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Student : Komi Chienwei Chen Advisor : Dr. Chiuyuan Chen

Department of Applied Mathematics
National Chiao Tung University

Hsinchu 300, Taiwan, R.O.C.

Abstract

Chordal ring networks have been‘proposed-as a popular architecture for local
area networks [1, 3, 8, 10, 11].“An-undirected chordal ring network is an
undirected regular graph of degree-3."In [8, 10, 11], Hwang, Chen, and
Wright proposed the directed version of the undirected chordal ring network
and derived the diameter of a directed chordal ring network. Furthermore, in
[3], Chen et al. proposed the mixed chordal ring network. While the diameter
of an undirected chordal ring network has been well studied [1], the diameter
of a directed chordal ring network and the diameter of a mixed chordal ring
network are not known. In this thesis, we shall study the isomorphism
property of chordal ring networks and we shall find out the diameter of some
directed chordal ring networks and the diameter of some mixed chordal ring
networks.

Keywords: Chordal ring network, directed chordal ring network, mixed
chordal ring network, double-loop network, diameter, isomorphism.
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1 Introduction

Chordal ring networks were first proposed by Arden and Lee [1]. An wundirected
chordal ring network UC R(N, h) is an undirected graph with N nodes0,1,--- , N—1

and 3N/2 edges of two types:

i—i+1 (mod N) Vi=0,1,2,---,N—1,

i—i+h (modN) Vi=1,35--,N—1,

where N is even, and h is odd. See Figure 1.

0
15 1
14 2
13 3
12 4
11 S
10 6
7
g 8

Figure 1: The undirected chordal ring network UCR(16, 3).

Hwang and Wright [11] proposed the directed version of the undirected chordal
ring network. A directed chordal ring network DCR(N, 1, ﬁ)) is a directed graph

with NV nodes 0,1,--- , N — 1 and 3N/2 links (i.e., directed edges) of two types:

i—i+1 (mod N) Vi=0,1,2,---,N —1,

i—i+h (mod N) Vi=1,35---,N—1,

where N is even and h is odd.



Hwang [8] generalized the directed chordal ring network DCR(N, 1, ﬁ)) to the
directed chordal ring network DCR(N, s, Z)) DCR(N,S,F) is a directed graph
with N nodes 0,1,--- , N — 1 and 3N/2 links of two types:

i—i+s (mod N) Vi=0,1,2,--- /N —1,

i—i+h (modN) Vi=1,35---,N—1,

where N is even, s is odd, and h is odd. See Figure 2.

Figure 2: The directed chordal ring network DCR(16,3,5).

Chen et al. [3] proposed another type of directed chordal ring networks and
denoted it as DCR(N, s, %) A directed chordal ring network DCR(N, s, Z) is a

directed graph with N nodes 0,1,--- , N — 1 and 3N/2 links of two types:
i—i+s (mod N) Vi=0,1,2,--- /N —1,
i+h (mod N)—i Vi=1,35---,N—1,

where N is even, s is odd, and h is odd. Chen et al. [3] combined DCR(N, s, 7)
and DCR(N, s, %) and proposed the mixed chordal ring network MCR(N, s, h).

2



More precisely, a mized chordal ring network MCR(N, s, h) is a directed graph with
N nodes 0,1,--- , N — 1 and 2N links types:

i—i+s (mod N) Vi=0,1,2,--- /N —1,
i—i+h (mod N) Vi=1,3,5---,N—1,

i+h (mod N)—i Vi=1,3,5--,N—1,
where N is even, s is odd, and A is odd. See Figure 3.

15 1

Figure 3: The mixed chordal ring network M CR(16,3,5).

While the diameter of an undirected chordal ring network UCR(N, h) has been
well studied [1], the diameter of a directed chordal ring network DC'R(N, s, 7) and
the diameter of a mixed chordal ring network MCR(N, s, h) are not known. In this
thesis, we try to find the diameter of a chordal ring network.

This thesis is organized as follows. In Section 2, we describe previous results of
the chordal ring networks. In section 3, we discuss the isomorphism properties of
chordal ring networks. In section 4, we derive the diameter of some directed chordal

ring networks and the diameter of some mixed chordal ring networks.
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2 Previous results

In this section, we will briefly review previous results of chordal ring networks.
Since most of these results depend on double-loop networks, we first define what is
a double-loop network. Adouble-loop network DL(N,a,b) is a directed graph with
N nodes 0,1,--- , N —1 and 2N links:

i—i+a (mod N) Vi=0,1,2,--- /N —1,

i—i+b (mod N) Vi=0,1,2,--- /N —1.

Fiol et al. [5] proved that DL(N, a,b) is strongly connected if and only if ged(N, a, b)
= 1. For surveys of the double-loop networks, please refer to [7, 9].

When DL(N,a,b) is strongly connected, then we can talk about a minimum
distance diagram. This diagram gives a shortest path from node u to node v for any
u,v. Since a double-loop network is noede-symmetric, it suffices to give a shortest
path from node 0 to anyzother node, " Let 0. occupy cell (0,0). Then v occupies
cell (i,7) if and only if ia+ jb'= v{mod N) and i + j is the minimum among all
(', j") satisfying the congruence;»where"= means congruent modulo N. Namely, a
shortest path from 0 to v is threugh taking i a-links and j b-links (in any order).
Note that in a cell (i, 7), 7 is the column index and j is the row index. A minimum
distance diagram includes every node exactly once (in case of two shortest paths,
the convention is to choose the cell with the smaller row index, i.e., the smaller j).
Wong and Coppersmith [14] proved that the minimum distance diagram is always an
L-shape (a rectangle is considered a degeneration). See Figure 4 for two examples.

An L-shape is determined by four parameters [, h,p,n as shown in Figure 5.
These four parameters are the lengths of four of the six segments on the boundary
of the L-shape. For example, DL(9,4,1) in Figure 4 has [ =5, h = 3, p = 3, and
n=2.

The diameter of a network is the maximum distance over all node-pairs; it is the

maximum transmission delay between two stations. Arden and Lee [1] derived the

4
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DL(9,4,1) DL(9,1,6)

Figure 4: Two examples of L-shapes.

l

Figure 5: An L-shape with parameters.

diameter of an undirected chordal ring network UCR(N, h) and proposed a routing

algorithm. Without loss of generality;-they assumed that h < N/2.

Theorem 1 [1] Let UCR(N,h) be-an undirected chordal ring network and i =

[%L A = (mod h +1)."Thenthe diameter D of UCR(N, h) is given by

When | i < 223 | and

e A=0 = D =i+ 1L
e 1< AL = D =i+ 03
o A=l = D =i+

w

o M5 _i<A<h—i =D=i+"3

>

e h—i+1<A<h =D=i+5n"t

w|

When | i =23 | and

o AN=0 =D=h-2;



e 1<A<?2 =D=h-3

e 3<ALA =D =h-2.

When | i > 2L | and

e AN=0 = D =2i+1;
e AN=1 = D=2 —1;
e 2 A = D = 2i;

o BB A =D =2i+1.

Hwang and Wright [11] proposed the directed chordal ring network DC'R(N, 1, ﬁ))
They observed that by combining two nodes in DCR(N, 1, 7) as a supernode,
DCR(N, 1, 7) is reduced to the:double-loop network DL(%, 1, %)

Hwang [8] generalized the direéfed€hordal ring network DCR(N, 1, 7) to the
directed chordal ring network DCR(N,S,?). In [8], Hwang called DC'R(N, s, ﬁ)
a 1.5 loop network. The 1.5 loop metwork is derived by allowing the full ring of
DCR(N, 1, ﬁ)) to consist of several subrings instead of a hamiltonian circuit. Hwang

proved that

Lemma 2 [8] A necessary condition for DCR(N, s, ?) to be strongly connected is

s is an odd integer.

Hwang [8] observed that by combining two nodes in DCR(N, s, %}) as a supern-

ode, DCR(N, s, 7) is reduced to the double-loop network DL(%, s, 8;"); he used

this to prove

Theorem 3 [8] The diameter of DCR(N, s, %}) =1+ 2x the diameter of DL(%,

Hwang [8] also proved that



Theorem 4 [8] DCR(N, s, ﬁ)) is strongly connected if and only if gcd(N, s, h) = 1.

Theorem 5 [8] DCR(N,s, ﬁ) has a hamiltonian circuit if and only if its corre-

sponding double-loop network DL(% s ;h) does.

Chen et al. [3] combined DCR(N, s, 7) and DCR(N, s, Z) and proposed the
mixed chordal ring network MCR(N,s,h). They proved that the mixed chordal

ring network also has the above two properties since
Theorem 6 [3] MCR(N,s,h) is strongly connected if and only if ged(N, s, h) = 1.

Theorem 7 [3] MCR(N, s, h) has a hamiltonian circuit if and only z'fDL(%, s, th)

or

DL(%,s,%5") does.
Chen et al. [3] also proved
Theorem 8 [3] Let D be thé diameter of M CR(N, s, h). Then D > (2N)2 + o(N).

Chen et al. [3] observed that by combining two nodes in MCR(N,s,h) as a

supernode, MCR(N, s, h):is réduced-to-the double-loop network DL(%, 55k, sth);

they used this to prove

Theorem 9 [3] Let D be the diameter of MCR(N, s, h). Let DL(Y, 55", sth) be

the corresponding double-loop network of MCR(N, s, h) and assume that the L-shape
of DL(Y, 52, 1) has lengths I, h, p,n. Then D < 2max{l, h} — 1.

3 Isomorphism

Two directed graphs GGy and G5 are isomorphic if there is a bijection function f from
V(G1) to V(G3) such that u — v is a link in F(Gy) if and only if f(u) — f(v) is a
link in F(G2). When G; and G5 are isomorphic, we will write G; = G5. Note that
unless otherwise specified, all the nodes in this thesis are considered to be taken
modular N. That is, node i + 1 is the node i + 1 (mod N) and node i + h is the

node i + h (mod N). We now prove



— —_—
Theorem 10 DCR(N,s, h ) = DCR(N,s, N — h).

Proof. By definition, DCR(N, s, ?) is a directed graph with N nodes 0,1,--- , N —
1 and 3N/2 links of two types:
i—i+s (mod N) Vi=0,1,2,--- /N —1,
i+h (mod N)—i Vi=1,35 - N—1,
—_—
where N is even, s is odd, and h is odd. By definition, DCR(N,s,N —h) is a
directed graph with N nodes 0,1,--- , N — 1 and 3N/2 links of two types:
i—i+s (mod N) Vi=0,1,2,--- N —1,
i—i+N—h (modN) Vi=1,35-,N—1,

where N is even, s is odd, and A is odd. Let f be a function from the nodes of

DCR(N,s, %) to the nodes: DC'R(N, s, m) such that
f@)=i#1 (modN) ¥Vi=0,1,2,--- ,N—1.
First consider the followingstype of links in DCR(N, s, %)
i—i+s (modN) Vi=0,1,2,--- N —1.

Since f(i) = i+ 1 (mod N) and f(i +s) = i+ 1+ s (mod N), it is clear that
f(i) — f(i+ s) is a link in DCR(N,s, N — h). Now consider the following type of

—
links in DCR(N,s, h):
i+h (mod N)—i Vi=1,3,5---,N—1.

Note that f(i+h) =i+ h+1 (mod N) and f(i) = i + 1 (mod N). Since i is
odd and h is odd and N is even, i + h + 1 (mod N) is odd. By the definition of
DCR(N, s, N — h), the node i+ h+1 (mod N) has a link to (i+h+1 (mod N))-+
N — h (mod N), which is the node i + 1 (mod N). Thus f(i +h) — f(i) is a

S
link in DCR(N,s,N —h). From the above, we have proved that if u — v is a

8



— —_—
link in DCR(N,s, h), then f(u) — f(v) is a link in DCR(N,s,N —h). Note
_ —
that DCR(N,s, N — h) has the same number of links as DCR(N,s, h). Thus if
e —
f(u) = f(v) is alink in DCR(N, s, N — h), then v — v is a link in DCR(N, s, h).

B

Hence DCR(N, s, h) = DCR(N, s, N — h). .

Similarly, we have
H %
Theorem 11 DCR(N,s, h )= DCR(N,s, N —h).
We now prove

Theorem 12 MCR(N,s,h) =2 MCR(N,s, N —h).

Proof. By definition, MCR(N, s, h) is the combination of DC’R(N,S,F) and

DCR(N, s, %) Also, MCR(N, s3&N+=.h) is the combination of DCR(N,s, N — h)
— — —

and DCR(N, s, N — h). By Theorem:ld, DCR(N,s, h ) = DCR(N,s,N — h). By

Theorem 10, DCR(N, s, Tv) 2 DOR(N.s, N —h). Thus MCR(N, s, h) = MCR(N,

s, N —h). ]

Theorem 13 Suppose ged(N,s) = 1. Then
— —
DCR(N,s, h) =2 DCR(N,1, hy),
where hy is the unique integer in {1,2,--- /N — 1} satisfying
his =h (mod N).
Proof. Since ged(N,s) = 1, we have
{ixs (mod N):i=0,1,2,---, N—1}={0, 1, 2,---, N — 1}
Consider the nodes s and s + h in DCR(N, s, ﬁ)) Suppose

(3.1) s+h=kxs (modN)



for some integer k in {0,1,,--- ;N — 1}. Let
hy =k—1 (mod N).

Since s # s+ h, we have k # 1 and h; # 0. Since hys = (kK — 1) x s (mod N),
by (3.1), we have hys = h (mod N). From the above, hy is the unique integer in
{1,2,---, N — 1} such that

his =h (mod N).

Let f be a function from the nodes of DCR(N, s, ﬁ) to the nodes DCR(N, 1,
Fl) such that
flixs)=i ¥i=0,1,2,---,N— 1.

First consider the following type of links in DC'R(N, s, %})
i—i+s (mod ALY i=0,1,2--,N—1

Suppose i = mxs (mod ¥) for sonieinteger mein {0,1,,--- ,N—1}. Then f(i) =m
and f(i +s) = f(ms+ s)= f((m41)s) =m + 1. Since m — m + 1 is a link in
DCR(N, 1, Fl), it is clear that f(:) — f(i+ s) is a link in DCR(N, 1, Fl)

Now consider the following type of links in DC'R(N, s, F)
i—i+h (modN) Vi=1,35--,N—1.
Let i be an odd integer in {1,3,5,--- ;N — 1}. Suppose
i=mxs (mod N)

for some integer m in {0,1,,--- , N — 1}. Since ¢ is odd, m is odd. Consider the set

of nodes {0,1,2,--- ;N — 1} of DCR(N, s, 7) Since
{0,1,2-, N—-1}={ixs (modN):i=0,1,2,---, N—1}
—
and i + h is a node in DCR(N, s, h), we have
i+h=qgxs (modN)

10



for some integer ¢ in {0,1,2,--- , N — 1}. Then
f(@)=mand f(i +h)=q.

Since i =m x s (mod N) and i+ h =g x s (mod N), we have
(g—m)xs=h (mod N).

Since (¢ —m) x s = h (mod N) and h1s = h (mod N), we have
(g—m)xs=hys (mod N).

Thus

ms+ his =¢qs (mod N).

Since ged(N, s) = 1,

mi+hi =@ . (mod N).

Since m is odd, there is a ink m —m/+ Ay innDCR(N, 1, ﬁl); i.e., m — ¢ is a link
in DCR(N, 1, i1). That s, f(i) = f(i-+ h) i§ a link in DCR(N, 1, 1,).

. From the above, we have proved that if.u — v is a link in DCR(N, s, 7), then
f(u) — f(v) is a link in DCR(N, 1,71). Note that DCR(N, 1, 71) has the same
number of links as DCR(N, s, Z)) Thus if f(u) — f(v) is a link in DCR(N, 1, ?1),
then u — v is a link in DOR(N, s, & ). Hence DCR(N, s, 1) = DCR(N,1, ,).

Similarly, we have

Theorem 14 Suppose gcd(N,s) = 1. Then
— —
DCR(N, s, h) = DCR(N,1,h,),
where hy is the unique integer in {1,2,--- /N — 1} satisfying

his = —h (mod N).

11



— —
Proof. By Theorem 10, DCR(N,s, h) =2 DCR(N,s,N —h). By Theorem 13,
—_— —
DCR(N,s, N —h)= DCR(N, 1, hy), where hy is the unique integer in {1,2,--- | N—
1} satisfying
his =N —h (mod N).

Thus we have this theorem. (]

Furthermore, we have

Theorem 15 Suppose gcd(N,s) = 1. Then
MCR(N, s,h) = MCR(N, 1, h,),
where hy is the unique integer in {1,2,--- /N — 1} satisfying
his=h (mod N).

Proof. MCR(N, s, h) is the combimation of DCR(N, s, 7) and DCR(N, s, %) By
Theorem 13,
— —
DC R(Nyssmh)= DCR(N, 1, hy),

where h is the unique integer in {172+, N — 1} satisfying
his =h (mod N).

and by Theorem 14,
“— —
DCR(N, S, h ) = DCR<N7 17 h2)7

where hy is the unique integer in {1,2,--- | N — 1} satisfying
has = —h  (mod N).
Thus hos = —h (mod N); i.e., —hes = h (mod N). Hence

hy = —hy (mod N).

12



— —
By Theorem 11, DCR(N,1,hy) = DCR(N,1,N — hs). Since hy = —hy (mod N),

we have
— e e —
DCR(N,s, h)= DCR(N,1,N — hy) = DCR(N,1, N + hy) 2 DCR(N, 1, hy).

We have this theorem. (]

Before going further, we describe how to transform the directed chordal ring

network DC'R(N, s, 7) into the double-loop network DL(%, s, sgh). For each node

i in DCR(N, s, ﬁ), there is a link from ¢ to ¢ + s. Since s is odd, when ¢ is even,
i+ s is odd. For each i in {0,2,4,--- ;N — 2}, merge the pair of nodes i and i + s

as a supernode and denote it by (i/2)*. Let the set of supernodes
{(i/2) 1i=0,2,4,--- ,N — 2}

be the set of nodes of the double-loop.network. See Figure 6 for an illustration. The
set of links of the double-loop-network is derived as follows. For each node (i/2)* in

the double-loop network, Since
H
i+s— i+ 2s7isalink in DCR(N,s, h)

and

i+s—i+s+h isalinkin DCR(N,S,?),

in the double-loop network,
(1/2)" — (i/2+ s)" is alink

and

(i/2)" — (i/24+ (s + h)/2)" is a link.

From the above, DCR(N, s, E}) is transformed into the double-loop network DL(%, s,

See Figure 7 for an example.

13




i/2)

(i12+5) (/2+(s+h)/2)"

O—’O means a supernode.

Figure 6: i is even, the links (i/2)* — (i/2+ s)* and (i/2)* — (i/2+ (s + h)/2)".

7 N
8 Q@*@/

/“\\\
: (r2()

/K\\\
4 \8 13/

/“\\\ 7 N 7 ~
2 7 3

\f>*@/*§€><1/‘f>*@b

/“\\\ /“\\\ /N\\\
0 5 1

\i>*§/”§€}<ﬁ/‘f>*<l/

(a) (b)

Figure 7: (a) The L-shape of DL(9,5,2). (b) Transforming DCR(18,5,17) into
DL(9,5,2).

We now describe how to transform the directed chordal ring network DC'R(N, s,
F) into the double-loop network DL(Z, s, 25%). For each node i in DCR(N, s, ﬁ)),

277 2

there is a link from 7 to ¢ + s. Since s is odd, when 7 is odd, i + s is even. For each
iin {1,3,5,---, N — 1}, merge the pair of nodes ¢ and ¢ + s as a supernode and

denote it by ((¢ — 1)/2)*. Let the set of supernodes
{((i—1)/2)":i=1,3,5,--- ,N — 1}

be the set of nodes of the double-loop network. See Figure 8 for an illustration.

The set of links of the double-loop network is derived as follows. For each node

14



((¢ —1)/2)* in the double-loop network, since
H
i+s—i+2s isalink in DCR(N,s, h)

and

i — i+ h is alink in DOR(N,s, ﬁ)),
in the double-loop network,
(i—1)/2)" = ((i—1)/2+ s)" is alink
and
((1—1)/2)" = (1 —=1)/2+ (h—s)/2)* is a link.
From the above, DCR(N, s, ﬁ) is transformed into the double-loop network DL(%,

h—s
2

s, ). See Figure 9 for an example.

(i -1/2)

(i=1)/2+(h—5)/2)" G-D/2+35)

O_>© means a supernode

Figure 8: i is odd, the links ((i — 1)/2)* — ((i — 1)/2 + s)* and ((: — 1)/2)* —
((i—1)/24+ (h—s)/2)*.

— _ —_
Furthermore, since DCR(N,s, h ) =2 DCR(N,s, N — h) and DCR(N,s, N — h)

s—h
2

7sfh)

) (when i is even) and into DL(%, s, =%

can be transformed into DL(%,S,

(when i is odd), DCR(N, s, Z) can be transformed into the double-loop networks

DL(%,s,5") and DL(%, s, =),

2 2

As for MCR(N,s,h), we describe how to transform MCR(N,s,h) into the

double-loop network DL(%, Sgh, S;h). For each node i in MCR(N, s, h) where i
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e NINZ N | A
3 8 4 \7L><'12/—>\172<'4 /»\92('14/
o 2 7 || [wp(o s p(op{ir(z)
\// \// \//
0 5 1 /1 >—><6\—>/1 1>—><1 6\—>/3>—><8\
N N /N /

(@) (b)

Figure 9: (a) The L-shape of DL(9,5,6). (b) Transforming DCR(18,5,17) into
DL(9,5,6).

is odd, there is a link from ¢ to ¢ + h. Since h is odd, ¢ + h is even. For each 7 in
{1,3,5,--- , N — 1}, merge the pair of nodes i and i + h as a supernode and denote

it by ((: —1)/2)*. Let the set of supernodes
{((i = 1)/2)i= 1,35, N —1}

be the set of nodes of the:double-loop network. The set of links of the double-loop
network is derived as follows. For each node ((i —1)/2)* in the double-loop network,
since

i — i+ s is'alink in MCR(N, s, h)

and

i+h—i+h+s isalinkin MCR(N,s,h),
in the double-loop network,
((1—1)/2)" = ((i —1)/24+ (s — h)/2)" is a link

and

((i—1)/2)" = ((i—1)/24+ (s+ h)/2)" is a link.

From the above, MCR(N, s, h) is transformed into the double-loop network DL(%,

16



Theorem 16 Given a directed chordal ring network DCR(N, s, ﬁ), if ged(k, N) =
1, then
— —
DCR(N,s, h) = DOR(N, ks, k).

s—i—h).

H
Proof. From previous discussion, DCR(N,s, h) corresponds to DL(%,S, L

Note that if ged(k,N) = 1, then DL(N,a,b) = DL(N,ka,kb); see [6]. Since

ged(k,N) = 1, ged(k, N/2) = 1. Thus DL(%,s, ) = DL(Z, ks, k(£%)). Since

DL(5, ks, k(*5")) is exactly DL(%, ks, ®3*) and DL(, ks, **4*) corresponds to

DCR(N, ks, ﬁz), we have this theorem. ]

Similarly, we have

Theorem 17 Given a directed chordal ring network DCR(N, s, %), if ged(k, N) =
1, then
P —
DCR(N,s, h ) = DCR(N, ks, kh).

Theorem 18 Given a mized chordal ring network MCR(N, s, h), if ged(k, N) =1,
then
MCRNys,h) &2 NMCOR(N, ks, kh).

Proof. Since MCR(N, s, h) is the combination of DCR(N, s, %}) and DCR(N, s, %)

By Theorem16 and Theorem17, we have

MCR(N, s,h) = MCR(N, ks, kh).

Corollary 19 MCR(N,s,h) =2 MCR(N, —s,—h).

Proof. Take k = —1. Then ged(k,N) = 1. By Theorem 18, MCR(N,s,h) =
MCR(N, —s, —h). .

Corollary 20 MCR(N,s,h) = MCR(N, —s,h).

17



Proof. By Theorem 12 and Corollary 19, MCR(N,s,h) 2 MCR(N,s, N — h) =
MCR(N,—s,—N + h). Since MCR(N,—s,—N + h) =2 MCR(N,—s,h), we have

this corollary.

Let’s look at an example. By Corollary 20, MCR(16,3,5) = MCR(16,13,5).
Since ged(16,13) = 1, by Theorem 15, we have MCR(16,13,5) = MCR(16,1,9).

Thus the mixed chordal ring networks in Figure 3 and Figure 10 are isomorphic.

Figure 10: MCR(16,1,9); it is isomorphic to Figure 3.

4 The diameter of DCR(N, s, h) and MCR(N, s, h)

Note that the diameter of a double-loop network DL(N,a,b) can be computed in
O(log N) time using the Cheng-Hwang algorithm [4]. Therefore, by Theorem 3 the
diameter of DCR(N, s, 7) can be derived in O(log N) time. However, unless we

perform the Cheng-Hwang algorithm, the diameter of DCR(N, s, h) is not known.

18



In this section, we will derive of the diameter of some DCR(N, s, Z)) directly. We
will also derive the diameter of some MCR(N, s, h) directly.

é
In the previous section, we have shown how to transform DCR(N,s, h) into

DL(%, s, Sgh). Recall that Wong and Coppersmith [14] proved that the minimum
distance diagram of a double-loop network is an L-shape. Let d(k) denote the
number of cells (7, j) in an L-shape of a double-loop network with i + j = k. Hwang
and Xu [12] defined two double-loop networks to be equivalent if they have the same
d(k) for every k. Note that two equivalent double-loop networks have the same
diameter. In [13], Rédseth proved that DL(N,a,b) is equivalent to DL(N, N —
a,b —a). In [2], Chen and Hwang proved that DL(N, N —a,b — a) is equivalent to
DL(N,a,a—b) and thus DL(N, a,b) is equivalent to DL(N,a,a —b). For example,
DL(9,1,7) is equivalent to DL(9,1, —6), which is DL(9, 1, 3). See Figure 11.

5 6 6 7 8
7 8 3 4 5
0 1 2 3 4 0 1 2

DL(9,17) DL(9,1,3)

Figure 11: Two equivalent L-shapes.

We have the following theorem.

Theorem 21 Let Dy be the diameter of DCR(N, s, E)) and Dq be the diameter of
DCR (N,s, ). Then Dy = Ds.

Proof. The corresponding double-loop network of DCR(N, s, 7) is DL(%, s, 50

2
s—h).

and the corresponding double-loop network of DCR(N, s, %) is DL(%,S, 5

Note that DL(%, s, i) is equivalent to DL(Y,s,s — %), Since DL(,s,s —

sthy s exactly DL(, s, 552), DL(%, s, 5%) is equivalent to DL(%, s, 55%). Thus
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DL(%, s, #t1) and DL(, s, 25") have the same diameter. By Theorem 3, we can

have D, = Ds. |

Let’s see an application of the above theorems. It can be seen from Figure 11
that the diameter of DL(9,1,7) is 4. By Theorem 3, the diameter of DC'R(18, 1, ﬁ)
is 9. By Theorem 21, the diameter of DC'R(18,1, ﬁ) is also 9. By Theorem 11, the
diameter of DCR(18,1, ?) is also 9.

Theorem 22 Let D be the diameter of DCR(N, s, E}) If s=h, then D =N — 1.

Proof. When s = h, the corresponding double-loop network of DCR(N, s, 7) is
DL(N/2, s, s), whose diameter is N/2—1. Thus by Theorem 3, D = 14+2(N/2—1) =
N —1. ]

Theorem 23 Let D be the diagmeter of DCR(N, s, 7) If s+h =N, then D =
N —1.

Proof. When s+h = N, the corresponding double-loop network of DCR(N, s, 7) is
DL(N/2, s,0), whose diameteris N/2—1..Thus by Theorem 3, D = 1+2(N/2—-1) =
N —1. ]

Corollary 24 Let D be the diameter of DCR(N,S,%). If s=hors+h=N,
then D = N — 1.

Proof. This corollary follows from Theorem 21, Theorem 22, and Theorem 23. n

In the following, we try to derive the diameter of DCR(N, 1, E}) Recall that h
is odd. Let D be the diameter of DCR(N, 1, ﬁ)) and let d(u,v) be the length of the

shortest path from u to v. Let
D; = max{d(i,v) :v € {0,1,--- ,N — 1}}

for:=20,1,--- , N — 1. We have following properties.
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Lemma 25 D = D,.

Proof. In a directed chordal ring network, all even numbered nodes are symmetric,
and all odd numbered nodes are symmetric, too. Thus D = max{Dy, D;}. Suppose
Dy > Dy. Let i be a node such that d(1,7) = D;. Then d(1,7) > d(0,7). Note
that node 0 has only one link 0 — 1 going out from it. Therefore the shortest path
from node 0 to node ¢ consists of the link 0 — 1 and a shortest path from node
1 to node 4. Thus d(0,7) = 1+ d(1,4); this contradicts with the assumption that

d(1,7) > d(0,7). Hence Dy < Dy and therefore D = D. ]

We divide the N nodes of DCR(N, 1, ﬁ) into [N/(h + 1)] groups, each group
contains h + 1 nodes (except possibly the last group). For i = 1,2,--- [ [N/(h +

1)] — 1, the i-th group contains nodes
(G = V)(h +8)+ 1= et 1)+ 2, i(h+ 1)}
The last group (i.e., the [N/(h=1)}-th group) contains nodes
{(IN/(h+1)] = V)(h + D1, ([N/@F1)] = 1)(h+1) +2,--- ,N —1,0}.

For convenience, we will say that (i —1)(h+1)+1 is the first node of the i-th group.

See Figure 12 for an illustration.

Lemma 26 Let x be a node of DCR(N, 1, ﬁ)) such that x # 0. Let x' be the first
node of the group containing x (i.e., the first node of the [x/(h+1)]-th group). Then

there exists a shortest path P from node 0 to x that passes through x’.

Proof. Let P be an arbitrary shortest path from 0 to x. If P passes through
x’, then we are done. In the following, assume that P does not pass through z’.
Suppose P contains ¢ 1-links and j h-links. Clearly, ¢ > j. Let P’ be a path from 0
to x derived by rearranging the links in P so that every 1-link follows immediately

an h-link unless there is no more h-links. (For example, if P contains five 1-links

21



Figure 12: The nodes of DC'R(18,1,3) are divided into [18/(3 4+ 1)] groups.

and three h-links, then the links i P! are: a-1-link, an h-link, a 1-link, an A-link,
a 1-link, an h-link, a 1-link, and a‘l-link.) Note that P’ is also a path from 0 to
x. Furthermore, P’ is also shortest since it has the same number of links as P. If
j > Jz/(h +1)], then clearly P" passes through a’. If j < [z/(h + 1)], then after
P’ passes through the j-th group, all the remaining links in P’ are 1-links; thus P’

will also pass through 2/. We have this lemma. [

The following lemma is obvious and we omit its proof.

Lemma 27 Let 2’ be the first node of the i-th group. Then d(0,2") = 2i — 1.

Lemma 28 Let X = {z :d(0,z) = Dy}. Then all the elements of X belong to the

last two groups.

Proof. Suppose this lemma is not true and there is an x € X such that x does
not belong to the last two groups. Choose t such that x + t(h + 1) is in the last

two groups. Then d(0,z) > d(0,z + t(h + 1)). Let 2’ be the first node of the
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group containing = and let (z + t(h + 1))’ be the first node of the group containing
x+th+1). Sety=x+t(h+1) and set y' = (z + t(h + 1))’ for easy writing. By

Lemma 26, there is a shortest path from 0 to x that passes through x’. Thus
d(0,z) = d(0,2") + d(2', x).
Also by Lemma 26, there is a shortest path from 0 to y that passes through 3. Thus

d(0,y) = d(0,y") + d(y, y).

Since x does not belong to the last two groups and y belongs to the last two groups,
by Lemma 27, d(0,y’) > d(0,2') + 2. Note that d(y',y) = d(2',x). Thus d(0,y) >
d(0,z)+2,i.e.,d(0,z+t(h+1)) > d(0,z)+2. This contradicts with the assumption
that d(0,z) > d(0,x +t(h + 1)). ]

Lemma 29 If3<h <% 41 andh+1|N, thenDzQ(%—l)—i—h.

Proof. Let X = {z : d(052) = Dg}: By Lemma 28, all the elements of X belong
to the last two groups. Singe h'# 1'{*N; each group contains exactly h + 1 nodes.
Let {y,y+ 1,y +2,--- ,y + h} be'the set of nodes in the previous group of the last
group and let {x,z+1,2+2,--- , 2+ h} be the set of nodes in the last group. Note
that the node = + h is node 0 and the node x +h — 1 is node N — 1.

By Lemma 27, we have d(0,z) > d(0,y). Since h+ 1 | N, we have d(0,z +
1) > d(0,y + 1), d(0,z +2) > d(0,y +2), ---, d(0,z +h —1) > d(0,y + h — 1).
Moreover, d(0,z) > d(0,y + h). Since h+ 1 | N, we have d(0,z) < d(0,z + 1) <
d0,z+2) <--- <d(0,z +h—1). From the above, Dy = d(0, N — 1). By Lemma

25, D = d(0, N —1). Since d(0, N — 1) = 2(5 — 1) + h, we have this lemma.

Theorem 30 Let D be the diameter of DCR(N, 1, ﬁ)) Then

{N—l ifh=1o0rh=N —1,

25 -1)+h if3<h<F—-1landh+1]|N.
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Proof. The case that h = 1 follows from Theorem 22; the case h = N — 1 follows
from Theorem 23. The case that 3 < h < % —land h+ 1] N follows from Lemma

29. |

Let D be the diameter of DCR(N, s, F) By Theorem 21, D is also the diameter
of DCR(N, s, %) Since MC'R(N, s, h) is derived by combining DCR(N, s, F) and
DCR(N,s, %), the diameter of DCR(N, s, ﬁ) is an upper bound for the diameter
of MCR(N, s,h). One might suspect that the diameter of MCR(N, s, h) is also D.
Unfortunately, this is not true. For example, the diameter of DCR(18,1, ?) is 9
and the diameter of MCR(18,1,5) is 5.

Recall that Hwang [8] proved that the diameter of DCR(N,S,F) =1+ 2x

the diameter of DL(%, s, Sgh). In the following, we give an example to show that

this is not true for a mixed chordal ring network. The corresponding double-loop

network of MCR(N, s, h) istDL(%, 55", #8"). Consider MCR(18,1,5); its corre-
sponding double-loop network'is DI(9,7,3). The diameter of DL(9,7,3) is 4, but
the diameter of MCR(18:1, 5).18 5y which is not equal to 1+ 2 x 4.

In the remaining part of this thesis, we'shall derive the diameter of some mixed

chordal ring networks.

Theorem 31 Let D be the diameter of MCR(N,s,h). If s=h or s+h = N, then
D=N-1.

Proof. First consider the case that s = h. Let d(u,v) denote the length of the
shortest path from u to v. Since ged(N, s, h) = 1, we have ged(V, s) = 1. Therefore
MCR(N, s, s) has a hamiltonian circuit 0, s, 2s, 3s, - -+ , (N —1)s and hence d(u,v) <
N — 1 for every w and v. Thus D < N — 1. On the other hand, the shortest path
from s to 0 is s,2s,3s,--- , (N — 1)s,0, which is of length N —1. Thus D > N — 1
and therefore D = N — 1.

Now consider the case that s+h = N. From the above discussion, the diameter of

MCR(N,h,h)is N—1. When s+h =N, MCR(N, —s,h) is exactly MCR(N, h, h).
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By Corollary 20, MCR(N,—s,h) =2 MCR(N,s,h). Thus when s + h = N, the
diameter of MCR(N,s,h) is N — 1. ]

Theorem 32 Let D be the diameter of MCR(N,s,h). If h = N/2, then D = N/2.
Proof. Let d(u,v) be the length of the shortest path from u to v. Let
D; = max{d(i,v) :v € {0,1,--- ,N — 1}}

for + = 0,1,--- ,N — 1. In a mixed chordal ring network, all even numbered
nodes are symmetric, and all odd numbered nodes are symmetric, too. Thus
D = max{D,, D, }.

First consider Dy. For every even node ¢, since ¢ — ¢ — h and + — h — i, we can

view the two nodes i and i — h as a supernode. Thus there are total N/2 supernodes:
{(i(h+ s),i(fe+s) —h):i=0,1,--- ,N/2 —1}.

See Figure 13 for an illustration: Consider thev-th supernode (i(h+s),i(h+s)—h)
and the two s-links going-outifrem_this supernode: i(h + s) — i(h + s) + s and
i(h+s)—h — i(h+s)—h+'s, Note thatnode i(h+ s) + s is node (i+1)(s+h) — h.
Moreover, node i(h + s) — h + s is node (i + 1)(s + h) — 2h; since h = N/2, node
(1+1)(s+h)—2hisnode (i+1)(s+h). The two nodes (i+1)(s+h) and (i+1)(s+h)—h
are in the (i + 1)-th supernode. Thus both of the two s-links going out from the i-th
supernode go to the (i + 1)-th supernode. Now consider the distance from node 0
to the two nodes in the i-th supernode (i(h + s),i(h + s) — h). Then

14+ 1 if7is odd
7 if 7 is even

d(0,i(h + s)) = {

and
1 if 7 is odd

d<oal(h+5)_h):{ 1+ 1 if¢iseven

Since h is odd and h = N/2, it is impossible that 2 | . Hence 2 { & and
Dy = max{d(0,(N/2—1)(h+s)—h),d(0,(N/2—1)(h+s))} = (N/2—1)+1 = N/2.
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Figure 13: The diameter of MCR(10,3,5) is 5.

Now consider D;. For every odd node ¢, since © — ¢+ h and i + h — 7, we can

view the two nodes i and i+ h as a supernode. Thus there are total N/2 supernodes:
{QA+ith+s),14+i(h+s)+h):i=0,1,--- ,N/2—1}.

See Figure 13 for an illustration. Censider thie i-th supernode (1+i(h+s),1+i(h+
s)+h) and the two s-links going out fromy this supernode: 1+i(h+s) — 1+i(h+s)+s
and 1 +i(h+s)+h — 1 +i(h ¥ s)~+hss. Note that node 1+ i(h + s) + s is node
1+ (i+1)(s+h) — h. Moreovergnode 14 #(h+s)+h+sisnode 1 + (i +1)(s+h).
Since h = N/2,node 1 + (i 4+ 1)(s+ h) — h isnode 1 + (i + 1)(s + h) + h. The two
nodes 1+ (i +1)(s+h) and 1+ (i + 1)(s + h) + h are in the (i + 1)-th supernode.
Thus both of the two s-links going out from the i-th supernode go to the (i + 1)-th
supernode. Now consider the distance from node 1 to the two nodes in the i-th
supernode (1 +i(h+s),1+i(h+s) — h). Then

14+ 1 if7is odd
7 if 7 is even

d(1,1+i(h+s)):{

and
1 if 7 is odd

d(1»1+i(h+3>+h):{ i+1 ifiiseven

Since h is odd and h = N/2, it is impossible that 2 | §. Hence 24 § and D; =

max{d(1, 1+ (N/2—1)(h+s)+h),d(1, 1+ (N/2—1)(h+5)} = (N/2—1)+1 = N/2.
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From the above, we have D = max{Dy, D,} = N/2. ]
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