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between neighboring a-Si spacers are (a) 1 µm (b) 1.5 µm (c) 2 µm (d) 2.5 µm 

(e) 3 µm (f) 4 µm . 

Figure 5.24  The typical transfer characteristics of poly-Si TFTs crystallized using 

1500Å-thick a-Si spacer structure with channel length of 20 µm, in which the 

 xxv



distances between neighboring a-Si spacers are (a) 1 µm (b) 2 µm (c) 2.5 µm 

(d) 3 µm (e) 4 µm . 

Figure 5.25  The output characteristics of ELC poly-Si TFTs crystallized using 1500Å-thick 

a-Si spacer structure with channel length of 20 µm, in which the distances 

between neighboring a-Si spacers are (a) 1 µm (b) 2 µm (c) 2.5 µm (d) 3 µm (e) 

4 µm . 

Figure 5.26  The typical transfer characteristics of poly-Si TFTs crystallized using 

2000Å-thick a-Si spacer structure with channel length of 10 µm, in which the 

distances between neighboring a-Si spacers are (a) 1 µm (b) 1.5 µm (c) 2 µm 

(d) 2.5 µm (e) 3 µm (f) 4 µm . 

Figure 5.27  The output characteristics of ELC poly-Si TFTs crystallized using 2000Å-thick 

a-Si spacer structure with channel length of 10 µm, in which the distances 

between neighboring a-Si spacers are (a) 1 µm (b) 1.5 µm (c) 2 µm (d) 2.5 µm 

(e) 3 µm (f) 4 µm . 

Figure 5.28  The typical transfer characteristics of poly-Si TFTs crystallized using 

2000Å-thick a-Si spacer structure with channel length of 20 µm, in which the 

distances between neighboring a-Si spacers are (a) 1 µm (b) 2 µm (c) 2.5 µm 

(d) 3 µm (e) 4 µm . 

Figure 5.29  The output characteristics of ELC poly-Si TFTs crystallized using 2000Å-thick 

a-Si spacer structure with channel length of 20 µm, in which the distances 

between neighboring a-Si spacers are (a) 1 µm (b) 2 µm (c) 2.5 µm (d) 3 µm (e) 

4 µm . 
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