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A Study of Graph Covering

Student: Chi-Feng Chan Advisor: Hung-Lin Fu

Department of Applied Mathematics
National Chiao Tung University

Abstract

Let G be a fixed graph and H be a class of subgraphs of G. Denote the minimum
number of graphs in H covering the edges of G by cov(G,H ). The main work of
this thesis is to prove cov(G,H ) ≤ 3 if G is a 3-connected graph or κ′(G) = 1 or 2
and H is a class of odd subgraphs of G.
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1 Introduction and Preliminaries

1.1 Motivation

Graph decomposition has been one of the most important topic in the study of graph

theory and also combinatorial design theory. Mainly, we try to partition the edge set of

a graph G into sets E1, E2, . . . , Et such that the edge-induced subgraph of G < Ei >G ∈
H where H is a collection of graphs.

If we look at graph decomposition on the other angle, we may use a collection of

subgraphs of G to cover G. This is the so-called covering. More precisely, a graph G is

said to be covered by a class of its subgraphs H = {H1, H2, . . . , Ht} if the edge set of

G, E(G), is contained in the union of some Hi’s in H . Denote the minimum number

of graphs in H covering the edges of G by cov(G,H). In case that we require all the

graphs in H we use to cover G are edge-disjoint, we have a similar notion of cov(G,H),

the minimum number is denoted by cov∗(G,H). Clearly, cov∗(G,H) ≥ cov(G,H). In this

thesis, we shall study cov(G,H), where H is a collection of odd subgraphs of G.

1.2 Graph Terms

Let G be a graph. For each vertex v in a graph G, the number of edges incident to v is

the degree of v, denoted by deg(v). A graph G consists of a finite non-empty set V (G)

of vertices and a finite set E(G) of distinct unordered pairs of distinct vertices called

edges. The number of vertices of G is called the order of G and denoted by |V (G)|.
The number of edges of G is called the size of G and denoted by |E(G)|. A relation that

associates with each edge two vertices called its endpoints. Two or more edges joining

the same pair of vertices are called multiple edges. A loop is an edge whose endpoints

are equal. A graph is simple if it has no loops and multiple edges. Throughout of this
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thesis we consider only simple graphs.

If e = uv or (u, v) is an edge of G, then e is said to join the vertices u and v, and

these vertices u and v are then said to be adjacent, denoted by u ∼ v. We also say

that e is incident (or joined) to u and v, . The maximum and minimum degrees in G

are denoted by 4(G) and δ(G) respectively. A vertex of degree 0 is called an isolated

vertex, and a vertex of degree 1 is called an end-vertex. If all vertices of G have the

same degree, then G is a regular graph; if each degree is k, then G is a k-regular

graph. A 0-regular graph (that is, one with no edges) is a null graph. A graph is an

odd(respectively even) graph if each vertex of the graph is of odd degree(respectively

even degree). A path is a simple graph whose vertices can be ordered so that two vertices

are adjacent if and only if they are consecutive in the list. A cycle is a graph with an

equal number of vertices and edges whose vertices can be placed around a circle so that

two vertices are adjacent if and only if they appear consecutively along the circle. A graph

with no cycle is acyclic. A forest is an acyclic graph. A tree is a connected acyclic

graph. Therefore, an odd forest is an odd graph which is a forest.

The neighborhood NG(u) of u is the set of all vertices of G adjacent to u, the

closed neighborhood NG[u] of u is the union of NG(u) and u. Two edges incident to

the same vertex are adjacent edges. A matching in G is a set of edges no two of

which are adjacent. Two graphs are isomorphic if there is a one-to-one correspondence

between their vertex-sets which preserves the adjacency of vertices.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G),

denoted by H ⊆ G. If V (H) = V (G), then H is called a spanning subgraph of G. A

spanning tree of a graph G is a graph T that T is a spanning subgraph of G and T is a

tree. If W is any set of vertices in G, then the subgraph induced by W is the subgraph

of G obtained by joining those pairs of vertices in W which are joined in G. Any induced
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subgraph G[W ] of G is a subgraph induced by the subset W of V (G).

If e is an edge of G, then the edge-deleted subgraph G− e is the graph obtained

from G by removing the edge e. Similarly, if v is a vertex of G, then the vertex-deleted

subgraph G − v is the graph obtained from G by removing the vertex v together with

all its incident edges.

A graph G is connected if each pair of vertices in G belongs to a path; otherwise,

G is disconnected. A separating set or vertex cut of a graph G is a set S ⊆ V (G)

such that G − S has more than one component. The connectivity of G, written κ(G),

is the minimum size of a vertex set S such that G − S is disconnected or has only one

vertex. A graph G is k-connected if its connectivity is at least k. A disconnecting set

(edge cut) of edges is a set F ⊆ E(G) such that G− F has more than one component.

A graph is k-edge-connected if every disconnecting set has at least k edges. The edge-

connectivity of G, written by κ′(G), is the minimum size of a disconnecting set.

Throughout of this thetis, all the graphs we consider are simple graphs, i.e., multiple

edges and loops are not allowed. For all the terminologies we use in this thesis, we refer

to the textbook by West [4].

1.3 The Known Results

The following theorem is one of the well-known results in the study of graph covering.

Theorem 1.3.1 [1]. Any graph of order n can be covered by at most bn2

4
c K3’s or K2’s.

Note that Theorem 1.3.1 also give a bound for the number of elements when repre-

sent a graph by distinct sets, see [1]. So far, quite a few beautiful works in covering have
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been obtained, see [2] for a survey. Our study is motivated by the following result.

Theorem 1.3.2 [3, 5] Every bridgeless graph can be covered by at most three even

graphs.

As a counterpart of the above theorem, the following problem was posed by Pyber[2]

after showing that every graph G can be covered by at most 4 disjoint odd subgraphs.

Problem Is it true that every graph can be covered by at most three odd graphs?

In fact, Pyber has proved the following result.

Proposition 1.3.3 [2] Let G be a connected graph of even order. Then G can be cov-

ered by at most three odd graphs. Moreover, G can be covered by a forest F and an odd

graph G′ which are subgraphs of G.

Therefore, it remains to show that a graph of odd order can be covered by at most

three odd graphs. So far, we are not able to solve the problem in general. But we manage

to prove that every 3-connected graph can be covered by at most three odd graphs in

this thesis. Note that Seymour’s 6-flow Theorem implies that every 3-connected graph

can be covered by at most three even graphs[3]. Furthermore, for those graphs with low

edge-connectivities, the problem of Pyber can also be solved.
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2 The Main Results in Connectivity

In this section, We study the covering of a 3-connected graph of G by odd subgraphs.

The following lemmas are essential to the proof of the first result.

Lemma 2.1. Let G be n-connected, n ≥ 2, and v1, v2, . . . , vk be k vertices in G where k ≤
n− 1. Then there exists a spanning tree T of G such that degT (vi) = 1, i = 1, 2, . . . , k.

Proof. Since G′ = G−{v1, v2, . . . , vk} is connected, G′ has a spanning tree T ′. By the fact

that G is n-connected, each vi, i = 1, 2, . . . , k, is adjacent to a vertex ui in V (T ′). Now,

let T be the subgraph of G obtained by joining vi to ui in T ′ (not necessarily distinct) for

i = 1, 2, . . . , k. Then, T is a spanning tree of G satisfying the condition degT (vi) = 1 for

i = 1, 2, . . . , k. This concludes the proof. 2

Corollary 2.2. Let G be a 2-connected graph. Then for each vertex v in G, there exists

a spanning tree T of G such that degT (v) = 1.

Proof. A direct consequence of Lemma 2.1. 2

Lemma 2.3. Let G be a forest. Then G can be covered by at most two disjoint odd

forests.

Proof. It suffices to show that a tree T can be covered by at most two odd forests. Starting

from a vertex v1(root), if deg(v1) is odd, we color all edges incident to v1 by black. If

deg(v1) is even, we color an odd number of edges which are incident to v1 by black and

the rest of edges by white. Next, we consider a vertex v2 ∈ N(v1) = {v2, v3, . . . , vt}.
W.L.O.G. let e1 = v1v2 be colored by black. If deg(v2) is even, we color an odd number

of edges incident to v2 (not including e1) by white and others by black. If deg(v2) is odd,

we color all edges incident to v2 by black. Continuing the above process, we can color

all the edges incident to v3, v4, . . . , and vt respectively. Since T is a tree, we move on to
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another level(start from root v1) while all edges are colored. Now, it’s easy to check that

the edges of each color induces an odd forest. 2

The following result was obtained in [2]. Since knowing the idea of his proof is very

helpful in understanding the technique we use in proving the main theorem, we present

its proof here.

Proposition 2.4. [2] Every connected graph G can be covered by at most four odd

subgraphs of G.

Proof. First, we consider the case where |V (G)| is even. If G itself is an odd graph, then

there is nothing to prove. On the other hand, let v1, v2, . . . , v2k−1, v2k be the vertices in G

with even degree and T be a spanning tree of G. By the property of T , v2i−1 and v2i can

be connected by a unique path on T , let it be Pi, i = 1, 2, . . . , k. Now, take the modulo

2 sum of P1, P2, . . . , and Pk, we obtain a graph G′(e is in E(G′) if and only if e is in an

odd number of Pi’s). Clearly, G′ is a subgraph of T which is a forest. Moreover, G−G′ is

an odd graph by the way we construct G′. Thus, by Lemma 2.3, G can be covered by at

most three odd graphs. It is left to consider the case when G is of odd order. First, let T ′

be a spanning tree of G and v be a vertex of G such that degT ′(v) = 1. Since v is an end

point in T , then G− v is connected. By the even case, G − v can be covered by an odd

graph G̃ and a forest F . The proof follows easily if degG(v) is odd. On the other hand, if

degG(v) is even, let G′′ be a star with center v and degG(v)− 1 edges, and F ′ be a forest

obtained from the union of F and an edge incident to v which is not in G′′. Now, G can

be covered by G′′, F ′ and G̃ and the proof follows by covering F ′ with two odd forests.

2

Corollary 2.5. G is a graph then cov(G,{even subgraph or odd subgraph}) ≤ 3.
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Proof. We can prove this corollary by Theorem 1.3.2, Proposition 1.3.3 and Lemma

2.12. But, we shall use a similar idea as in Proposition 2.4. If |V (G)| is even, there is

nothing to prove. On the other hand, let v1, v2, . . . , v2k−1, v2k be the vertices in G with

odd degree and T be a spanning tree of G. By the property of T , v2i−1 and v2i can be

connected by a unique path on T , let it be Pi, i = 1, 2, . . . , k. Now, take the modulo 2

sum of P1, P2, . . . , and Pk we obtain a graph G′ (e is in E(G′) if and only if e is in an odd

number of Pi’s). Clearly, G′ is a subgraph of T which is a forest. Moreover, G − G′ is

an even graph by the way we construct G′. Thus by Lemma 2.3, G can be covered by at

most three odd or even graphs. 2

Note here that the odd forests in Lemma 2.3 are disjoint and an odd subgraph G′ is

a spanning odd subgraph of G in Proposition 1.3.3. Also, the idea of attaching edges to

a forest using in Proposition 2.4 plays an important role in the proof of the main theorem.

Theorem 2.6. Let G be a 3-connected graph. Then G can be covered by at most three

odd subgraphs.

Proof. By Proposition 1.3.3, it suffices to consider the case when G is of odd order.

Therefore, G contains a vertex v of even degree. For simplicity, we split the proof into

three cases.

Case 1. There exists a vertex u1 ∈ N(v) such that degG(u1) is even.

Clearly, G− v is 2-connected and G− v has a spanning tree T such that degT (u1) =

1(by Lemma 2.2). Now, if G− v is an odd graph, then the proof follows by decomposing

the star with center v into two odd subgraphs. On the other hand, G − v is not an odd

graph. Then, by Proposition 1.3.3, G−v can be covered by an odd graph G′ and a forest F

such that degF (u1) = 0, since degG−v(u1) is odd and degT (u1) = 1. Thus, if we can cover

G−G′ by at most two odd subgraphs, then we are done. For this purpose, we first delete

v and replace v with |N(v)| = t vertices v1, v2, . . . , vt where N(v) = {u1, u2, . . . , ut} and
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obtain a new forest F ∗ by adding (vi, ui), i = 1, 2, . . . , t, to F . Note that degF (u1) = 0.

Now, by Proposition 1.3.3, F ∗ can be covered by at most two odd forests F ∗
1 and F ∗

2

such that (v1, u1) is in F ∗
1 . Since degG(v) is even, either each odd forest contains an odd

number of edges incident to vi’s or each odd forest contains an even number of edges

incident to vi’s. In the front case, we replace each (vi, ui) with (v, ui) to obtain F1 and F2

respectively. Then G is covered by the odd subgraphs G′, F1 and F2. Otherwise, since

(v1, u1) is a component in F ∗, by moving (v1, u1) to F ∗
2 , the proof follows as above process.

This concludes the proof of Case 1.

Case 2. For each u ∈ N(v), degG(u) is odd and N(v) = V (G− v).

Let N(v) = {u1, u2, . . . , ut} and G1 be the star of size |N(u1)| with center u1.

Clearly, G1 is an odd graph which has |N(u1)| edges. Therefore, |N(u1)
⋂

N(v)| is

even, let N(u1)
⋂

N(v) = {u2, u3, . . . , u2s−1} if it is not empty. Now, let G2 be the

graph induced by the edge set A
⋃

B where A = {(v, ui)|i = 2s, 2s + 1, . . . , t} and

B = E(G − v)\{(u1, uj)|j = 2, 3, . . . , 2s − 1}. Then, it is not difficult to check that G2

is an odd subgraph of G and G can be covered by three odd subgraphs G1, G2 and G3

where G3 is also an odd star and E(G3) = {(v, ul)|l = 1, 2, . . . , 2s − 1}. Note that if

degG(u1) = 1, then G is covered by G1 and G2.

Case 3. For each u ∈ N(v), degG(u) is odd and |V (G− v)| > |N(v)|.
For clearness, we consider two subcases depending on the parity of degG(x) where

x ∈ N(u)\N [v] for some u such that N(u)\N [v] is not an empty set.

Subcase 3.1. degG(x) is odd.

Since G − v is 2-connected, by Lemma 2.1, G − v has a spanning tree T such that

degT (x) = 1. By Proposition 1.3.3, since |V (G − v)| is even, G − v can be covered by

an odd subgraph G′ and a forest F such that F is a subgraph of T , degF (x) = 0 and

degF (u) is odd(degG−v(u) is even). By a similar idea as in Case 1, we can replace v with

v1, v2, . . . , vt where N(v) = {u1(= u), u2, . . . , ut} and obtain a new forest F ∗ by adding

(vi, ui), i = 1, 2, . . . , t, to F . Now, degF ∗(u1) is even and thus F ∗ can be covered by two
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odd subgraphs F ∗
1 and F ∗

2 such that e1 = (v1, u1) is in F ∗
1 and all the other edges incident

to u1(including (u1, y)) are contained in F ∗
2 . By the same argument as we have in Case

1, if both F ∗
1 and F ∗

2 contain an odd number of edges from {(vi, ui)|i = 1, 2, . . . , t}, then

we have the three odd graphs we need, G′, F1 and F2, where F1 and F2 are obtained

by replacing (vi, ui)’s in F ∗
1 and F ∗

2 respectively with (v, ui)’s. On the other hand, if

F ∗
1 contains an even number of edges from {(vi, ui)|i = 1, 2, . . . , t}, we let F ′

1 and F ′
2

be the graphs obtained by the same process as above and then let F1 = F ′
1 − e1 and

F2 = F ′
2 + e1 + (u1, x). Since e1 is in fact an independent edge in F ∗

1 , F1 = F ′
1 − e1 is

an odd subgraph of G. F2 is also an odd subgraph because of the fact that degF (x) = 0.

Hence we have proved Subcase 3.1.

Subcase 3.2 degG(x) is even.

Since G is 3-connected, G− u is 2-connected. By Lemma 2.1 G− u has a spanning

tree T such that degT (x) = 0 and G − u can be covered by an odd graph G′ and a

forest F which is a subgraph of T . Now, instead of replacing v with vi’s(Subcase 3.1)

we replace u with u1, u2, . . . , us where s = |N(u)| and join ui to wi for i = 1, 2, . . . , s,

where N(u) = {x = w1, w2, . . . , ws = v} to obtain a forest F ∗. By observation, since x

is adjacent to u, degG−u(x) is odd. Moreover, degT (x) = 0 implies that degF (x) = 0 and

(u1, x) is an independent edge in F ∗. Therefore, we can cover F ∗ with two odd forests

F ∗
1 and F ∗

2 such that e1 = (u1, w1) in F ∗
1 and e2 = (us, ws) in F ∗

2 . Now, by the fact that

degG(u) is odd, s is an odd integer. Hence, one of F ∗
1 and F ∗

2 contains an even number

of edges in {(ui, wi)|i = 1, 2, . . . , s} and the other contains an odd number of such edges.

First, if F ∗
2 contains an even number of such edges, then let F2 be obtained from F ∗

2 + e1

by replacing (u1, w1) and (ui, wi)’s in F ∗
2 with (u,w1) and (u,wi)’s respectively and let

F1 be obtained from F ∗
1 by replacing (uj, wj)’s in F ∗

1 with (u,wj)’s. On the other hand,

if F ∗
2 contains an odd number of edges from {(ui, wi)|i = 1, 2, . . . , s}, then F ∗

1 + e2 and

F ∗
2 both contain an odd number of such edges. Thus, F1 and F2 can be obtained with

a similar way. Since F1 and F2 are odd subgraphs of G, this concludes the proof of this
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subcase and the theorem. 2

3 The Main Results in Edge-connectivity

At this moment, we are not able to solve the problem when the connectivity of G is 1 or

2. But we can prove that G can be covered by at most three odd subgraphs if κ′(G) =

1 or 2. First, we need a notion about edge pair. Observe that, by Lemma 2.3, a forest

can be covered by at most two disjoint forests. In fact, we can cover F with exactly two

edge-disjoint odd forests, (F1, F2), provided that F is not an odd forest itself. Moreover,

it is not difficult to see that there are more than one way to cover F by two edge-disjoint

odd forests. Therefore, it is interesting to know whether there exist two edges e1 and

e2 such that there is a covering with edge-disjoint forests (F1, F2) where e1 and e2 are

belonged to the same odd forest and also there exists a covering with edge-disjoint forests

(F ∗
1 , F ∗

2 ) of F in which e1 ∈ E(F ∗
1 ) and e2 ∈ E(F ∗

2 ).

Obviously, if F is P3, then it is not possible. But, if F is an even star with at least

four edges, then we do have such a pair of edges. In fact, any two edges form a pair of

such edges. For convenicence, we call them a good pair in F .

Let P (e1, e2) be a path which connects two edges e1 and e2 in a graph (not including

e1 or e2). It is well-known that in a tree there exists exactly one path P (e1, e2) for each

pair of non-adjacent edges e1 and e2. (If e1 and e2 are incident, then define P (e1, e2) as

the graph with vertex set e1

⋂
e2 and edge set ∅.) Now, we have a result to characterize

a good pair.

Lemma 3.1. Two edges e1 and e2 form a good pair in a tree T if and only if there exists

a vertex x on P (e1, e2) such that deg(x) = 2t, t > 1.
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Proof. For the sufficiency, let x be the vertex on P (e1, e2) such that deg(x) = 2t, t > 1.

W.L.O.G. we let e1 and e2 lie in the same odd forest F , e3 and e4 be the edges incident

to x in P (e1, e2) + {e1, e2}. Let e3 and e4 lie in different forests F1 and F2 respectively

and e5 be an edge in F2 which is also incident to x. By Lemma 2.3, we can get two new

disjoint odd forests F ∗
1 and F ∗

2 by switching e3 and e5. Now, e1 and e2 lie in F ∗
1 and F ∗

2

respectively. Therefore, e1 and e2 form a good pair. For the necessity, if we have assigned

a forest to contain e1, then all edges that joined to the vertices on P (e1, e2) should be

fixed; of course, these edges include e2. Without having a vertex x with deg(x) = 2t, t >

1, there is no way to put e1 and e2 in edge-disjoint odd forests provided e1 and e2 are in

the same odd forest and vice versa. This concludes the proof. 2

Lemma 3.2. Let e1 and e2 be two edges in T which are not a good pair in T and let e be

an edge which is incident to a vertex on P (e1, e2) and a vertex not in V (T ). If e1 and e2 lie

in the same(respectively different) forest(s) when covering T by two disjoint odd forests,

then e1 and e2 form a good pair in T + e or they could lie in the different(respectively

same) forest(s) when covering T + e by two odd disjoint forests.

Proof. By Lemma 3.1, if e1 and e2 are not a good pair in T , then for each vertex v on

P (e1, e2), deg(v) is either odd or 2. Since v is on P (e1, e2), deg(v) ≥ 2. If deg(v) is odd,

then degT+e(v) = 2t, t > 1. By Lemma 3.1, e1 and e2 form a good pair in T + e. On the

other hand, since adding e to T will change the status of e1 and e2(in the same odd forest

or not), the proof follows. 2

Lemma 3.3. Let e1 and e2 be two edges in T which are not a good pair in T and

e /∈ {e1, e2} such that e is incident to a vertex on P (e1, e2). If e1 and e2 lie in the

same(respectively different) forest(s) when covering T by two disjoint odd forests, then

e1 and e2 form a good pair in T − e or they could lie in the different(respectively same)

forest(s) when covering T − e by two odd disjoint forests.

11



Proof. If e ∈ P (e1, e2), then e1 and e2 lie in two different connected components of T −e.

It’s easy to see that e1 and e2 form a good pair in T − e. So we can suppose e /∈ P (e1, e2).

By Lemma 3.1, if e1 and e2 are not a good pair in T , then for each vertex v on P (e1, e2),

deg(v) is either odd or 2. Let e = (x, v), x be a vertex on P (e1, e2) and v be any vertex

in T . Since degT (x) ≥ 2 hence x ∈ P (e1, e2). Now, consider the following three cases.

Case 1. degT (x) = 2.

e must be on P (e1, e2). Therefore, e1 and e2 are a good pair in T − e.

Case 2. degT (x) = 3.

Suppose e /∈ P (e1, e2) and degT−{e}(x) = 2. Hence, exactly one edge incident to x in

P (e1, e2) will be changed when e is removed from T and also exactly one edge of {e1, e2}
will be changed.

Case 3. degT (x) is odd but not 3.

Suppose e /∈ P (e1, e2), then degT−{e}(x) is even and not 2. By Lemma 3.1, e1 and

e2 are a good pair in T − e. This concludes the proof. 2

A graph U is unicyclic if U is connected and U contains exactly one cycle. Clearly,

|E(G)| = |V (G)| if G is unicyclic.

Lemma 3.4. Let U be a unicyclic graph which is not an odd graph itself and also U can

not be covered by two disjoint odd subgraphs. Let e be an edge which joins a vertex on

the cycle of U and a vertex not in V (U). Then U + e is an odd graph itself or U + e can

be covered by two disjoint odd subgraphs.

Proof. W.L.O.G. we suppose e = (x1, v) is the new edge in U + e and x1 is a vertex in

V (U). Hence, there exists an edge e1 = (x1, x2) on the cycle of U . Clearly, T = U - e1 is

a tree and T is not an odd graph(or U can be covered by T and e1). By Lemma 2.3, T

can be covered by two disjoint odd forests. We shall color the edges of two disjoint odd

forests by black and white respectively. Then the proof follows if we can find a way to

12



color the edges of U + e by using black and white and both colors induce an odd forest.

Case 1. degT (x1) and degT (x2) are both odd.

All edges joined to x1(or x2) must be colored with the same color. If the colors of

the edges that joined to x1 and x2 are the same, then it’s done by coloring e1 with the

other color. Otherwise, we suppose that the edges which join to x1 are colored with white

and e and e1 are also colored with white.

Case 2. degT (x1) is even and degT (x2) is odd.

If the edges joined to x2 can be colored with black, then we can color e and e1 with

white.

Case 3. degT (x1) is odd and degT (x2) is even.

At first, we color all edges joined to x2 with black and the others by the method

used in Lemma 2.3. If the edges joined to x1 are colored with white, then we color e1

with black. Otherwise, we color e and e1 with black.

Case 4. Both degT (x1) and degT (x2) are even.

At first, we color all edges joined to x2 with black and the others by the method

used in Lemma 2.3. Then, it is done by coloring e and e1 with black. 2

Lemma 3.5. Let G be a connected graph such that |V (G)| is odd. Then cov∗(G) ≤ 3

provided G has a vertex of degree 1.

Proof. Let degG(x) = 1 and G′ = G[V (G)−x]. Then, |V (G′)| is even and G′ is connected.

By Proposition 1.3.3, G′ can be covered by an odd subgraph and a forest F . Let e be the

edge incident to x in G. Clearly, F+e is a forest. By Lemma 2.3, F + e can be covered

by at most two disjoint odd forests. This concludes the proof. 2

Theorem 3.6. If G is a connected graph which contains a bridge (in the other words,

κ′(G) = 1) and |V (G)| is odd, then cov∗(G) ≤ 3.

Proof. By Lemma 3.5, we can assume that there exists no vertex which is of degree one

in G. Let e be a bridge of G. Then G − e contains two connected components G1 and
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G2. Since |V (G)| is odd, |V (G1)|+ |V (G2)| is odd. W.L.O.G. we suppose |V (G1)| is odd

and |V (G2)| is even. So, |V (G1 + e)| is even and |V (G2 + e)| is odd and G2 + e contains

a vertex of degree 1. By Proposition 1.3.3, Lemma 2.3 and Lemma 3.5, G1 + e and

G2 + e can be covered by at most 3 disjoint odd subgraphs, denoted by {H∗
1 , H

∗
2 , H

∗
3} and

{H∗∗
1 , H∗∗

2 , H∗∗
3 } respectively. Furthermore, e ∈ H∗

1 and e ∈ H∗∗
1 .(Note that H∗

2 , H
∗
3 , H

∗∗
2

and H∗∗
3 may be null graphs.) Then H1 = H∗

1

⋃
H∗∗

1 , H3 = H∗
3

⋃
H∗∗

3 and H3 = H∗
3

⋃
H∗∗

3 are three disjoint odd graphs(or null graphs) which covers G. This concludes the

proof. 2

A forest F is minimum if a connected graph G with even order is covered by a

disjoint odd spanning subgraph G1 and a forest F such that |E(F )| is the minimum. Since

a connected graph G with even order can be covered by an odd subgraph G1 and a forest

F such that G1 and F are edge-disjoint, minimum forest F does exist.

Proposition 3.7. If F is a minimum forest of G, then F + e is a forest for any edge e in

G− F .

Proof. Suppose not. So F + e contains a cycle C and e is an edge on the cycle. Because

G1 = G−F is spanning, F ∗ = (F + e)− (C− e) is a forest and G∗
1 = (G1− e)+ (C− e) is

an odd spanning subgraph. Clearly, F ∗ and G∗
1 are disjoint and |E(F ∗)| < |E(F )| hence

|E(C)| ≥ 3. We have a contradiction. 2

Lemma 3.8. Let G be a connected graph such that |V (G)| is odd. If G contains a vertex

of degree 2, then cov(G) ≤ 3.

Proof. First, if G contains a bridge, then by Theorem 3.6, cov(G) ≤ 3.

So we suppose G contains no bridges and deg(v) = 2. Hence, G′ = G[V (G) − v]

is connected and |V (G′)| is even. By Proposition 1.3.3, G can be covered by an odd

subgraph G1 and a minimum forest Fm. Let v be incident to u1 and u2 in G. By a similar
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idea as in the proof of Theorem 2.6, we can replace v with v1, v2 to obtain a new forest

F ∗
m by adding ei = {vi, ui}, i = 1, 2, to Fm. If F ∗

m can be covered by disjoint odd forests

F1 and F2 such that e1 ∈ F1 and e2 ∈ F2, then G−G1 can be covered by 2 disjoint odd

subgraphs. On the other hand, if e1 and e2 is a good pair in G − G1, then we are done.

Otherwise, if e1 and e2 is not a good pair in G − G1, by Proposition 3.7, F ∗
m + e3 is a

forest where e3 is an edge incident to u1 in G1. The proof follows by covering G−G1 + e3

with two odd subgraphs. 2

Note that in Lemma 3.8 each edge incident to the vertex of degree 2 belongs to

exactly one odd subgraph.

Now, we are ready for the main result.

Theorem 3.9. Let G be a connected graph such that |V (G)| is odd. Then cov(G) ≤ 3

provided κ′(G) = 2.

Proof. Let {e1, e2} be the edge-cut of G. Therefore, G− e1 − e2 contains two connected

components X and Y .

For simplicity, we split the proof into three cases.

Case 1. G contains a vertex of degree 2.

By Lemma 3.8, the proof follows.

Case 2. G contains e1 = (x1, y1) and e2 = (x1, y2), where x1 ∈ X and y1, y2 ∈ Y .

Subcase 2.1. |V (X)| is odd and |V (Y )| is even.

By Lemma 3.8, Y + e1 + e2 can be covered by three odd subgraphs Y1, Y2 and Y3.

W.L.O.G. we let e1 ∈ Y1 and e2 ∈ Y2. Since |V (X + e1)| is even, by Proposition 1.3.3,

X + e1 can be covered by a spanning odd subgraph X3 and a minimum forest Fm. By

Lemma 3.2 and Proposition 3.7, either Fm + e2 or Fm + e2 + e4 can be covered by two odd

disjoint forests X1 and X2 such that e1 ∈ X1 and e2 ∈ X2, e4 is an edge incident to x1 in
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X3. Then G can be covered by three odd subgraphs G1, G2 and G3 where Gi = Xi

⋃
Yi.

Subcase 2.2. |V (X)| is even and |V (Y )| is odd.

By a similar idea in Subcase 2.1. By Proposition 1.3.3, Y + e1 + e2 can be covered

by three odd subgraphs Y1, Y2 and Y3 and e1 ∈ Y1 and e2 ∈ Y2. By Lemma 3.2 and

Proposition 3.7, either Fm + e2 or Fm + e2 + e4 can be covered by two odd disjoint forests

X1 and X2 such that e1 ∈ X1, e2 ∈ X2 and e4 is an edge incident to x1 in X3. Then G

can be covered by three odd subgraphs G1, G2 and G3 where Gi = Xi

⋃
Yi.

Case 3 G contains e1 = (x1, y1) and e2 = (x2, y2) where x1, x2 ∈ X and y1, y2 ∈ Y .

Consider the two graphs X + (x1, z1) + (x2, z1) and Y + (y1, z2) + (y2, z2) where zi

is new vertex not in X and Y . By Proposition 1.3.3 and Lemma 3.8, the two graph both

can be covered by at most three odd subgraphs. This implies Y + e1 + e2 can be covered

by three odd subgraphs Y1, Y2 and Y3 such that e1 ∈ Y1 and e2 ∈ Y2. Also, X + e1 + e2

can be covered by three odd subgraphs X1, X2 and X3 such that e1 ∈ X1 and e2 ∈ X2.

Then G can be covered by three odd subgraphs G1, G2 and G3 where Gi = Xi

⋃
Yi. 2

4 Conclusion

In this thesis, we manage to prove that a 3-connected graph, or a k-edge-connected graph

for k = 1, 2, can be covered by three of its odd subgraphs. But, to solve the entire problem

posed by Pyber needs more effort to finish the whole proof. We do hope that this can be

done in the near future. Recently, we have received an infomation from Professor Pyber

that this problem was proved by a Hungarian Tama’s Mätrai several years ago. But, due

to the length and complicated proof technique, his proof was not accepted by an elite

journal and therefore he decided not to publish the work. We wish that our proof is clear

and short enough to be checked with resonable effort.
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[1] P. Erdős , A. W. Goodman and L. Pósa, The representation of graphs by set inter-

sections, Canad. J. Math.18(1966), 106-112.

[2] L. Pyber, Covering the edges of a graph by . . . , Lecture notes.

[3] P. D. Seymour, Nowhere-zero 6-flows, J. Combin. Th.(B)30(1981), 130-135.

[4] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall(2001), Inc.

[5] D. H. Younger, Integer flows, J. Graph Th. 7(1983), 349-357.

17


	Abstract(in Chinese)
	Abstract(in English)
	Acknowledgment
	Contents
	Introduction and Preliminaries
	Motivation
	Graph Terms
	The Known Results

	The Main Results in Connectivity
	The Main Results in Edge-connectivity
	Conclusion

