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The time-dependent Ginzburg-Landau approach is used to investigate nonlinear response of a strongly
type-II superconductor. The dissipation takes a form of the flux flow which is quantitatively studied beyond
linear response. Thermal fluctuations, represented by the Langevin white noise, are assumed to be strong
enough to melt the Abrikosov vortex lattice created by the magnetic field into a moving vortex liquid and
marginalize the effects of the vortex pinning by inhomogeneities. The layered structure of the superconductor
is accounted for by means of the Lawrence-Doniach model. The nonlinear interaction term in dynamics is
treated within self-consistent Gaussian approximation and we go beyond the often used lowest Landau level
approximation to treat arbitrary magnetic fields. The I-V curve is calculated for arbitrary temperature and the
results are compared to experimental data on high-Tc superconductor YBa2Cu3O7−�.
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I. INTRODUCTION

Electric response of a high-temperature superconductor
�HTSC� under magnetic field has been a subject of extensive
experimental and theoretical investigation for years. Mag-
netic field in these layered strongly type-II superconductors
create magnetic vortices, which, if not pinned by inhomoge-
neities, move and let the electric field to penetrate the mixed
state. The dynamic properties of fluxons appearing in the
bulk of a sample are strongly affected by the combined effect
of thermal fluctuations, anisotropy �dimensionality� and the
flux pinning.1 Thermal fluctuations in these materials are far
from negligible and, in particular, are responsible for exis-
tence of the first-order vortex lattice melting transition sepa-
rating two thermodynamically distinct phases, the vortex
solid and the vortex liquid. Magnetic field and reduced di-
mensionality due to pronounced layered structure �especially
in materials such as Bi2Sr2CaCuO8+�� further enhance the
effect of thermal fluctuations on the mesoscopic scale. On
the other hand the role of pinning in high-Tc materials is
reduced significantly compared to the low-temperature one,
leading to smaller critical currents. At elevated temperatures
the thermal depinning1 further diminishes effects of disorder.

Linear response to electric field in the mixed state of these
superconductors has been thoroughly explored experimen-
tally and theoretically over the last three decades. These ex-
periments were performed at very small voltages in order to
avoid effects of nonlinearity. Deviation from linearity,
however, are interesting in their own right. These effects
have also been studied in low-Tc superconductors
experimentally2,3 and theoretically4,5 and recently experi-
ments were extended to HTSC compounds.6,7

Since thermal fluctuations in the low-Tc materials are neg-
ligible compared to the intervortex interactions, the moving
vortex matter is expected to preserve a regular lattice struc-
ture �for weak enough disorder�. On the other hand, as men-
tioned above, the vortex lattice melts in HTSC over large
portions of their phase diagram so the moving vortex matter

in the region of vortex liquid can be better described as an
irregular flowing vortex liquid. In particular the nonlinear
effects will also be strongly influenced by the thermal fluc-
tuations.

A simpler case of a zero or very small magnetic field in
the case of strong thermal fluctuations was, in fact, compre-
hensively studied theoretically8 albeit in linear response only.
In any superconductor there exists a critical region around
the critical temperature �T−Tc��Gi ·Tc, in which the fluctua-
tions are strong �the Ginzburg number characterizing the
strength of thermal fluctuations is just Gi�10−10–10−7 for
low Tc, while Gi�10−5–10−1 for HTSC materials�. Outside
the critical region and for small electric fields, the fluctuation
conductivity was calculated by Aslamazov and Larkin9 by
considering �noninteracting� Gaussian fluctuations within
Bardeen-Cooper-Schrieffer �BCS� and within a more phe-
nomenological Ginzburg-Landau �GL� approach. In the
framework of the GL approach �restricted to the lowest
Landau-level approximation�, Ullah and Dorsey10 computed
the Ettingshausen coefficient by using the Hartree approxi-
mation. This approach was extended to other transport phe-
nomena such as the Hall conductivity10 and the Nernst
effect.11

The fluctuation conductivity within linear response can be
applied to describe sufficiently weak electric fields, which do
not perturb the fluctuations’ spectrum.12 Physically at electric
field, which is able to accelerate the paired electrons on a
distance on the order of the coherence length �, so that they
change their energy by a value corresponding to the Cooper
pair binding energy, the linear response is already
inapplicable.8 The resulting additional field-dependent de-
pairing leads to deviation of the current-voltage characteris-
tics from the Ohm’s law. The non-Ohmic fluctuation conduc-
tivity was calculated for a layered superconductor in an
arbitrary electric field considering the fluctuations as nonin-
teracting Gaussian ones.13,14 The fluctuations’ suppression
effect of high electric fields in HTSC was investigated ex-
perimentally for the in-plane paraconductivity in zero mag-
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netic field,15–17 and a good agreement with the theoretical
models13,14 was found. Theoretically the nonlinear fluctua-
tion conductivity in HTSC has been treated by Puica and
Lang.18 Below we compare their approach and results to
ours.

In this paper the nonlinear electric response of the moving
vortex liquid in a layered superconductor under magnetic
field perpendicular to the layers is studied using the time-
dependent GL �TDGL� approach. The layered structure is
modeled via the Lawrence-Doniach discretization in the
magnetic field direction. In the moving vortex liquid the
long-range crystalline order is lost due to thermal fluctua-
tions and the vortex matter becomes homogeneous on a scale
above the average intervortex distances. Although sometimes
motion tends to suppress the fluctuations, they are still a
dominant factor in flux dynamics. The TDGL approach is an
ideal tool to study a combined effect of the dissipative �over-
damped� flux motion and thermal fluctuations conveniently
modeled by the Langevin white noise. The interaction term
in dynamics is treated in self-consistent Gaussian approxima-
tion which is similar in structure to the Hartree
approximation.8,10,18,19

First the model of Ref. 18 is physically different from
ours. The authors in Ref. 18 believe that the two quantities,
layer distance and thickness in the Lawrence-Doniach for
HTSC are equal �apparently not the case in HTSC�, while we
consider them as two independent parameters. Another dif-
ference is we use so-called self-consistent Gaussian approxi-
mation to treat the model while Ref. 18 used the Hartree
approximation.

A main contribution of our paper is an explicit form of the
Green’s function �GF� incorporating all Landau levels. This
allows to obtain explicit formulas without need to cutoff
higher Landau levels. In Ref. 18, a nontrivial matrix inver-
sion �of infinite matrices� or cutting off the number of Lan-
dau levels is required. Note that the exact analytical expres-
sion of Green’s function of the linearized TDGL equation in
dc field can be even generalized also to ac field. The method
is very general, and it allow us to study transport phenomena
beyond linear response of type-II superconductor such as the
Nernst effect and Hall effect. The renormalization of the
models is also different from Ref. 18. One of the main result
of our work is that the conductivity formula is independent
of ultraviolet �UV� cutoff �unlike in Ref. 18� as it should be
as the standard ���4 theory is renormalizable. Furthermore
self-consistent Gaussian approximation used in this paper is
consistent to leading order with perturbation theory, see Ref.
20 in which it is shown that this procedure preserved a cor-
rect the UV renormalization �is renormalization group invari-
ant�. Without electric field the issue was comprehensively
discussed in a textbook of Kleinert.20 One can use Hartree
procedure only when UV issues are unimportant. We can
also show, if there is no electric field, the result obtained
using TDGL model and self-consistent Gaussian approxima-
tion will lead the same thermodynamic equation using self-
consistent Gaussian approximation.

The paper is organized as follows. The model is defined in
Sec. II. The vortex liquid within the self-consistent Gaussian
approximation is described in Sec. III. The I-V curve and the
comparison with experiment are described in Sec. IV while
Sec. V contains conclusions.

II. THERMAL FLUCTUATIONS IN THE TIME-
DEPENDENT GL LAWRENCE-DONIACH MODEL

To describe fluctuation of order parameter in layered su-
perconductors, one can start with the Lawrence-Doniach ex-
pression of the GL free energy of the two-dimensional �2D�
layers with a Josephson coupling between them

FGL = s��
n
� d2r� �2

2m�
�D�n�2 +

�2

2mcd�2 ��n − �n+1�2

+ a��n�2 +
b�

2
��n�4� , �1�

where s� is the order parameter effective “thickness” and d�
distance between layers labeled by n. The Lawrence-
Doniach model approximates paired electrons density of
states by homogeneous infinitely thin planes separated by
distance d�. While discussing thermal fluctuations, we have
to introduce a finite thickness, otherwise the fluctuations will
not allow the condensate to exist �Mermin-Wagner theorem�.
The thickness is of course smaller than the distance between
the layers �otherwise we would not have layers�. The order
parameter is assumed to be nonzero within s�. Effective Coo-
per pair mass in the ab plane is m� �disregarding for simplic-
ity the anisotropy between the crystallographic a and b axes�
while along the c axis it is much larger mc. For simplicity we
assume a=�Tc

mf�t−1�, t	T /Tc
mf, although this temperature

dependence can be easily modified to better describe the ex-
perimental coherence length. The “mean-field” critical tem-
perature Tc

mf depends on UV cutoff, �c, of the “mesoscopic”
or “phenomenological” GL description, specified later. This
temperature is higher than measured critical temperature Tc
due to strong thermal fluctuations on the mesoscopic scale.

The covariant derivatives are defined by D	�
+i�2� /	0�A, where the vector potential describes constant
and homogeneous magnetic field A= �−By ,0� and 	0
=hc /e� is the flux quantum with e�=2�e�. The two scales, the
coherence length �2=�2 / �2m��Tc�, and the penetration depth

2=c2m�b� / �4�e�2�Tc� define the GL ratio �	
 /�, which
is very large for HTSC. In this case of strongly type-II su-
perconductors the magnetization is by a factor �2 smaller
than the external field for magnetic field larger than the first
critical field Hc1�T�, so that we take B
H. The electric cur-
rent, J=Jn+Js, includes both the Ohmic normal part

Jn = �nE �2�

and the supercurrent

Js =
ie��

2m�
��n

�D�n − �nD�n
�� . �3�

Since we are interested in a transport phenomenon, it is nec-
essary to introduce a dynamics of the order parameter. The
simplest one is a gauge-invariant version of the “type A”
relaxational dynamics.21 In the presence of thermal fluctua-
tions, which on the mesoscopic scale are represented by a
complex white noise,22 it reads
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�2�

2m�
D��n = −

1

s�

�FGL

��n
� + �n, �4�

where D�	� /��− i�e� /��	 is the covariant time derivative
with 	=−Ey being the scalar electric potential describing
the driving force in a purely dissipative dynamics. The elec-
tric field is therefore directed along the y axis and conse-
quently the vortices are moving in the x direction. For mag-
netic fields that are not too low, we assume that the electric
field is also homogeneous.22 The inverse diffusion constant
� /2, controlling the time scale of dynamical processes via
dissipation, is real, although a small imaginary �Hall� part is
also generally present.23 The variance of the thermal noise,
determining the temperature T is taken to be the Gaussian
white noise

��n
��r,���m�r�,���� =

�2�

m�s�
T��r − r����� − ����nm. �5�

Throughout, most of the paper, we use the coherence
length � as a unit of length and Hc2=	0 /2��2 as a unit of the
magnetic field. The dimensionless Boltzmann factor in these
units is

FGL

T
=

s

�t
�

n
� d2r�1

2
�D�n�2 +

1

2d2 ��n − �n+1�2

−
1 − t

2
��n�2 +

1

2
��n�4� , �6�

where the covariant derivatives in dimensionless units in
Landau gauge are Dx= �

�x − iby, Dy = �
�y with b=B /Hc2 and the

order parameter field was rescaled: �2= �2�Tc
mf /b���2. The

dimensionless fluctuations’ strength coefficient is

� = 2Gi� , �7�

where the Ginzburg number is defined by

Gi =
1

2
�8e2�2�Tc

mf/c2�2�2. �8�

Note that here we use the standard definition of the Ginzburg
number different from that in Ref. 24. The relation between
parameters of the two models, the Lawrence-Doniach and
the three-dimensional anisotropic GL model, is d�=d�c
=d� /, s�=s�c=s� /, where 2	mc /m� is an anisotropy pa-
rameter. In analogy to the coherence length and the penetra-
tion depth, one can define a characteristic time scale. In the
superconducting phase a typical “relaxation” time is �GL
=��2 /2. It is convenient to use the following unit of the
electric field and the dimensionless field: EGL=Hc2� /c�GL,
E=E /EGL. The TDGL Eq. �4� written in dimensionless units
reads

Ĥ�n +
1

2d2 �2�n − �n+1 − �n−1� −
1 − t

2
�n + ��n�2�n = �n,

Ĥ = D� −
1

2
D2, �9�

while the Gaussian white-noise correlation takes a form

��n
��r,���m�r�,���� =

2�t

s
��r − r����� − ����nm. �10�

The covariant time derivative in dimensionless units is D�

= �
�� + ivby with v=E /b being the vortex velocity and the

thermal noise was rescaled as �n=�n�2�Tc
mf�3/2 /b�1/2. The di-

mensionless current density is Js=JGLjs, where

js =
i

2
��n

�D�n − �nD�n
�� . �11�

with JGL=cHc2 / �2���2� being the unit of the current density.
Consistently the conductivity will be given in units of �GL
=JGL /EGL=c2� / �4��2�. This unit is close to the normal-
state conductivity �n in dirty limit superconductors.25 In gen-
eral there is a factor k of order one relating the two: �n
=k�GL.

III. VORTEX LIQUID WITHIN THE SELF-CONSISTENT
GAUSSIAN APPROXIMATION

A. Gap equation

Thermal fluctuations in vortex liquid frustrate the phase of
the order parameter, so that ��n�r ,���=0. Therefore the con-
tributions to the expectation values of physical quantities like
the electric current come exclusively from the correlations,
the most important being the quadratic one
��n�r ,���n

��r� ,����. In particular, ���n�r ,���2� is the super-
fluid density. A simple approximation which captures the
most interesting fluctuations effects in the self-consistent
Gaussian approximation, in which the cubic term in the
TDGL Eq. �9�, ��n�2�n, is replaced by a linear one 2���n�2��n

�Ĥ −
b

2
��n +

1

2d2 �2�n − �n+1 − �n−1� + ��n = �n, �12�

leading the “renormalized” value of the coefficient of the
linear term

� = − ah + 2���n�2� , �13�

where the constant is defined as ah= �1− t−b� /2. The average
���n�2� is expressed via the parameter � below and will be
determined self-consistently together with �. It differs
slightly from a well-known Hartree procedure in which the
coefficient of the linearized term is generally different �see
Refs. 20 and 22 and Appendix C for details�.

Due to the discrete translation invariance in the field di-
rection z, it is convenient to work with the Fourier transform
with respect to the layer index

�n�r,�� = �
0

2�/d dkz

2�
e−inkzd�kz

�r,�� ,

�kz
�r,�� = d�

n

einkzd�n�r,�� , �14�

and similar transformation for �̄. In terms of Fourier compo-
nents the TDGL Eq. �12� becomes
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�Ĥ −
b

2
+

1

d2 �1 − cos�kzd�� + ���kz
�r,�� = �kz

�r,�� .

�15�

The noise correlation is

��kz

��r,���kz�
�r�,���� = 4��t

d

s
��r − r����� − �����kz − kz�� .

�16�

The relaxational linearized TDGL equation with a Langevin
noise, Eq. �15�, is solved using the retarded �G=0 for �
���� GF Gkz

�r ,� ;r� ,���

�n�r,�� = �
0

2�/d dkz

2�
e−inkzd� dr�

�� d��Gkz
�r,�;r�,����kz

�r�,��� . �17�

The GF satisfies

�Ĥ −
b

2
+

1

d2 �1 − cos�kzd�� + ��Gkz
�r,r�,� − ���

= ��r − r����� − ��� �18�

and is computed in the Appendix A.
The thermal average of the superfluid density �density of

Cooper pairs� is

���n�r,���2� = 2�t
d

s
�

0

2�/d dkz

2�
� dr�

�� d���Gkz
�r − r�,� − ����2

=
�tb

2�s
�

�=�c

� f��,��
sinh�b��

, �19�

where

f��,�� = exp�2v2

b
tanh�b�

2
��e−�2�−b+v2��e−2�/d2

I0�2�/d2� .

�20�

Here I0�x�= �1 /2���0
2�ex cos �d� is the modified Bessel func-

tion. The first pair of multipliers in Eq. �20� is independent of
the interplane distance d and exponentially decreases for �
� �2�−b+v2�−1 while the last pair of multipliers depends on
the layered structure. The expression in Eq. �19� is divergent
at small �, so an UV cutoff �c is necessary for regularization.
Substituting the expectation value into the “gap equation,”
Eq. �13�, the later takes a form

� = − ah +
�tb

�s
�

�=�c

� f��,��
sinh�b��

. �21�

B. Renormalization

In order to absorb the divergence into a renormalized
value ah

r of the coefficient ah, it is convenient to make an

integration by parts in the last term for small �c

b�
�=�c

� f���
sinh�b��

� − �
0

�

ln�sinh�b���
d

d�
� f��,��

cosh�b��� − ln�b�c� .

�22�

Physically the renormalization corresponds to reduction in
the critical temperature by the thermal fluctuations from Tc

mf

to Tc. The thermal fluctuations occur on the mesoscopic
scale. The critical temperature Tc is defined at �=0, and �

=0, and at low magnetic field less than Hc1=
Hc2

2�2 ln��� �for a
typical high-Tc superconductor, ��50, Hc1=7.8�10−4Hc2�,
the superconductor is at Meissner phase, b=0, leading to

Tc = Tc
mf�1 +

2�

�s
�ln��c/d2� + E�� , �23�

where E=0.577 is Euler constant, and Eq. �21� can be re-
written as

� = − ah
r −

�t

�s
�

0

�

ln�sinh�b���
d

d�
� f��,��

cosh�b���
+

�t

�s
�E − ln�bd2�� , �24�

where ah
r =

1−b−T/Tc

2 , t=T /Tc, and �=2Gi�, where Gi
= 1

2 �8e2�2�Tc /c2�2�2 �Tc
mf is now replaced by Tc�. The for-

mula is cutoff independent. In terms of energy UV cutoff �,
introduced, for example, in Ref. 11, the cutoff “time” �c can
be expressed as

�c = 1/�2eE�� . �25�

This is obtained by comparing a thermodynamic result for a
physical quantity like superfluid density with the dynamic
result �see Appendix B�. The temporary UV cutoff used is
completely equivalent to the standard energy or momentum
cutoff Lambda used in thermodynamics �in which the time
dependence does not appear�. Physically one might think
about momentum cutoff as more basic and this would be
universal and independent of particular time-dependent real-
ization of thermal fluctuations �TDGL with white noise in
our case�. Roughly �in physical units� ���F=�2kF

2 / �2m��.
In the next section we will discuss the estimate of Tc

mf using
this value due to the following reason. For high-Tc materials
ordinary BCS is invalid and coherence length is of order of
lattice spacing �the cutoff becomes microscopic� and there-
fore the energy cutoff is of order �F. Except the formula to
calculate Tc

mf, all other formulas in this paper is independent
of energy cutoff.

IV. I-V CURVE

A. Current density

The supercurrent density, defined by Eq. �11�, can be ex-
pressed via the Green’s functions as

TINH, LI, AND ROSENSTEIN PHYSICAL REVIEW B 81, 224521 �2010�

224521-4



jy
s = i�t

d

s
�

0

2�/d dkz

2�
�

r�,��
Gkz

� �r − r�,� − ���

�
�

�y
Gkz

�r − r�,� − ��� + c.c. �26�

Performing the integrals, one obtains

jy
s =

�t

4�s
��

�=0

� f��,��

cosh�b�

2
�2 , �27�

where the function f was defined in Eq. �20�. Consequently
the contribution to the conductivity is �̄s= jy

s /E. The conduc-
tivity expression �Eq. �27�� is not divergent when expressed
as a function of renormalized Tc �the real transition tempera-
ture�, so it is independent of the cutoff. This is considered in
detail in Sec. III B and is indeed different from the Ref. 18.
In physical units the current density reads

Jy = �nE�1 +
�t

4�s

1

k
�

�=0

� f��,��

cosh�b�

2
�2� . �28�

This is the main result of the present paper. We also consid-
ered the conductivity expression in 2D in linear response
which do match the linear-response conductivity expression
derived in our previous work.11

�̄2D
s =

�t

4�sb
�2 − �1 −

2�

b
�����

b
� − ��1

2
+

�

b
��� , �29�

where � is the polygamma function.

B. Comparison with experiment

In this section we use physical units while the dimension-
less quantities are denoted with bars. The experiment results
of Puica et al.,7 obtained from the resistivity and Hall effect
measurements on an optimally doped YBa2Cu3O7−� �YBCO�
films of thickness 50 nm and Tc=86.8 K. The distance be-
tween the bilayers used the calculation is d�=11.68 Å in
Ref. 26. The number of bilayers is 50, large enough to be
described by the Lawrence-Doniach model without taking
care of boundary conditions. In order to compare the fluctua-
tion conductivity with experimental data in HTSC, one can-
not use the expression of relaxation time � in BCS which
may be suitable for low-Tc superconductor. Instead of this,
we use the factor k as fitting parameter. The comparison is
presented in Fig. 1. The resistivity

� =
1

�s + �n
, �30�

�s =
�n

k
�̄s �31�

curves were fitted to Eq. �30� with the normal-state conduc-
tivity measured in Ref. 7 to be �n=1.9�104 �� cm�−1. The
parameters we obtain from the fit are: Hc2�0�

=TcdHc2�T� /dT �Tc
=190 T �corresponding to �=13.2 Å�,

the Ginzburg-Landau parameter �=45.6, the order parameter
effective thickness s�=8.5 Å, and the factor k=�n /�GL
=0.55, where we take =7.8 for optimally doped YBCO in
Ref. 27. Using those parameters, we obtain Gi=1.12�10−3

�corresponding to �=0.148�. The order parameter effective
thickness s� can be taken to be equal to the layer distance
�see in Ref. 28� of the superconducting CuO plane plus the
coherence length 2�c=2 �

 due to the proximity effect:
3.18 Å+2 13.2

7.8 Å=6.9 Å, roughly in agreement in magni-
tude with the fitting value of s�.

We will now estimate Tc
mf for this sample. For the under-

doped YBCO, the radius of the Fermi surface of YBCO was
measured in Ref. 29, kF=0.7 Å−1, while the effective mass is
m�=1.9me. We will assume that the Fermi energy for under-
doped YBCO of Ref. 29 is �F=�2kF

2 / �2m�� and is roughly
the same for the optimal YBCO studied in this paper. The
cutoff time in physical units is then, according to Eq. �25�,
�c=1.39�10−17 s. Equation �23� gives then Tc

mf =101.15 K.
Using the parameters specified above we plot several theo-
retical I-V curves. As expected the I-V curve shown in Figs.
2 and 3 has two linear portions, the flux flow part for E
�EGL and the normal Ohmic part for E�EGL. In the cross-
over region, E�EGL, a I-V curve becomes nonlinear due to
destruction of superconductivity �the normal area inside the
vortex cores increases to fill all the space�. In Fig. 2 the I-V
curves are shown for different the magnetic fields, at a fixed
temperature T=0.75Tc. At given electric field, as the mag-
netic field increases, the supercurrent decreases. When the
magnetic field reaches Hc2, the I-V curve becomes linear. In
Fig. 3 the I-V curves are shown for different temperatures, at
a fixed magnetic field H=0.5Hc2. At given electric field, as
the temperature increases, the supercurrent decreases. When
the temperature reaches Tc, the I-V curve becomes linear.
With decreasing temperature the crossover becomes steeper.

V. DISCUSSION AND CONCLUSION

We quantitatively studied the transport in a layered type-II
superconductor in magnetic field in the presence of strong

FIG. 1. Points are resistivity for different electric fields of an
optimally doped YBCO in Ref. 7. The solid line is the theoretical
value of resistivity calculated from Eq. �30� with fitting parameters
�see text�. The dashed line is the theoretical value of resistivity in
linear response with the same parameters.
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thermal fluctuations on the mesoscopic scale beyond the lin-
ear response. While in the normal state the dissipation in-
volves unpaired electrons, in the mixed phase it takes a form
of the flux flow. Time-dependent Ginzburg-Landau equations
with thermal noise describing the thermal fluctuations are
used to describe the vortex-liquid regime and arbitrary flux
flow velocities. We avoid assuming the lowest Landau-level
approximation, so that the approach is valid for arbitrary
values the magnetic field not too close to Hc1�T�.

Our main objective is to study layered high-Tc materials
for which the Ginzburg number characterizing the strength of
thermal fluctuations is exceptionally high, in the moving vor-
tex matter the crystalline order is lost and it becomes homo-
geneous on a scale above the average intervortex distances.
This ceases to be the case at very low temperature at which
two additional factors make the calculation invalid. One is
the validity of the GL approach �strictly speaking not far
from Tc�H�� and another is effect of quenched disorder. The
later becomes insignificant at elevated temperature due to a
very effective thermal depinning. Although sometimes mo-
tion tends to suppress fluctuations, they are still a dominant
factor in flux dynamics. The nonlinear term in dynamics is
treated using the renormalized self-consistent Gaussian ap-

proximation. The renormalization of the critical temperature
is calculated and is strong in layered high-Tc materials. The
results were compared to the experimental data on HTSC.
Our resistivity results are in good qualitative and even quan-
titative agreement with experimental data on YBa2Cu3O7−�

in strong electric fields.
Let us compare the present approach with a widely used

Londons’ approximation. Since we have not neglected higher
Landau levels, as very often is done in similar studies,1,10 our
results should be applicable even for relatively small fields in
which the London approximation is valid and used. There is
no contradiction since the two approximations have a very
large overlap of applicability regions for strongly type-II su-
perconductors. The GL approach for the constant magnetic
induction works for H�Hc1�T� while the Londons’ approach
works for H�Hc2�T�. Similar methods can be applied to
other electric-transport phenomena like the Hall conductivity
and thermal-transport phenomena like the Nernst effect. The
results, at least in 2D, can be, in principle, compared to nu-
merical simulations of Langevin dynamics. Efforts in this
direction are under way.
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APPENDIX A: DERIVATION OF THE GREEN’S
FUNCTION OF THE LINEARIZED TDGL EQUATION

In this appendix we outline the method for obtaining the
Green’s function in strong electric field for the linearized
equation of TDGL �Eq. �18��. The Green’s function is a
Gaussian

Gkz
�r,r�,��� = exp� ib

2
X�y + y���gkz

�X,Y,��� , �A1�

where

gkz
�X,Y,��� = Ckz

���������exp�−
X2 + Y2

2�
− vX� , �A2�

with X=x−x�−v��, Y =y−y�, and ��=�−��. ����� is the
Heaviside step function, C and � are coefficients.

Substituting the Ansatz Eq. �A1� into Eq. �18�, one ob-
tains following conditions condition:

� −
b

2
+

�2

2
+

1

d2 �1 − cos�kzd�� +
1

�
+

��C

C
= 0, �A3�

FIG. 2. The current-voltage curves calculated from Eq. �28�
by using the parameters �see text� for different magnetic fields
b=B /Hc2: 0.04 �1�, 0.1 �2�, 0.4 �3�, and 1.0 �4� at temperature
t=0.75.

FIG. 3. The current-voltage curves calculated from Eq. �28� by
using the parameters �see text� for different temperatures t=T /Tc:
0.2 �1�, 0.3 �2�, 0.4 �3�, and 1.0 �4� at magnetic flied b=0.5.
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���

�2 −
1

�2 +
b2

4
= 0. �A4�

The Eq. �A4� determines �, subject to an initial condition
��0�=0,

� =
2

b
tanh�b��/2� �A5�

while Eq. �A3� determines C

C =
b

4�
exp�− �� −

b

2
+

v2

2
+

1

d2 �1 − cos�kzd������
� sinh−1�b��

2
� . �A6�

The normalization is dictated by the delta function term in
definition of the Green’s function Eq. �18�.

APPENDIX B: COMPARISON WITH THERMODYNAMICS

From TDGL, we obtain in the case �=0

���n�r,���2� =
�tb

2�s
�

�=�c

� exp�− �2� − b +
2

d2���I0�2�

d2 �
sinh�b��

.

�B1�

The superfluid density at b=0 and �=0 can be obtained by
taking b and � to zero limit in the above equation

���n�r,���2� =
�t

2�s
�

�=�c/d2

� exp�− 2��I0�2��
�

. �B2�

Performing the integration by parts, one obtains

���n�r,���2� � −
�t

2�s
�ln��c/d2� + E� + O��c� . �B3�

In the case without external electric field �or v=0�, the
equation obtained from TDGL shall approach the thermody-
namics result. In thermodynamics method, we shall evaluate
the partition function Z=�D�nD�n

�e−FGL/T, where FGL /T is
defined in Eq. �6�. The superfluid density in the thermody-
namic approach at the phase transition point

���n�r,���2� =
�td

�2��3s
�

0

kmax

dk�
0

2�/d

dkz
1

k2

2
+

1 − cos�kzd�
d2

�
�t

2�s
�ln � + ln�2d2�� + O��−1� , �B4�

where �=kmax
2 /2.

The relation between the cut-off time �c and energy UV
cutoff � is obtained by comparing Eq. �B3� with Eq. �B4�

�c �
1

2�eE
. �B5�

We also remark that in thermodynamic approach, if we
use the self-consistent Gaussian approximation, we will get
the exact same equation derived in Eq. �24� without electric
field derived from TDGL after using Eq. �B5�.

APPENDIX C: COMPARISON WITH THE HARTREE
APPROACH

Here we explain the difference using an example of ther-
modynamics. The dynamics is not different since it always
can be cast in the Martin-Siggia-Rose form �see Ref. 22�.

By using the Hartree approximation, one substitute ���4 by
2����2����2 in the GL free energy Eq. �6� leading the renor-
malized value of the coefficient of the linear term in the
TDGL Eq. �12�

� = − ah + ���n�2� . �C1�

In the framework of the variational Gaussian approxima-
tion, the GL free-energy Eq. �6� is divided into an optimized
quadratic part K, and a “small” part V. Then K is chosen in
such a way that the energy of a Gaussian state is minimal.1 In
liquid phase with an arbitrary homogeneous U�1� symmetric
state, just one variational parameter � is sufficient. Thus

K =
s

�t
�

n
� d2r��n

��−
1

2
D2 −

b

2
+ ���n� �C2�

and the small perturbation becomes

V =
s

�t
�

n
� d2r��− ah − ����n�2 +

1

2
��n�4� . �C3�

The eigenvalue of Nth Landau level is

−
1

2
D2�n = �N +

1

2
�b�n. �C4�

The Gaussian energy which will be minimized therefore is

fgauss 	 − log�� D�nD�̄n exp�− K�� + �V�K, �C5�

where

�V�K = �
n

��− ah − �����n�2� + ���n�2����n�2�� . �C6�

Minimizing the Gaussian energy with respect to �, we get the
gap equation

� = − ah + 2���n�2� . �C7�

While the Hartree method is generally simpler, the Gauss-
ian method applied in its consistent form conserves Ward
identities �electric current� and its effective energy is positive
definite. In addition it has the correct “large number of com-
ponents” limit, unlike Hartree method.
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