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Abstract

Let G be a fixed graph and H be a class of subgraphs of G. Denote the minimum
number of graphs in H covering the edges of G by cov(G, H). The main work of
this thesis is to prove cov(G, H) < 3 if G is a 3-connected graph or x'(G) = 1 or 2
and H is a class of odd subgraphs of G.
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1 Introduction and Preliminaries

1.1 Motivation

Graph decomposition has been one of the most important topic in the study of graph
theory and also combinatorial design theory. Mainly, we try to partition the edge set of
a graph G into sets F, Es, ..., F; such that the edge-induced subgraph of G < E; >4 €

H where H is a collection of graphs.

If we look at graph decomposition on the other angle, we may use a collection of
subgraphs of G to cover GG. This is the so-called covering. More precisely, a graph G is
said to be covered by a class of its subgraphs H = {H;, H, ..., H;} if the edge set of
G, E(G), is contained in the union of some H;’s in H. Denote the minimum number
of graphs in H covering the edges of G by cov(G, H). In case that we require all the
graphs in H we use to cover GG are edge-disjoint, we have a similar notion of cov(G, H),
the minimum number is denoted by cov*(G, H). Clearly, cov*(G, H) > cov(G, H). In this

thesis, we shall study cov(G, H), where H is a collection of odd subgraphs of G.

1.2 Graph Terms

Let G be a graph. For each vertex v in a graph G, the number of edges incident to v is
the degree of v, denoted by deg(v). A graph G consists of a finite non-empty set V(G)
of vertices and a finite set F(G) of distinct unordered pairs of distinct vertices called
edges. The number of vertices of G is called the order of G and denoted by |V(G)].
The number of edges of G is called the size of G and denoted by |E(G)|. A relation that
associates with each edge two vertices called its endpoints. Two or more edges joining
the same pair of vertices are called multiple edges. A loop is an edge whose endpoints

are equal. A graph is simple if it has no loops and multiple edges. Throughout of this
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thesis we consider only simple graphs.

If e = uv or (u,v) is an edge of G, then e is said to join the vertices u and v, and
these vertices u and v are then said to be adjacent, denoted by u ~ v. We also say
that e is incident (or joined) to w and v, . The maximum and minimum degrees in G
are denoted by A(G) and 0(G) respectively. A vertex of degree 0 is called an isolated
vertex, and a vertex of degree 1 is called an end-vertex. If all vertices of G have the
same degree, then G is a regular graph; if each degree is k, then G is a k-regular
graph. A O-regular graph (that is, one with no edges) is a null graph. A graph is an
odd(respectively even) graph if each vertex of the graph is of odd degree(respectively
even degree). A path is a simple graph whose vertices can be ordered so that two vertices
are adjacent if and only if they are consecutive in the list. A cycle is a graph with an
equal number of vertices and edges whose vertices can be placed around a circle so that
two vertices are adjacent if and only if they appear consecutively along the circle. A graph
with no cycle is acyclic. A forest is an acyclic graph. A tree is a connected acyclic

graph. Therefore, an odd forest is an odd graph which is a forest.

The neighborhood N¢(u) of u is the set of all vertices of G adjacent to u, the
closed neighborhood Ng[u| of w is the union of Ng(u) and u. Two edges incident to
the same vertex are adjacent edges. A matching in G is a set of edges no two of
which are adjacent. Two graphs are isomorphic if there is a one-to-one correspondence

between their vertex-sets which preserves the adjacency of vertices.

A subgraph of a graph G is a graph H such that V(H) C V(G) and E(H) C E(G),
denoted by H C G. If V(H) = V(G), then H is called a spanning subgraph of G. A
spanning tree of a graph G is a graph 7" that T is a spanning subgraph of G and T is a
tree. If W is any set of vertices in GG, then the subgraph induced by W is the subgraph

of G obtained by joining those pairs of vertices in W which are joined in G. Any induced



subgraph G[W] of G is a subgraph induced by the subset W of V(G).

If e is an edge of GG, then the edge-deleted subgraph G — e is the graph obtained
from G by removing the edge e. Similarly, if v is a vertex of GG, then the vertex-deleted
subgraph G — v is the graph obtained from G by removing the vertex v together with

all its incident edges.

A graph G is connected if each pair of vertices in G belongs to a path; otherwise,
G is disconnected. A separating set or vertex cut of a graph G is a set S C V(G)
such that G — S has more than one component. The connectivity of G, written x(G),
is the minimum size of a vertex set S such that G — S is disconnected or has only one
vertex. A graph G is k-connected if its connectivity is at least k. A disconnecting set
(edge cut) of edges is a set F' C E(G) such that G — I has more than one component.
A graph is k-edge-connected if every disconnecting set has at least k edges. The edge-

connectivity of G, written by «'(G), is the minimum size of a disconnecting set.
Throughout of this thetis, all the graphs we consider are simple graphs, i.e., multiple

edges and loops are not allowed. For all the terminologies we use in this thesis, we refer

to the textbook by West [4].

1.3 The Known Results

The following theorem is one of the well-known results in the study of graph covering.

Theorem 1.3.1 [I]. Any graph of order n can be covered by at most L”TQJ K3's or Ky's.

Note that Theorem 1.3.1 also give a bound for the number of elements when repre-

sent a graph by distinct sets, see [I]. So far, quite a few beautiful works in covering have



been obtained, see [2] for a survey. Our study is motivated by the following result.

Theorem 1.3.2 [3, [5] Every bridgeless graph can be covered by at most three even

graphs.

As a counterpart of the above theorem, the following problem was posed by Pyber[2]

after showing that every graph G can be covered by at most 4 disjoint odd subgraphs.

Problem Is it true that every graph can be covered by at most three odd graphs?

In fact, Pyber has proved the following result.

Proposition 1.3.3 [2] Let G be a connected graph of even order. Then G can be cov-
ered by at most three odd graphs. Moreover, G can be covered by a forest F' and an odd

graph G’ which are subgraphs of G.

Therefore, it remains to show that a graph of odd order can be covered by at most
three odd graphs. So far, we are not able to solve the problem in general. But we manage
to prove that every 3-connected graph can be covered by at most three odd graphs in
this thesis. Note that Seymour’s 6-flow Theorem implies that every 3-connected graph
can be covered by at most three even graphs[3]. Furthermore, for those graphs with low

edge-connectivities, the problem of Pyber can also be solved.



2 The Main Results in Connectivity

In this section, We study the covering of a 3-connected graph of G' by odd subgraphs.

The following lemmas are essential to the proof of the first result.

Lemma 2.1. Let GG be n-connected, n > 2, and vy, vq, . .., v, be k vertices in G where k <

n — 1. Then there exists a spanning tree T of G such that degr(v;) =1,i =1,2,... k.

Proof. Since G' = G—{vy,vs,...,v;} is connected, G’ has a spanning tree 7", By the fact
that G is n-connected, each v;, i = 1,2,..., k, is adjacent to a vertex u; in V(T"). Now,
let T be the subgraph of G obtained by joining v; to u; in 7" (not necessarily distinct) for
i=1,2,..., k. Then, T is a spanning tree of G satisfying the condition degr(v;) = 1 for

i =1,2,...,k. This concludes the proof. O

Corollary 2.2. Let G be a 2-connected graph. Then for each vertex v in GG, there exists

a spanning tree 1" of G such that degr(v) = 1.

Proof. A direct consequence of Lemma 2.1. a

Lemma 2.3. Let G be a forest. Then G can be covered by at most two disjoint odd

forests.

Proof. It suffices to show that a tree T' can be covered by at most two odd forests. Starting
from a vertex v(root), if deg(vy) is odd, we color all edges incident to v; by black. If
deg(vy) is even, we color an odd number of edges which are incident to v; by black and
the rest of edges by white. Next, we consider a vertex vo € N(v1) = {vo,v3,...,0:}.
W.L.O.G. let e; = vjv9 be colored by black. If deg(v,) is even, we color an odd number
of edges incident to vy (not including e;) by white and others by black. If deg(vs) is odd,
we color all edges incident to vy by black. Continuing the above process, we can color

all the edges incident to vz, vy, ..., and v, respectively. Since T is a tree, we move on to
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another level(start from root v;) while all edges are colored. Now, it’s easy to check that

the edges of each color induces an odd forest. a

The following result was obtained in [2]. Since knowing the idea of his proof is very
helpful in understanding the technique we use in proving the main theorem, we present

its proof here.

Proposition 2.4. [2] Every connected graph G can be covered by at most four odd

subgraphs of G.

Proof. First, we consider the case where |V(G)| is even. If G itself is an odd graph, then
there is nothing to prove. On the other hand, let vy, vs, ..., vop_1, Vo be the vertices in G
with even degree and T be a spanning tree of G. By the property of T, v9;_1 and vg; can
be connected by a unique path on 7', let it be P;, « = 1,2,..., k. Now, take the modulo
2 sum of P, P,,...,and Py, we obtain a graph G'(e is in F(G") if and only if e is in an
odd number of P;’s). Clearly, G’ is a subgraph of 7" which is a forest. Moreover, G — G’ is
an odd graph by the way we construct G'. Thus, by Lemma 2.3, G can be covered by at
most three odd graphs. It is left to consider the case when G is of odd order. First, let T’
be a spanning tree of G and v be a vertex of G such that degy/ (v) = 1. Since v is an end
point in 7', then G — v is connected. By the even case, G — v can be covered by an odd
graph G and a forest F. The proof follows easily if dega(v) is odd. On the other hand, if
dega(v) is even, let G” be a star with center v and degg(v) — 1 edges, and F’ be a forest
obtained from the union of ' and an edge incident to v which is not in G”. Now, G can
be covered by G”, F" and G and the proof follows by covering F’ with two odd forests.

O

Corollary 2.5. GG is a graph then cov(G,{even subgraph or odd subgraph}) < 3.



Proof. We can prove this corollary by Theorem 1.3.2, Proposition 1.3.3 and Lemma
2.12. But, we shall use a similar idea as in Proposition 2.4. If |V(G)]| is even, there is
nothing to prove. On the other hand, let vy, vs, ..., v9r_1, 9, be the vertices in G with
odd degree and T" be a spanning tree of G. By the property of T', vy; 1 and vy; can be
connected by a unique path on 7', let it be P;, + = 1,2,..., k. Now, take the modulo 2
sum of Py, P,,...,and P we obtain a graph G’ (e is in F(G") if and only if e is in an odd
number of P;’s). Clearly, G’ is a subgraph of T" which is a forest. Moreover, G — G’ is
an even graph by the way we construct G'. Thus by Lemma 2.3, G can be covered by at

most three odd or even graphs. O

Note here that the odd forests in Lemma 2.3 are disjoint and an odd subgraph G’ is
a spanning odd subgraph of GG in Proposition 1.3.3. Also, the idea of attaching edges to

a forest using in Proposition 2.4 plays an important role in the proof of the main theorem.

Theorem 2.6. Let G be a 3-connected graph. Then G can be covered by at most three

odd subgraphs.

Proof. By Proposition 1.3.3, it suffices to consider the case when G is of odd order.
Therefore, G contains a vertex v of even degree. For simplicity, we split the proof into
three cases.

Case 1. There exists a vertex u; € N(v) such that degg(uy) is even.

Clearly, G — v is 2-connected and G — v has a spanning tree 7" such that degr(u;) =
1(by Lemma 2.2). Now, if G — v is an odd graph, then the proof follows by decomposing
the star with center v into two odd subgraphs. On the other hand, G — v is not an odd
graph. Then, by Proposition 1.3.3, G—v can be covered by an odd graph G’ and a forest F’
such that degp(u;) = 0, since degg—_,(u1) is odd and degr(uy) = 1. Thus, if we can cover
G — G’ by at most two odd subgraphs, then we are done. For this purpose, we first delete

v and replace v with |N(v)| = ¢ vertices vy, v, ..., v, where N(v) = {uy,us,...,u;} and



obtain a new forest F* by adding (v;,u;), i = 1,2,...,t, to F. Note that degp(u;) = 0.
Now, by Proposition 1.3.3, F* can be covered by at most two odd forests F} and Fj
such that (vq,u;) is in F}. Since degg(v) is even, either each odd forest contains an odd
number of edges incident to v;’s or each odd forest contains an even number of edges
incident to v;’s. In the front case, we replace each (v;, u;) with (v, u;) to obtain F and F
respectively. Then G is covered by the odd subgraphs G’, F; and F5. Otherwise, since
(v1,uy) is a component in F*, by moving (vy, u;) to F3, the proof follows as above process.
This concludes the proof of Case 1.

Case 2. For each u € N(v), degg(u) is odd and N(v) = V(G — v).

Let N(v) = {uy,ug,...,u;} and G; be the star of size |N(uy)| with center u;.
Clearly, Gy is an odd graph which has |N(uy)| edges. Therefore, |N(u;) (| N(v)| is
even, let N(up) [ N(v) = {ug,us,...,uss—1} if it is not empty. Now, let Gy be the
graph induced by the edge set A |J B where A = {(v,u;)|i = 25,25 + 1,...,t} and
B = E(G —v)\{(u1,u;j)[j = 2,3,...,25 — 1}. Then, it is not difficult to check that G
is an odd subgraph of G and G can be covered by three odd subgraphs G, G2 and Gj
where G5 is also an odd star and E(Gs) = {(v,w)|l = 1,2,...,2s — 1}. Note that if
dega(uy) = 1, then G is covered by G and Gb.

Case 3. For each u € N(v), dege(u) is odd and |[V(G —v)| > |[N(v)].

For clearness, we consider two subcases depending on the parity of degg(x) where
x € N(u)\N[v] for some u such that N(u)\N[v] is not an empty set.

Subcase 3.1. degg(x) is odd.

Since G — v is 2-connected, by Lemma 2.1, G — v has a spanning tree T such that
degr(xz) = 1. By Proposition 1.3.3, since |V(G — v)| is even, G — v can be covered by
an odd subgraph G’ and a forest F' such that F' is a subgraph of T, degr(z) = 0 and
degr(u) is odd(degg—_,(u) is even). By a similar idea as in Case 1, we can replace v with
U1, V2, ..., v where N(v) = {uj(= u),us,...,u;} and obtain a new forest F* by adding

(vi,u3), 1 = 1,2,...,t, to F. Now, degp+(uy) is even and thus F* can be covered by two



odd subgraphs F7 and Fy such that e; = (vy,u1) is in F} and all the other edges incident
to uy(including (uy,y)) are contained in Fy. By the same argument as we have in Case
1, if both F} and Fy contain an odd number of edges from {(v;,u;)|i = 1,2,...,t}, then
we have the three odd graphs we need, G’, F; and F,, where F} and F, are obtained
by replacing (v;,u;)’s in F; and Fj respectively with (v,u;)’s. On the other hand, if
FY contains an even number of edges from {(v;,w;)|i = 1,2,...,t}, we let F] and F}
be the graphs obtained by the same process as above and then let F} = F| — e; and
Fy = F} + e1 + (ug,x). Since e; is in fact an independent edge in F}', F} = F| — e; is
an odd subgraph of G. Fj is also an odd subgraph because of the fact that degp(x) = 0.
Hence we have proved Subcase 3.1.
Subcase 3.2 degg(x) is even.

Since G is 3-connected, G — u is 2-connected. By Lemma 2.1 G — u has a spanning
tree T such that degr(x) = 0 and G — u can be covered by an odd graph G’ and a
forest F' which is a subgraph of 7. Now, instead of replacing v with v;’s(Subcase 3.1)
we replace u with wuy, ug, ..., us where s = |N(u)| and join u; to w; for i = 1,2,... s,
where N(u) = {x = wy,ws,...,ws = v} to obtain a forest F'*. By observation, since x
is adjacent to u, degg_,(x) is odd. Moreover, degr(x) = 0 implies that degr(z) = 0 and
(u1,z) is an independent edge in F*. Therefore, we can cover F* with two odd forests
F} and Fy such that e; = (uy,wy) in F} and es = (us, w,) in Fy. Now, by the fact that
dege(u) is odd, s is an odd integer. Hence, one of F} and Fj contains an even number
of edges in {(u;,w;)|i =1,2,...,s} and the other contains an odd number of such edges.
First, if F;; contains an even number of such edges, then let F5 be obtained from £} + e;
by replacing (uy,w;) and (u;, w;)’s in Fy with (u,w;) and (u,w;)’s respectively and let
Fi be obtained from Fy by replacing (uj,w;)’s in F} with (u,w;)’s. On the other hand,
if F contains an odd number of edges from {(u;, w;)|i = 1,2,...,s}, then F} + e; and
F3 both contain an odd number of such edges. Thus, F; and F, can be obtained with

a similar way. Since F} and F, are odd subgraphs of GG, this concludes the proof of this



subcase and the theorem. O

3 The Main Results in Edge-connectivity

At this moment, we are not able to solve the problem when the connectivity of G is 1 or
2. But we can prove that G can be covered by at most three odd subgraphs if x'(G) =
1 or 2. First, we need a notion about edge pair. Observe that, by Lemma 2.3, a forest
can be covered by at most two disjoint forests. In fact, we can cover F' with exactly two
edge-disjoint odd forests, (Fi, Fy), provided that F' is not an odd forest itself. Moreover,
it is not difficult to see that there are more than one way to cover F' by two edge-disjoint
odd forests. Therefore, it is interesting to know whether there exist two edges e; and
eo such that there is a covering with edge-disjoint forests (F}, F5) where e; and ey are
belonged to the same odd forest and also there exists a covering with edge-disjoint forests

(Ff, Fy) of Fin which e; € E(FY) and ey € E(Fy).

Obviously, if F'is P3, then it is not possible. But, if I’ is an even star with at least
four edges, then we do have such a pair of edges. In fact, any two edges form a pair of

such edges. For convenicence, we call them a good pair in F.

Let P(ey, e3) be a path which connects two edges e; and es in a graph (not including
e; or eg). It is well-known that in a tree there exists exactly one path P(ey,ey) for each
pair of non-adjacent edges e; and ey. (If e; and ey are incident, then define P(eq,es) as
the graph with vertex set e; [ e2 and edge set ().) Now, we have a result to characterize

a good pair.

Lemma 3.1. Two edges e; and e; form a good pair in a tree T' if and only if there exists

a vertex x on P(eq, es) such that deg(x) = 2¢, t > 1.
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Proof. For the sufficiency, let x be the vertex on P(ey, e2) such that deg(x) = 2¢, ¢ > 1.
W.L.O.G. we let e; and es lie in the same odd forest F', e3 and e4 be the edges incident
to x in P(ey,e2) + {e1,e2}. Let e3 and ey lie in different forests Fy and F, respectively
and e5 be an edge in Fy which is also incident to z. By Lemma 2.3, we can get two new
disjoint odd forests F} and F} by switching es and e;. Now, e; and ey lie in F}" and F
respectively. Therefore, e; and ey form a good pair. For the necessity, if we have assigned
a forest to contain e;, then all edges that joined to the vertices on P(ey,es) should be
fixed; of course, these edges include e5. Without having a vertex x with deg(x) = 2t, t >
1, there is no way to put e; and ey in edge-disjoint odd forests provided e; and ey are in

the same odd forest and vice versa. This concludes the proof. O

Lemma 3.2. Let e; and e; be two edges in T" which are not a good pair in 7" and let e be
an edge which is incident to a vertex on P(ey, e2) and a vertex not in V(7). If e; and ey lie
in the same(respectively different) forest(s) when covering T' by two disjoint odd forests,
then e; and ey form a good pair in T + e or they could lie in the different(respectively

same) forest(s) when covering 7"+ e by two odd disjoint forests.

Proof. By Lemma 3.1, if ¢; and e, are not a good pair in T, then for each vertex v on
P(ey, es), deg(v) is either odd or 2. Since v is on P(ey,eq), deg(v) > 2. If deg(v) is odd,
then degri.(v) = 2t,t > 1. By Lemma 3.1, e; and ey form a good pair in 7'+ e. On the
other hand, since adding e to T" will change the status of e; and ey (in the same odd forest

or not), the proof follows. O

Lemma 3.3. Let e; and e; be two edges in T' which are not a good pair in T" and
e ¢ {ej,ex} such that e is incident to a vertex on P(ej,es). If e; and ey lie in the
same(respectively different) forest(s) when covering T' by two disjoint odd forests, then
e; and es form a good pair in T' — e or they could lie in the different(respectively same)

forest(s) when covering 7' — e by two odd disjoint forests.
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Proof. If e € P(ey,e3), then e; and e, lie in two different connected components of T'—e.
It’s easy to see that e; and ey form a good pair in T'—e. So we can suppose e ¢ P(eq, ez).
By Lemma 3.1, if e; and e are not a good pair in T, then for each vertex v on P(eq,ez),
deg(v) is either odd or 2. Let e = (z,v), = be a vertex on P(eq, e3) and v be any vertex
in 7. Since degr(z) > 2 hence x € P(ey,e2). Now, consider the following three cases.
Case 1. degyp(x) = 2.
e must be on P(ey,es). Therefore, e; and ey are a good pair in T — e.

Case 2. degr(x) = 3.

Suppose e ¢ P(ei,ez) and degr_(c}(x) = 2. Hence, exactly one edge incident to x in
P(eq, e5) will be changed when e is removed from T and also exactly one edge of {e1, es}
will be changed.

Case 3. degr(x) is odd but not 3.
Suppose e ¢ P(e1,ez), then degr_((x) is even and not 2. By Lemma 3.1, e; and

ey are a good pair in T' — e. This concludes the proof. O

A graph U is unicyclic if U is connected and U contains exactly one cycle. Clearly,

|E(G)| = |[V(G)] if G is unicyclic.

Lemma 3.4. Let U be a unicyclic graph which is not an odd graph itself and also U can
not be covered by two disjoint odd subgraphs. Let e be an edge which joins a vertex on
the cycle of U and a vertex not in V(U). Then U + e is an odd graph itself or U + e can

be covered by two disjoint odd subgraphs.

Proof. W.L.O.G. we suppose e = (z1,v) is the new edge in U + e and z; is a vertex in
V(U). Hence, there exists an edge e; = (z1,x2) on the cycle of U. Clearly, T' = U - e; is
a tree and T is not an odd graph(or U can be covered by T and e;). By Lemma 2.3, T’
can be covered by two disjoint odd forests. We shall color the edges of two disjoint odd

forests by black and white respectively. Then the proof follows if we can find a way to

12



color the edges of U + e by using black and white and both colors induce an odd forest.
Case 1. degy(x1) and degr(xs) are both odd.

All edges joined to xq(or z5) must be colored with the same color. If the colors of
the edges that joined to x; and xy are the same, then it’s done by coloring e; with the
other color. Otherwise, we suppose that the edges which join to x; are colored with white
and e and e; are also colored with white.

Case 2. degy(zy) is even and degr(zs) is odd.

If the edges joined to x5 can be colored with black, then we can color e and e; with
white.

Case 3. degy(xy) is odd and degr(zs) is even.

At first, we color all edges joined to xy with black and the others by the method
used in Lemma 2.3. If the edges joined to x; are colored with white, then we color e;
with black. Otherwise, we color e and e; with black.

Case 4. Both degr(z1) and degr(zs) are even.
At first, we color all edges joined to xo with black and the others by the method

used in Lemma 2.3. Then, it is done by coloring e and e; with black. O

Lemma 3.5. Let G be a connected graph such that |V(G)| is odd. Then cov*(G) < 3

provided G has a vertex of degree 1.

Proof. Let degg(z) = 1 and G’ = G[V(G)—x]. Then, |V (G")| is even and G’ is connected.
By Proposition 1.3.3, G’ can be covered by an odd subgraph and a forest F'. Let e be the
edge incident to x in G. Clearly, F'+e is a forest. By Lemma 2.3, F' + e can be covered

by at most two disjoint odd forests. This concludes the proof. O

Theorem 3.6. If G is a connected graph which contains a bridge (in the other words,

k'(G) = 1) and |V(G)] is odd, then cov*(G) < 3.

Proof. By Lemma 3.5, we can assume that there exists no vertex which is of degree one

in G. Let e be a bridge of G. Then G — e contains two connected components G; and
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G. Since |V(G)| is odd, |V (G1)| + |V (Gy)] is odd. W.L.O.G. we suppose |V (G1)| is odd
and |V (Gsq)] is even. So, |V(Gy + ¢€)| is even and |V (G2 + €)] is odd and G5 + e contains
a vertex of degree 1. By Proposition 1.3.3, Lemma 2.3 and Lemma 3.5, G; + e and
(G5 + e can be covered by at most 3 disjoint odd subgraphs, denoted by {Hf, H;, H;} and
{H}*, H*, H;*} respectively. Furthermore, e € H} and e € H{*.(Note that Hjy, H;, H3*
and H;* may be null graphs.) Then H, = Hf |J H{*, H; = H} | Hy* and Hs = Hj
U H3* are three disjoint odd graphs(or null graphs) which covers G. This concludes the

proof. O

A forest F' is minimum if a connected graph G with even order is covered by a
disjoint odd spanning subgraph G and a forest F' such that |E(F')| is the minimum. Since
a connected graph G with even order can be covered by an odd subgraph G; and a forest

F such that G; and F' are edge-disjoint, minimum forest F' does exist.

Proposition 3.7. If F'is a minimum forest of GG, then F' + e is a forest for any edge e in

G- F.

Proof. Suppose not. So F'+ e contains a cycle C' and e is an edge on the cycle. Because
G = G — F is spanning, F* = (F +e¢) — (C —e) is a forest and G = (G1 —e) +(C —e) is
an odd spanning subgraph. Clearly, F'* and G7 are disjoint and |E(F™)| < |E(F')| hence

|E(C)| > 3. We have a contradiction. 0

Lemma 3.8. Let G be a connected graph such that |V(G)| is odd. If G contains a vertex

of degree 2, then cov(G) < 3.

Proof. First, if G contains a bridge, then by Theorem 3.6, cov(G) < 3.
So we suppose G contains no bridges and deg(v) = 2. Hence, G' = G[V(G) — v]
is connected and |V(G')| is even. By Proposition 1.3.3, G can be covered by an odd

subgraph G; and a minimum forest F},. Let v be incident to u; and uy in G. By a similar
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idea as in the proof of Theorem 2.6, we can replace v with vy, v, to obtain a new forest
F* by adding e; = {v;,u;}, i = 1,2, to F,,. If F¥ can be covered by disjoint odd forests
F} and F5 such that e; € F7 and ey € F5, then G — G; can be covered by 2 disjoint odd
subgraphs. On the other hand, if e; and ey is a good pair in G — G, then we are done.
Otherwise, if e; and ey is not a good pair in G — G, by Proposition 3.7, ' + e3 is a
forest where e3 is an edge incident to u; in GG;. The proof follows by covering G — G + e3

with two odd subgraphs. a

Note that in Lemma 3.8 each edge incident to the vertex of degree 2 belongs to

exactly one odd subgraph.

Now, we are ready for the main result.

Theorem 3.9. Let G be a connected graph such that |V(G)| is odd. Then cov(G) < 3
provided r'(G) = 2.

Proof. Let {e;,es} be the edge-cut of G. Therefore, G — e; — ey contains two connected
components X and Y.

For simplicity, we split the proof into three cases.
Case 1. G contains a vertex of degree 2.

By Lemma 3.8, the proof follows.

Case 2. (G contains e; = (x1,y;) and ey = (21, y2), where z; € X and y;,y2 € Y.
Subcase 2.1. |V(X)]| is odd and |V (Y| is even.

By Lemma 3.8, Y + e; + e5 can be covered by three odd subgraphs Y7, Y5 and Y.
W.L.O.G. we let e; € Y; and ey € Y,. Since |V (X + e1)| is even, by Proposition 1.3.3,
X + e1 can be covered by a spanning odd subgraph X3 and a minimum forest F,,. By
Lemma 3.2 and Proposition 3.7, either F,, 4+ ey or F,, + es + e4 can be covered by two odd

disjoint forests X; and X5 such that e; € X; and ey € Xs, e4 is an edge incident to z; in
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X3. Then G can be covered by three odd subgraphs G, G2 and G5 where G; = X; |J V;.
Subcase 2.2. |V(X)] is even and |V (Y)| is odd.

By a similar idea in Subcase 2.1. By Proposition 1.3.3, Y 4 e; + e5 can be covered
by three odd subgraphs Y;, Y5 and Y3 and e; € Y] and ey € Y;. By Lemma 3.2 and
Proposition 3.7, either F), 4+ e; or F,, + es + e4 can be covered by two odd disjoint forests
X7 and X5 such that e; € X4, es € X5 and ey4 is an edge incident to x; in X3. Then G
can be covered by three odd subgraphs G, Gy and G3 where G; = X; |J V;.

Case 3 G contains e; = (21,y1) and ey = (22, y) where 1,29 € X and y1,y2 € Y.

Consider the two graphs X + (x1,21) + (22, 21) and Y + (y1, 22) + (y2, 22) where z;
is new vertex not in X and Y. By Proposition 1.3.3 and Lemma 3.8, the two graph both
can be covered by at most three odd subgraphs. This implies Y 4 e; 4 es can be covered
by three odd subgraphs Y7, Y5 and Y3 such that e; € Y7 and ey € Y5. Also, X +e; + e
can be covered by three odd subgraphs X;, X, and X3 such that e; € X; and ey € Xo.
Then G can be covered by three odd subgraphs G, G5 and G3 where G; = X; J Y;. O

4 Conclusion

In this thesis, we manage to prove that a 3-connected graph, or a k-edge-connected graph
for k = 1,2, can be covered by three of its odd subgraphs. But, to solve the entire problem
posed by Pyber needs more effort to finish the whole proof. We do hope that this can be
done in the near future. Recently, we have received an infomation from Professor Pyber
that this problem was proved by a Hungarian Tama’s Métrai several years ago. But, due
to the length and complicated proof technique, his proof was not accepted by an elite
journal and therefore he decided not to publish the work. We wish that our proof is clear

and short enough to be checked with resonable effort.
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