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摘 要 

    本論文首先針對在各種區組設計上的 Fisher 不等式進行研究，如 t-
區組設計、可分解設計、以及 2s-區組設計，這些不等式利用關聯矩陣為

出發點，以線性代數為工具予以證明。其次討論一些區組設計，如 2s-
區組設計，3-(10, 4, 1)設計，以及 3-(2k, 4, 1)設計。我們也以區組設計的
性質、強正則圖、以及正交陣列為例，來說明如何利用二次函數的技巧

來推導出一些組合性質。 
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Abstract 
Fisher’s type inequalities over various designs such as t-designs, resolvable designs, 

and 2s-designs are studied in this thesis. The unified technique in terms of their incidence 
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1 Introduction

Let X be a finite set, and Φ ⊆ 2X , then (X, Φ) is called a set system. The notion of

set systems usually provides a convenient model for combinatorial structures. Each

set system can be expressed in terms of its incidence matrix M . More precisely,

an incidence matrix M of a set system Π = (X, Φ) is row-indexed by elements of

X and column-indexed by members of Φ respectively such that the entry of M

along the x row and F th column is 1 if and only if x ∈ F and 0 otherwise. Many

results and techniques in linear algebra can be used to derive some information for

combinatorial structure under consideration through its incidence matrix.

In Chapter 2, we introduce some kinds of set systems. Strongly regular graph

is a set system with X = V (Γ), Φ = {Γ1(u) : for all u ∈ V (Γ)} and some prop-

erties from adjacency of vertices. The family of t-designs forms another family of

set system. Symmetric designs and quasi-symmetric designs are two classes of 2-

designs whose incidence matrices can be associated with strongly regular graphs.

Fisher’s inequality over various designs, such as t-designs, resolvable designs and

2s-designs, will be presented in Section 3.1 and proved by analyzing the incidence

matrices. Besides, Fisher’s inequality also can be stated in terms of the terminology

of graphs. In Section 3.2, the intersections among pairs of blocks of some designs

including 2s-design, 3-(10, 4, 1) design and 3-(2k, 4, 1) designs are discussed, and

graphs which has friendship property are introduced. The technique using quadratic

functions is introduced in Section 3.3, its applications will be illustrated in terms

of a few examples including some properties of designs, strongly regular graphs and

orthogonal arrays respectively.

Quasi-symmetric designs are those 2-designs with exactly two different inter-

section numbers among each pair of their blocks, and hence their block graphs

are strongly regular. Since the examples of quasi-symmetric designs which are not

symmetric designs, affine designs or linear spaces are rather rare. An approach

in the study of quasi-symmetric designs with some disjoint blocks is to consider

their substructures and induced substructures. In Section 4.1, we consider those

quasi-symmetric designs having good blocks.
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2 Preliminaries

2.1 Set Systems and Their Incidence Matrices

An incidence structure Π = (X,B) consists of a finite set X, together with a collec-

tion B of subsets of X. The elements in X are called points, and the subsets in B
are called blocks, we call a point x lies in a block B if x ∈ B. An incidence structure

Π = (X,B) is usually denoted by its incidence matrix M in the following sense that

M is row-indexed (respective column-indexed) by points (respective by blocks) such

that the entry M(x,B) of M at the row indexed by the points x and the column

indexed by the block B is 1 if x ∈ B and 0 otherwise.

A residue structure associated with a point a is defined as follows. Let N(a) =

{a}∪{x ∈ X|x is collinear with a}. If B is a block not containing a, the residue Ba

of B with respect to a is defined to be B−N(a). Let Ba = {Ba|B ∈ B with a ∈ B}.
Then the residue of Π = (X,B) with respect to a is defined to be Πa = (X −
N(a),Ba).

Definition 1. Let Γ be a k-regular graph of order v with the following properties that

each pair of adjacent vertices has λ common neighbors and each pair of nonadjacent

vertices has µ common neighbors. Then Γ is said to be a strongly regular graph with

parameters (v, k, λ, µ).

2.2 Combinatorial t-designs

Definition 2. Let v, k and λ be positive integers such that v > k ≥ 2. A (v, k, λ)-

balanced incomplete block design (which we abbreviate to (v, k, λ)-BIBD), which is

also called a 2-(v, k, λ) design, is a pair (X,B) such that the following properties are

satisfied:

1. X is a set of v elements called points,

2. B is a collection of subsets of X called blocks,

3. each block contains exactly k points, and

4. every pair of distinct points is contained in exactly λ blocks.

Let X = {x1, x2, ..., xv} and B = {B1, B2, ..., Bb}. The incidence matrix of

(X,B) is the (0, 1)-matrix M = (mij) of order v × b defined by the rule mij ={
1 if xi ∈ Bj

0 if xi 6∈ Bj

A 2-(v, k, λ) design Π = (X,B) with b = v is called a symmetric design. It is

known that the followings are equivalent.
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1. |Bi ∩Bj| = λ for any pair Bi, Bj ∈ B,

2. Π is a symmetric design.

A quasi-symmetric design is a 2-design with the number of points in the intersec-

tion of two blocks takes only two values. Let x < y be the two cardinalities of block

intersection in the quasi-symmetric design. The block graph of a quasi-symmetric

design has as vertices the blocks, two vertices adjacent if they intersect y points.

Definition 3. A t-design with parameters (v, k, λ) (or a t-(v, k, λ) design) is a pair

Π = (X,B), where X is a set of ’points’ of cardinality v, and B a collection of k-

element subsets of X called ’blocks’, with the property that any t points are contained

in precisely λ blocks.
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3 Some Techniques in terms of Matrices and Discriminants

Some combinatorial informations can be derived from matrices and quadratic func-

tions as well. For example, the fact that the rank of a matrix is always less than or

equal to its numbers of rows and of columns leads to an inequality. Among many

others, Fisher inequality is such an example. In this section, we will explore such a

technique for Fisher inequalities for BIBD and their variations.

Moreover, a quadratic function can also be associated with some combinatorial

problems, and its discriminant usually provides another inequality with combinato-

rial interests. We will explain this technique in Section 3.2 in terms of a few typical

examples.

3.1 Fisher Inequalities over Various Designs

Some combinatorial informations can be derived from matrices and quadratic func-

tions as well. For example the fact that the rank of a matrix is always less than or

equal to its numbers of rows and of columns leads to an inequality. Among many

others, Fisher inequality is such an example. In this section, we will explore such a

technique for Fisher inequalities for BIBD and their variations.

Theorem 3.1.1 (Fisher’s Inequality). For a t-(v, k, λ) design Π = (X,B), then

1. b ≥ v if t = 2;

2. b ≥ v + r − 1 if t = 2, and it is resolvable with r parallel classes; the equality

holds with r = k + λ; any two blocks from different classes meet at k2

v
points.

3. b ≥ (
v
s

)
if t = 2s, and k ≤ v − s.

Proof. Let Π = (X,B) be a 2-(v, k, λ) design, where X = {x1, . . . , xv} and B =

{B1, . . . , Bb}. Let M be the incidence matrix of this 2-design, and define sj to be

the jth column of M , note that s1, . . . , sb all are v-dimensional vectors in the real

vector space Rv. Let

S = {
b∑

j=1

αjsj : α1, . . . , αb ∈ R}

then S is the subspace of Rv spanned by S = {sj : 1 ≤ j ≤ b}, it consists of all linear

combinations of the vectors s1, . . . , sb, it suffices to show that ei ∈ S for 1 ≤ i ≤ v.

First, we observe that
∑b

j=1 sj = (r, . . . , r)T and then

b∑
j=1

1

r
sj =




1
...

1


 .
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Next, fix a value i, 1 ≤ i ≤ v. Then we have

∑

{j:xi∈Bj}
sj = (r − λ)ei +




λ
...

λ




Combine them to obtain

ei =
∑

{j:xi∈Bj}

1

r − λ
sj −

b∑
j=1

λ

r(r − λ)
sj,

a linear combination of s1, . . . , sb, as required.

To prove 2, let mi = (i−1)v
k

+1 and ni = iv
k

for 1 ≤ i ≤ r. Suppose that the blocks

are labelled with the r parallel classes Πi = {Bj : mi ≤ j ≤ ni}, 1 ≤ i ≤ r, so we

have that
∑ni

j=mi
sj = (1, . . . , 1)T , for 1 ≤ i ≤ r, and smi

=
∑n1

j=m1
sj −

∑ni

j=mi+1 sj

for 2 ≤ i ≤ r. In other words, the r − 1 vectors in the set S ′ = {sm2 , . . . , smr} can

be expressed as linear combinations of the b − r + 1 vectors in S − S ′. Now, since

the b vectors in S span Rv, it follows that the b− r + 1 vectors in S − S ′ span Rv.

Since Rv has dimension v and is spanned by a set of b − r + 1 vectors, it must be

the case that b ≥ v + r − 1.

To prove 3, we use a modified incidence matrix Ms, whose columns are indexed

by blocks and rows by s-sets of points, with (S, B) entry 1 if S ⊂ B, 0 otherwise,

then Ms is a
(

v
s

) × b matrix, and it suffices to show that the columns of Ms span

R(v
s). Accordingly, let cB be the column of Ms with label B, and let es be the vector

with 1 in the position labelled S and 0 in all other positions (the unit basis vector

corresponding to S). For xj =
∑

|S′∩S|=j eS′ , 0 ≤ j ≤ k, and yi =
∑

|B∩S|=i rB,

0 ≤ i ≤ s. Because

yi =
∑

|B∩S|=i

rB =
i∑

j=0

∑

|S′∩S|=j

∑

B ⊇ S′

|B ∩ S| = i

eS′ =
i∑

j=0

(
s− j

i− j

)
v2s−j,s+i−j(

∑

|S∩S′|=j

eS′)

where vp,q denotes the number of blocks intersecting a given p-set P in a given q-

subset Q. Then we have a system of s+1 linear equations for the xj in terms of the

yi. The coefficient matrix is triangular, and its diagonal entries v2s−i,s are non-zero

(since s ≤ k ≤ v − s). So the equations have a unique solution. In particular,

xs = eS is a linear combination of the yi, and so is in the row space of Ms.

Fisher Inequality can also be stated in terms of the terminology of graphs.

Theorem 3.1.2. Let G1, . . . , Gb be (not necessarily distinct) complete subgraphs of

Kv, v ≥ 2, each of order at most n − 1 such that every edge of Kv belongs to the

same number λ ≥ 1 of Gis. Then b ≥ v.

5



Proof. Let V (Kv) = {a1, . . . , an}, and let M be the v × b incidence matrix of the

cover Kv = ∪b
i=1Gi, i.e., Mij = 1 if ai ∈ Gj; and Mij = 0 otherwise. Then

MMT =




m1 λ · · · λ

λ m2 λ
...

... λ
. . . λ

λ · · · λ mv




,

where mi is the number of Gj, 1 ≤ j ≤ b, containing ai. Since each edge of Kv

belongs to λ of Gis, each point of Kv belongs to at least λ of Gis. If there exists

a point ak of Kv belongs to exactly λ of Gis, then {a1, . . . , an} − {ak} belong to

these λ of Gis. (Because each of the edges that connects ak and {a1, . . . , an}− {ak}
belongs to λ of Gis) thus, each of these λ of Gis has order v, a contradiction. So

every point belongs to more than λ of Gis.

Since every point of Kv belongs to more than λ of Gis, let mi = λ + ki with

ki ≥ 1 for 1 ≤ i ≤ v. Then

det(MMT ) =

∣∣∣∣∣∣∣∣∣∣

λ + k1 λ · · · λ

λ λ + k2 λ
...

... λ
. . . λ

λ · · · λ λ + kv

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

λ + k1 λ . . . λ

−k1 k2 0 0
... 0

. . . 0

−k1 0 . . . kv

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

λ + k1 + λk1

k2
+ . . . + λ k1

kn
λ . . . λ

0 k2 0 0
... 0

. . . 0

0 · · · 0 kv

∣∣∣∣∣∣∣∣∣∣

= (1 + λ

v∑
i=1

1

ki

)
v∏

i=1

ki

is non-zero. Thus, rank(MMT ) = v ≤ rank(M) ≤ min{v, b}, and b ≥ v required.

3.2 The Intersections among Pairs of Blocks of Some Designs

Theorem 3.2.1. Suppose that Π = (X,B) is a 2-(v, k, λ) design with its incidence

matrix M , then the following are equivalent

1. b = v,

2. r = k, and

3. MT M = (k − β)I + βJ for some constant β.

Proof. For a 2-(v, k, λ) design Π = (X,B), bk = vr and hence the first two are

equivalent.
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The matrix MT M is a b × b matrix. If k 6= β then det(MT M) 6= 0, so

rank(MT M) = b ≤ rank(M) ≤ min{v, b} ≤ v, hence b = v because of the Fisher

inequality b ≥ v. This shows that 3. ⇒ 1.

Let B = {B1, . . . , Bb} and define sj to be the jth column of M , note s1, . . . sb

are all v-dimensional vectors in the real vector space Rv. Fix h, 1 ≤ h ≤ b, then

∑

{i:xi∈Bh}

∑

{j:xj∈Bj}
sj =

∑

{i:xi∈Bh}
((r − λ)ei +




λ
...

λ


)

= (r − λ)sh + k




λ
...

λ


 = (r − λ)sh +

b∑
j=1

λk

r
sj,

and
∑

{i:xi∈Bh}

∑

{j:xj∈Bj}
sj =

b∑
j=1

|Bh ∩ Bj|sj. Since b = v, B = {B1, . . . , Bb} is a basis

of Rv, the left coefficients of sj and the right coefficients of sj must equal, it follows

that |Bh ∩Bj| = λ whenever h 6= j, MT M = (k − λ)I + λJ as required, this shows

that 1. ⇒ 3..

Theorem 3.2.2. Let B be a collection of k-subsets of a v-set X, where 2s ≤ k ≤
v − s. Then any two of the following conditions imply the third one:

1. (X,B) is a 2s-design;

2. the cardinality of the intersection of two distinct blocks in B takes just s distinct

values;

3. |B| = (
v
s

)
.

Proof. 1, 2 ⇒ 3: (X,B) is a 2s-design, and 2s ≤ k ≤ v − s. Then b ≥ (
v
s

)
and the

cardinality of the intersection of two distinct blocks in B takes just s distinct values.

Now, we consider its incidence matrix Ms as above. Then

MT
s Ms =




(
k
s

)
1 · · · 1

1
(

k
s

)
1

...
... 1

. . . 1

1 · · · 1
(

k
s

)




b×b

.

Because
(

k
s

)
> 1, det(MT

s Ms) > 0. Thus, rank(MT
s Ms) = b. Then min{b, (

v
s

)} =

rank(Ms) ≥ rank(MT
s Ms) = b, i.e., b ≤ (

v
s

)
= |B|

7



An example of a 3-(10, 4, 1) design is given below:

{1, 2, 4, 5} {1, 2, 3, 7} {1, 3, 5, 8} {2, 3, 5, 6} {2, 3, 4, 8} {2, 4, 6, 9}
{3, 4, 6, 7} {3, 4, 5, 9} {3, 5, 7, 0} {4, 5, 7, 8} {4, 5, 6, 0} {1, 4, 6, 8}
{5, 6, 8, 9} {1, 5, 6, 7} {2, 5, 7, 9} {6, 7, 9, 0} {2, 6, 7, 8} {3, 6, 8, 0}
{1, 7, 8, 0} {3, 7, 8, 9} {1, 4, 7, 9} {1, 2, 8, 9} {4, 8, 9, 0} {2, 5, 8, 0}
{2, 3, 9, 0} {1, 5, 9, 0} {1, 3, 6, 9} {1, 3, 4, 0} {1, 2, 6, 0} {2, 4, 7, 0}

If Y = {1, 2, 3, 5, 0}, then Y does not contain any block, and similarly, Y C does

not contain any block either. The following theorem shows that can be generalized

to any 3-(10, 4, 1) design. We then further show that similar condition holds in

general cases.

Theorem 3.2.3. If Y is a set of 5 points of a 3-(10, 4, 1) design containing no

block, then the complement of Y contains no block either.

Proof. For a 3-(10, 4, 1) design, it has 30 blocks, and n1 = 12, n2 = 4, n3 = 1, where

ni is the number of blocks containing a fixed set of i points.

Suppose there exists a set Y of 5 points containing no blocks, but Y containing a

block, say B1, without loss of generality, we may assume that Y = {1, 2, 3, 4, 5}, and

the transpose of the first column of its incidence matrix is (0, 0, 0, 0, 0, 1, 1, 1, 1, 0),

then Y ∩ B1 = ∅. Let D = {Bi : Y ∩ Bi 6= ø, i = 1, 2, . . . , 30}, then |D| ≤ 29

because Y ∩ B1 = ∅. On the other hand, the principal of inclusion and exclusion

shows that

|D| =
(

5

1

)
× 12−

(
5

2

)
× 4 +

(
5

1

)
× 1 = 30,

contradicts the fact that |D| ≤ 29, as required.

Hanani (1960) proved that a necessary and sufficient condition for the existence

of a 3-(v, 4, 1) design is that v ≡ 2 or 4 (mod 6).

Lemma 3.2.4. If there exists a 3-(v, 4, 1) design, then v ≡ 2 or 4 (mod 6).

Proof. Each 3-(v, 4, 1) design is also a 2-(v, 4, v−2
2

) design with
(v
3)
4

blocks. The

integrality of v−2
2

shows that v is even. Moreover, as a 2-design, we have
(4
3)
4
×4 = vr,

and then r = (v−1)(v−2)
6

. Since gcd(v − 1, v − 2) = 1, if 2|(v − 1) and 3|(v − 2), then

v = 2m + 1 and v = 3l + 2 for some m and l, and hence, v = 6k + 5; similarly

if 2|(v − 2), v = 6k + 4; similarly if 6|(v − 1) (or 6|(v − 2)), then v = 6k + 1 (or

v = 6k + 2 respectively). However, v is odd contradicting the fact v is even. It

follows that v ≡ 2 or 4(mod 6).

Similar arguments 3-(v, 4, 1) work well for designs with even number of vertices.

8



Theorem 3.2.5. If Y is a set of k points of a 3-(2k, 4, 1) design containing no

block, then the complement of Y contains no block either.

Proof. For a 3-(2k, 4, 1) design, it has b = 2k(2k−1)(2k−2)
24

blocks, and n1 = (2k−1)(2k−2)
6

,

n2 = k − 1, n3 = 1, where ni is the number of blocks containing a fixed set of i

points.

Suppose there exists a set Y of k points containing no blocks, but Y containing

a block, say B1, without loss of generality, we may assume that Y = {1, 2, . . . , k},
and the transpose of the first column of its incidence matrix is {0, 0, 0, 0, . . . , 0, 1,

1, 1, 1, 0, . . . , 0}, then Y ∩B1 = ∅. Let D = {Bi : Y ∩Bi 6= ∅, i = 1, 2, . . . , b}, then

|D| ≤ b− 1 because Y ∩B1 = ∅. On the other hand, the principal of inclusion and

exclusion shows that |D| = k× (2k−1)(2k−2)
6

−(
k
2

)×(k−1)+
(

k
3

)×1 = k(k−1)(2k−1)
6

= b,

contradicts the fact that |D| ≤ b− 1, as required.

This following result, known as the Friendship Theorem, is due to Erdös, Rényi

and Sós(1966), as referenced by van Lint [9, pp.45].

Theorem 3.2.6. Let Γ be a graph in which any two vertices have a unique common

neighbor, then either Γ is a windmill, or Γ is regular (and hence strongly regular).

A similar result works for a family of subtrees of a tree.

Theorem 3.2.7. Let T1, . . . , Tk be subtrees of a tree T such that the trees Ti and Tj

have a vertex in common for all 1 ≤ i < j ≤ k. Then T has a vertex that is in all

the Ti.

1st proof. We first claim that Ti ∩ Tj is a subtree of T for any i 6= j. Suppose, to

the contradictory, that there exist p, q ∈ Ti∩Tj such that p and q are not connected

in Ti ∩ Tj. There exist ti ∈ Ti and tj ∈ Tj such that p, ti, q, tj, p are on a cycle, a

contradiction.

Without loss of generality, suppose |T1 ∩ T2| is the maximal intersection number

For trees T1 and T2, we show that Ti ∩ (T1 ∩ T2) is nonempty for each i. Let T1 ∩ T2

be a tree T ′. Suppose to the contradictory, Ti ∩ T ′ is empty. Let x ∈ (T1 ∩ Ti − T2),

and y ∈ (T2 ∩ Ti) − T1. Thus, there exists t′ ∈ T ′ such that x, t′ and y are on a

cycle, a contradiction.

We further show that (Ti ∩ T ′) ∩ (Tj ∩ T ′) is nonempty for distinct i and j.

Suppose to the contradictory that it is empty. Let x ∈ (Ti ∩ Tj)− T ′, then

1. x, ti, t
′
i, t1, t

′
j are on a cycle where ti ∈ Ti, t′i ∈ Ti ∩ T ′, and t1 ∈ Ti whenever

x /∈ T1 ∪ T2, or

9



2. x, ti, t
′
i, t1, t

′
j are on a cycle where ti ∈ Ti, t′i ∈ Ti ∩ T ′, t1 ∈ T1 (resp. T2) and

t′j ∈ Tj ∩ T ′ whenever x ∈ T1 (resp. T2).

Therefore Ti ∩T ′ is a subtree of T ′, i = 3, 4, . . . , k, and (Ti ∩T ′)∩ (Tj ∩T ′) 6= ∅,

the condition is the same as original assumption, by this way, we finally obtain that

T1 ∩ T2∩, . . . ,∩Tk is a subtree of T .

2nd proof. If there exists a subtree Tk with |V (Tk)| = 1, then it is trivial. Assume

there is no subtree with only one vertex. We prove it by introduction on |V (T )| = n.

Since the case n = 2 is trivial, we suppose that T has a vertex that in all the Ti, i.e.,

∩k
i=1Ti 6= ∅, for n ≤ m. When n = m + 1, we choose a leaf x of T . If x ∈ ∩k

i=1Ti,

then ∩k
i=1Ti 6= ∅. If x /∈ ∩k

i=1Ti. then deleting x from the tree T , and we obtain a

tree called T ′ such that |V (T ′)| = m. Let T ′
i = Ti − {x}. T ′

1, T
′
2, . . . , T

′
k are subtrees

of T ′ so that T ′
i and T ′

j have a vertex in common for all 1 ≤ i < j ≤ k. then

∩k
i=1T

′
i 6= ∅. So ∩k

i=1Ti 6= ∅. By induction, T has a vertex in all the Ti.

3.3 Combinatorial Information derived from Quadratic functions

Quadratic functions sometimes can be associated with some combinatorial prob-

lems, and their discriminants usually provide some inequalities with combinatorial

interests. This technique will be illustrated in section in terms of a few typical

examples.

Theorem 3.3.1 ([9],pp.). Each block of a 2-(v, k, λ)design meets nontrivially at

least
k(r − 1)2

(k − 1)(λ− 1) + (r − 1)

other blocks. The sufficient and necessary conditions for the equal sign holds is that

any two blocks intersect in precisely
(k − 1)(λ− 1) + (r − 1)

r − 1
points, and hence it is

a symmetric design.

Proof. Let B be a block of B. Let a = |{Bi : Bi 6= B and |Bi ∩ B| 6= 0}|, and

ni be the number of blocks meet B in precisely i points. Therefore
k∑

i=1

ni = a,

k∑
i=1

ini = kr − 1, and hence
k∑

i=1

i(i− 1)ni = k(k − 1)(λ− 2) and

∑
(i− x)2ni = ax2 − 2k(r − 1)x + k((k − 1)(λ− 1) + (r − 1)) ≥ 0.

So its discriminant

D = (−2k(r − 1))2 − 4ak((k − 1)(λ− 1) + (r − 1))
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is negative, and hence a > k(r−1)2

(k−1)(λ−1)+(r−1)
as required. Further more, the equal sign

holds if and only if the quadratic equation

k∑
i=1

(i− x)2ni = ax2 − 2k(r − 1)x + k((k − 1)(λ− 1) + (r − 1)) = 0

has a unique solution x = 2k(r−1)
2a

= (k−1)(λ−1)+(r−1)
r−1

, i.e., ni > 0 if and only if

x = i.

An n-arc of a symmetric 2-(v, k, λ)design Π = (X,B) is a set of n points such

that no three of which are contained in a block. A block B of Π is called a tangent

to an n-arc S if |S ∩ B| = 1. An n-arc A is called an oval of type I if each point of

A lies on a unique tangent, and an oval of type II if it has no tangents.

Theorem 3.3.2 ([9],pp.). Let A be a type I oval in a symmetric 2-(v, k, λ) design

with k − λ even. Then any point of the design lies on either one or all tangents to

A.

Proof. Observe that k, λ and n are all odd, and so any point lies on at least one

tangent to A. We apply a different version of the ’variance trick’. Let ni be the

number of points which lie on i tangents. Then
∑

ni = v,
∑

ini = nk, and
∑

i(i−
1)ni = n(n− 1)λ. Therefore

∑
(i− 1)(i− n)ni = 0, whence every point lies on one

or all the tangents.

Theorem 3.3.3 ([15],pp.232). Let Γ be a strongly regular graph with parameters

(v, k, λ, µ), connected complement and Spec(Γ) = (k1, θmθ , τmτ ). If k < mθ, then

(mθ − 1)(kλ− λ2 − (k −mθ)τ
2)− (λ + (k −mθ)τ)2 > 0.

Proof. Consider the quadratic polynomial p(x)

p(x) = (mθ − 1)(ka− λ2 − k −mθx
2)− (λ + (k −mθ)x

2)

= (mθ − 1)kλ−mθλ
2 + 2λ(mθ − k)x + (k − 1)(mθ − k)x2,

we find that its discriminant is −4a(mθ − k)(mθ − 1)k(k − 1 − λ). Since k < m

and 1 < m, we see that this is negative unless λ = 0. If λ = 0, then p(x) =

(k − 1)(mθ − k)x2, and consequently p(τ) 6= 0, unless τ = 0.

If λ = 0 and τ = 0, then Γ is the complete bipartite graph Kk,k with eigenvalues

k, 0, and −k. However, if τ = 0, then θ = −k and m = 1, which contradicts the

condition that k < mθ.

11



Orthogonal arrays provide a convenient method of obtaining a sequence of pseudo-

random sample points. Suppose that A is an orthogonal array OA(k, n) on the set X

with |X| = n. A Two-point sampling is accomplished as follows: let r be a random

row in A, use the k values A(r, 1),. . . , A(r, k) along the rth row of A as the k sample

points, note that these k samples points are not necessarily all distinct. If the rows

of A are indexed by X × X, then a random row of A is specified by choosing two

points independently at random from X.

An elementary combinatorial analysis of the two-point sampling technique which

allows us to calculate a bound on the error probability is presented below. Suppose

that I is a yes-instance, and define the set S of witnesses (note that we do not know

the set S explicitly).

S = {x ∈ U : f(I, x) = 1},
We have |S| = m = (1− ε)n.

Theorem 3.3.4 ([35],pp.96-99). err(S) ≤ 1− km

n
+ m(k − 1)

Let ai denote the number of rows of A in which there are exactly I occurrences

of elements from S. Call a row of the matrix a bad row if none of the elements in

the row is a witness. Then the error probability is simply the probability that the

randomly selected row is a bad row. Hence, the error probability, when we run the

algorithm A using k ample points chosen from a random row of A, is

err(S) =
a0

n2
(1)

As mentioned above, we do not know the set S explicitly. However, an upper

bound on the error probability can be obtained by computing err = max{err(A) :

A ∈ (
X
m

)}. Since an OA(k, n) has n2 rows,

n∑
i=0

ai = n2. (2)

Counting the number of occurrences of witnesses in A in two ways, there are

exactly ai rows in which there are i occurrences of witnesses, in any column of A.

It follows that each point occurs exactly n times.

n∑
i=0

iai = knm. (3)

Similarly, counting the number of occurrences of pairs of witnesses occurring in

the same row in two ways, it yields:

n∑
i=0

i(i− 1)ai = k(k − 1)m2. (4)

12



For a real number x, we have

0 ≤
n∑

i=1

(i− x)2 =
n∑

i=1

(i2 − 2xi + z2)ai =
n∑

i=1

i2ai − 2x
n∑

i=1

iai + x2

n∑
i=1

ai

= k(k − 1)m2 + knm− 2xknm + x2

n∑
i=1

ai.

It follows from equations (2), (3) and (4), that

n∑
i=1

ai ≥ 2knmx− knm− k(k − 1)m2

x2
(5)

The right hand side of (5) is maximized when x = n+(k−1)m
n

. Hence, we get

n∑
i=1

ai ≥ kmn2

n + (k − 1)m
. (6)

Now, from (2) and (6), we have

a0 ≤ n2 − knm2

n + (k − 1)m
.

Then, we get the following bound on the error probability from (1):

err(S) ≤ 1− km

n + (k − 1)m
.

Note that this bound on the error probability approaches 0 only linearly quickly

as a function of k. A small example which meets the bound is given by the following

OA(3, 4):

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

2 3 0 1 3 2 1 0 0 1 2 3 1 0 3 2

13



4 Quasi-symmetric designs and Strongly Regular designs

We are interested in 2-(v, k, λ) designs with constraints over intersections between

their blocks. Those of symmetric designs, quasi-symmetric designs, semi-symmetric

design or even quasi-semi-symmetric designs. Based on the paper [29], the class of

quasi-symmetric designs with specific blocks will be surveyed in Section 4-1. Based

on the papers [14] by T. S. Fu and Y. Huang, the class of quasi-semi-symmetric

designs will be surveyed in Section 4-2.

4.1 Quasi-symmetric designs with Good Blocks

The family of quasi-symmetric designs form a broad class of 2-designs containing

all affine and symmetric designs and linear spaces. Quasi-symmetric designs not

in these subclasses are sparse. One motive for investigating quasi-symmetric de-

signs with prescribed geometric conditions, such as the existence of subdesigns, is

that perhaps a new construction might become apparent. The structure of quasi-

symmetric designs which have special blocks on which are induced quasi-symmetric

designs will be surveyed in this section, we show that-with the exception of linear,

affine, and projective spaceswthere are only two possible parameter sets for such

designs. Only one example is known of a design of one parameter set type and none

of the other. In this section, quasi-symmetric designs with (x, y) = (0, y) or (1, y)

are studied.

Definition 4. Let x and y be non-negative integers with x ≤ y. 2-design is quasi-

symmetric with intersection numbers x and y if |B∩C| ∈ {x, y} for any two distinct

blocks B and C and both intersection numbers are realized. The design is proper if

x 6= y; otherwise it is improper.

It is well-known that a 2-(v, k, λ) design with λ > 1 is symmetric if and only if

any two distinct blocks meet in λ points. A design is resolvable if its blocks can be

partitioned into subsets (parallel classes) each of which partitions the whole point

set. The partition of blocks is called a parallelism. Blocks in the same parallel class

are parallel. Two distinct parallel blocks are disjoint. If, further the number of

points common to any two nonparallel blocks is constant, the design is said to be

affine. Clearly, affine designs are examples of quasi-symmetric designs with 0 as an

intersection number. Linear spaces, i.e., 2-(v, k, 1) designs, are also examples.

Theorem 4.1.1 ([29]). For any quasi-symmetric design with intersection numbers

x and y:

1. y − x divides both k − x and r − λ if the design is proper;
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2. (b− 1)xy + k(k − 1)(λ− 1) = k(r − 1)(x + y − 1); and

3. (k − 1)(λ− 1) = (r − 1)(y − 1) whenever x = 0.

Similar to affine planes and to symmetric designs, the notion of good blocks for

quasi-symmetric designs is introduced.

Lemma 4.1.2 ([29]). Let Π = (X,B) be a quasi-symmetric 2-(v, k, λ) design with

intersection number x and y, where x < y. Let B and C be blocks meeting in y

points.

1. The intersection of any two distinct blocks containing B ∩ C is B ∩ C.

2. Any point not in B ∩ C is on at most one block containing B ∩ C.

3. There are at most v−y
k−y

blocks containing B ∩ C. Equality holds if and only if

any point not in B ∩ C is on a unique block containing B ∩ C.

Proof. 1 follows since y ≥ x and |B ∩C| = y. Since two distinct blocks cannot have

y +1 or more common points, then 2. follows. Finally, 3. is an easy deduction from

1. and 2.

Definition 5. Let Π be a quasi-symmetric 2-(v, k, λ) design, a block B is good if

there is a (necessarily unique) block containing both p and B ∩ C whenever a block

C meeting B in y points and any point p not in B ∩ C.

Note that if λ = 1 or, equivalently, y = 1 then all blocks in Π are good. The

quotient m = v−k
k−y

will be proved to be a useful parameter for a quasi-symmetric

2-(v, k, λ) design. The next lemma is a simple consequence of the definition of a

good block and lemma 4.1.2.

Lemma 4.1.3 ([29]). Let Π be as in Lemma 4.1.2 and let B be any block. Then B

is a good block if and only if for any block C meeting B in y points there are exactly

m + 1 blocks containing B ∩ C.

As an easy consequence, m = v−k
k−y

must be a positive integer for any quasi-

symmetric design with a good block. Those quasi-symmetric designs having 0 as an

intersection number and having a good block are classified parametrically as shown

in the following theorem.

We show that a quasi-symmetric design with intersection number 1 and y > 1

and a good block belongs to one of three types: Examples of quasi-symmetric designs

which are not symmetric designs or affine designs or linear spaces are rather rare, so

construction methods for quasi-symmetric designs are of interest. The classification
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problem for quasi-symmetric designs, even in case x = 0 appears to be a difficult

open problem.

One approach in the study of such designs is to impose some additional para-

metric or structural condition. Another approach is to consider substructures and

induced substructures of such quasi-symmetric designs with a possible view to ob-

tain new construction methods. They consider quasi-symmetric designs with x = 0

and having a certain type of block, referred to as a good block. According to them,

in any quasi-symmetric design with intersection numbers x, y (0 ≤ x ≤ y), a block

B is said to be good, if for any block C with |B ∩ C| = y and any point p /∈ B ∩ C,

there is a (unique) block containing p and B ∩ C. It is clear that if λ = 1 (or,

equivalently, y = 1) in a quasi-symmetric design, then all blocks are good. Their

notion of good blocks in quasi-symmetric designs extends the earlier notion for affine

designs and symmetric designs.

One of the main results of [29] is the following theorem.

Theorem 4.1.4 ([29]). Let Π = (X,B) be a quasi-symmetric 2-(v, k, λ) design

with intersection numbers x = 0 and y. Suppose that Π has a good block. Then Π

is a symmetric design or an affine design or a linear space or else has one of the

following two parameter sets:

1. v = y4(y3 − y2 + 2y − 1), k = y2(y2 − y + 1), λ = y3 + y + 1;

2. v = y(y4 − y3 + y2 − y + 1), k = y(y2 − y + 1), λ = y2 + 1.

Those QSD in case 1. and 2. Π induces a 2-(k, y, 1) design on the points of any

good block B, the blocks of the induced design being distinct non-empty intersec-

tions of B with the other blocks of Π. It is remarked in [29] that the smallest possible

value of y in case 1. is y = 3, the value y = 2 being excluded by the non-existence

of a projective plane of order 10. It is also noted that the unique 2-(22, 6, 5) Witt

design having x = 0, y = 2 satisfies case 2., but no examples with y ≥ 3 are known.

Theorem 4.1.5 ([29]). Let Π be a proper quasi-symmetric 2-(v, k, λ) design with

λ > 1 and having an intersection number 0. Let B be a good block and let Π0 be

the quasi-symmetric 2-(k, y, λ−1
m

) design induced on B, where m = v−k
k−y

. If there is

a good block which is disjoint from B, then Π0 is resolvable.

Theorem 4.1.6 ([29]). Let Π be a quasi-symmetric 2-(v, k, λ) design with λ > 1

and having an intersection number 0. Then the following statements 1. and 2. are

equivalent:

1. All blocks of Π are good.
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2. Either Π is the design of points and hyperplanes of projective or affine space,

or all lines (see definition below) of Π have size y and Π has parameter of type

1. or 2. in Theorem 4.1.4.

Let Πp denote the incidence structure whose points and blocks are the lines and

blocks of Π on a point p, respectively. In case 2.(ii), Πp is a projective plane of order

y3 + y or y2 for any point p. If y = 2, Π is the unique Witt 3-(22,6,1)design.

Proper quasi-symmetric designs with x = 1 and which have a good block is

reviewed in this section. The following are two well-known examples of such designs.

Example:

1. Let PG(4, q) be the four-dimensional projective geometry over GF (q). Let

Π = PG2(4, q), respectively. Then Π is a quasi-symmetric 2-(v, k, λ) design

with v = q5−1
q−1

, k = λ = q3−1
q−1

, x = 1 and y = q + 1. All blocks of Π are good.

2. The unique 2-(23, 7, 21) Witt design Π, which is also a 4-(23, 7, 1) design, is

a quasi-symmetric design with x = 1 and y = 3. All blocks in this design are

good since y = 3 and there is exactly one block on any four points.

Theorem 4.1.7 ([28]). Let Π = (X,B) be a proper quasi-symmetric 2-(v, k, λ)

design with intersection numbers 1 and y and with a good block. Then Π is one of

the following:

1. a quasi-symmetric design with parameters

v = q5−1
q−1

, k = λ = q3−1
q−1

, b = (q2 + 1)v, r = (q2 + 1)k, x = 1 and y = q + 1

(q ≥ 2) as those of PG(4, q).

2. The unique 2-(23, 7, 21) Witt design with

v = 23, k = 7, λ = 21, b = 253, r = 77, x = 1, y = 3.

3. A quasi-symmetric design with parameters

v = 1+((α−1)λ+1)(y−1) and k = 1+α(y−1), for some integer α > y ≥ 5,

and in which the design Π1 induced on a good block is a 2-(k, y, 1) design.

No example of designs satisfying case 3. of the theorem has been found.

Theorem 4.1.8 ([28]). Let Π = (X,B) be a quasi-symmetric design, with param-

eters as those of PG2(4, q) and with (x, y) = (1, q + 1). All blocks of Π are good if

and only if Π is isomorphic to PG2(4, q).
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4.2 A Class of Strongly Regular Designs SRD

4.2.1 Quasi-semi symmetric designs

Motivated by the study of the geometric structures associated with the half dual

polar graph Dn,n(q) and the alternating forms graphs Alt(n, q), some specific con-

ditions over incidence structures were considered by Fu and Huang [14]:

(QSS1) every two distinct points are in 0 or λ common blocks,

(QSS2) every two distinct blocks intersect in 0 or µ points,

(QSS3) if λ = 1, then there are constants k and r such that every block contains

k points and every point is on r blocks,

(QSS4) if (x,B) is a nonincident pair of point x and block B, then there are exactly

α blocks of x intersecting B.

Let λ, µ, and α be positive integers. A finite incidence structure Π = (X,B)

is called a quasi-semi-symmetric design (abbreviated ’QSSD’) for λ, µ with nexus

if conditions (QSS1)-(QSS4) are satisfied. Clearly, λ = 1 if and only if µ = 1, and

hence Π is a semilinear space or a partial linear space (see Brouwer et al., 1989,

for the definition). Condition (QSS3) is necessary to ensure the k-uniformity and

r-regularity of Π (i.e., every blocks of Π contains k points, and every point of Π is

in r blocks). An example that satisfies (QSS1) and (QSS2) with λ = µ = 1 but

does not satisfy (QSS3) is given in Huang an Pan (1988). Partial geometries, first

studied by Bose, are examples of QSSDs with λ = µ = 1, and partial λ-geometries,

introduced by Cameron and Drake (1980) are QSSDs with λ = µ.

QSSDs with multiple intersections, i.e., λ ≥ µ ≥ 2, were treated []. Basic prop-

erties, associated combinatorial structures, some examples constructed from vector

spaces, and some existence conditions for QSSDs with µ = λ− 1 ≥ 2 are described.

Two extremal conditions that provide an upper bound and a lower bound, respec-

tively, for α. The following two equivalent conditions, called the (*)-conditions, were

studied for (s, r; µ)-nets in Huang and Laurent (1993) and for partial λ-geometries

in Cameron and Drake (1980). Indeed, α = λ2(µ−1)
µ

under these extremal conditions.

For a nonflag (x,B), |x⊥ ∩ B| is a constant β, where βλ = αµ, and we let Πx,B be

the incidence structure defined over x⊥ ∩ B. The structure of Πx,B, together with

the (*)-condition, gives a sharp lower bound for β (and hence for α).

Symmetric designs, semisymmetric designs, and partial λ-geometries are among

such structures. In this paper, in addition to some general properties, we study

the existence conditions for QSSDs with µ = λ − 1 ≥ 2 and the properties of
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QSSDs satisfying the following extremal condition: if B1 and B2 are two blocks

with a nonempty intersection, then there are another λ− 2 blocks B3, . . . , Bλ such

that ∩1≤i≤λBi = B1 ∩ B2. We show that α ≥ λ2(µ−1)+λ
µ

under such a condition,

and QSSDs with equality are classified whenever µ = λ or µ = λ − 1 following a

classification of affine polar spaces by Cohen and Shult (Geometraic Dedicata 35

(1990), 43-76).

4.2.2 Strongly Regular Designs

The notion of strongly regular designs was first introduced by D.G. Higman as a

class of 1-design arising in the investigation of coherent configurations of small types.

Indeed, SRD’s are 11
2
-designs in the sense of Neumaier [31] and form a self-dual class.

An SRD has a point graph and a block graph of which are strongly regular.

An incidence structure Π = (X,B) with a point-block incidence matrix M is

called a strongly regular design if there exists nonnegative integers ai, bi, Ni, Pi and

Si, i = 1, 2, such that

1. JM = S1J, MJ = S2J ,

2. MMT = S2I + a2A1 + b2(J − I −A1), MT M = S1I + a1A2 + b1(J − I −A2),

3. A1M = N1M + P1(J −M), MA2 = N2M + P2(J −M),

where A1 and A2 are square matrices of orders v and b, respectively. Note that A1

and A1 = J − I − A1, respectively, A2 and A2 = J − I − A2, form the adjacency

matrices of a pair of complementary strongly regular graphs.

These conditions can be interpreted in terms of the relationship between points

and blocks as follows:

1. each block consists of k points, and point lies in r blocks;

2. any two points lie in either a2 or b2 common blocks, and any two blocks meet

in either a1 or b1 points;

3. for a pair of a point x and a block B, x is collinear with either P1 points or

N1 points of B1 depending on whether x is in B or not, the number of blocks

containing x and meeting B is either P2 or N2 depending on whether x ∈ B

or not.

We will focus on those strongly regular designs with b1 = b2 = 0, i.e., we are

concerned with those strongly regular designs with incidence matrix M satisfying

the following conditions: JM = kJ, MJ = rJ, MMT = rI+aA1, MT M = kI+bA2,

A1M = aM + b(J −M) and MA2 = N2M + P2(J −M) (note that k for S1, r for
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S2, A for A1, B for A2). This class of strongly regular designs is called a quasi-

semisymmetric design with nexus, and it was used as a geometric framework for a

characterization of alternating bilinear forms graphs of order 4.

An SRD(v, k, a, b) is called resolvable if the blocks can be partitioned into classes

such that each class form a partition of X and any two blocks have common points

if they are in different classes.

Lemma 4.2.1. For a resolvable SRD(v, k, a, b), then

1. for a pair (x,B) of nonincident point x and block B, there is a unique block

on x and parallel to B, and hence x is collinear with b(r−1)
a

points on B,

2. two distinct points x and y are collinear with k−2+ (r−a)(br−b−a)
a2 points when-

ever they are collinear, or otherwise they are collinear with br(r−1)
a2 points;

and hence its point graph is a strongly regular graph on v points with k =

r(k − 1)/a, f =, andg = r(r − 1)b/a2.

4.2.3 Some properties of SRD(v, k, λ, µ)

Lemma 4.2.2 ([14]). Let Π = (X,B) be a SRD(v, k, λ, µ), µ ≥ 2, with nexus α.

The following two conditions are equivalent:

1. if B1, B2 are two distinct blocks, with B1∩B2 6= ∅, then there exist B3, . . . , Bλ ∈
B such that ∩1≤i≤λBi = B1 ∩B2, which consists of µ points.

2. if B1, B2, B3 are three distinct blocks with |B1 ∩B2 ∩B3| ≥ 2, then |B1 ∩B2 ∩
B3| = µ.

Corollary 4.2.3 ([14]). Let (x,B) be a nonflag of a SRD satisfying the (*)-

condition, and let A1 and A2 be two distinct blocks of x intersecting B. Then

|A1 ∩ A2 ∩B| ≤ 1.

Lemma 4.2.4 ([14]). Let Π = (X,B) be a SRD(v, k, λ, µ), g ≥ 2, satisfying the

(*)-condition with nexus α and let (x,B) be a nonflag. Then

1. β ≥ λ(µ− 1) + 1, and hence α ≥ λ2(µ−1)+λ
µ

,

2. equality holds if and only if the structure Πx,B is a 2-(λ(µ−1)+1, µ, 1) design.

Substituting µ = λ (= q+1) and µ = λ−1 (= q) in the previous lemma, we have

α ≥ q2 + q + 1 and α ≥ q2 + q, respectively. Examples (iii) and (iv) in the previous

section show that both bounds are sharp. Moreover, the 2-designs mentioned above

in the QSSDs of Examples (iii) and (iv) are projective planes and affine planes of

order q, respectively.
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An upper bound for β (and hence for α) is obtained by the following extremal

condition, called the (∆)-condition.

Any three distinct pairwise collinear points are in at least one common block.

Lemma 4.2.5 ([14]). Let Π = (X,B) be a SRD(v, k, λ, µ), g ≥ 2, satisfying the

(∆)-condition with nexus α. Then β ≤ λ(µ− 1) + 1, and hence α ≤ λ2(µ−1)+λ
µ

.

Corollary 4.2.6 ([14]). Let Π = (X,B) be a SRD(v, k, λ, µ), satisfying the (*)-

condition with nexus α = λ2(µ−1)
µ

. Then the (∆)-condition holds.

For a nonflag (x, B), the incidence structure Πx,B is determined under the (*)-

and (∆)-condition.

Corollary 4.2.7 ([14]). Let Π = (X,B) be a SRD(v, k, λ, µ), µ ≥ 2 with nexus α.

The following are equivalent:

1. Π satisfies the (*)- and (∆)-conditions,

2. Πx,B is a 2-(λ(µ− 1) + 1, µ, 1) design.

Cameron and Drake (1980) showed that a SRD(v, k, λ, µ) satisfying the (*)-

condition with nexus α = λ2 − λ + 1 is obtained from a polar space of type D4(q)

with one family of maximal totally isotropic subspaces as the block set. As a result,

its point graph is isomorphic to D4,4(q). In this section, we shall prove a similar

result for a SRD(v, k, λ, λ− 1) with nexus α = λ2 − λ.

Let Π = (X,B) be a SRD(v, k, λ, µ) satisfying the with nexus α = λ2(µ−1)+λ
µ

(i.e., β = λ(µ − 1) + 1). Associate Π with an incidence structure Π′ = (X,L)

with a collection P of substructures, where L = {A ∩ B : A,B ∈ B are distinct

with A ∩ B 6= ∅} and let P = {x⊥ ∩ B : x ∈ X, B ∈ B, x /∈ B}. Members of

L and P are called lines and planes, respectively. Clearly, the point graphs of Π

and Π′ are identical. For any two collinear points x and y, let A1, . . . , Aλ be the

blocks containing x and y and denoted by xy the line A1 ∩ A2 = ∩1≤i≤λAi (by the

(*)-condition). Since α reaches the lower bound, the (∆)-condition also holds, by

Corollary 4.2.6. Thus x⊥ ∩ y⊥ = ∪1≤i≤λAi, and {Ai − xy : 1 ≤ i ≤ λ} forms a

partition of x⊥ ∩ y⊥ − xy. Hence the incidence structure Π′ = (X,L) is a gamma

space, and each block of Π induces a maximal singular subspace in Π′ (refer to

Brouwer et al., 1989, for the definitions of gamma spaces and singular subspaces).

Note also that each plane in P is a singular subspace too. A triple of points is called

a triangle if they are pairwise collinear but not contained in a common line. The

main theorem in this section is as follows:
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Theorem 4.2.8 ([14]). Let Π = (X,B) be a SRD(v, k, λ, µ) satisfying the (*)-

condition with α = λ2(µ−1)+λ
µ

(i.e., β = λ(µ− 1) + 1). Then

1. if µ = λ (= q + 1 ≥ 3), then Π′ = (X,L) is the polar space of type D4(q) and

the point graph of Π is isomorphic to D4,4(q).

2. if µ = λ−1 (= q ≥ 4), then either Π′ = (X,L) is the affine polar space of type

D4(q)−∞⊥ and the point graph of Π is isomorphic to Alt(4, q), or k = 55, 115.

Construction for families of resolvable SRD with parameters (v, k, a, b) = (q3,

q2, 2, q), (q3, q2, q
2
, q) for q = 2n a power of 2. As a consequence, a few families

of other designs as well as strongly regular graphs are derived. Among others,

this gives a strongly regular graph SRG(196, 135, 94, 90) which is new to the list of

such graphs up to 280 vertices complied by A.E. Brouwer in the CRC Handbook of

Combinatorial Designs.
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