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Abstract

Fisher’s type inequalities over various designs such as t-designs, resolvable designs,
and 2s-designs are studied in thisthesis, The unified technique in terms of their incidence
matrices, within the framewerk..of linear algebra is emphasized. Moreover, the
intersections among pairs of blacks of some designs such as 2s-design, 3-(10, 4, 1) design
and 3-(2k, 4, 1) designs, are also studied, the‘technique of using quadratic functions is also
emphasized.
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1 Introduction

Let X be a finite set, and ® C 2% then (X, ®) is called a set system. The notion of
set systems usually provides a convenient model for combinatorial structures. Each
set system can be expressed in terms of its incidence matrix M. More precisely,
an incidence matrix M of a set system II = (X, ®) is row-indexed by elements of
X and column-indexed by members of ® respectively such that the entry of M
along the x row and F'th column is 1 if and only if x € F' and 0 otherwise. Many
results and techniques in linear algebra can be used to derive some information for
combinatorial structure under consideration through its incidence matrix.

In Chapter 2, we introduce some kinds of set systems. Strongly regular graph
is a set system with X = V(I'), & = {I";(u) : for all u € V(I')} and some prop-
erties from adjacency of vertices. The family of ¢-designs forms another family of
set system. Symmetric designs and quasi-symmetric designs are two classes of 2-
designs whose incidence matrices can be associated with strongly regular graphs.
Fisher’s inequality over various designs, such as t-designs, resolvable designs and
2s-designs, will be presented in Section 3.1 and proved by analyzing the incidence
matrices. Besides, Fisher’s ineguiality also can be stated in terms of the terminology
of graphs. In Section 3.2, the intersections among pairs of blocks of some designs
including 2s-design, 3-(1054,.1) design-and 3-(2k, 4, 1) designs are discussed, and
graphs which has friendship property are introduced. The technique using quadratic
functions is introduced in*Section 3.3, its applications will be illustrated in terms
of a few examples including some properties of designs, strongly regular graphs and
orthogonal arrays respectively.

Quasi-symmetric designs are those 2-designs with exactly two different inter-
section numbers among each pair of their blocks, and hence their block graphs
are strongly regular. Since the examples of quasi-symmetric designs which are not
symmetric designs, affine designs or linear spaces are rather rare. An approach
in the study of quasi-symmetric designs with some disjoint blocks is to consider
their substructures and induced substructures. In Section 4.1, we consider those

quasi-symmetric designs having good blocks.



2 Preliminaries

2.1 Set Systems and Their Incidence Matrices

An incidence structure IT = (X, B) consists of a finite set X, together with a collec-
tion B of subsets of X. The elements in X are called points, and the subsets in B
are called blocks, we call a point x lies in a block B if x € B. An incidence structure
IT = (X, B) is usually denoted by its incidence matrix M in the following sense that
M is row-indexed (respective column-indexed) by points (respective by blocks) such
that the entry M (z, B) of M at the row indexed by the points z and the column
indexed by the block B is 1 if x € B and 0 otherwise.

A residue structure associated with a point a is defined as follows. Let N(a) =
{a}U{z € X|z is collinear with a}. If B is a block not containing a, the residue B*
of B with respect to a is defined to be B— N(a). Let B* = {B*|B € B with a € B}.
Then the residue of II = (X, B) with respect to a is defined to be 1I* = (X —
N(a),B%).

Definition 1. Let I' be a k-reqular graph of order v with the following properties that
each pair of adjacent vertices has X eomunon neighbors and each pair of nonadjacent
vertices has . common neighbors. Then'l is'said to be a strongly reqular graph with

parameters (v, k, A, 1)

2.2 Combinatorial t-designs

Definition 2. Let v, k andX be positive-integers such that v >k > 2. A (v, k, \)-
balanced incomplete block design’ (which we abbreviate to (v, k,\)-BIBD), which is
also called a 2-(v, k, \) design, is a pair (X, B) such that the following properties are
satisfied:

1. X is a set of v elements called points,
2. B is a collection of subsets of X called blocks,
3. each block contains exactly k points, and

4. every pair of distinct points is contained in exactly A blocks.

Let X = {x1,29,...,2,} and B = {Bj, Bs, ..., By}. The incidence matrix of
(X, B) is the (0, 1)-matrix M = (m;;) of order v x b defined by the rule m;; =

1 if z; € B;

A 2-(v, k, A) design II = (X, B) with b = v is called a symmetric design. It is

known that the followings are equivalent.

2



1. |B; N Bj| = A for any pair B;, B; € B,
2. IT is a symmetric design.

A quasi-symmetric design is a 2-design with the number of points in the intersec-
tion of two blocks takes only two values. Let z < y be the two cardinalities of block
intersection in the quasi-symmetric design. The block graph of a quasi-symmetric

design has as vertices the blocks, two vertices adjacent if they intersect y points.

Definition 3. A t-design with parameters (v,k,\) (or a t-(v, k, \) design) is a pair
IT = (X, B), where X is a set of ’points’ of cardinality v, and B a collection of k-
element subsets of X called "blocks’, with the property that any t points are contained
in precisely A blocks.



3 Some Techniques in terms of Matrices and Discriminants

Some combinatorial informations can be derived from matrices and quadratic func-
tions as well. For example, the fact that the rank of a matrix is always less than or
equal to its numbers of rows and of columns leads to an inequality. Among many
others, Fisher inequality is such an example. In this section, we will explore such a
technique for Fisher inequalities for BIBD and their variations.

Moreover, a quadratic function can also be associated with some combinatorial
problems, and its discriminant usually provides another inequality with combinato-
rial interests. We will explain this technique in Section 3.2 in terms of a few typical

examples.
3.1 Fisher Inequalities over Various Designs

Some combinatorial informations can be derived from matrices and quadratic func-
tions as well. For example the fact that the rank of a matrix is always less than or
equal to its numbers of rows and of columns leads to an inequality. Among many
others, Fisher inequality is such an example. In this section, we will explore such a

technique for Fisher inequalities fersB{BD and their variations.
Theorem 3.1.1 (Fisher’s Inequality). For a t-(v, k, \) design 11 = (X, B), then
1 b>vift =2

2. b>v+r—1ift =2, andit'isresolvable with r parallel classes; the equality

holds with r = k + \; any two.blocks from different classes meet at % points.
3. b> (Z) ift=2s, and k < v —s.

Proof. Let 11 = (X,B) be a 2-(v, k, A) design, where X = {z;,...,2,} and B =
{Bi1,...,By}. Let M be the incidence matrix of this 2-design, and define s; to be
the jth column of M, note that sq,..., s, all are v-dimensional vectors in the real

vector space R”. Let
b
S = {Zajsj Cag,..., 0 € R}
j=1

then S is the subspace of R” spanned by S = {s; : 1 < j < b}, it consists of all linear

combinations of the vectors sy, ..., s, it suffices to show that e; € S for 1 <1 < wv.
First, we observe that 2?21 sj = (r,...,r)" and then
1

b1
I

j=1 1



Next, fix a value 7, 1 < i < wv. Then we have

Z s;=(r—Ne +

{j:zi€B;} A

Combine them to obtain
b

1 A
‘= Z r—/\sj_jzlmsj7

{j:z:€B;}

a linear combination of sq,..., s, as required.

To prove 2, let m; = % +1land n;, = % for 1 <1¢ < r. Suppose that the blocks
are labelled with the r parallel classes II; = {B; : m; < j < n;}, 1 <i <, so we
have that 377 s; = (1,...,1)7, for 1 <0 <7, and s, = D00 55— >0 48
for 2 < i <r. In other words, the r — 1 vectors in the set S" = {s,,...,Sm,.} can
be expressed as linear combinations of the b — r 4+ 1 vectors in S — S’. Now, since
the b vectors in S span RY, it follows that the b —r + 1 vectors in S — S’ span R".
Since R” has dimension v and is spanned by a set of b — r + 1 vectors, it must be
the case that b > v +r — 1.

To prove 3, we use a modifiedjincidénce matrix M, whose columns are indexed
by blocks and rows by s-gets-of pointss-with (S, B) entry 1 if S C B, 0 otherwise,
then M, is a (;’) x b mattix, and it suffices t6 show that the columns of M, span
R(z). Accordingly, let cg be the'column-of M; with label B, and let e, be the vector
with 1 in the position labelled S and.0:in all other positions (the unit basis vector
corresponding to S). For z; = Z|S’ﬂS\:j es, 0 < j <k, and y; = Z|Bms|:i B,
0 <1 <s. Because

y; = Z rB:zi: Z Z BS’:i:(j:j)U?s—j,s—l—i—j( Z es)

|BNS|=i j=0|8'nS|=j B2 §=0 |SNS’ |=7
|IBNS| =1

where v, , denotes the number of blocks intersecting a given p-set P in a given ¢-
subset (). Then we have a system of s+ 1 linear equations for the z; in terms of the
y;. The coefficient matrix is triangular, and its diagonal entries vq5_; s are non-zero
(since s < k < v —s). So the equations have a unique solution. In particular,

Ts = eg is a linear combination of the y;, and so is in the row space of M. O
Fisher Inequality can also be stated in terms of the terminology of graphs.

Theorem 3.1.2. Let Gy,...,Gy be (not necessarily distinct) complete subgraphs of
K,, v > 2, each of order at most n — 1 such that every edge of K, belongs to the
same number A\ > 1 of G;s. Then b > wv.



Proof. Let V(K,) = {a1,...,a,}, and let M be the v x b incidence matrix of the
cover K, = U_ G;, i.e,, M;; = 1if a; € G;; and M;; = 0 otherwise. Then

MMT: A mo A
D S
Ao A my

where m; is the number of G, 1 < j < b, containing a,;. Since each edge of K,
belongs to A of s, each point of K, belongs to at least A of G;s. If there exists
a point aj of K, belongs to exactly A\ of G;s, then {a4,...,a,} — {ax} belong to
these A of G;s. (Because each of the edges that connects ay and {ay,...,a,} —{ax}
belongs to A of G;s) thus, each of these A of G;s has order v, a contradiction. So
every point belongs to more than \ of G;s.

Since every point of K, belongs to more than A\ of G;s, let m; = X\ + k; with
k; >1for 1 <4 <w. Then

Mtk A A Ak A A
DD W : ki ke 0 0
det(MMT) = > gl | T
: MEHIETNR : 0 . 0
A o ki 0 ... Kk,
A+%a+A%+.“+A% A A
0 k, 0 0 vl L
— =12 T &
: 0 0| ;;hql
0 e 0 ky

is non-zero. Thus, rank(MM?") = v < rank(M) < min{v, b}, and b > v required.
[

3.2 The Intersections among Pairs of Blocks of Some Designs

Theorem 3.2.1. Suppose that 11 = (X, B) is a 2-(v,k,\) design with its incidence

matrix M, then the following are equivalent
1. b=,
2. r=k, and
3. MTM = (k — ) + 3J for some constant (3.

Proof. For a 2-(v,k,\) design IT = (X, B), bk = vr and hence the first two are

equivalent.



The matrix MTM is a b x b matrix. If k # 3 then det(MTM) # 0, so
rank(MTM) = b < rank(M) < min{v,b} < v, hence b = v because of the Fisher
inequality b > v. This shows that 3. = 1.

Let B = {By,..., By} and define s; to be the jth column of M, note s1,... s

are all v-dimensional vectors in the real vector space RY. Fix h, 1 < h < b, then

A
> > si= > (r=Net | 1))
{i:x;€Bp} {j:z;€B;} {#:x;€By} A
A ° Ak
(r )Sn + /\ (r )Sh + ; S

b
and Z Z s; = Z |By, N Bj|s;. Since b =wv, B ={By,..., By} is a basis
{t:@;€BR} {j:x;€B;} j=1
of RY, the left coefficients of s; and the right coefficients of s; must equal, it follows

that | By, N B;| = A whenever h # g5 M = (k — A\)I + \J as required, this shows
that 1. = 3.. ]

Theorem 3.2.2. Let B be a-collectiow' of k-subsets of a v-set X, where 2s < k <

v — 8. Then any two of the following conditions imply the third one:
1. (X, B) is a 2s-design;

2. the cardinality of the intersection of two distinct blocks in B takes just s distinct

values;
3. 1Bl = (2).

Proof. 1,2 = 3: (X,B) is a 2s-design, and 2s < k < v — s. Then b > (;’) and the
cardinality of the intersection of two distinct blocks in B takes just s distinct values.

Now, we consider its incidence matrix M, as above. Then

(2) 1 L
MSTMS — 1 (];) 1
: R |
1 - 1 (’;) -
Because (lz) > 1, det(MIM,) > 0. Thus, rank(MIM,) = b. Then min{b, ()} =
rank(M,) > rank(MIM,) =b,ie.,b< (?) =|B]| O



An example of a 3-(10, 4, 1) design is given below:

{1,2,4,5} {1,2,3,7} {1,3,5,8} {2,3,5,6} {2,3,4,8} {2,4,6,9}
(3,4,6,7} {3,4,5,9} {3,5,7,0} {4,5,7,8} {4,5,6,0} {1,4,6,8}
{5,6,8,9} {1,5,6,7} {2,5,7,9} {6,7,9,0} {2,6,7.8} {3,6,8,0}
{1,7,8,0} {3,7.8,9} {1,4,7,9} {1,2,8,9} {4,8,9,0} {2,5,8,0}
{2,3,9,0} {1,5,9,0} {1,3,6,9} {1,3,4,0} {1,2,6,0} {2,4,7,0}

If Y ={1,2,3,5,0}, then Y does not contain any block, and similarly, Y does
not contain any block either. The following theorem shows that can be generalized
to any 3-(10, 4, 1) design. We then further show that similar condition holds in

general cases.

Theorem 3.2.3. If Y is a set of 5 points of a 3-(10, 4, 1) design containing no

block, then the complement of Y contains no block either.

Proof. For a 3-(10, 4, 1) design, it has 30 blocks, and ny = 12,ny = 4,n3 = 1, where
n; is the number of blocks containing a fixed set of ¢ points.

Suppose there exists a set Y of,5 peints containing no blocks, but Y containing a
block, say By, without loss of'generality, we'may assume that Y = {1,2,3,4 5}, and
the transpose of the first golumn of its incidence matrix is (0,0,0,0,0,1,1,1,1,0),
then YN By = @. Let D ={B; : ¥YN'B; # ¢,i = 1,2,...,30}, then |D| < 29

because Y N B; = @. On-the wother_hand, the principal of inclusion and exclusion

shows that e - -
|D| = (1> X0 (2) X 4+ <1> x 1 =30,

contradicts the fact that |D| < 29, as required. O]

Hanani (1960) proved that a necessary and sufficient condition for the existence
of a 3-(v, 4, 1) design is that v = 2 or 4 (mod 6).

Lemma 3.2.4. If there exists a 3-(v, 4, 1) design, then v =2 or 4 (mod 6).

Proof. Each 3-(v, 4, 1) design is also a 2-(v, 4, %52) design with (s)

e blocks. The

integrality of % shows that v is even. Moreover, as a 2-design, we have @ x4 =or,
and then r = %. Since ged(v — 1,v —2) =1, if 2|(v — 1) and 3|(v — 2), then
v=2m+ 1 and v = 3l + 2 for some m and [, and hence, v = 6k + 5; similarly
if 2|(v —2), v = 6k + 4; similarly if 6[(v — 1) (or 6|(v — 2)), then v = 6k + 1 (or
v = 6k + 2 respectively). However, v is odd contradicting the fact v is even. It
follows that v = 2 or 4(mod 6). O

Similar arguments 3-(v, 4, 1) work well for designs with even number of vertices.

8



Theorem 3.2.5. IfY is a set of k points of a 3-(2k, 4, 1) design containing no

block, then the complement of Y contains no block either.

Proof. For a 3-(2k, 4, 1) design, it has b = w blocks, and n; = W,
ny = k — 1, ng = 1, where n; is the number of blocks containing a fixed set of ¢
points.

Suppose there exists a set Y of k points containing no blocks, but Y containing
a block, say Bj, without loss of generality, we may assume that Y = {1,2,... k},
and the transpose of the first column of its incidence matrix is {0, 0, 0, 0,..., 0, 1,
1,1,1,0,...,0}, then YNB; =@. Let D ={B;: YNB; # 3,i =1,2,...,b}, then
|D| < b—1 because Y N B; = &. On the other hand, the principal of inclusion and
exclusion shows that |D| = k x w — B x(k—1)+ (g) x1= w =0,
contradicts the fact that |D| < b — 1, as required. O

This following result, known as the Friendship Theorem, is due to Erdds, Rényi
and S6s(1966), as referenced by van Lint [9, pp.45].

Theorem 3.2.6. Let I' be a graph in which any two vertices have a unique common

neighbor, then either T is a windmill, oL .is reqular (and hence strongly reqular).
A similar result worksfor a fanmly of subtrees of a tree.

Theorem 3.2.7. Let T, =, T}, 'be-subtrees of-a tree T such that the trees T; and T;
have a vertex in common for all'l <7< 7 <'k. Then T has a vertex that is in all
the T;.

1st proof. We first claim that 7; N1} is a subtree of T' for any i # j. Suppose, to
the contradictory, that there exist p, ¢ € T; N7} such that p and ¢ are not connected
in T; N'T;. There exist t; € T; and t; € Tj such that p, ¢;, g, t;, p are on a cycle, a
contradiction.

Without loss of generality, suppose |77 NT3| is the maximal intersection number
For trees T and T3, we show that T; N (17 N T5) is nonempty for each i. Let T3 NT5
be a tree T'. Suppose to the contradictory, T; N T" is empty. Let x € (T3 NT; — T3),
and y € (T, NT;) — Ty. Thus, there exists t' € T" such that z, ¢’ and y are on a
cycle, a contradiction.

We further show that (7; N'7") N (7; N'1") is nonempty for distinct 7 and j.
Suppose to the contradictory that it is empty. Let « € (T; N 1;) — T”, then

L. @1, 1, 14,1 are on a cycle where t; € T;, t; € T; N'T", and ¢, € T; whenever
T ¢ T1 U TQ, or



2. x,t;,t],t1,t; are on a cycle where t; € T;, t; € T; N T', t; € Ty (resp. T3) and
ti € T; N'T" whenever x € Ty (resp. T5).

Therefore T; NT" is a subtree of T, i = 3,4,...,k, and (I; NT") N (T; NT") # @,
the condition is the same as original assumption, by this way, we finally obtain that
Ty NT5N, ..., N1} is a subtree of T O

2nd proof. If there exists a subtree T} with |V (T})| = 1, then it is trivial. Assume
there is no subtree with only one vertex. We prove it by introduction on |V (T")| = n.
Since the case n = 2 is trivial, we suppose that T" has a vertex that in all the T;, i.e.,
ﬂleTi # &, for n < m. When n = m + 1, we choose a leaf z of T'. If x € ﬂleTi,
then N*_, T} # @. If 2 ¢ N*_|T;. then deleting = from the tree 7', and we obtain a
tree called 7" such that |V(T")| = m. Let T/ =T, — {z}. T{, Ty, ..., T} are subtrees
of T" so that T and T]’ have a vertex in common for all 1 < i < 57 < k. then
ﬂleTi' #+ . So ﬂleTi # &. By induction, T has a vertex in all the T;. O

3.3 Combinatorial Information derived from Quadratic functions

Quadratic functions sometimes can be associated with some combinatorial prob-
lems, and their discriminants usually previde some inequalities with combinatorial
interests. This technique-will bé illustrated-in section in terms of a few typical

examples.

Theorem 3.3.1 ([9],pp.). Fach block-of a 2-(v, k, \)design meets nontrivially at

least
k(r—1)?

(k—1)A=1)+(r—1)
other blocks. The sufficient and necessary conditions for the equal sign holds is that
(k—=1)(A=1)+(r—1)

r—1

any two blocks intersect in precisely points, and hence it is

a symmetric design.
Proof. Let B be a block of B. Let a = |{B; : B; # B and |B; N B| # 0}|, and
k

n; be the number of blocks meet B in precisely ¢ points. Therefore an = a,
i=1

Zz’ni = kr — 1, and hence Zz(z — 1)n; = k(k—1)(A—2) and
> (i —2)’n; = ax® = 2k(r — D+ k((k = 1)(A = 1) + (r — 1)) > 0.
So its discriminant
D = (=2k(r —1))* —4ak((k — 1)(A = 1) + (r — 1))

10



k(r—1)2
O—D+(r—1
holds if and only if the quadratic equation

is negative, and hence a > = y as required. Further more, the equal sign

k
> (i —a)’n = ax® = 2k(r — Dz + k((k =)A= 1)+ (r—1)) =0
=1
2k(r—1) (k—1)(A=1)+(r—1)

has a unique solution r = = — = — , i.e., n; > 0 if and only if

T =71. O]

An n-arc of a symmetric 2-(v, k, \)design II = (X, B) is a set of n points such
that no three of which are contained in a block. A block B of II is called a tangent
to an n-arc S if |[S N B| = 1. An n-arc A is called an oval of type I if each point of

A lies on a unique tangent, and an oval of type II if it has no tangents.

Theorem 3.3.2 ([9],pp.). Let A be a type I oval in a symmetric 2-(v,k, \) design

with k — X even. Then any point of the design lies on either one or all tangents to

A.

Proof. Observe that k, A and n.areall odd, and so any point lies on at least one
tangent to A. We apply a different_version. of the 'variance trick’. Let n; be the
number of points which lie'on i tangents. Then > n; = v, > in; = nk, and > (i —
1)n; = n(n — 1)A. Therefore > (2 — 1)(i — n)n; = 0, whence every point lies on one

or all the tangents. O]

Theorem 3.3.3 ([15],pp.232). Let.Ibe‘a strongly reqular graph with parameters
(v, k, A\, ), connected complement and Spec(T') = (k*, 0™ 7). If k < my, then

(mg — 1) (kXA — A — (k —mg)7?) — (A + (k —my)7)* > 0.
Proof. Consider the quadratic polynomial p(x)

p(z) = (mg — 1)(ka — \* — k — mgx?) — (A + (k — mg)z?)
= (mg — 1)kX — mgA* + 2\ (mg — k) + (k — 1)(me — k)22,

we find that its discriminant is —4a(my — k)(mg — 1)k(k — 1 — X). Since k < m
and 1 < m, we see that this is negative unless A = 0. If A = 0, then p(z) =
(k — 1)(my — k)2*, and consequently p(7) # 0, unless 7 = 0.

If A =0and 7 = 0, then I' is the complete bipartite graph K} ; with eigenvalues
k, 0, and —k. However, if 7 = 0, then # = —k and m = 1, which contradicts the
condition that & < my. O

11



Orthogonal arrays provide a convenient method of obtaining a sequence of pseudo-
random sample points. Suppose that A is an orthogonal array OA(k, n) on the set X
with | X| =n. A Two-point sampling is accomplished as follows: let r be a random
row in A, use the k values A(r,1),..., A(r, k) along the rth row of A as the k sample
points, note that these k samples points are not necessarily all distinct. If the rows
of A are indexed by X x X, then a random row of A is specified by choosing two
points independently at random from X.

An elementary combinatorial analysis of the two-point sampling technique which
allows us to calculate a bound on the error probability is presented below. Suppose
that I is a yes-instance, and define the set S of witnesses (note that we do not know
the set S explicitly).

S={zxeU: f(l,z) =1},

We have |S| =m = (1 —¢)n.
Theorem 3.3.4 ([35],pp.96-99). err(S) < 1— “™ 4 (k1)
n

Let a; denote the number of rows of A in which there are exactly I occurrences
of elements from S. Call a rowyof theé matrix a bad row if none of the elements in
the row is a witness. Then.the ertor.prebability is simply the probability that the
randomly selected row is a bad row. Hence, the error probability, when we run the
algorithm A using k& ample points chosen fromr, a random row of A, is

errfs) = % (1)

As mentioned above, we do not 'know the set S explicitly. However, an upper
bound on the error probability can be obtained by computing err = max{err(A) :
Ae (i)} Since an OA(k,n) has n* rows,

n

S = @)

i=0
Counting the number of occurrences of witnesses in A in two ways, there are
exactly a; rows in which there are i occurrences of witnesses, in any column of A.

It follows that each point occurs exactly n times.
n
Z ia; = knm. (3)
i=0

Similarly, counting the number of occurrences of pairs of witnesses occurring in

the same row in two ways, it yields:

n

> il = a; = k(k — 1)ym”. (4)

1=0

12



For a real number =, we have

n

0< i(z — )’ = Z(z2 —22i + 2% a; = iiQai — Qxiiai + 22 iai
i=1 i=1 i=1 i=1

i=1
= k(k — 1)m? + knm — 2zknm + 2° Z a;.

i=1

It follows from equations (2), (3) and (4), that

n

2knmx — knm — k(k — 1)m?
Zai >

2
T
=1

n+(k—1)

The right hand side of (5) is maximized when z = =, Hence, we get

n 2

kmn
Zaiznjt(k—l)m' (6)

i=1
Now, from (2) and (6), we have
P i knm?
o= n+(k—1)m
Then, we get the following bound on the error probability from (1):
km
SH<l— ——————.
e{sy= n+ (k—1)m

Note that this bound on the error probability approaches 0 only linearly quickly
as a function of k. A small example which meets the bound is given by the following
OA(3,4):

0 1 1 2 21313
213 310
3 2 0 1 31110
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4 Quasi-symmetric designs and Strongly Regular designs

We are interested in 2-(v, k, A) designs with constraints over intersections between
their blocks. Those of symmetric designs, quasi-symmetric designs, semi-symmetric
design or even quasi-semi-symmetric designs. Based on the paper [29], the class of
quasi-symmetric designs with specific blocks will be surveyed in Section 4-1. Based
on the papers [14] by T. S. Fu and Y. Huang, the class of quasi-semi-symmetric

designs will be surveyed in Section 4-2.
4.1 Quasi-symmetric designs with Good Blocks

The family of quasi-symmetric designs form a broad class of 2-designs containing
all affine and symmetric designs and linear spaces. Quasi-symmetric designs not
in these subclasses are sparse. One motive for investigating quasi-symmetric de-
signs with prescribed geometric conditions, such as the existence of subdesigns, is
that perhaps a new construction might become apparent. The structure of quasi-
symmetric designs which have special blocks on which are induced quasi-symmetric
designs will be surveyed in this section, we show that-with the exception of linear,
affine, and projective spaceswthererare only two possible parameter sets for such
designs. Only one example is known of a design of one parameter set type and none
of the other. In this section, quasi-symmetrie designs with (z,y) = (0, y) or (1, y)

are studied.

Definition 4. Let x and iy be 'mon-negative integers with x < y. 2-design is quasi-
symmetric with intersection numbers x-andy if |BNC| € {x,y} for any two distinct
blocks B and C' and both intersection numbers are realized. The design is proper if

x # y; otherwise it is improper.

It is well-known that a 2-(v, k, A) design with A > 1 is symmetric if and only if
any two distinct blocks meet in A points. A design is resolvable if its blocks can be
partitioned into subsets (parallel classes) each of which partitions the whole point
set. The partition of blocks is called a parallelism. Blocks in the same parallel class
are parallel. Two distinct parallel blocks are disjoint. If, further the number of
points common to any two nonparallel blocks is constant, the design is said to be
affine. Clearly, affine designs are examples of quasi-symmetric designs with 0 as an

intersection number. Linear spaces, i.e., 2-(v, k, 1) designs, are also examples.

Theorem 4.1.1 ([29]). For any quasi-symmetric design with intersection numbers

x andy:

1. y — x divides both k — x and r — X\ if the design is proper;
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2. b—Dzy+k(k—1)(A=1)=k(r—1)(x+y—1); and
3. (k=1)(A=1)=(r—1)(y — 1) whenever z = 0.

Similar to affine planes and to symmetric designs, the notion of good blocks for

quasi-symmetric designs is introduced.

Lemma 4.1.2 ([29]). Let Il = (X, B) be a quasi-symmetric 2-(v, k,\) design with
intersection number x and y, where v < y. Let B and C' be blocks meeting in y

points.
1. The intersection of any two distinct blocks containing BN C is BNC.
2. Any point not in BN C is on at most one block containing BN C.

3. There are at most % blocks containing B N C. Equality holds if and only if

any point not in BN C is on a unique block containing B N C.

Proof. 1 follows since y > = and |BNC/| = y. Since two distinct blocks cannot have
y+ 1 or more common points, then 2. follows. Finally, 3. is an easy deduction from
1. and 2. [

Definition 5. Let I1 be @ quasi-symmetric '2-=(v, k,\) design, a block B is good if
there is a (necessarily unique) block containing both p and B N C whenever a block

C meeting B in y points and_any pointp not«in BN C.

Note that if A = 1 or, equivalently; ¥ = 1 then all blocks in II are good. The

v—k
k—y

2-(v,k, ) design. The next lemma is a simple consequence of the definition of a

quotient m = will be proved to be a useful parameter for a quasi-symmetric

good block and lemma 4.1.2.

Lemma 4.1.3 ([29]). Let II be as in Lemma 4.1.2 and let B be any block. Then B
s a good block if and only if for any block C' meeting B in y points there are exactly
m + 1 blocks containing BN C.

As an easy consequence, m = ﬁ must be a positive integer for any quasi-
symmetric design with a good block. Those quasi-symmetric designs having 0 as an
intersection number and having a good block are classified parametrically as shown
in the following theorem.

We show that a quasi-symmetric design with intersection number 1 and y > 1
and a good block belongs to one of three types: Examples of quasi-symmetric designs
which are not symmetric designs or affine designs or linear spaces are rather rare, so

construction methods for quasi-symmetric designs are of interest. The classification
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problem for quasi-symmetric designs, even in case x = 0 appears to be a difficult
open problem.

One approach in the study of such designs is to impose some additional para-
metric or structural condition. Another approach is to consider substructures and
induced substructures of such quasi-symmetric designs with a possible view to ob-
tain new construction methods. They consider quasi-symmetric designs with x = 0
and having a certain type of block, referred to as a good block. According to them,
in any quasi-symmetric design with intersection numbers z, y (0 < x < y), a block
B is said to be good, if for any block C' with |B N C| =y and any point p ¢ BN C,
there is a (unique) block containing p and B N C. It is clear that if A = 1 (or,
equivalently, y = 1) in a quasi-symmetric design, then all blocks are good. Their
notion of good blocks in quasi-symmetric designs extends the earlier notion for affine
designs and symmetric designs.

One of the main results of [29] is the following theorem.

Theorem 4.1.4 ([29]). Let I1 = (X,B) be a quasi-symmetric 2-(v,k,\) design
with intersection numbers x = 0 and y. Suppose that I1 has a good block. Then I1
1s a symmetric design or an_dffine design. or a linear space or else has one of the

following two parameter sets:
Lo=y'"(y’ =y +2y= D k=@ ~y+1), A=y’ +y+1;
2. v=yly' -y’ + ¢~y Nk =ylt ey +1), A=y + L.

Those QSD in case 1. and 2.°TT induces a 2-(k,y, 1) design on the points of any
good block B, the blocks of the induced design being distinct non-empty intersec-
tions of B with the other blocks of II. It is remarked in [29] that the smallest possible
value of y in case 1. is y = 3, the value y = 2 being excluded by the non-existence
of a projective plane of order 10. It is also noted that the unique 2-(22, 6, 5) Witt

design having x = 0, y = 2 satisfies case 2., but no examples with y > 3 are known.

Theorem 4.1.5 ([29]). Let II be a proper quasi-symmetric 2-(v, k,\) design with
A > 1 and having an intersection number 0. Let B be a good block and let 11y be
the quasi-symmetric 2-(k,y, %) design induced on B, where m = Z;_z If there 1s
a good block which is disjoint from B, then 11y is resolvable.

Theorem 4.1.6 ([29]). Let II be a quasi-symmetric 2-(v, k,\) design with X > 1
and having an intersection number 0. Then the following statements 1. and 2. are

equivalent:

1. All blocks of 11 are good.
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2. Fither 11 is the design of points and hyperplanes of projective or affine space,
or all lines (see definition below) of 11 have size y and 11 has parameter of type
1. or 2. in Theorem 4.1.4.

Let II,, denote the incidence structure whose points and blocks are the lines and
blocks of IT on a point p, respectively. In case 2.(ii), II, is a projective plane of order
y® +y or y? for any point p. If y = 2, IT is the unique Witt 3-(22,6,1)design.

Proper quasi-symmetric designs with x = 1 and which have a good block is
reviewed in this section. The following are two well-known examples of such designs.

Example:

1. Let PG(4,q) be the four-dimensional projective geometry over GF(q). Let
IT = PGsy(4,q), respectively. Then II is a quasi-symmetric 2-(v, k, \) design

with v = qqull, k=M\= q::f, x=1and y=q+ 1. All blocks of II are good.

2. The unique 2-(23, 7, 21) Witt design II, which is also a 4-(23, 7, 1) design, is
a quasi-symmetric design with z = 1 and y = 3. All blocks in this design are

good since y = 3 and there is exactly one block on any four points.

Theorem 4.1.7 ([28]). Let 11 =X, 8B) be a proper quasi-symmetric 2-(v, k, \)
design with intersection numbers 1 and.y aend. with a good block. Then II is one of

the following:

1. a quasi-symmetric deswgn with parameters

U:q;__lljk:)‘:q;__llab:(qz+1)va7":(q2+1)k7,$=1andy:q+1

(q > 2) as those of PG(4,q).

2. The unique 2-(23, 7, 21) Witt design with
v=23 k=T, A=21,b=253, r =77,z =1, y = 3.

3. A quasi-symmetric design with parameters
v=14+(a—=1)A+1)(y—1) and k = 1+a(y— 1), for some integer o >y > 5,
and in which the design I1; induced on a good block is a 2-(k,y,1) design.

No example of designs satisfying case 3. of the theorem has been found.

Theorem 4.1.8 ([28]). Let Il = (X, B) be a quasi-symmetric design, with param-
eters as those of PGs(4,q) and with (x,y) = (1,q + 1). All blocks of I are good if
and only if 11 is isomorphic to PGy(4,q).
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4.2 A Class of Strongly Regular Designs SRD
4.2.1 Quasi-semi symmetric designs

Motivated by the study of the geometric structures associated with the half dual
polar graph D, ,(¢q) and the alternating forms graphs Alt(n,q), some specific con-

ditions over incidence structures were considered by Fu and Huang [14]:
(QSS1) every two distinct points are in 0 or A common blocks,
(QSS2) every two distinct blocks intersect in 0 or p points,

(QSS3) if A = 1, then there are constants k and r such that every block contains

k points and every point is on r blocks,

(QSS4) if (x, B) is a nonincident pair of point z and block B, then there are exactly

a blocks of z intersecting B.

Let A, p, and « be positive integers. A finite incidence structure II = (X, B)
is called a quasi-semi-symmetric design (abbreviated 'QSSD’) for A, u with nezus
if conditions (QSS1)-(QSS4) aré satisfied:, Clearly, A = 1 if and only if o = 1, and
hence II is a semilinear space or, aipartial linear space (see Brouwer et al., 1989,
for the definition). Condition (QSS3) is mecessary to ensure the k-uniformity and
r-regularity of II (i.e., every blocks:of Il contains k& points, and every point of II is
in r blocks). An example that satisfies (QSS1) and (QSS2) with A = p = 1 but
does not satisfy (QSS3) is given.in Huang-an Pan (1988). Partial geometries, first
studied by Bose, are examples of QSSDs with A = u = 1, and partial A-geometries,
introduced by Cameron and Drake (1980) are QSSDs with A = p.

QSSDs with multiple intersections, i.e., A > u > 2, were treated [|. Basic prop-
erties, associated combinatorial structures, some examples constructed from vector
spaces, and some existence conditions for QSSDs with 4 = A — 1 > 2 are described.
Two extremal conditions that provide an upper bound and a lower bound, respec-
tively, for a. The following two equivalent conditions, called the (*)-conditions, were
studied for (s,r; u)-nets in Huang and Laurent (1993) and for partial A-geometries
in Cameron and Drake (1980). Indeed, oo = % under these extremal conditions.
For a nonflag (z, B), |+ N B| is a constant 3, where S\ = au, and we let 11, g be
the incidence structure defined over - N B. The structure of II, g, together with
the (*)-condition, gives a sharp lower bound for § (and hence for ).

Symmetric designs, semisymmetric designs, and partial A-geometries are among
such structures. In this paper, in addition to some general properties, we study

the existence conditions for QSSDs with 1 = A — 1 > 2 and the properties of
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QSSDs satisfying the following extremal condition: if By and By are two blocks
with a nonempty intersection, then there are another A — 2 blocks Bs, ..., By such
that Ni<;<\B; = By N By. We show that o« > M under such a condition,
and QSSDs with equality are classified whenever © = A or g = A — 1 following a
classification of affine polar spaces by Cohen and Shult (Geometraic Dedicata 35
(1990), 43-76).

4.2.2 Strongly Regular Designs

The notion of strongly regular designs was first introduced by D.G. Higman as a
class of 1-design arising in the investigation of coherent configurations of small types.
Indeed, SRD’s are lé—designs in the sense of Neumaier [31] and form a self-dual class.
An SRD has a point graph and a block graph of which are strongly regular.

An incidence structure I = (X, B) with a point-block incidence matrix M is
called a strongly reqular design if there exists nonnegative integers a;, b;, N;, P; and
Si, 1 = 1,2, such that

1. JM =5,J, MJ = Sy,
2. MMT = SQ[+GQA1 +b2(J—I—A1), MTM = Slf—i-alAQ—Fbl(J—[—Ag),
3. AlM:NlM—f-Pl(J—M),MA2:N2M+P2(J—M),

where A; and A, are square matrices of.orders v and b, respectively. Note that A;
and A; = J — I — Ay, respectively, A and A, = J — I — A,, form the adjacency
matrices of a pair of complementary-strongly regular graphs.

These conditions can be interpreted in terms of the relationship between points

and blocks as follows:
1. each block consists of k points, and point lies in r blocks;

2. any two points lie in either ay or by common blocks, and any two blocks meet

in either a; or b; points;

3. for a pair of a point x and a block B, z is collinear with either P, points or
Nj points of B; depending on whether x is in B or not, the number of blocks
containing x and meeting B is either P, or Ny depending on whether x € B

or not.

We will focus on those strongly regular designs with b, = by = 0, i.e., we are
concerned with those strongly regular designs with incidence matrix M satisfying
the following conditions: JM = kJ, MJ =rJ, MM = rI+aA,, MTM = kI+bA,,
AyM = aM +b(J — M) and M Ay = NoM + Py(J — M) (note that k for Sy, r for
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Sy, A for Ay, B for Ay). This class of strongly regular designs is called a quasi-
semisymmetric design with nezus, and it was used as a geometric framework for a
characterization of alternating bilinear forms graphs of order 4.

An SRD(v, k,a,b) is called resolvable if the blocks can be partitioned into classes
such that each class form a partition of X and any two blocks have common points

if they are in different classes.
Lemma 4.2.1. For a resolvable SRD(v, k,a,b), then

1. for a pair (x, B) of nonincident point x and block B, there is a unique block

on x and parallel to B, and hence x s collinear with @ points on B,

2. two distinct points x and y are collinear with k — 2+ (7"*“)(2—’;*"*“) points when-

br(r—1)

ever they are collinear, or otherwise they are collinear with ——

points;
and hence its point graph is a strongly regular graph on v points with k =
r(k—1)/a, f = andg = r(r — 1)b/a2.

4.2.3 Some properties of SRD (v, k, A, 1)

Lemma 4.2.2 ([14]). Let Il =(X.B)be a SRD(v,k,\, iu), p > 2, with nexus .

The following two conditions are equivalent:

1. if By, By are two distinét blocks, with B:(¥Bs # &, then there exist Bs, ..., By €
B such that Ni<;<xBj'= Bi¥ By, which consists of i points.

2. if By, By, By are three distinct blocks with | By N By N Bs| > 2, then | By N By N
Bs| = p.

Corollary 4.2.3 ([14]). Let (z,B) be a nonflag of a SRD satisfying the (*)-
condition, and let Ay and Ay be two distinct blocks of x intersecting B. Then
|[AyN AN Bl <1.

Lemma 4.2.4 ([14]). Let Il = (X, B) be a SRD(v,k, A\, 1), g > 2, satisfying the

(*)-condition with nexus o and let (z, B) be a nonflag. Then

1. B> MNpu—1)+1, and hence o > ’\2(“_%,

2. equality holds if and only if the structure I, g is a 2-(A(u—1)+1, p, 1) design.

Substituting u = A (= ¢+1) and p = A—1 (= ¢) in the previous lemma, we have
a>q¢*+q+1and a > ¢* + q, respectively. Examples (iii) and (iv) in the previous
section show that both bounds are sharp. Moreover, the 2-designs mentioned above
in the QSSDs of Examples (iii) and (iv) are projective planes and affine planes of

order ¢, respectively.
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An upper bound for 4 (and hence for «) is obtained by the following extremal
condition, called the (A)-condition.

Any three distinct pairwise collinear points are in at least one common block.

Lemma 4.2.5 ([14]). Let 11 = (X,B) be a SRD(v,k,\, i), g > 2, satisfying the

(A )-condition with nexus cv. Then < A — 1)+ 1, and hence a < ’\2(’:&

Corollary 4.2.6 ([14]). Let Il = (X,B) be a SRD(v,k, A\, u), satisfying the (*)-
condition with nexus o = % Then the (A )-condition holds.

For a nonflag (z, B), the incidence structure II, 5 is determined under the (*)-
and (A)-condition.

Corollary 4.2.7 ([14]). Let Il = (X, B) be a SRD(v,k, A\, iu), p > 2 with nexus .

The following are equivalent:
1. 11 satisfies the (*)- and (A )-conditions,
2. Iy pisa2-(ANp—1)+1,p1,1) design.

Cameron and Drake (1980) showed that a SRD(v, k, A\, ) satisfying the (*)-
condition with nexus o =2A* + A 4z l.is obtained from a polar space of type Dy4(q)
with one family of maximal totally isetropic subspaces as the block set. As a result,
its point graph is isomorphic t0"Dyalg)- In this section, we shall prove a similar
result for a SRD(v, k, A\, A = 1) Wwith nexus'@ = \? — \.

Let IT = (X, B) be a SRD(v;kyX, i) satisfying the with nexus a = M
(ie,, B = Ap — 1) + 1). Associate II with an incidence structure II' = (X, L)
with a collection P of substructures, where £L = {AN B : A,/ B € B are distinct
with AN B # @} and let P = {2t NB :2 € X,B € B,z ¢ B}. Members of
L and P are called lines and planes, respectively. Clearly, the point graphs of II
and II" are identical. For any two collinear points x and y, let Ay, ..., Ay be the
blocks containing x and y and denoted by zy the line A; N Ay = N1<;<yA; (by the
(*)-condition). Since « reaches the lower bound, the (A)-condition also holds, by
Corollary 4.2.6. Thus xt Nyt = Ujcj<n 4y, and {A; — 2y : 1 < i < A} forms a
partition of z+ Nyt — xy. Hence the incidence structure II' = (X, £) is a gamma
space, and each block of IT induces a maximal singular subspace in II' (refer to
Brouwer et al., 1989, for the definitions of gamma spaces and singular subspaces).
Note also that each plane in P is a singular subspace too. A triple of points is called
a triangle if they are pairwise collinear but not contained in a common line. The

main theorem in this section is as follows:
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Theorem 4.2.8 ([14]). Let Il = (X,B) be a SRD(v,k, A\, u) satisfying the (*)-

condition with o = w (i.e., B =Xpu—1)+1). Then

1. ifpu=X(=q+1>3), thenIl' = (X, L) is the polar space of type D4(q) and
the point graph of 11 is isomorphic to Dy 4(q).

2. ifu=X=1 (=q>4), then either II' = (X, L) is the affine polar space of type
Dy(q) — oot and the point graph of 11 is isomorphic to Alt(4,q), or k = 5° 11°.

Construction for families of resolvable SRD with parameters (v, k, a,b) = (¢°,
¢ 2,q), (¢*, ¢*, £,q) for ¢ = 2" a power of 2. As a consequence, a few families
of other designs as well as strongly regular graphs are derived. Among others,
this gives a strongly regular graph SRG (196, 135,94, 90) which is new to the list of
such graphs up to 280 vertices complied by A.E. Brouwer in the CRC Handbook of
Combinatorial Designs.
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