariance kernel with unit variance:

2 v — v;|? h?
k(v,v;) =0"exp| ——— | =exp|—— (11)
r r

where 02 =1, r2 = 1/y2, and h% = |lv — v;|*.
According to Thissen et al. (2003), the SVM model has
the following characters: (1) a global optimal solution
exists, which will be found (2) the result is a general
solution avoiding overtraining (3) the solution is sparse
and only a limited set of training points contribute to this
solution and (4) non-linear solutions can be calculated
efficiently because of the usage of inner products.
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3.4. Parameter determination

The macro level parameters for the SVM are the cost
constant C, pointwise error tolerance or the radius of the
insensitive tube g, and the width r of the RBF kernel. In
previous studies, the parameters have usually been deter-
mined by trial-and-error process which is less efficient
and not easy to reach a better set of parameters promis-
ing the performance of SVM model. In this study, a GA
was implemented to determine optimal parameters for the
SVM model as illustrated in Figure 9. The GA (Goldberg,
1989) is a heuristic global optimization technique that
imitates the natural selection of chromosomes to survive
with better fitness in the environment, has been applied to
several difficult problems, and shown to converge to near
optimal solutions (Winston and Venkataramanan, 2003).
The macro level parameters for the SVM are mutually
dependent. The implemented GA assigns the individual
chromosome as the combination of three real value vari-
ables for the SVM parameters. GA begins with randomly
generated population of chromosomes. For each set of
parameters (chromosome), leave-one-out cross validation
is implemented to train SVM models by solving the opti-
mization model defined in Equations 7—11 using the set

Defining chromosome as
the combination of
parameters C, ¢, r

L]

Generating initial
population randomly

v

Evaluating the fitness of

P.-H. LI ET AL.

of parameters with one data point dropped from training
data sequentially. The fitness value of each chromosome
is then assessed by the associated mean square error
(MSE) of the predicted errors of the trained SVM models.
The chromosomes with better fitness will tend to survive
to the next generation and crossover with each other to
generate new chromosomes in the new population. Dur-
ing the iteration between generations, mutation might also
occur in individual chromosomes to increase the diver-
sity of the population and to avoid being trapped in local
optima. This search procedure keeps superior chromo-
somes and traverses through possible solution spaces to
reach a near optimal solution without considering all pos-
sible solutions. During the iteration in the pre-specified
number of generations, the fitness value of the best chro-
mosome in each population can be improved continu-
ously and the final best set of parameters (chromosome)
can be retrieved by a search procedure.

3.5. Bagging

Bagging, or bootstrap aggregation, was originally pro-
posed and applied in classification and regression trees
(Breiman, 1996). This approach is on the basis of the

Fitness Evaluation

Decoding each chromsome

v

Obtaining the training data

each chromosome

Y

Selection

v

Crossover

v

Mutation

v

New population of
chromosomes

Achieving the prespecified
number of generations ?

Output the chromosome
with the best fitness as
determined parameters

A

set by dropping one
sequentially

v

Training SVM models with
decoded parameters and the
obtained training data sets

v

Predicting the dropped values with
the corresponding trained
SVM models

v

Evaluating the mean square error
(MSE) of the predicted errors of the
trained SVM models

v

Let MSE as the fitness of
the chromosome

Figure 9. The procedure for parameter determination using genetic algorithm.
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bootstrap statistical resampling technique (Efron and Tib-
shirani, 1993), to generate diverse training sets that are
used to train the members composing an ensemble. It
has been shown to improve the predictive performance
of regression or classification trees (Gentle ef al., 2004).
In this study, bagging is applied to improve the pre-
dictability of the proposed SVM based prediction model.
A prediction model is constructed with each bootstrapped
sample. The resampling procedure is repeated 100 times.
For each of these 100 samples, a SVM model is fit. Each
of these SVM models is then used to predict the stream-
flow in the next year. The final forecast is the median of
these 100 ensemble forecasts. This approach addresses
the uncertainty in model estimation and also reduces the
variance associated with the forecast based on just one set
of parameters. In this study, for the relatively short hydro-
logic records, 100 times of bootstrap resampling were
adopted to reduce the variation of the constructed predic-
tion models. One could use a larger number of samples,
particular as longer records are available. The reduction
in variance as a function of the number of samples used
can actually be assessed on a case by case basis. For the
current application, use of 500 samples does not appre-
ciably reduce the variance over the use of 100 samples
given that the validation period is only 10 years long.

3.6. Multiple linear regression

A multiple linear regression (MLR) was also developed
for streamflow forecast using the same predictors, to offer
a comparison to the bagging-SVM forecast model. The
MLR model is expressed as follows.

Y =bo+ ) bix; (12)
i

where Y is the Shihmen streamflow in Dec—Jan, the b;
are the regression coefficients that are estimated using the
observed data, and the x; are the regressors. The model
was fit by regular least squares procedures.

4. Results and discussion

In this study, the SVM toolbox for MATLAB developed
by University of Southampton (Gunn, 1997) was used to
implement the proposed prediction procedure. The GA
toolbox developed by MathWorks Inc. was used, and
bagging was implemented directly in MATLAB.

A subset of the data (1974 to 1994) was used for model
training and the rest of the data (1995 to 2004) was used
to test the performance of the forecasts. The parameters of
SVM model C, ¢, and r are first determined by GA with
the full record from 1974 to 2004. The “optimal values”
were 211, 0.1, and 94 respectively. Note that these are
structural parameters of the model that control how the
fitting is done and are not the equivalents of regression
coefficients or kernel parameters. Using these control
parameters, SVM models are constructed by the proposed
procedure to forecast the streamflow from 1995 to 2004.
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The prediction results from the proposed procedure are
shown in Figure 10(a). A box-and-whiskers plot in which
the bottom, middle, and upper line of the box present the
first quartile (25%), median (50%), and the third quartile
(75%) of the bootstrap predictions is provided for each
year.

For comparison, the bagged MLR based prediction
model with the same design and two other prediction
models based on simple SVM and MLR approaches
were also constructed. The prediction results for 1995
to 2004 are illustrated in Figures 10(b), 11(a) and (b).
The relative performance of these four models in terms
of correlation with the observed sequence and mean
square error between predicted and observed values
of the streamflow for the data withheld from model
building during 1995 to 2004 is presented in Table II.
The bagged SVM based prediction model outperformed
bagged MLR, simple SVM, and simple MLR in terms of
these measures. The worse performance of both bagged
and simple MLR model suggests that there is some non-
linear relationship between climatic predictors and the
Shihmen streamflow which could not be learned well
in pure linear based prediction model. The performance
of the bagged prediction models was better than that
of simple ones in reducing the variance between the
constructed models. The difference in the performance
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Figure 10. The predicted results of (a) SVM and (b) MLR models with

100 times bootstrap for each year from 1995 to 2004. This figure is
available in colour online at www.interscience.wiley.com/ijoc
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Figure 11. The predicted results of simple (a) SVM and (b) MLR
models for each year from 1995 to 2004. This figure is available in
colour online at www.interscience.wiley.com/ijoc

between the bagged and simple models is, however, much
smaller than that between SVM and MLR-based ones.
Therefore, the non-linear pattern underlying the system
is more important than variance in the development of a
reliable prediction model for the Shihmen streamflow.
The largest prediction errors occurred in 1998 for
both the SVM and MLR models. As shown in Figure 3,
the fluctuation of Shihmen streamflow seems to have
increased in recent years. Although there were similar
peaks in 1974 and 1975 during the study period, most of
the streamflow data in the training period between 1976
and 1997 were relatively low. Therefore, the predictors

Table II. Performance of the prediction results of SVM and

MLR models.
Prediction Cross Cross R> RPSS* (%)
model validated validated versus
correlation mean square climatology
coefficient error
Bagged SVM 0.83 130.2 0.62 31
Bagged MLR 0.73 164.7 0.52 18
Simple SVM 0.8 137.6 0.6 -
Simple MLR 0.72 169.8 0.5 -

4 RPSS, rank probability skill score (Wilks, 1995).
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identified in this study may not be able to adequately
reflect the mechanisms responsible for the extreme wet
conditions. Alternately, model fitting uncertainty for the
small sample size for fitting the model is going to be
high and this will be reflected in cases where prediction
errors may be large. The forecasts for subsequent years
with high flows are actually better once 1998 is included
in the data set, suggesting that sampling of extremes is
an issue in model building.

A final alternative was to consider prediction of the
Shihmen streamflow using the simulation of general cir-
culation model (GCM) (Landman and Goddard, 2002)
of the ocean-atmosphere system. To explore this alter-
native, a map presenting the correlation between the
precipitation simulated by ECHAM 4.5 (Roeckner et al.,
1996) on the resolution of 2.8° x 2.8° lat/lon grid and
the observed streamflow from 1974 to 2004 was also
generated as in Figure 12. The ECHAM runs used were
simulations using concurrent, observed data and hence
represent an upper limit on potential predictability from
the prior season. As shown in Figure 12, there was no
simulated precipitation near Taiwan which was signifi-
cantly related to the streamflow at the Shihmen reservoir.
As mentioned in Yu et al. (2002), GCMs normally sim-
ulate the precipitation of the atmosphere on the basis of
the conceptualization of physics of the atmospheric cir-
culation, surface energy, and water fluxes. The grid size
used in the GCM models is normally significantly larger
than the size of the catchments in Taiwan. For the course
resolution, the land—sea contrast and topography in the
regional scale such as catchments in Taiwan cannot be
properly represented in global models (Chu et al., 2008)
and this leads to the poor simulation results.

5. Conclusion
In Taiwan, the unanticipated fluctuations of water avail-

able in the spring growing season have led the water

~ corr Dec=Jan U\-erc%ed Shihmen monthly streamflow
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Figure 12. The correlation map between simulated precipitation by
ECHAM and streamflow in Dec—Jan from 1974 to 2004. This figure
is available in colour online at www.interscience.wiley.com/ijoc
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authority to assign a lot of the budget to compensate
for the losses caused by their failure to deliver water
allocated for irrigation. A modified SVM-based predic-
tion framework has therefore been proposed to improve
the predictability of the inflow to Shihmen reservoir in
December and January in order to mitigate such possible
negative impacts, using the identified highly correlated
climate precursors. A process of discussion about poten-
tial physical factors and exploratory data analysis (largely
linear) was used to identify prospective predictors. Then,
a non-linear regression approach that had been shown
to be effective in identifying non-linear functional rela-
tions in sparse data, multivariate predictor situations was
used. Bagging and GA were introduced to improve the
uncertainty assessment and reliability of the scheme. The
assessment of the performance of the scheme was done
in a manner similar to what may happen in the real
world. Model development based on a short record fol-
lowed by model updating as more data became available.
The potential of the strategy developed relative to the
use of a linear regression approach with the same pre-
dictors and relative to the potential predictability from
a GCM was demonstrated under these conditions. The
proposed SVM-based prediction framework reasonably
forecasts the Dec—Jan inflow to Shihmen reservoir, even
with the relatively short hydrologic records, and outper-
forms the other alternatives for learning the non-linear
pattern underlying the climate systems more robustly.
Climate information was thus found to be potentially
valuable for improved hydrologic prediction in support
of water resource management in Taiwan and the non-
linear pattern was more important in the development of
reliable prediction models for the inflow into Shihment
reservoir. The variance in the prediction from the con-
structed models by the proposed approach has also been
reduced more efficiently. Even so, if the structural rela-
tionship between the predictors used and the streamflow
were to change as climate changes or other predictors
become more important, the performance of the scheme
developed will be impacted. Also, the fitting uncertainty
of the constructed model will be higher when the avail-
able record data are shorter.

In this study, only the predictability of the streamflow
at Shihmen reservoir in Dec—Jan is explored. To facilitate
the water authority to manage Shihmen reservoir more
efficiently, the streamflow in the other seasons should
also be predicted reasonably. Further work is needed to
develop reliable prediction model for the streamflow in
the other seasons and to investigate the reasonable cli-
matic predictors and the corresponding mechanism under-
lying the global climate systems. The use of GCM’s to
explore and test the efficacy of these predictors is also
needed. At this stage we have not had the resources to
systematically analyse the precipitation response in Tai-
wan to systematic forcing of GCM’s with anomalous
conditions in each of the regions of prediction. Thus, our
understanding of the physical mechanisms is incomplete.
However, a utility of the statistical modelling approach
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as shown in this study is that it can stimulate system-
atic investigation of specific climate features that may
be responsible for regional precipitation outcomes and
thereby help overcome the perception that the GCM sim-
ply does not work for a certain region. It is also possible
to use predictors from a GCM forecast run and pre-
season climate indicators in an SVM model. However,
we have not yet explored this strategy for Taiwan. This
initial effort was focused towards the development and
quantitative testing of a tool that could be used by the
water agency for medium range planning in a critical
water supply season and for identifying some of the cli-
mate factors that need to be better understood through
subsequent modelling.
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