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Abstract

Algebraic methods provide many new and powerful ways in the study of graph
theory. These include the study of the group of homomorphisms on graphs, the
construction of graphs from a group, using the eigenvalue or other linear algebraic
techniques in the study of graph theory and'the'study of polynomials associated with a
graph. The purpose of this thesis is.to collect the known results in graph theory with
algebraic techniques involved.
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Chapter 1

Introduction

Algebraic methods provide many new and powerful ways in the study
of graph theory. These include the study of the group of homomorphisms
on graphs, the construction of graphs from a group, using the eigenvalue or
other linear algebraic techniques in the study of graph theory and the study
of polynomials associated with a graph. The purpose of this thesis is to col-
lect the known results in graphstheoryiwith, algebraic techniques involved.
The thesis is organized as follows.

In chapter 2, we use the -coneept of group acting on a set to study a
graph. Here the group is usually the automorphism group of a given graph.
We then introduce vertex transitivesgraphs and-Cayley graphs. We study
the edge connectivity, vertex conneetivity, matchings, maximal cycles in a
connected vertex transitive graph. We show a connected vertex transitive
graph is a homomorphic image of some Cayley graph.

In chapter 3, we introduce the core of a graph. The core of a graph is the
smallest homomorphism image of the graph. We show the core of a vertex
transitive graph is vertex transitive. We give some sufficient conditions of a
core.

In chapter 4, we introduce the adjacency matrix of a graph. We study the
spectrum of an adjacency matrix. The classical Perron Frobenius Theorem
of symmetric matrices with nonnegative entries is included in this chapter.

In chapter 5, we generalize the concept of sets interlacing to eigenvalues
sequences interlacing and rational functions interlacing.

In chapter 6, we introduce the incidence matrix, the Laplacian, and more
general, the weighted Laplacian of a graph. The Laplacian is an important
matrix associated with a graph. We study the spectrum of the Laplacian.
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We also show the number of spanning trees in a graph is determined by the
spectrum of its Laplacian. We give an upper bound of the second least eigen-
value of the Laplacian in terms of some combinatorial structure of a graph.

In chapter 7, we introduce the rank function and matroid. We study their
basic properties. We introduce the dual, the restriction and the contraction
of a matroid.

All of the results in this thesis are classical. We learn most of them from
[1]. We add more details in order to realize the content. For example, Exam-
ple 2.2, Example 2.5, Definition 2.6, Lemma 2.16, Example 2.17, Lemma 2.25,
Theorem 2.41, Lemma 2.42, Theorem 2.43, Lemma 2.44, Example 2.47, Ex-
ample 2.50, Lemma 3.6, Example 3.10, Lemma 3.11, Example 3.12, Theo-
rem 3.13, Lemma 3.14, Corollary 3.17, Example 3.21, Lemma 3.25, Exam-
ple 3.28, Lemma 3.26, Lemma 3.27, Lemma 3.34, Lemma 4.8, Lemma 4.10,
Lemma 4.11, Lemma 4.12, Lemma 4.13, Lemma 4.14, Lemma 4.15, Lemma
4.24, Definition 5.1, Example 5.2, Lemma 5.4, Theorem 5.7, Lemma 6.13,
Lemma 6.14, Lemma 6.21, Corollary 6.48, Lemma 7.2. We rewrite some of
the proofs for the readers easy to understand. For example, Theorem 2.13,
Theorem 2.18, Lemma 4.8, Theorem 4:25, Theorem 5.7, Theorem 6.10. Some
ideas come from [2], [3]:



Chapter 2

Transitive Graphs

Throughout this thesis, let X = (X, R) be an undirected graph without loops
or multiple edges. We abuse the notation X as both the graph and the vertex
set of the graph. R ={zy | x,y € X,z # y} is the edge set.

2.1 Cayley Graphs

Definition 2.1. Let X, X’ bezgraphs. A function ¢ :X — X' is a homomor-
phism from X into X' if p(z)e(y) € R-forall z,yc X with zy € R.

Example 2.2. (1)
1 . 1

is a homomorphism.

(2)

is not a homomorphism.
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f(1) = f(2) = f(3) = «, f is not a homomorphism.

Definition 2.3. (1) ¢:X — X’ is an isomorphism if ¢ is bijection and
xy € R if and only if p(z)p(y) € R'.

(2) If ¢ : X — X is an isomorphism, we say ¢ is an automorphism on X.
We will use Aut(X) to denote the set of automorphisms on X.

Note 2.4. (Aut(X),0) is a group, where o is the composition operation.

Example 2.5.
1 . 1

2 @ 2
f is not a isomorphism.

The concept of group action on a setlis widely used in algebraic graph
theory. We give its definition below:.

Definition 2.6. Let G be agroup, and S be a set. We say GG acts on S if
there exists a function - : G x § — S such that

(1) e-s=s;
(2) (g-h)-s=g-(h-s)
for all g, he G and all s € S, where e is the identity of G.
Note 2.7. (1) g-s=tifand onlyifs=g 't forallge G ands ,t € S.

(2) Define a relation on S by s ~ t if and only if t = g - s for some g € G.
Then ~ is an equivalent relation, and ~ defines a partition on S.

Definition 2.8. Let GG be a group and S be a set. We say G acts transitively
on S if the partition defined from the equivalent relation ~ has only one
element(orbit).
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Note 2.9. A group G acts transitively on a set S if for any s, t€ S, there
exists g € G such that g-s =1t.

Definition 2.10. A graph X is vertex transitive if for any x,y € X, there
exists p € Aut(X) such that p(x) = y.

Note 2.11. If X is vertex transitive. Then X is reqular (i.e. each vertex in
X has the same number of valency (neighbors)). We will use k to denote the
valency of X.

Definition 2.12. Fix n € N. Define

Q. = {(a1,a9,as,...,a,) | a; =0or 1}
R = {zy|z,y € Q, differ in exactly one coordinate}.

The graph (Q,, R) is called the n-cube.
Theorem 2.13. The n-cube (Q,, R) is vertex transitive.
Proof. Pick any x,y € @Q,. Defing a map p : Qun-— @, by

p(2)=wy—a+ z(mod-2)

where the operations +, — are‘the usual‘eoordinateéwise summation and sub-
traction. It is straightforward to chieck p € Aut(X) and p(z) = y. O

Definition 2.14. Let G be a group and A'C G be a subset such that
(1) e ¢ A,
(2) ge Aifand only if g7t € A for all g € G.

Set X = Gand R={zy | z,y € Gandy = z - g for some g € A}. Then
(X, R) is called the Cayley graph of G with respect to C. We will write
X (G, A) for such a graph.

Note 2.15. (1) IfG is abelian then X (G, ) is a simple undirected graph.
(2) x, y are adjacent in X(G, ) if and only if z7'y € A.

Lemma 2.16. Let X(G,A) be a Cayley graph. For each g € G, define
¢g: G — G by ¢pg(h) = gh. Then ¢, € Aut(X).
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Proof. Since X (G, A) is a Cayley graph, the vertex set X = G and the edge
set R = {sh | h,s € Gand h = sc, for some ¢ € A}. Pick z, y € G.
Observe

T~y & rlye
s zlgTlgye A
& (go)'gye
& gg(x) ~ dy(y).

Let ¢,(h) = ¢4(k). Then gh = gk. Hence g 'gh = g 'gk. Then h = k.
So ¢, is injective. Observe for any = € G, there exists g~'z € G such that
dy(g7 ) = g tgx = . Hence ¢, is surjective. So ¢, € Aut(X). O

Example 2.17. Let Zy = {0,1}. Let G = Zy X - - - X Zy(n copies) and A =
{a € Zyx---xZy | exactly one coordinate of a is 1}. Then Q,, = X (G, D).

Generalizing the ideal of the proof of Theorem 2.13, we have the following
Theorem.

Theorem 2.18. The:Cayley graph X(G; /) is vertex transitive.

Proof. Pick any z,y € X = G« Define a map ¢,,-1 : G — G by ¢,-1(2) =
yr~'z. Hence p € Aut(X) by Lemma 2.16. Clearly, p(z) = y. O

2.2 Edge Connectivity

Definition 2.19. Let A C X be a vertex subset. The edge subset 0A :=
{zy € R | |{z,y} N A| = 1} is called the boundary of A.

Note 2.20. (1) 90 = 0.
(2) If X is connected then |0(A)| > 1 for any nonempty A C X.
(3) |[0A] 4+ |0B| > [0(AU B)|+|0(AN B)| for A, B C X.

Definition 2.21. nl(X)::gl;% |0A| is called the edge connectivity of X.
A#X

Note 2.22. (1) s (X) < ml)r(l deg(x).
TEe
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(2) k1(X) =0 if and only if X is disconnected.

Definition 2.23. A C X is an edge atom if |0(A)] = k1(X) and for any
B C X, |0(B)| = k1(X) implies |B| > |A|.

Note 2.24. Suppose A C X 1is an edge atom and ¢ is an automorphism on
X. Then ¢(A) is an edge atom.
X
Lemma 2.25. Suppose A is an edge atom. Then |A] < %
Proof. Since k1(X) = [0(A)| = [0(X — A)| , |A] < |X — A]. Thus |A] <
RS
= O
2
Corollary 2.26. Suppose A, B are edge atoms of X. Then A = B or ANB =

0.

X
Proof. Suppose AN B # (). Then AU B # X since |A|, |B| < ’—2| Hence
|0(AU B)| > k1(X). By Note 2.20(3), [0(AU B)| + [0(AN B)| < |0A] +
|0B| = 2k1(X). Then |0(AN B)| < k(X )a This proves |[ANB| = |A| = |B].
Hence A = B. l

Theorem 2.27. Suppose X s a eonnected vertex transitive graph. Then
k1(X) = k, where k is the valency of X~ Furthermore, |0(A)| > k for all
atoms A with 1 < |A| < |X]|.

Proof. k1(X) < k is clear. Let A be an atom..”If |A| = 1, then x1(X) =
|0(A)| = k. Suppose |A| > 2. Observesp(A)is an atom for any p € Aut(X)
by Lemma 2.24. Hence p(A) = A or p(4) N A = (. By Corollary 2.26 we
claim A is regular as an induced subgraph. Pick 2 vertices z,y € A. Choose a
function p € Aut(X) such that p(x) = y. Hence p(A) = A by Corollary 2.26.
Then all the neighbors z in A of x are one to one corresponding to neighbors
p(z) in A of y. Let ¢ denote the valency of A. Notice that ¢ < k, since X is
connected. Observe |A| > ¢+ 1. Hence

0(A)] = |Al(k = £)
> |A[(k = (JA] = 1))
= |Al((k+1) = [A])
> k.

Observe above equality holds if and only if |A] =1 or |A| = X. We obtain
Iil(X)Zk So Hl(X):k ]
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2.3 Vertex Connectivity

Definition 2.28. A wverter cutset in a graph X is a set of vertices whose
deletion increases the number of connected components of X.

Example 2.29. X:

3

k1(X) = 2. Let A = {1,2}, 0A = {14,23}. Let B = {1,3}, B is a vertex
cutset.

Note 2.30. X has a vertex cutset if Xe.is not a complete graph.

Definition 2.31. Let: Xbe a connécted graph with n vertices and let K, be
the complete graph with n vertices. If X = K, then the vertex connectivity
of X is the minimurh numberjofivertices in a vertex cutset, and will be

denoted by ko(X). We'define ko (K, )=mn — 1.

Definition 2.32. Suppose A is a subset of vertices in X. Let N(A) denote
the vertices in X \ A with a neighbor in A and N[A] = AU N(A).

Note 2.33. (1) AUN(A)UN[A] = X.

(2) N(A) 2 N(N[A]).

(3) Kko(X) < min |N(A)| if X is connected.

NIAJ£0
A0

Definition 2.34. (1) A fragment of X is a subset A such that N[A] # ()
and |N(A)| = ko(X).

(2) An atom of X is a fragment with minimum number of vertices.
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Lemma 2.35. Let X be a connected graph on n vertices with kg = ko(X).

Suppose A and B are fragments of X and AN B # (. If |A| < |N|[B]|, then
AN B is a fragment.

Proof. We present the proof as a number of steps.
(a) |AU B| < n — K.

Observe

Al +[B] < [N[B]| +[B]
= n—|[B|=|N(B)| +|B|

= N — Kp.
Since AN B is nonempty, the claim follows.
(b) |[N(AU B)| < k.

We observe

IN(AUB)| < |N(A)| & N(B)| = [N(AN B)|
< Ko + Ko = Ry
= = Kpo.
Hence the claim follows.
(¢) N[AU B] # 0.
From (a), (b) observe
IN[JAUB|| = n—]AUB|—|N(AUDB)|
> n—(n— ko) — Ko
= 0.

Hence the claim follows.
(d) AU B is a fragment.

Clearly AU B # (). Since N[AU B] # 0, I[N(AU B)| > Ky is clear from the
definition of kg. Hence |[N(A U B)| = kg from (b).

(e) AN B is a fragment.
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By assumption, AN B # (). From (c) we observe
N[ANB]|C N[AJNN[B] # X
Hence N[AN B] # (). Observe

N(NB)| < IN(AUB)
< IN(A)|+N(B)| - IN(AUB)|
= Ko+ Ko — Ko
= Kp.

Hence |[N(AN B)| = k. O

Corollary 2.36. Let X be a connected graph. If A is an atom and B is a
fragment of X. Then AC B, AC N(B), or AC N[B].

Proof. Note |A| < |B| and |A] < |N[B]| since N|[B] is a fragment. Observe

|A] < |B| < |N[N|[B]]|. Hence by previous Lemma AN B, AN N[B] are
fragments if they are nonempty. Suppose A ¢ B and A ¢ N|[B]. Then

ANB = () and AN N[B] = @iothérwise we have a contradiction since AN B,
AN NI[B]| are atoms with size less thane|A|. Hence A C N(B). O

Theorem 2.37. Let X be a vertex transitive graph with valency k > 2. Then

Ko(X) > %(m 1).

Proof. 1f X is not connécted, then all the connected components of X are the
same. We can assume X is‘connected. Let A be an atom in X. If p € Aut(X),
then p(A) is an atom. Hence by Corollary 2.36, p(A) C A, p(4) C N(A)
or p(A) € N(A). Since X is vertex transitive, we can choose p € Aut(X)
such that p(A) C N(A). For another ¢ € Aut(X) with ¢(A) € N(A), either
P(A) = p(A) or P(A) N p(A) = 0. This proves |[N(A)| = t|A] for some
positive integer t. We shall claim ¢ > 2. Suppose t = 1. Then |N(A)| = |A|
and N(A) = p(A). Hence N(A) is an atom. Then

IN(N(A)] = [N(A)] = [A]. (2.1)
Since N(N(A))NA # 0, we have A C N(N(A)) by previous Corollary. Hence

by equation(2.1), A = N(N(A)). This shows N[A] # 0 , a contradiction to
A being an atom. Observe each vertex in A has valency k, and
E < |Al—1+|N(A)
= (t+1)|A] - 1.
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k+1
Hence |A| > b Then
t+1
kE+1 _ 2
=|NA)| =tlA| >t—— > =(k+1).
w0 = INA) = H14] 2 50 > 20 )

2.4 Matchings

Definition 2.38. (1) A matching M in a graph X is a set of edges such
that each pair of edges does not have a common vertex.

(2) A maximum matching is a matching with the maximum possible num-
ber of edges.

(3) A matching M that covers every vertex of X is called a perfect match-
mng.

Note 2.39. If X has a perfect mdtehing then X | is even.
Example 2.40. (1)

3

M = {12,34} is a maximum matching and also a perfect matching.

(2)

M = {12,34} is a maximum matching, but not a perfect matching.
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Theorem 2.41. Let X be a connected vertex transitive graph. Then |M| >

X
L|2—|J for any maximum matchings M of X.

Proof. Tt is suffices to prove for any distinct vertices u, v € X, either u is
in an edge of M, or v is in an edge of M. We prove by induction on the
distance of §(u,v). d(u,v) =1 is clear, otherwise we can add e = uv into M
a contradiction to M being maximum.

Suppose d(u,v) > 2. Choose € X such that §(z,v) =1 and §(u, z) +
d(z,v) = 6(u,v). Suppose u, v do not appear in any edges of M. Since
d(u,x) < 6(u,v) and by induction, x is in an edge of M. Pick p € Aut(X)
such that p(u) = x. Then M’ := p(M) is a maximum matching and = is
not in an edge in M’. Hence u is in an edge of M’ by induction. We set
MAM :=(M-—M)UJ(M — M)(view as a subgraph of X'). Observe each
vertex in M A M’ has degree 1 or 2, and deg(u) = deg(x) = 1 in M A M.
Let P be a path in M A M’ with u as its endpoint. Observe each second edge
from w in P isin M. Hence [PNM|=|PNM'| or |[PNM|+1=|PnNM|.
The latter is impossible, otherwise M A P = (M \ P)U(P\ M) is a matching
of size |M|+ 1 a contradi¢tion. Thus'M' A P is a maximum matching and u
is not in an edge of M /AP.#'Then % is in an edge of M’ /A P by induction.
Hence x is in an edge of«P; since.« ismot in an edge of M’. Thus z is the
other endpoint of P.:Since @ ismot in an-edge of M’, and x, v are adjacent,
we obtain that v is in ‘an edgeof:M/=Hence deg(v) = 1in M A M’'. As above
arguments, we can find.a path P’ in M-/ M’ from v to  which z is in the
last edge of P’. Since deg(u)=deg(v) = deg(x) = 1 and other vertices of P
and P’ have degree 2, we have P = P’ and u = v, a contradiction. O

Lemma 2.42. Let e be an edge of X that is not contained in any maximum
matchings of X. Then for any ¢ € Aut(X), ¢(e) is not contained in any
maximum matchings of X.

Proof. Suppose ¢(e) is contained in a maximum matching M. Since ¢~* €
Aut(X), we know that ¢—(M) is also a maximum matching. But e is con-
tained in ¢~!(M) a contradiction. O

Theorem 2.43. Let X be a connected vertex transitive graph. Then each
edge of X is in a maximum matching.

Proof. Let e be an edge that is not in any maximum matchings of X. For
e = xy, ple) == p(x)p(y) is an edge in X for any p € Aut(X). Let YV :=
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{p(e) | p € Aut(X)}(view as a subgraph). Since X is vertex transitive, Y is
a spanning subgraph of X, and Y is transitive. We prove this theorem by
induction on | X| + |R|.

Suppose Y = X, we pick a maximum matching M and an edge ¢ € M.
Then we choose p € Aut(X) such that p(e) = ¢/. Hence e € p~'(M).But
p (M) is a maximum matching a contradiction. Suppose Y # X and Y =
YUY UY3U---UY, (union of connected components). Observe Y; is
isomorphic to Y; for any 4, j. Suppose e € Yj, by induction, there exists
a maximum matching M; of Y; containing e. We observe for p; € Aut(X)
with p;(Y1) =Y}, pj(M;) is a maximum matching of Y;. If M is perfect then
My U pa(My) U --- U pe(My) is perfect in Y (and then in X') a contradiction.

Suppose M; misses exactly one vertex. Then so does p;(M;) for j =
2,---,t. We define a new graph Z with ¢ vertices {Y7,Ys,---,Y;} and Y},
Y; are adjacent if and only if there exists y; € Y;, y; € Y; such that y;, y;
are adjacent in X. Note that Z is connected vertex transitive. We can find
a maximum matching of Z. Let Y;Y; be an edge in Z. We choose y; € Y,
y; € Yj such that y;, y;are adjacent in X, Notice if there is one Y}, not in the
matching, we pick any vertex y, in'¥;. We eollect the maximum matchings
in Y; that misses y; for each ¢ =1, - Jtrtogethér those y;y; appears in the
matching of Z. This will form a maximum matching of Y (then of X). This
contradicts the fact that each-edge of ¥ isnot in any maximum matching of
X. O

2.5 Cycles

We show the maximal length of a cycle in a vertex transitive graph is at least
V3n, where n = | X| > 3.

Lemma 2.44. Let G be a finite group and let G act on a finite set S. Fix
reS. Let G, :={f ]| feq,f(z)=xz}.

(1) G, is a subgroup of G.

(2) Fixy € S, and h € G such that h(z) =y. Then {f | [ € G, f(z) =
y} = hG,.

(3) Suppose G acts transitively on S. Then |S| = renk



14 CHAPTER 2. TRANSITIVE GRAPHS

(4) Let G C Aut(X) be a group, and C ={g € G | v ~ g(z)}. Suppose G
acts transitively on X. Then X is isomorphic to G/G,, where G/G,

1s the graph with vertices being the left cosets of G, and two left cosets
9G., hG, have an edge if and only if g~ h € C.

Proof. (1) For f, g € G,
fo (@) = fg7 (9(2)) = f(z) = =.
Hence fg~! € G,. This proves G, is a subgroup of G.

2) @) {flfeq [flz
Pick fi € {f |

)=MChG
f €G, f(z) =y}. Observe h™'(y) = x. Hence

h™ fi(a) = h™l(y) = 2.
Then h™1f; € G,. Hence f; € hG,.
(b) hG, C{S | f € G, flz) =y}
Pick fo € G,. Themhfo(r) = h(x) = y. Hence hof € {f | f €
f(x) =y}
From()(){fleGf() yf= hG,.

(3) From (2), thereis a 1 — L correspondence between the set S and the
left cosets of G,

(4) Fix x € X. Define ¢ X —G/G, by ¢(y) = hG,, where y € X and
h € G satisfying h(z) =y. ¢ is well-defined since G acts transitively
on X, and by (2) and the fact from group theory that for all A’ € hG,,
NG, = hG,. Tt is also clear from (2) that ¢ is one to one and onto.
Last, for any y, 2z € X(say ¢(y) = hG, and ¢(2) = gG.),

y~z(inX) & hx)=y~z=g) (in X)
& g 'h(z) ~z (in X)
s ¢glheC
& hG, ~ gG, (in G/Gy).
[

Lemma 2.45. Let X be a vertex transitive graph and S be a subset of X
where ¢ := min |Sﬂg( ). Then |S| > \/c|X]|.

geEAut(X
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Proof. Set G = Aut(X). Observe
Gl <[{(g, x) | g€ G, zeSNg(9)} (2:2)

Note that for each z € S there are |S||G,.| g € G such that g~!(z) € S by
Lemma 2.44(2). Hence

{(g, 2) g € G, x € SNg(S)} = IS]*|Gal. (2.3)

~ 25 Gl o . Lo |Gl
From equations(2.2), (2.3), |S|* > Gl Since X is vertex transitive, e =
| X| by Lemma 2.44(3). Hence |S|?> > ¢|X| and the Lemma follows. O

Lemma 2.46. Let X be a graph with rko(X) > 3. Then any two cycles of
mazimum length intersect at least three vertices.

Proof. Let C1, Cs be two cycles of maximum length. Suppose C, Cs intersect
less than three vertices. We divide the proof into 3 cases.

Case 1: (4, C; intersect in two verticés's) t» Since X — {s,t} is connected,
we can find a path P from a vertex x € ('} —C'5 to a vertex y € Cy — C such

that z, y are the only two vertiees that P intersects C; and Cy. Without loss
Cy'' P C
of generality, assume the length of the path s =gk Y s longer than the

c
paths—lt. Then
Cl P CQ Cl
§ “X—1y—1—==5

is a cycle of length larger than C, a contradiction.

Case 2: (4, Cy intersect in a unique vertex s : Since X — {s} is connected,
we can find x € C} — Cy and y € Cy — C such that the distance §(z,y) is
minimum among all such pairs. Find a shortest path P from x to y. Clearly,
P intersects €} and Cy in z, y only. Now go from s to z by a longer path in
(1, then from = to y by P, then from y to s by a longer path in C5. This is
a cycle of length longer than the length of C'; a contradiction.

Case 3: Suppose (4, C5 have no common vertices. We need to find two
disjoint paths from C to Cs. If we can do so, we can use these two paths as
"bridges” to construct a cycle of larger length in a similar way to previous
two cases and obtain a contradiction. Pick s € Cf and t € C5 such that
the distance 0(s,t) is the distance from C; to Cy. Let P be the shortest
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path from s to t. Clearly, P N C; = {s}, PN Cy = {t}. The difficulty is to
find another path P’ from another vertex s’ in C to another vertex t’ in C,
and that P, P’ have no common vertices. To prove the existence of P, we
quote a theorem that states that in a k-connected graph, every k+ 1 vertices
Xo, 1, -+ , T can form a fan. That means there are k paths from z, to each
x; with xy being the only common vertex. Now we apply this theorem to
find such P’. Pick any s' € Cy — {s}. There are two disjoint paths P;, Ps
from s’ to some vertices t; and to(respectively) in Cy — {t}. Replacing ¢, t1,
to if possible, we can assume Py NCy = {s1}, P,NCy = {s2}, PPNCy = {t1},
PQﬂCQ = {tg}, PlﬂP2—<01UCQ) = Q), where S1, S2 7é S, tl, tg 7ét and
t1 # to. If Py does not intersect P, then P = P} and we are done. Hence
we assume Py N P # (). Similarly, we assume P, N P # (). We construct two
disjoint paths @1, Q)2 by using P, P, P». @, is the path starting from s
following the path P to the first vertex that P intersects P, or Py(say Pj),
and then following the path P; to the end. With this @)1, we set Q3 = P5. It
is clear from the construction that Q; N Q4 = 0. O

Example 2.47. The following graph, X has vertex connectivity ro(X) = 2.

Let ¢y = {1,2,6,4} and Cy = {1,3,6,5}. Observe C, Cy are cycles of
maximum length. But | C; N Cy| = 2.

Theorem 2.48. Let X be a connected vertex transitive graph with n > 3
vertices. Then X contains a cycle of length at least \/3n.

Proof. We observe the valency of X is k and k > 2 since |n| > 3. If k = 2
then we find X is a cycle and the theorem follows since n > +/3n. Suppose

2 8
k > 3. Then by Theorem 2.37, ko(X) > §(k +1) > 3 so ko(X) > 3. From

previous lemma we obtain |[C'Ng(C')| > 3 for any cycle C' of maximum length

and g € Aut(X). By Lemma 2.45, |C| > /3|n|. O
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2.6 Retract

In Theorem 2.18, we showed a Cayley graph is vertex transitive. In this
section, we show every vertex transitive graph is a retract of a Cayley graph.

Definition 2.49. A subgraph Y of X is a retract if there exists a homomor-
phism p from X to Y such that p(y) = y for all y € Y. Then p is called a
retraction from X into Y.

Example 2.50. (1) X is aretract of X. Let [ : X — X, [ is a retraction.

(2)

3,6,9

7

Vg

Y is a retract of X.
(3)
X Y:

) 1,4

; , 3 /\.2

4

f is a retraction.
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1 1

4

f is not a retraction.

Theorem 2.51. Any connected vertex transitive graph is isomorphic to a
retract of a Cayley graph.

Proof. Fix x € X. Let C = {g € Aut(X) | x ~ g(z)}, and let G be the
subgroup of Aut(X) generated by C. Note that G acts on X transitively,
since the orbit containing x of the action of GG is a regular graph with the
same valency as X and this will make the orbit is X. Let X' = X(G,C) be
the Cayley graph. Let H = GG, be the stablizer of x under the action of G.
Let Z ={g1H,92H,- - , g} be the,left cosets of H, where g; are fix repre-
sentatives of these cosets: View Z as the induced subgraph {g¢; - - - g; }of X
We claim the map ¢ #Z = X:defined by 1(g;) = ¢;(x) is an isomorphism.
1 is a bijection since=t) is the standard one to one correspondence between
the left cosets of H and the vertices in X. Observe

gi vgpit' Z & gitg; e C
& r~ g lgi(z) (in X)
 gil) ~ g;(x)
< P(g) ~ ¥(g;).
This prove the claim. We will identify Z and X, and to prove the theorem, it

remains to show that Z is a retract of X'. Define ¢ : X’ — Z by ¢(w) = g;,
where w € ¢g;H. Clearly ¢(g;) = g;. Observe for w; = ¢g;hq, we = gjhe € X',

wy ~wy (in X') & wilwy, €C

hl_lgi_lgjhg eC

v~ hi'g;  giha() (in X)

z = h(x) ~ g; ' gjhaha(z) = g; ' g;(2) (in X)
g9 '9;€C

o(wr) = g; ~ g; = ¢(w2) (in Z).

(A
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This completes the proof of the theorem.
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Chapter 3

Homomorphisms

3.1 Cores

Before giving our first definition n-this chapter, we consider the following
remark first.

Remark 3.1. (1) ¢ : Ny — Ky isra bijective homomorphism, but ¢ is not
an isomorphism.

(2) Suppose | X| < oco. Then any bijective homomorphism ¢ : X — X is
a isomorphism.

(3) Suppose |X| < oco. Suppose ¢ : X — X', ¢ : X' — X are bijective
homomorphisms. Then there is an isomorphism ¢ : X — X'.

Definition 3.2. A graph X is a core if for any homomorphism p : X — X,
p € Aut(X).

Example 3.3. (1) K, is a core since K, has no loop.

21
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For f(1) = f(3) = 1 and f(2) = f(4) = 2, The cycle C} of four vertices

1s not a core.

Definition 3.4. y(X) is the smallest positive integer n such that there is a
homomorphism p : X — K,,. x(X) is called the chromatic number of X.

Definition 3.5. A subgraph Y of X is a core of X if
(1) Y is a core.
(2) There is a homemorphism from X to Y.
Lemma 3.6. A core of X s arétract of X .

Proof. Let Y be a core of X Then there is a homomorphism f : X — Y.
The restriction of f into the domain Y is a homomorphism of Y into itself.

Since Y is a core, this restriction is an automorphism, so it has an inverse
(f1Y)"L Then (f [ Y) 'o fis the desired retraction map. O

From Lemma 3.6, we immediately have the following Lemma.
Lemma 3.7. A core of X is an induced subgraph of X.
Proof. Obviously by previous Lemma. n

Definition 3.8. A graph X is critical if x(Y) < x(X) for any proper sub-
graph Y of X.

Note 3.9. For a subgraph Y of X, x(Y) < x(X).
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Example 3.10. For the following graphs Ky C (4 and homomorphism f :
04 — Kg.

! 13

xX(Cy) = x(K3) = 2. Hence C} is not critical.
Lemma 3.11. If X is critical then X is a core.

Proof. Suppose not. Let p: X — Y, Y ¢ X be a homomorphism. Set
X(Y)=nandlet ¢ : Y — K, be a homomorphism. Then ¢y op: X — K,
is a homomorphism. Hence x(X) < n = x(Y). Thus X is not critical, a
contradiction. [

Example 3.12. (1)

X:

2 1 1 35
4 I

3 D 46

(2)

2 56

3 4

Y is a core of X.
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X: Y: 1,6
1 2
/ s 247
3
4 7 Z: 3
5 6
5 6

Hence Y is a core of X but Z is not a core of X.
Theorem 3.13. Any two cores of X are isomorphic.

Proof. Let Y, Y’ C X be two cores of X and ¢ : X - Y, ¢ : X - Y’
are the corresponding homomorphisms. Then o [ Y : Y — Y’ is a
homomorphism. Since Y’ is a core, we know Yo [ Y’ : Y’ — Y’ indeed
is an automorphism. Then w ¥/ : Y’ — Y is one to one. On the other
hand, since po® [ Y : Yo=Y is a hemomorphism and Y is a core, we have
poty [Y :Y — Y is an automorphism. This shows ¢ [ Y’ : Y’ — Y is onto.
Hence ¢ [ Y'Y’ — ¥ is.a bijection. It is an isomorphism. [

Lemma 3.14. FEvery graph has a core.

Proof. Let X be a graph. Set S = {Y €.X | there exists a homomorphism f :
X — Y} Pick Y € S with least;vertices. We claim Y € S is a core. Let
p: X — Y be a homomorphism. Suppose Y is not a core. Let v»: Y — Y be
a homomorphism which is not onto. Then ¥pop : X — Y is a homomorphism
with image ¥ o p(X) C Y, a contradiction to the choice of Y. O

From Theorem 3.13 and Lemma 3.14, we have a conclusion: Every graph
X has a unique core (up to isomorphism). We denoted it by X°.

Theorem 3.15. Suppose X 1is vertex transitive. Then X*® is vertex transitive.

Proof. Pick any z, y € X*, choose f € Aut(X) such that f(z) =y. Pick a
retraction g : X — X*. Then

go(f1X): X" — X*

is a homomorphism. Observe X* is a core and go (f [ X*) € Aut(X*). Note
go(fX*)(x)=yg(f(z)) =g(y) =y. Hence X* is vertex transitive. O
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Theorem 3.16. If X is a vertex transitive graph, then |X°| divides |X|.

Proof. Let f : X — X* be a homomorphism. We want to prove |f~!(y)|
is independent of y € X°*. We claim for any g € Aut(X), for any y € X*,
lf~(y) Ng(X*)| = 1. Since fo(g | X*) : X* — X* is a homomorphism,
fol(gl X®) € Aut(X*). Observe

L=1folg 1 X)) = (g I X*) (7 ).

Thus |f~'(y) N g(X*)| = 1, since g | X* is one to one. This claim says for
each y € X*, g € Aut(X), there exists a unique pair (2, z) such that z € X*,
r € f~'(y) and g(z) = z. On the other hand by Lemma 2.44(2), for each pair
(z,x)such that z € X*, x € f~!(y) there are |G| elements g € Aut(X) such
that g(z) = x, where G, is the stablizer of X under the action of Aut(X). (i.e.
G. ={f| fz) =z, f € Aut(X)}). Note |G| is independent of z. Hence
|Aut(X)| = | X°||f (y)||G.]. Thus |f~!(y)| = % is independent of
Y. [

Corollary 3.17. If X is a vertex transitive.graph such that |X| is a prime
number and X has at least one edge, then X s a core.

Proof. From Theorem 3.16, we know |X®| divides:| X|. So |X°*| =1 or |X|.
Observe |X*®| # 1, since X has at_leastrone edge. Hence |X°*| = |X]|. We
have X = X* by Lemma 3.7. [

Corollary 3.18. If X is a vertex transitive graph with x(X) = 3 and 3 1 | X/,
then X has no triangle.

Proof. There exists a homomorphism f : X — Kj3 because x(X) = 3. Sup-
pose X has a triangle. Then there is no Y C X such that |Y| < 2 and there
exists a homomorphism ¢g : X — Y. Hence K3 is a core of X. Hence 3
divides | X| and by Theorem 3.16 a contradiction. O

3.2 Folding

Definition 3.19. Let X be a graph and Y C X is a induced subgraph. A
retraction f: X — Y is simple folding if

(1) X[ =[¥Y]+1,
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(2) If u, v e X with f(u) = f(v) then u = v or d(u,v) =2 (in X).
Note 3.20. We always assume Y C X, and f is a retraction.
Example 3.21.

f is a simple folding.

Definition 3.22. Suppose Y is an induced subgraph of X. Then a retraction
f X — Y isa folding, if either X =Y or there exist induced subgraphs
Yy, Y5, ---, Y, =Y of X and simple foldings f; : X — Y}, fo: Y] = Y5, -+,
fn:Y, 1 —Y,suchthat f = f,0---0 fy o f; for X is connected.

Lemma 3.23. Suppose ¥ 18 an induced subgraph of X and f: X —Y is a
retraction. Then f is d@folding:

Proof. Induction on |X[=|¥|. If X =Y then f is a folding by the definition.
Suppose Y C X. Pick y € ¥Y.and . € X \ Y such that z ~ y. Define Y; by
identifying x and f(x)in X, hence |¥;|= |X| — 1. Define f; : X — Y by

u, if u# x,
u) = 3.1

filw) {f(a:), if u =ux. (31)
Then f; : X — Y] is a simple folding. Define fy : Y7 — Y by fo(u) = f(u).
Then f = fyo fi. Observe fy : Y1 — Y is a retraction and |Y; — Y| =
|X — Y| —1. By induction, f5 is a folding, hence f = fy 0 fi is a folding. [

Definition 3.24. A homomorphism f : X — Y is a local injection, if for
any y € Y, and for any u, v € f~!(y), u = v or d(u,v) > 3.

Lemma 3.25. Let X be a connected graph and Y be a induced subgraph of
X. Suppose f: X — Y is a homomorphism. Then for any vy, yo € Y with

fy1) = w1 and f(y2) = yo, we have Ay (y1,y2) = Ox (y1,Y2).

Proof. Oy (y1,12) > Ox(y1,y2) since Y C X, and Oy (y1,12) < Ox(¥1,2) since
f is a homomorphism. Hence Oy (y1,y2) = Ox(y1,Y2). ]



3.2. FOLDING 27

Lemma 3.26. Suppose X be a graph and Y s a proper induced subgraph of
X. If f: X =Y isa folding, then f: X — Y is not a local injection.

Proof. Suppose f = fio---0 fy o fi where f; are simple folding with f; :
Y1 — Y. Picky € Y and u, v € Y;_; such that 0y, ,(u,v) = 2 and
fi(uw) = fi(v) =y. Then f(u) = f(v) and Ox(u,v) = Oy,_, (u,v) = 2. ]
Lemma 3.27. Letn be odd, Y be a graph. If ¢ : C,, — Y be a homomorphism
with C,, be a cycle of length n. Then Y contains an odd cycle.

Proof. Suppose Y does not contain odd cycles. Then Y is bipartite. Observe
»(Cy) is a closed walk of odd length in Y, a contradiction. O

Example 3.28.

A example with odd cycle.

Definition 3.29. For z, y, z:€ X if & ~ y'~ z and = # z, then {z,y, 2} is
called a 2-arc of X.

Theorem 3.30. If X is a connected graph and every 2-arc of X 1is in a
shortest odd cycle, then X is a core.

Proof. Suppose f : X — X°*® is a retraction and X*®* # X. Then f is a
folding. Hence f is not a local injection. Hence there exist u, v € X with
O(u,v) = 2 and f(u) = f(v). Observe u, v are contained in a shortest odd
cycle of C. And f(u), f(v) are contained in the odd cycle f(C') which has
the same length as C'. This implies f(u) # f(v), a contradiction. O

Example 3.31. (1)
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The length of shortest odd cycle is seven. By Theorem 3.30 the graph
is a core.

(2)

The length of shortest odd cycle is seven. By Theorem 3.30 the graph
is a core.

Definition 3.32. Let X, Y be graphs. A homomorphism f : X — Y is local
bijective(respectively isomorphic) if for any y € Y, there exists z € X such
that

1) fl@) =y,
(2) f | N[z| : N[z] = Nly] is‘bijective(respectively isomorphic) where
Nla] = N[{z}].
Example 3.33. (1)
X: Y
1
: A 3 14

Observe f is local bijective and local isomorphic.

2)
14

Observe f is local bijective, but is not local isomorphic.
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Lemma 3.34. If X is a connected graph and f : X — Y 1is local isomorphic.
Then f: X — Y is isomorphic.

Proof. We only need to prove f is one to one. Suppose not. Pick z, y € X
such that f(x) = f(y) and d(z,y) is minimum. Note d(z,y) > 2. Let z, z,

-, y be the shortest path from z to y. Then f(z), f(2), ---, f(y) = f(z)
is a cycle in Y. Hence f(y) ~ f(z) in Y. Thus y ~ z in X. Since f(y),
f(z) € N(f(2)) and f(y) = f(x), we must have y = = by the assumption of
local isomorphism, a contradiction to d(z,y) > 2. ]

Corollary 3.35. IfY is a tree, and f : X — Y 1is local bijective. Then X is
disjoint copies of Y.

Proof. Since for each y € Y, N(y) contains no edges, f in fact is a local
isomorphism. Then the corollary follows from Lemma 3.34. [
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Chapter 4

The Adjacency Matrix

4.1 Definition

Definition 4.1. The adjacency matrizc A = A(X) of a graph X is the matrix
with rows and columns indexed by X such that

s iz e
Y0, itz %y (2, €-X.)
Example 4.2. X:

&)
~

1 2 3 4

1/0 1 0 1

. . 21 0 1 0

For the graph X, the adjacency matrix A = alo 1 0 1
4\1 0 1 O

Definition 4.3. A walk of length r in X is a sequence of vertices g, x1, o
-+, o, such that x; ~ x;, fort=0,1,---r — 1.

31
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Lemma 4.4. Let A = A(X) be the adjacency matriz of X. For x, y € X
the number of walks of length v from x to y is (A”)yy.

Proof. (Ar)wy = Z Agzy Agyzy .A$r71y = |{($1; Lo, 7xr—1> |
T1,22, " Xpr_1EX
T~ Ty~ Ty~ T g ~ YL O

4.2 Spectrum

Definition 4.5. Let A = A(X) be the adjacency matrix of X. Then 6 is
an eigenvalue of A if there exists a nonzero column vector U € C* such that
AU = 0U. Then U is called an eigenvector of A associated with 6.

Note 4.6. An n x n symmetric matriz over R has n orthogonal eigenvectors
over R. The multiset of the eigenvalues of A(X) is called the spectrum of X.

Throughout this chapter, we assume the base field is R.

Example 4.7. Let X = K,, andwwe have the adjacency matrix A = A(X).
Observe A+ I = J (4 is all I’s:matrix): Hence we have rank(J) = 1 and

J has n — 1 orthogonal eigenvectors U5, Us, - -- ,U,_; associated with 0. Set
1
1

U, = ~|. So JU,, =nl,,. Then
1

-U; fori <mn—1,
(n—1)U,, fori=n.

AU; = (J - 1DU; = {
Hence A has eigenvalues —1, —1,--- ,—1(n — 1 times), n — 1.
Lemma 4.8. Let X be a reqular graph with valency k. Then
(1) The valency k is an eigenvalue of A = A(X).
(2) For any eigenvalues 0 of A, 0] < k.

(3) The multiplicity of k is the number of connected components in X.
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1 k 1
1 k 1
Proof. (1) Observe A =1 . [=F]| . [ Sokisan eigenvalue
1 k 1
of
Uy
u
(2) Suppose AU = U for some U = ’ # 0 where n = |X|. Pick j
Up,

such that |u;| = max |u;|. Hence
6u;| = [(00);] = [(AU); = D Ajiwsl < Ajilus] < kiluy.

Hence 0] < k.

(3) If & = k, then all of the above inequalities are equalities. This means
w; = u; if ¢ ~ j. If we replace the role.of @; by u; for some k ~ j and
keep doing this, we obtain that u; are all the same when ¢ was in the
same connected components of X.

]

Throughout the end of this Section, we fix @a.graph X and its adjacency
matrix A(X).

Definition 4.9. (1) The set of eigenvalues of A(X) is denoted by ev(X).

(2) For 6 € ev(X), let V() denote the set of eigenvectors of A(X) corre-
sponding to 0. (V(0) is a subspace of R).

(3) For 6 € ev(X), define a matrix Ey : R¥ — R¥ such that Ej is the
projection of R¥ into V(). Fj is called the primitive idempotent of 6.

Lemma 4.10. Eg = FEy.
Proof. For any U € RX,
EiU = Ey(EyU) = EgU

since EyU € V(0). O
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Lemma 4.11. For 0, n € ev(X) with 0 # n, then EyE, = 0.

Proof. For U € R¥, then E,U € V(n). Since V(n) is orthogonal to V(),
Ey(E,U) = 0. O

Lemma 4.12. | = Z Ey.
Ocev(X)

Proof. Pick U € RX. Then U = Z U., for some U, € V(7). Hence by

T€ev(X)
Lemma 4.10 and Lemma 4.11

> EU = > E Y U

Ocev(X) Ocev(X) T€ev(X)
= > B Z E.U, = ZEQEU
Ocev(X) T€ev(X
= Z EyUy = Z Up =
fcev(X fcev(X)
Hence I = Z Ey. ]
Ocev(X)

Lemma 4.13. A = Z OF,.

Ocev(X)

Proof. Pick U € R¥. Suppose U = Z Uy where Uy € V(). Then

Ocev(X)
AU = Y AUy= > U= > 0EU,
Ocev(X) fcev(X) Ocev(X)
= > 0E, Y U.=( )Y 0E)U
Ocev(X) T€ev(X) fOcev(X)
Hence A = Z 0E, O

Ocev(X)

Lemma 4.14. For any polynomial f, f(A) = Z f(0)E,y.
0
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Proof. For U € V(0), AU = 0U,
AU = A(AU) = A(OU) = 0(AU) = 6°U.

So A"U = 6"U. Hence f(A)U = f(0)U.
For U € RX we let U = Z Uy. Hence
Oecev(X)

F(AU = Zf Zf
— Zf EQUQZZf(e)EgU.
0 0

[
Lemma 4.15. For 0 € ev(A), set Py(z) = H (x —mn). Then Ey =
neev(A)
n#0
1

P—w)Pg(A). In particular, Ey is a polynomial of A with degree |ev(A)| — 1.
b

Proof. Observe by Lemma 4.14

Py(A) = > sh@E =D (J[r-nE

TEev(A) Feev(A) nA0
= ([]® - n))Bo=Pu(0)Ep:
n#0
[
Lemma 4.16. Suppose f(x), g(x) € Rlz] and g(0) # 0 for all 6 € ev(A).
Then (A) £0)
g(A) — 2 q(0) oS
Ocev( A)

Proof. Observe the eigenvalues of g(A) are g(), where 6 € ev(A). (In fact,
A and g(A) have the same set of eigenvectors). Hence g(A) is invertible by
the assumption g(0) # 0. Observe by Lemma 4.14, Lemma 4.11

0
o) 3 T0E - zf £,

Ocev(A) Ocev(A) fecev(A
= D I Z 1@
Ocev(A) Ocev(A)

= [(A).
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Hence

f(A) 3 f(0)

g(d) e 9O) "

[
Lemma 4.17. {Ey | 0 € ev(A)} are linear independent.
Proof. Suppose Z cgEy = 0. Then for any nonzero U, € V(71),
Ocev(A)
(> cEy)U, =0.
Ocev(A)
Hence
(Y @E)U, =c.E.U, = c,U, =0.
Ocev(A)
Hence ¢, = 0 for all 7 € eo(A). O

From Lemma 4.10~Lemma 417, we can conclude

(A) = ({Ey | fleev(A)}) = Span{FEy | 0 € ev(A)}
where (A) is the algebra/generated by A. Hence dimg(A) = |ev(A)].
Theorem 4.18. Let X be the graph with diameter d. Then |ev(A)| > d+ 1.
Proof. Suppose |ev(A)] < d. Then I, A, A%, ..., A4l span Ej, for all
0 € ev(A). Hence they span A%. That is A = col +c; A+ +c4_1 A% for
¢; € R. Pick x, y € X with d(z,y) = d. Then

0# (A%, = (col + 1A+ +cq 1 A1), =0
a contradiction. Hence |ev(A)| > d + 1. O

Corollary 4.19. The path P, of length n — 1 has n distinct eigenvalues.

Proof. Let A = A(P,). Then |ev(A)] < n since A is an n X n matrix.
lev(A)| > n from Theorem 4.18. Hence |ev(A)| = n. O
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4.3 Perron Frobenius Theorem

Lemma 4.20. Let C be an n X n symmetric matriz. Assume all eigenvalues
of C' are nonnegative. Then C = D'D for some n x n matriz D.

Proof. Observe

6 0 0 --- O
0 6 0 --- 0
¢ = r|. . .| P
0O 0 ... ... 6,
Vo, 0 o --- 0 N{ T 0 0
e I O e
0 0 ... ... 0O, 0 0 ... ... V0O,
= D'D
N{TE 0 0
0 6, 0 0
where D = . e P rand 0; are eigenvalues with

0 0 ...=4 . . Pyl
nonnegative values.

Definition 4.21. Let C' be a symmeétric matrix with rows and columns
indexed by X. C'is bipartite(resp. reducible) if there exists Y7, Yo C X such
that

(1) YUY, = X;

(2) YinYs,=10;

(3) Y1, Yy #0;

(4) Cpy=0ifz, y € Yy or z, y € Ya(resp. Cypy = 0 if either z € Yy, y € Y5,
orx €Yy yeY).

Lemma 4.22. Let C be a bipartite symmetric matrix and let 6 be an eigen-
value of C'. Then —0 s also an eigenvalue of C' and the multiplicity of 0 s
equal to the multiplicity of —6 in C'.
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(o) ()=o)

Then BU, = U, and B'U, = 0U,. Observe
0B h \_( =BU\_( -0\ __,( U
Bt O Uy, | B'U, o U, - -Uy )

Note 4.23. If C is bipartite, then C? is reducible.

Proof. Suppose

Lemma 4.24. Let C' be an wrreducible n X n symmetric matriz with positive
entries. If C? is reducible, then C' is bipartite.

Proof. Let X be the graph associated with C'. Let Y, Z be a partition of the
vertex set of X such that C’fj =0ifi €Y and j € Z. This means that two
ends of each walk of length,2imust in the same set Y or in the same set Z.
Observe there is an edgé eonnecting ¥-and Z, since X is connected(this is
from the irreducible of €. It is not too difficult from above comments that
there is no edges and-oeps in Y and in Z= Hence X is bipartite and then C'
is bipartite. Il

Theorem 4.25. (Perron Frobenius Theorem)

Let C be an n x n symmetrie-drreducible matriz with nonnegative entries.
Let 01 be the largest eigenvalue of C' and 6, is the smallest eigenvalue of C'.
Suppose that V' is an eigenvector of C' corresponding to 6y. Then

1) All entries of V' have the same sign (no zero entries).

2) 01 has multiplicity 1.

D

3

(1)
(2)
(3) 6,
(4) 0, =0, if and only if C is bipartite.

Proof. (1) Observe 6,1 — C has nonnegative eigenvalues. Hence 0,1 — C =

P!'P for some matrix P by Lemma 4.20. Observe

I|PV||* = (PV){(PV) = V'P'PV = VY0, I-C)V = V', IV-V'6,V =

0.
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n

Hence PV = 0. i.e. szPx = 0, where P, is the xth column of P.
=1

Set S = {z | v, > 0}, we assume S # (J(otherwise use —V instead of
V). Set W = Z P,v, and observe W = — ZPyvy. For x € S,
x€S yé¢sS

(P, W) = <Pz=_zpyvy> = _Zvy<Pﬂwa> = _Zvywlj_c)wy <0.

Y¢S Y¢S y¢s

Observe

0< (W,W) = 0P, W) =Y 0,(P, W) <0.

€S zE€S

Hence W =0. Fory ¢ S,

0= (P, W) =(P,.> 0, P) =Y 0(P, Po) =Y _ 0a(61] = C)yo

€S TES z€eS

Since (611 — C),, < 0 and vi >0, we have C,, =0 fory ¢ S, z € S.
Hence C' is reducible, a contradiction:

Suppose 6, has multiplicity at leastr2:-lzet V(6;) be the eigenspace of C

I\t
0
corresponding to #;. Then dim(V(6;)) > 2. Since dim(spang | . ) =
0
L\
0
n—1, V(0;) Nspang{| . } # (). Hence there exists nonzero vector
0
0
*
of the form | . | in V?(6;), a contradiction to (1).
*

(3) We consider two cases.
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Case 1: C? is reducible by Lemma 4.24. Hence C is bipartite. Thus the
eigenvalues of C' are symmetry to the origin. Hence 6, > —#6;.

Case 2: C? is irreducible. Observe C?V = §2V. Hence V is an eigenvector
of C? corresponding to 6%. Let U be an eigenvector of C'. Suppose
0, < —0;. Then 6? is the maximal eigenvalue of C? with corre-
sponding eigenvector U. By (1), the entries of U have the same
sign. But U is orthogonal to V', a contradiction. Hence 6, > —#6,.

(4) (=)Suppose 0, = 0;. Then 62 = 6? are eigenvalues of C? with mul-
tiplicity at least 2. By (2), C? is reducible. Hence C is bipartite by
Lemma 4.24.

(«<)Obvious from Lemma 4.22.



Chapter 5

Interlacing

5.1 Interlacing of sets

- > 0,} are multisets of R, where,m.> m. We say S interlaces T if
0; >n; > 0,y forall i =1,2, 4% m.

Definition 5.1. Let S = {m > n > -+ > nptand T = {6, > 0 >

Example 5.2. (1) Let S =H5,3, 1}, 7= {5.5,4,3,2,1}. Hence S inter-
laces T'.

(2) Let S ={2.5,1}, T'= {3;3;2,1}. Hence S'interlaces T
Note 5.3. If S C T, then S interlacesT".
Lemma 5.4. Suppose S, T, U are multisubsets of R.
(1) Suppose S interlaces T. Then S interlaces S UT.
(2) S interlaces T if and only if SUU interlaces T UU.
(3) Let f(x), g(x) be real polynomials. Suppose

o) g~ 1
g(x) _Zx—s

SES

for some finite set S C R. Then the zero’s of f(x) interlace the zero’s

of g(x).

41
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Proof. (1) We claim that ”interlacing” is a transitive relation. Let S in-
terlaces T, and T interlaces U. We show then S interlaces U. Let

S={mz>m=>- 20}, T={0120>---2>20,},U={n>7n=>
- > 7,} where p > n > m. By the definition, we have

0

nm—i—z( S Sm)a
Vi 1<i<n)

>
Z 0 > Vp—n+ti (

Hence Yn—mii = Onmti = Yp—mti = Vp-ntir (1 < @ < m). Hence we
obtain v, > 6; > ni > Opmyi > Ypom+i (1 < @ < m). Hence S
interlaces U. This proves ”interlacing” is a transitive relation. Observe
S interlaces T', and T interlaces T'U U. Hence the result follows.

(2) To prove this, we can assume that U = {u} has only one element. By
a small perturbation on u, we can assume u € SUT. Now (2) follows.

(3) By deleting the commion lineat;factors in f(x), g(x), and using (2), we
can assume f(z)sand g(@)-have o common linear factors. From the
right hand sidey we know g(2) = H(x — s) has degree n = |S| and

seS
f(z) has degreé-at mostiin'= 1. Hence g(x) has n zero’s, and f(z) has

at most n — 1 zéro’se.Since

i@zz_—l<0’

— )2
drgle) 22—
the graph of y = f (I) decreases. Hence f(x) has exactly n — 1 zeros
and they appear between two consecutive zeros of g(z).

]

Definition 5.5. The interlacing is tight if for each i« = 1,2,--- ;m, one of
the equality holds.

Example 5.6. (1) {4,3,2,1} interlace {4, 3,3,3,2, 1} tightly.

(2) {4,3,2,1} interlace {4,4,2,2,1}. This interlacing is not tight.
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5.2 Interlacing of eigenvalues

Theorem 5.7. Let A be an n x n real symmetric matriz. Suppose P is an
n X m matriz satisfying P'P = I,y and B = P*AP when n > m. Then

(1) The eigenvalues of B interlace the eigenvalues of A.
(2) If the interlacing is tight, then AP = PB.

Proof. (1) Let 6 > 0y > --- > 6, be eigenvalues of A with correspond-
ing orthogonal eigenvectors Uy,Us,--- ,U,. Let ny > ny > -+ >

Nm be eigenvalues of B with corresponding orthogonal eigenvectors
Vi, Vo, -+, Vi SetU; = span{Uy, Uy, - -+ ,U;} and V; = span{V;, V4, --- , V;}.
Observe

Hence
dim((PU;_ )" NV = dim(PU_;)* + dim(V;) — dim((PU;_1) " + V)
> (md=1+1)+dé—m=1

Pick a nonzero vector Y=€ (PU-1)" AV;.~Observe Y!BY > n, Y'Y
since Y € V;. Observe

Y € (PU;_, )" < (Y, PUY=0 forall U € U;_,
4 <PY,U>:OfOI'aHUEZ/{1;1
& PY eU, =span{U;, Upyq,--- ,U,}

Hence (PY)'A(PY) < 6;(PY)*(PY). Observe PY # 0 and

5~ (PY)A(PY) _Y'P'APY _Y'BY

= = >n;.
= (PY){(PY) _ Y'PPY _ Yty ="

If we use —A, —B to replace A, B, we obtain —6,,_; > —n,,_; for
1=0,1,2,--- ,m—1. Thisisn; > 0, _py; fori=1,2--- m.

(2) In the proof of (1), the equality holds if and only if PY is an eigenvector
of A corresponding to 6; for an eigenvector Y of B corresponding to ;.
Suppose 0; =n; (1 <i < k)andn; = 0,y (k+1 < i < m) for some k
(1 <k<m). Let Y1, Y5, -+ Y, be the eigenvectors of B corresponding
to 1, M2, -+, M such that PY;, PYs,--- | PY,, be the eigenvectors of
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A corresponding to 6y,60s, -+ 60,00 ki1, On_makao, -, 0n. So for
1<:<m

PBY, = n,PY;
APY; = 6,PY;, = nPY,

o4, ifi <K,
]:

where

n—m+1, else.

Hence PB = AP.
O

Definition 5.8. Let A be an n x n matrix. Then B is a principle submatriz
of A if B is obtained by deleting some rows and columns with the same
indices from A.

Example 5.9. Let

A:

Q0O "N
O O W

1

4

7

Then (1), (5), (9), ( i ?) ) - ( g g ) . ( ; 3 ) and A are all the principle
3

. 1 : .. . .
submatrices of A. Observe < g ) s not a principle submatrix of A since

it is obtained by deleting row 3 and column 2 from A.

Corollary 5.10. Let A be an n X n real symmetric matriz. Suppose B is
an m X m principle submatriz of A. Then the eigenvalues of B interlace the
eigenvalues of A.

Proof. By reordering the indices, we can assume that B appears in the upper

left corner of A. Then B = P'AP for n x m matrix P = ( é ) Hence the

result follows from Theorem 5.7.

Corollary 5.11. Let X be a graph and fix a verter x € X. Suppose 0 1is
an eigenvalue of X with multiplicity m > 1. Then 0 is an eigenvalue of the
graph induced on X — x with multiplicity at least m — 1 and at most m + 1.
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Proof. Let A be the adjacency matrix of X and B be the adjacency matrix of
X —x. Observe A is a real symmetric matrix and B is a principal submatrix of
A. By Corollary 5.10, we know the eigenvalues of B interlace the eigenvalues
of A. Since 0 is an eigenvalue of A with multiplicity m, the result follows. [

5.3 Equitable partition of a graph

Definition 5.12. Let X be a graph, and let 7 = {C},Cy,--- ,C,} be a
partition of X. Then = is equitable if for all i,j € {1,2,--- ,r}, there exists
a number b;; such that for all x € C; we have |N(x) N C}| = b;;.

Definition 5.13. Suppose 7 is equitable. Then X /7 is a weighted digraph

where X/m = {C},Cs,---,C,} and define. C; ht C; it b; # 0. Let A =
A(X/7) be the adjacency matrigThat is, A'is an r x r matrix such that

Definition 5.14. Let 7 = {C4,Cy ¢ #5CFbe a partition of X. The char-
acteristic matriz of 7 is an | X| X |a| matrix P-such that

p._ 1, ifzxed;,
" 0, otherwise.

Example 5.15.

1 7
I 3 4 5 6 I
2 8

For this graph, let C; = {1,2,4,5,7,8} and Cy = {3,6}. Then by; = 1,
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b12: 1, bgl :3, b22 :07 A(X/?T) = ( ;) (1) ) and

Q
o O

CO 3O O = W N+
— = O = = O
OO = OO =O

Note 5.16. (1) The columns of P is linear independent.
(2) Observe
0 .,
tP)ZJZZHZijZZPmej:{ » Zjéj_,
z€X 2EX Gl 1=
Hence P'P is an invertible diagonal- matriz.

Lemma 5.17. Let 7 "be.an equitable partition of X with characteristic ma-
triz P. Then A(X)P =:PA(X/w).." (Equivalently, (P'P)"'P'A(X)P =
A(X/m)).

Proof. Suppose m = {C1,Cs,--- ,C,} and = € C;. Observe

= Z A(X)ayPyj = bij,

yeX

and
(PA(X /7)), Z P A(X /)i Z Poiby; = by;.
Hence A(X)P = PA(X /7). O

Corollary 5.18. Let m be an equitable partition of X. Then the minimal
polynomial of A(X/7) divides the minimal polynomial of A(X).
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Proof. Let A= A(X), B= A(X/n). From Lemma 5.17, we know AP = PB.
Observe A2P = APB = PBB = PB2 In general, AP = PB" holds for
all n € N. Hence f(A)P = Pf(B) for any polynomials f(z). Suppose g(x)
is the minimal polynomial of A. Then g(A) = 0, and g(A)P = Pg(B) = 0.
Since the columns of P are linear independent, we have g(B) = 0. Then g(x)
is a multiple of the minimal polynomial of B = A(X /7). O

Theorem 5.19. The characteristic polynomial of B divides the characteristic
polynomial of A where A = A(X), B = A(X/x).

Proof. Let P be the characteristic matrix of the partition 7 of X. Set T' =
( P|Q ) for some n x (n — r) matrix @ such that 7T is invertible. Then

AT = A(P|Q )= ( AP|AQ )= ( PB|AQ )

B|C B|C
= (PlQ) (%ﬁ) ”’(%W)
for some matrices C', D of size:r X (n = r),(n =r) X (n — r) respectively.

B|C
-1 _
Then T AT = (T‘T) . Hence

det(zl — A) = det(T 1) det(wl— A)det(T)
= det(T *(zl — A)T) =det(x] — T 'AT)

B|C

— det(( MSB ﬂ(iD )) = det(z — B) det(zI — D).

Hence det(z] — B) divides det(z] — A). O

Note 5.20. (1) The set of eigenvalues of A(X/m) is a subset of the set of
eigenvalue of A.

(2) 0 is an eigenvalue of A(X /) with multiplicity t. Then 0 is an eigen-
value of A with multiplicity at least t.
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Example 5.21. Petersen Graph X:

LN
ey

2

3 4
030

Let m = {{1},{2,5,6},{3,4,7,8,9,10}}. Then A(X/m) = 1 0 2 |.
01 2

We obtain det(z] — A(X /7)) = (x — 1)(z — 3)(z + 2). Hence 1, 3, —2 are

eigenvalues of Pertersen Graph.

Theorem 5.22. Let G act on X with orbits C1,Cy,--- ,C,.. Then m =
{C1,Cy, -+, C,} is an equitable partition of X.

Proof. Pick x, y € C;. Choose g € Glsuch that y = g(x). Then |N(z)NC}| =
(N () N C5)| = [N (yh 1 Cil, O

Example 5.23. Petersen Graph X:

1

i o'y
oy

Let G = {e, 0,02, 03, 0%}, where 0 = (1,2,3,4,5)(6,7,8,9,10). Then G acts
on X with orbits m = {C1, Cs}, where C7 = {1,2,3,4,5}, Cy, = {6,7,8,9,10}.

Since A(X/7) = ( ? ; ), we obtain det(x] — A(X /7)) = (x — 3)(x — 1).

5.4 Interlacing of rational functions

Lemma 5.24. Let A be an n X n real symmetric matriz and z € R" is

nonzero. Set ¢(x) = 2'(xl — A) 'z and ¢(x) =1 — 2'(xl — A)~ 2. Then
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1) ¢'(z) >0, ¥'(z) <0 if ¢(x), Y(x) are defined.

(1)
(2) Ewery root of ¢(x) (resp. ¥ (z)) has multiplicity 1.
(3) Ewery pole of ¢(x) (resp. ¥(z)) is simple.

(4)

4) The roots of ¢(x) (resp. ¥ (x)) interlace the poles of ¢(x).

Proof. (1) Observe

dx) = 2al—A)'2=2(> (x—0)"Ey):z

Ocev(A)

Hence

feev(A) (I - 9>2
And '(z) = (1 — ¢(z))" ==¢ (2):0:

(2) From (1), we have ¢'(z)510; ¢/'(z) #%0. Herice they have no repeated
roots.

'E
- 92. Hence every pole of ¢(x) is 1.

(3) Obviously from ¢(x) = Z
Ocev(A)
Similar for ¢(z) =1 — ¢(x).

(4) Observe ¢(z) is decreasing by 1, lim ¢(z) = 0, lim ¢(x) = 0. Hence

after deleting the common factors of ¢(z), the roots of ¢(z) interlace
the poles of ¢(x). Hence the roots of ¢(z) interlace the poles of ¢(z).
[
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Chapter 6

The Laplacian of a Graph

6.1 Laplacian and incidence matrix of a graph

Definition 6.1. Let X be a graph (not necessary simple). An orientation
X7 of X is a digraph that assigns each,edge e a directed edge o(e).

Definition 6.2. Let X7 be an orientationief. X The incidence matriz D of
X7 is an n x m matrix where:n = | X| m_="|R| such that for x € X and
e=yz e X,

1, if z.= z,(z"is the head of e)
Dye = < —1, if x =y (aisthe tail of e)
0, ifx #y,x # 2.

Note 6.3. Each column of D has exactly one 1 entry and —1 entry.

Example 6.4.

For this graph, D =

W N =
—
|
—_
(@]
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Lemma 6.5. Let X be a graph with an orientation X° and let D be the
incidence matriz of X°. Then DD' = A(X) — A(X) where AN(X) is a
diagonal matriz with (A(X)),, the degree of y. Such Q := DD is called the
Laplacian of X.

Proof. Pick x, y € X. Observe

(DDYyy = > DueDly=>" DucDye

eeX ceX®
deg(x), if z =y,

= —1,ifx#£yx~uy,
0, ifx #y,x>y.

= A(X)—AX).

Example 6.6.

1
For this graph, D = g DU 0 0

4\0 0 -1 1

2 -1 0 -1
-1 2 -1 0

— t
QU)=DD'=| "y 1 5
-1 0 -1 2

Note 6.7. (1) Q(X) is symmetric.

(2) Q(X) is independent of the orientation o.
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1 1
B)QX)| . | =0,andD'| . | =0
1 1
Lemma 6.8. Let Q) := Q(X) be the Laplacian of X. Then all eigenvalues
of QQ are nonnegative.

Proof. Let X be an eigenvalue of @ with eigenvector . Then Qz = DDz =
Az. Observe ' DDz = ' Az. Hence || D'z||? = A||z||?. The result follows. [

Lemma 6.9. For any matriz D, the nullspace of DD! equals the nullspace
of Dt.
Proof. Observe nullspace(D") C nullspace(DD?). Suppose DD'U = 0. Hence

U'DD'U = 0. Hence ||D'U||* = 0. Hence D'U = 0. Hence nullspace(D") D
nullspace(Q)). Hence the result follows. O

Theorem 6.10. Suppose X has ¢ connected components. Then 0 is an
ergenvalue of Q) with multiplicity c.

Proof. Suppose X = X;UX,U=+-UX{, where X; are connected components.
We claim the nullspace of D!zhas dimension ¢» For 1 < i < ¢, let U; be a

column vector such that
Tt X,
UZ@) L ; 1 xr e
O, if x ¢ Xz

Then D'U; = 0. In fact, D'U = 0 for U € span{U;,Us,--- ,U.}. Hence
the nullspace of D! has dimension at least ¢. On the other hand, suppose
D'U = 0 for some vector U. Then by the construction of D, U(x) = U(y)
for x ~ y. Hence U(z) = U(y) for any x, y in the same component. Then
U € span{Uy,--- ,U.}. Hence the nullspace of D' has dimension ¢. The
theorem follows from this and Lemma 6.9. ]

Lemma 6.11. Let X be a regular graph of order n with valency k, and
0y > 0y > --- >0, be eigenvalues of A(X). Suppose A\ < Ay < --- <\, are
eigenvalues of Q(X). Then \y =0 and \; =k —0; fori=1,2,--- n.

Proof. Q@ = A(X) — A(X) = kI — A(X) since X is k-regular. Thus every
eigenvector of A with eigenvalue 6; is an eigenvector of () with eigenvalue
k —6;. A\ =0 by Theorem 6.10. O]
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Definition 6.12. The complement X of a graph X is the graph with vertex
set X and edge set R={e=ay | v #y,e & E}.

Lemma 6.13. Let X be a graph. Then Q(X) + Q(X) = Q(K,) where
n=X]|.

Proof. Observe

Hence

QX)+Q(X) = AX)+AX) — (AX) + AX))
— (n-DI—-(J=I)=nl—J
= Q(Kn)
L]

Lemma 6.14. Let X besa graph withmiwvertices. Then A\i(X) = n—X,_iy2(X)
for2 <i<n.

Proof. Let Uy, Us, - - =, U, be orthogenal eigenvectors of (X)) corresponding
1

to AL(X), Ao(X), -+, A\p(X).respectively, and U; = 1 . Observe
1
QRN = (UKL = QU))U: = (nl = J — QUX)U;
= (n—XN(X))U;
since JU; = 0 for 2 < i < n. O]
Corollary 6.15. Let X be a graph with n vertices. Then
(1) M(X) <.

(2) {i | M(X) = n} =¢(X) — 1 where ¢(X) is the number of connected
components in X.

Proof. This is clear from Theorem 6.10 and Lemma 6.14. ]
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Lemma 6.16. Let U be a column vector. Then U'QU = Z (U, — U,)>.

zyER

Proof. Observe

U'QU = U'DD'U = (D'U){(D'U) = ||D'U|]?

= Y (DU)E= (> DU

eER eeR zeX
= Z(Z DzeUx)2 = Z (Ux - Uy)z'
e€cR xzeX e=xyER

6.2 The number of spanning trees of a graph
Definition 6.17. A tree is a connected simple graph without cycles.

Definition 6.18. Let X be a graph. A spanniig tree T of X is a subgraph
of X that is a tree and contains all vertices of. X.

Definition 6.19. Let X be:a multigraph and e = wv is an edge in X.
Then X\e is the graph with vertex-setr2X-and edge set R\{e}. X/e is the
multigraph obtained by identifying the verticesarand v and deleting the edge
e. X/e is the graph obtained by contracting the edge e.

Example 6.20. X:

o000
Then X \ e:
oo 0o
And X/e:
o oo

Lemma 6.21. Let X be a multigraph. Let 7(X) denote the number of span-
ning tree in X. Then

7(X) =7(X\e) + 7(X/e).



56 CHAPTER 6. THE LAPLACIAN OF A GRAPH

Proof. Pick an edge e. Then every spanning tree either contains e or does
not contain e. Observe 7(X\e) counts the number of spanning trees in X
that do not contain the edge e, and 7(X/e) counts the number of spanning
trees in X that contain the edge e. The result follows. O]

Definition 6.22. Let M be a square matrix and S is a subset of its index
set. Then M|[S] denote the submatrix of M obtained by deleting the rows
and columns indexed by S.

Note 6.23. Let QQ = Q(X) be the Laplacian of X and uv be an edge in X.
Then Q[u,v] = Q(X/e)[v].

Theorem 6.24. Let QQ = Q(X) be the Laplacian of a graph X. Then for
any u € X, det(Q[u]) = 7(X).

Proof. We prove this theorem by induction on the number of edges of X. Fix
an edge e = uv. Observe Q[u] = Q(X\e)[u]+E, where FE is the (n—1)x(n—1)
matrix with E,, = 1 and all other entries equal to 0. Then

det(Q[u]) =" det(Q(XN\€)[u]) + det(Q[u, v])
= det(Q(X\e)fu]) + det(Q(X/e)[v]).

By induction, det(Q{X\e)u})r= z(X\e) and det(Q(X/e)[v]) = 7(X/e).
Hence the result follows. O

Corollary 6.25. The number of spanning trees of K, is n" 2.

Proof. Observe Q(K,)=(n—-1)I—-AK,))=n—-0)I—-(J—-1)=nl —J.
Hence Q(K,)[1] = nI — J with size (n—1) X (n —1). Observe the eigenvalues
of J are 0,0,0,0,---,0, ( » — 2 times ), n — 1 and then the eigenvalues
of Q(K,)[1] = n,n,n,n,---, ( n— 2 times ), 1. Hence det(Q(K,)[1]) =
n"=2, O

Definition 6.26. Let M be an n x n matrix. The adjugate of M ( adjM)
is a n x n matrix such that (adjM);; = (—1)""7 det(M|j;i]) where M[j;1] is
the submatrix of M that deletes row j and column .

Note 6.27. (1) M - adj(M) = det(M) - I.

adi(M)
det(M)

(2) If det(M) # 0 then M -
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(3) (adj(Q))uw = T(X) for allu € X.

1 21 0 — 1
Example 6.28. Let M = 3 1 1 |. Thenadj(M)=| -5 1 2
1 2 2 5 0 =5
-5 0 0
and M - adj(M) = 0 =5 0 | =det(M)-I.
0 0 =5

Theorem 6.29. Let X be a graph and Q be its Laplacian. Then adj(Q) =
T(X)J.

Proof. We consider two cases.

Casel: X is not connected. Observe 0 is an eigenvalue of Q(X) with multi-
plicity at least 2 by Theorem 6.10. Hence rank(Q(X)) < n — 2. Let
Qli; j] be the submatrix of @ obtained by deleting the row ¢ and the
column j of Q. Hence rank(Q[i; j]) < n — 2. Since the size of Q[i; j] is
(n—1) x (n —1). Hence det(@[i;j])i=0. Then adj(Q) =0 = 7(X)J.
Note 7(X) = 0 since X hasno spanning tree.

Case2: X is connected. From Theorem 6:10, 0 is an eigenvalue of ) and all
eigenvectors corresponding to:0-has-theform

1
1
1

Observe Qadj(Q) = det(Q)I = 0-adj(Q). Hence each column of adj(Q)
is an eigenvector of ) corresponding to 0. Then adj(Q)) has the form

t1 1o ty
t1 1o ty
t1 1o ty

But the diagonals of ) are all the same number 7(X) by Note 6.27(3).
Hence adj(Q) = 7(X)J.
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O

Theorem 6.30. Let 0 = A\ < Ay < -+ <\, be eigenvalues of Q(X). Then
1

T(X) = —>\2)\3 s >\n
n

Proof. The result clearly follows if X is not connected. So we consider X is
connected. Observe the characteristic polynomial of the Laplacian of X is

det(xl —Q) = (z—M)(x—X2) - (x—\p)
= z(x—X) - (z—A\y)
()" g Az + e

and on the other hands,
det(zl — Q) = Z det(—Q[u])x + - -
= (1) (X)) 4

Hence the result follows fromr comparing‘the coefficients. O]

6.3 The representation of a graph and its en-
ergy

Definition 6.31. A representation p of a graph X in R¥ is a map p from X
into R*.

Suppose |X| = n and identify x € X to be a column vector x =
(0,---,0,1,0,---,0)" with zth position is 1. A representation p : X — RF
is linear if p(X) = LX for some k x n matrix L. Let w : R — R>% be a
function that gives each edge e of X a weight w(e).

Definition 6.32. Let p: X — R* be representation. Then

Elp) =, wle)llp(u) = p(v)]P*

e=uveER

is called the energy of p with respect to the weight function w.
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Lemma 6.33. Let X be a graph and p(X) = LX be a representation of X in
RF. Fiz an orientation X° of X with incidence matriz D. Then for e = uv,

llp(w) = p(v)|[* = ((LD)'LD)ee.
Proof. Observe

(LD)LD)ee = ) (LD)y(LD)je= »  (LD)

fe{1,2,- k} fe{1,2, k}

= 2 QLpDul= >, (L Lp)
fe{1,2,- k} zeX fe{1,2,- ,k}

=Y (o) = p(0)))? = llow) — plo)]*
fe{1,2,- k}

O

Suppose |R| = m. The weight matriz W of w is m x m diagonal (indexed
by e € R) such that W,.. = w(e).

Lemma 6.34. As notation above, E(p) = trace(W(LD)'LD).
Proof. Observe

trace(W(LD)'LD) = SS(W(LDYED)es =Y  Wee((LD)'(LD)).e

eER ecR
= Y w@pfu— o)l = E(p).
e=uvER

We recall some facts in linear algebra.
Note 6.35. Let M be an n X n matriz.
(1) trace(M) = My + Maog + + -+ + Mp,.
(2) trace(MM') = trace(M'M).

Theorem 6.36. Let X be a graph. Suppose p : X — R¥ represented by an
k xn matriz L. Let W be a weight matriz. Then E(p) = trace(LDW (LD)")

for any incident matriz D of any orientation X of X.

Proof. From Note 6.35 and Lemma 6.34, we have
E(p) = trace(W (LD)'LD) = trace(LDW (LD)").
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6.4 Weighted Laplacian

Lemma 6.37. Let X be a graph with a weight matriz W and an orientation
X7 and let D be the incidence matriz of X°. Set Q := DW D'. Then

0, if vy,x#y,
Qxy e _w(6)7 Zf ezwy’

Zw(zx), if v=uy.

zZT

In particular, Q) is independent of the orientation o. Such Q := DW D! is
called the weighted Laplacian of X.

Proof. Observe
Quy = (DWD"),, =Y D,.W..Dl,
eER
0, if x ey x#y,
ab )y —wle)pif e = zy,

Zw(zx), if v=uy.

zZT

[l
Note 6.38. (1) Q =.DWD"=
wd) 0 0 wd) 0 0 - 0
0 0 w(m) 0 0 w(m)
wd) 0 0 0 wd) 0 0 0
D : . : : (D : . : :
0 0 ... ... w(m) 0 0 ... ... w(m)

We use the notation
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2) Q| © | =0 by Note 6.7(3).
1
(3) If Q" is an n X n matriz satisfying

(i) @by <0 ifzFy, x~y,
(i) Qo =0ifzFy, x>y,

Then Q' is a weighted Laplacian for some weight function w. In fact,
this W satisfies Wy, = —Q'aifor-t ~"y.

Lemma 6.39. Let X be a graph of n-vertices.»Let() be a weighted Laplacian

of X with eigenvalues Ay < A< he-\,,. Lete denote the number of connected
components in X. Then

(1) )‘1 > 07
(2) ¢ =max{i | \; = 0}. In particular, X} = 0.

Proof. (1) Observe A is an eigenvalue of Q and Q = DW D' = DVW W D',
Then @Q = (DVW)(DVW)!. Let U; be the eigenvector of @ corre-

sponding to A;. Then \\U; = QU, = (DvVW)(DVW)'U,. Hence
UtA U, = UH(DVIW) (DYWL

Hence ||(DVW)!U||> = M\i||U1][2. Hence A; is nonnegative, the result
follows.

(2) The proof is similar to Theorem 6.10.

O
Definition 6.40. A representation p : X — R” is balanced if Z p(x) = 0.

zeX
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Definition 6.41. A linear representation p : X — R* is orthonormal if
LL' = I}, where L is an k X n matrix that represents p.

Note 6.42. k < n.
Example 6.43.

For above representation of a cube in R?, we have

1 1 1 -1 1 -1 -1 -1
L=11 -1 1 1 -1 1 -1 -1},
11 -1 -1 -1 1 1 -1

L(pldsd, 1,1,1,1)' =0

and

I3

o © o
(2 ol (e
co O O

1
Hence the representation ——=1L is balanced and orthonormal.

2v/2
Theorem 6.44. Let () be the weighted Laplacian for the weight matrix W of
Xand0 =X < X\ <--- <\, are eigenvalues of Q). Let p be an orthonormal
representation p : X — RF. Then E(p) > Ay + -+ + A\, where E(p) is
the energy of p with respect to W. Furthermore, there is an orthonormal
representation of X into R* such that above equality holds.

Proof. Let L be the k x n matrix represented p. Observe by Theorem 5.7
and
E(p) = trace(LDW (LD)")
= trace(LQL")
= sum of eigenvalues of LQL"
> Mt+At N
= M+ + N
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Set
. 1
U = — :
1 \/ﬁ :
1
Let Uy, U, - - -, Ug be orthonormal eigenvectors of () corresponding to eigen-
values Ay, - -+, \; respectively. Set
Lt:(Ul Uy --- Uk).
Then LL' = I and
Ui
: Uy
trace(LQL") = trace(| . Q(ULUy---Uy))
U
Ui
Uy
= trace(|.q.x (AU AaUs -+ AUy))
Uiyl
A 020 -5 0
0 A 0 = 0
= trace |00 o O
CELE (L VA

= M+t F X=X+ + A
[l

Corollary 6.45. Let Q be the weighted Laplacian for the weight matriz W
of X and 0 = A\ < Ay < -+ <\, are eigenvalues of Q. Let p : X — R¥
be an orthonormal balanced representation. Then E(p) > Ao + -+ + Apy1-
Furthermore, there is an orthonormal balanced representation of X into RF
such that above equality holds.

Proof. Let L represent p. Observe
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since p is balanced. Set

1 1

v 7 L NG

Observe L' is orthonormal from X — R*1. Observe £(L') = £(p). Hence
by Theorem 6.44,

E(p) =E(L)) 2 Ao+ + A

Similarly, we can obtain the equality. O]

6.5 The second least eigenvalue

Throughout this section, let X be a'gtaph with n vertices, () be the Laplacian
of X and A\ (X) < A(X) < - #N(X) be the eigenvalues of Q(X).

Definition 6.46. Let X be a‘graph. Thén S is a subgraph of X if S C X
and R(S) C R(X).

Theorem 6.47. Let X be a graph. Suppose that S is a subset of X. Then
Ma(X) < Aa(X\S) + 8],

Proof. Observe UtQ(X)U > \y(X)||U||* for any U orthogonal to the all 1’s
column vector. Pick U € R¥ such that

(1) U, =0,ifz €S,

(2) W =U | (X\9)is an eigenvector of Q(X\.S) corresponding to Ay(X\.S)
and orthogonal to the all 1’s column vector,

@) U]l =1.
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Then from above and by Lemma 6.16,

Ao(X) < U'QX)U

Z (Ux - Uy)Q

TyeER
= > -UP+Y YU
zyeR(X\S) zeS zyeR
yEs
= ) Wa-W)’+s]
zyeR(X\S)
= W'Q(X\S)W +|S|
= MNX\)[WI* +13],
where ||[W]| = ||U|| = 1. Hence X\y(X) < Ao(X\S) + |5/ O

Corollary 6.48. Let X be a graph. Suppose X is not complete. Then
Ao (X) < ko(X) where ko(X) is thesvertex éonnectivity of X.

Proof. We can find a subset § C X such that |S| = ko(X) and X\S is
disconnected. Then Ao(X\S) = 0. Hence

M (X) < Ao(XAS) EISIEDH |SF= ro(X).

Corollary 6.49. \o(T) < 1 for any tree T with at least three vertices.
Proof. 1t is clear by Corollary 6.48 since rko(7") = 1 for any tree T O

Note 6.50. For any graph, M\a(X) < ko(X) < k1(X) < 0(X) where 6(X) is
the minimal degree of X.

Note 6.51. For any graph X, the Laplacian of Q(X) has |rank(Q(X)) —
rank(Q(X\e))| < |rank(Q(X) — Q(X\S))| < 2.

Lemma 6.52. Let X be a graph and e = uv be an edge of X. Then

Aa(X\e) < Ma(X) < Ao(X\e) + 2.
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Proof. For any z € RX,

AQX)z = Y (m—z)l= > (=) +(u—2)
Z,Z]AEJ]X i, jlew)z' \e

= 2'Q(X\e)z + (24 — 2)?

by Lemma 6.16. Let z = Us(X \e) be the eigenvector of Q(X\e) correspond-
ing to A2(X'\e) and orthogonal to the all 1’s column vector. Then

NP < #Q(X) (6.1)
= Z'Q(X\e)z + (24 — 2,)°
= XX\e)|l2|* + (7u — 2)°
Aa(X\e)| |2 +2(27 + 27) (6.2)
Aa(X\e)| |z + 2]z (6.3)

Hence Ao(X) < Xo(X\e) + 2. Let z = Ua(X) be the eigenvector of Q(X)
corresponding to A2(X) and orthogonal to the all 1’s column vector. Then

IA A

DX =,200)2
2'Q(XNe)z + (24 — 2)?
= XX\l 2|]” + (20 — 20)°
=r2ef \e)ll= I
Hence Aa(X) > Aa(X\e): O

Lemma 6.53. Let X be a graph. Then for any proper nonempty subset
SCX

n|0S|
) = 5187

where n = | X| and 0S is the boundary of S.
Proof. Set Z be a column vector and

7 n—|S|, forz €S,
“ 1 -9, otherwise.

Observe (1,1,--- ,1)Z = (n — |S])|S| = |S|(n — |S]) = 0. Hence
M2 < 2'QX)Z =) (Zu— Z,)* = |0S|n*.

uvER
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Note that

12117 = (n—|S*IS] + (n — |SDISI*
= (n=[SIS[(n = |S[ + [S]) = n(n = [S]]S].

Hence

n|0S]
0= s 81y

O

05
Definition 6.54. ¢(X) := gncl)r(l % is called the conductance of a graph X.
S0

Corollary 6.55. For a graph X, (X)) < 2¢(X).

Proof. Note that 0S = 9S. The Corollary is from previous Lemma. O]

6.6 Interlacing of eigenvalues

Lemma 6.56. Let C, D be s X t, t X & matrices respectively. Then det(I —
CD) =det(I — DC).

Proof. Let

Observe

det(XY) = det(( [-cop ¢ ))
= det(/ — CD)det(l) = det({ — CD).

Similarly, det(YX) = det(I — DC). Since det(XY) = det(YX), det(I —
OD) = det(I — DC). O

Theorem 6.57. Let X be a graph with a fized edge e. Then

Ai(X\e) < N(X) < i (X\e), fori=1,2,--- n—1,
An(X\e) < M\ (X).
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Proof. Suppose e = uv, and u, v are the first two vertices of X. Set

Z=1 0
0
Observe
1 -1 0 - 0
-1 1 0 - 0
zzt—=1 0 0 0 0
O 0 0 --- 0

By the construction of Q(X), we obtain Q(X) = Q(X\e) + ZZ'. Observe
A= Q(X) = A —Q(X\e) U2 —Q(X\e)) (I (AT Q(X\¢)) 1 27,
Hence by Lemma 6.56:with ¢ = (AL— Q(X\e))"'Z, D = 7,

det(\ — Q(X)) = det(AM.=Q(X\e))det(I — (A —Q(X\e)) 122"
= detONM=0Q(X\e)) det(1 — Z'(M\ — Q(X\e)) ' 2).
Then

det(M — Q(X))
det(M — Q(X\e))

= det(I — Z'(\ — Q(X\e)) ' 2)
= 1-Z'M - Q(X\e) 'Z.

Hence the roots of det(A] — Q(X)) interlaces the roots of det(A — Q(X\e))
by Lemma 5.24(4). Hence the results follow. O



Chapter 7

Matroids

7.1 Rank functions

Definition 7.1. Let € be a finite set. A rank function on € is a function
rk: P(Q) — NU{0} such that

(1) If A and B are subsets of £ and A C B, then rk(A) < rk(B);
(2) For all subsets A and B-of £,
rk(AN B+ rk(AUBY < rk(A) + rk(B);

(3) If A CQ, then rk(A) < |A];
where P(A) is the set of all subsets of A.

Lemma 7.2. Fiz an m x n matriz D and let Q = {1,2,--- ,n}. For ACQ,
rk(A) := the dimension of the subspace in R™ spanned by those columns of
D indexed by A. Then rk is a rank function on €.

Proof. The first and third conditions are clear. We check the second con-
dition. Let Dq,---, D, be the columns of D. Set V = Spang,caD,, W =
SpanpeDy. Observe rk(ANB) < dim(VNW) and rk(AUB) = dim(V +W).
Hence
rk(ANB)+rk(AUB) < dim(VNW)+dim(V 4+ W)
= dim(V) + dim(W) = rank(A) + rank(B).

O

69
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Definition 7.3. Let  be a finite set with a rank function rk. Then M :=
(Q,rk) is called a matroid.

Definition 7.4. Let M := (2, rk) be a matroid. Then A C Q is independent
if rk(A) = |Al. A C Q is dependent if rk(A) < |A|. A basis of M is a
maximal independent subset of €.

Example 7.5. Let Q = {1,2,--- ,n} be a finite set and rk(A) := |A| for any
A C Q. Then for any subset A C € is independent. {1,2,--- ,n} is a basis.

Example 7.6. Let Q = {1,2,--- ,n} be a finite set and rk(B) = 0 for all
B C Q. Hence () is the only independent set and () is a basis.

Theorem 7.7. Let (Q,7k) be a matroid and A C Q. Suppose B C A is a
mazimal independent set in A. Then rk(B) =rk(A) = |B|.

Proof. We prove the theorem by induction on |[A — B|. If A = B, then
rk(A) = rk(B) = |B| is clear. In general, suppose B C A. Pick z € A — B.
Consider C' := B U {z} and fr=rA — {x}. Then

rk(CAD)+rk(CWY D)< rk(C)+rk(D).
Observe B=CND and A = C:UD. Hence
FR(AY +Ph(BY < 1k (C) + rk(D). (7.1)
Note
rk(C) <|C] = [B[ +1

and

|B| = rk(B) < rk(C).
Observe C' is dependent since B C C. Hence rk(C) < |B| 4+ 1. Hence
rk(C) = |B| = rk(B). Thus we obtain rk(A) < rk(D) by equation(7.1).
Hence rk(A) = rk(D). Observe B C D is a maximal independent set in D
and |D — B| < |A — B|. By induction, rk(B) = rk(D). Hence rk(B) =
rk(A). O

Corollary 7.8. Let M = (Q,rk) is a matroid. Then all bases of M have the
same size Tk(Q).

Proof. This is obvious by above Theorem. Il
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Lemma 7.9. Let (2, 7k) be a matroid. Then
rk(A) + |A| < rk(B) + |B|
forany A C B C Q.
Proof. Observe

rk(A) + Al = rk(BU(B - A4)) +|4]

BU
rk(B) +rk(B — A) + |A]
rk(B) + |B — Al + |A] = rk(B) + | B].

IA A

7.2 The dual

Definition 7.10. Let M := (@,7k) bepasmatroid. Define rkt : P(Q) —
NU {0} by
rkt(A)= rh(A) =A] — k().

rk* is called the dual of rk.
Note 7.11. 7kt (0) = rk(Q) + 0] — rk(Q)'= 0.
Lemma 7.12. Let M := (Q,rk) be a matroid. Then (rk+)*t =rk.

Proof. Choose any subset A C 2. Observe

(PE)HA) = k) + 14| - k(@)
= (rk(A) + [A] = 7k(Q)) + |A| = (rk(Q) + 19| — k()
= rk(A)

O

Theorem 7.13. Let M = (2, 7k) be a matroid. Then (Q,rk*) is a matroid.
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Proof. We check three conditions in Definition 7.1. The first condition is
clear by Lemma 7.9. Choose two subsets A, B C ). Observe

rkS (AN B) + 7k (AUB) = (rk(ANB)+|ANB|—71k(Q))
+(rk(AU B) +|AU B| — k(%))
= (rk(AUB)+|ANB| —1k(Q))
+(rk(AN B) + |AU B| — rk())
< 7k(A) +rk(B) + |A| + | B| — rk(Q) — rk(Q)
= rkt(A) +rkH(B).

Hence the second condition holds. Observe
rk:L(A) = rk:(Z) + |A] — rk(22) < |A].
Hence the third condition holds. O

Definition 7.14. Let M := (Q,7k) be a matroid. Then M+ := (Q,r7k*) is
called the dual matroid of M-

Lemma 7.15. The bases lof Mt -aresthe complements of the bases of M.
Proof. Let A be a basis of M. Then rk(A) = |A| = rk(2). Observe
rkt(A) = rk(A)+ A = rk()
= A+ A5 rk(Q) = Q] — 7k(Q) + rE(0) = rkT(Q).

We also showed in the second equality, rk*(A) = |A|. Hence A is a basis in
M. [

7.3 The restriction and contraction

Definition 7.16. Let M = (2, rk) be a matroid and T" C Q. Then M |
T := (T,rk | P(T)) is called the restriction of M into T

Lemma 7.17. Let M = (Q,rk) be a matroid. Then M | T is a matroid.

Proof. Let A C B C T and ¢ = rk [ P(T). Then p(A) = rk(A) <
rk(B) = ¢(B). Hence the first condition holds. Similarly the second and
third conditions hold. Hence the result follows. O
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Definition 7.18. Let M = (2, rk) be a matroid and 7" C 2. Define M /T :=
(T,rk/T) where rk/T : P(T) — NU {0} such that rk/T(A) := rk(T U A) —
rk(T). Then M/T is called the contraction of T on M.

Lemma 7.19. Let M = (Q,rk) be a matroid and T' C Q. Then rk/T is a
rank function on T and (M/T)* = M+ | T.

Proof. Define ¢ : P(T) — NU{0} by (A) = rk/T(T — A)+ |A| —rk/T(T).
Observe

Y(A) = rk(T —A)UT) —rk(T)+ |A| — (rk(TUT) — rk(T))
= rk(A) + |A] — rk(Q) = rk*+(A)

for all A C T. Hence ¢ = vkt | P(_T) is a rank function on 7. Observe
¢+ =rk/T. Hence rk/T = (rk* | P(T))* is a rank function. O

Note 7.20. We proved rk/T = (rk*+ | P(T))*.

Let Q ={1,2,3} and T = {1}; T = {2;3}. Define

1, if A £,
0 A=,

Example 7.21. Let

1l = o
ELn e
— =

rk(A) =

Observe
rk/T(A) =rk(TUA)—rk(T)=1-1=0

for all A C T. Hence for any A C T,
rkT(A) = rk(A) + |A| —rk(Q) = 1+ |A| — 1 = |A],
and

(rk* TP () = k" [ PTNT — A) + A - rk* | PT)(T)
= [T Al+]4 - [T|=0.

Hence rk/T = (rk* | P(T))*.
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