

國 立 交 通 大 學

應用數學系

碩 士 論 文

ㄧ個只花 O(log N)時間找出具有 N點之

雙環式網路的 steps的演算法以及

Hyper-L1三環式網路的存在性的探討

An O(log N)-Time Algorithm to Find the Steps of

a Double-Loop Network with N Nodes and

the Existence of Hyper-L1 Triple-Loop Networks

研 究 生：唐 文 祥

指導老師：陳 秋 媛 教 授

中 華 民 國 九 十 三 年 六 月

ㄧ個只花 O(log N)時間找出具有 N點之
雙環式網路的 steps的演算法以及

Hyper-L1三環式網路的存在性的探討

An O(log N)-Time Algorithm to Find the Steps of
a Double-Loop Network with N Nodes and

the Existence of Hyper-L1 Triple-Loop Networks

研 究 生：唐文祥 Student: Wen-Shiang Tang

指導老師：陳秋媛 教授 Advisor: Dr. Chiuyuan Chen

國 立 交 通 大 學

應用數學系

碩 士 論 文

A Thesis

Submitted to Department of Applied Mathematics
College of Science

 National Chiao Tung University
 In partial Fulfillment of Requirement

For the Degree of Master
 In

Applied Mathematics
June 2004

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 三 年 六 月

 i

ㄧ個只花 O(log N)時間找出具有 N點之
雙環式網路的 steps的演算法以及

Hyper-L1三環式網路的存在性的探討

研 究 生：唐文祥 指導老師：陳秋媛 教授

國 立 交 通 大 學

應 用 數 學 系

摘 要
 雙環式網路及三環式網路是許多學者專家廣泛探討的區域網路架構。給定一個正

整數 N，找出具有 N點、直徑最小的雙環式網路 DL(N;s1,s2)的 s1和 s2（又稱為 steps）
是學者專家們ㄧ直以來所想達成的目標。已知雙環式網路的minimum distance diagram
是 L-型；對於雙環式網路而言，直徑可以很容易的由它的 L-型計算出。因此「找出
具有 N 點、直徑最小的雙環式網路」的一個常見的方法是：將此問題轉換為「先找

出一個直徑相當不錯的 L-型，再找出與這個 L-型對應的雙環式網路 DL(N; s1, s2)的 s1

和 s2」。給定一個雙環式網路 DL(N; s1, s2)，在論文[8]中，Cheng和黃光明老師提出了

一個漂亮而且只花 O(log N)時間、找出對應的 L-型的演算法。但是，「給定一個 L-型，
是否能夠只花 O(log N)時間，找出與這個 L-型相對應的雙環式網路 DL(N; s1, s2)的
steps」，卻一直是一個 open problem [5]。在這篇論文裡，我們提出一個只花 O(log N)
時間、找出與一個給定的 L-型相對應的雙環式網路 DL(N; s1, s2)的 steps的演算法。
 令 N(D)表示一個直徑為 D 的三環式網路所能包含的最多點數。Hyper-L 型已被
多位學者發現為推導出 N(D)的下界的一個有效的工具。然而，並非每一個 Hyper-L 型
都會有一個三環式網路來得到它。截至目前為止，共有三種 hyper-L型被學者們提出
來，為了方便起見，我們分別稱它們為 hyper-L0、hyper-L1、hyper-L2。在論文[7]中，
陳秋媛老師、黃光明老師、李珠矽老師、以及石舜仁學長提出了 hyper-L0三環式網路

存在的充份必要條件。在這篇論文裡，我們提出 hyper-L1三環式網路存在的充份必要

條件。

關鍵詞：雙環式網路、L-型、直徑、演算法、三環式網路、hyper-L型

中 華 民 國 九 十 三 年 六 月

ii

An O(log N)-Time Algorithm to Find the Steps of

a Double-Loop Network with N Nodes and

the Existence of Hyper-L1 Triple-Loop Networks

Student : Wen-Shiang Tang Advisor : Dr. Chiuyuan Chen

Department of Applied Mathematics

National Chiao Tung University
Hsinchu 300, Taiwan, R.O.C.

Abstract
Double-loop networks and triple-loop networks have been widely studied as

architecture for local area networks. Given an N, it is desirable to find a double-loop
network DL(N; s1, s2) with its diameter being the minimum among all double-loop
networks with N nodes. It is well known that the minimum distance diagram of a
double-loop network yields an L-shape. Since the diameter can be easily computed from
an L-shape, one method is to start with a desirable L-shape and then asks whether there
exist s1 and s2 (also called the steps of the double-loop network) to realize it. While Cheng
and Hwang [8] have given an elegant O(log N)-time algorithm to find the L-shape of a
double-loop network DL(N; s1, s2), it is an open problem whether the steps of a
double-loop network with N nodes can be found in O(log N) time [5]. In this thesis, we
propose an O(log N)-time algorithm to find the steps of a double-loop network with N
nodes.

Hyper-L tiles were proven to be an effective tool to obtain lower bounds for N(D),
the maximum number of nodes in a triple-loop network with diameter D. Unfortunately,
not every hyper-L tile has a triple-loop network realizing it. Up to now, three types of
hyper-L tiles have been proposed; for convenience, call them hyper-L0, hyper-L1, and
hyper-L2. In [7], Chen et al. derived the necessary and sufficient conditions for the
existence of hyper-L0 triple-loop networks. In this thesis, we shall derive the necessary
and sufficient conditions for the existence of hyper-L1 triple-loop networks.

Keywords: Double-loop network, L-shape, diameter, algorithm, triple-loop network,

hyper-L tile

iii

誌誌 謝謝

兩年前機緣巧合下，來到台灣的矽谷---新竹市；幸運的在擁有『六

最---最傑出研究、最精緻校園、最先進院系、最注重教學、最照顧學生、

最優秀校友』的交通大學度過了我兩年的研究生涯。在兩年的研究日子

裡，總覺得所獲得的遠大於比所付出的。老師們的細心教導與關愛，同

學和學長的勉勵與切磋，讓我有一段充實而愉悅的研究生活，感動且溫

馨的回憶。畢業在即，心中滿是感激與不捨。

首先特別要感謝我的指導教授---陳秋媛老師，老師以其豐富的學

識，帶領我走入了 Algorithms、Graph theory 、Networks 等領域，在

其精湛的教學演繹之下，使我們更能掌握住其中的精髓所在，在理論基

礎上加深印象。除了課業上的指導之外，在生活上也受到老師相當多的

照顧與關心；也總是在我徬徨無助與迷惘的時候及時給予幫助與意見；

對於我的未來生涯的規劃也提供寶貴的意見，真的非常感謝老師所付出

的一切。

其次要感謝黃光明老師與黃大原老師，對我的諸多幫助與關愛；也

感謝傅恆霖老師及翁志文老師的教導。還有同門的建瑋、君逸，在我做

研究時，不時給予我一些靈感和程式方面的協助來論證我們的推論。也

感謝飛黃學長，電腦的熱情贊助，使我可以很快的觀察出一些推論的結

果，對於我的生涯規劃也提供了寶貴的意見。

同時也要感謝和我的同學，正傑、嘉文、貴弘、啟賢、棨丰、喻培、

抮君、致維、宏嘉、昭芳與同門的學弟及二樓研究室的學妹們。對我來

說，生命中能和這些人相遇，真的是我的福氣。

最後也要感謝我的父母及家人，若不是他們長久以來的支持，不可

能有我今天的小小成果。在此獻上無限的感激，謝謝你們。

紙短情長，願每位關心、照顧我的人，永遠健康快樂。

Contents

Abstract (in Chinese) i

Abstract (in English) ii

Acknowledgement iii

Contents iv

List of Figures v

1 Introduction 1

2 The Smith normalization method, the sieve method,

and the CCH algorithm 5

3 Our algorithm 11

4 Necessary and sufficient conditions for the existence

of hyper-L1 triple-loop networks 16

References 22

Appendix 26

iv

List of Figures

1 An L-shape with parameters. 2

2 Two examples of L-shapes. 2

3 A hyper-L tile. 4

4 A hyper-L1 tile. 4

5 The Fig. 5 in [1]. 20

v

1 Introduction

Multi-loop networks have been widely studied as architecture for local area networks.

A multi-loop network ML(N ; s1, s2, · · · , st) has N nodes 0, 1, 2, · · · , N − 1 and dN

links, i → i + s1, i → i + s2, · · · , i → i + st (mod N), i = 0, 1, · · · , N − 1. The

integers s1, s2, ..., st are called the steps of the multi-loop network. A multi-loop

network is strongly connected if and only if gcd(N, s1, s2, ..., st) = 1; see [4, 14, 16].

Since the literature considered only strongly connected multi-loop networks, this

thesis considers only strongly connected multi-loop networks, too.

When t = 2, the multi-loop network is usually called the double-loop network and

is denoted by DL(N ; s1, s2). See [4, 14, 15, 16, 18] for surveys of these networks.

When t = 3, the multi-loop network is called the triple-loop network and is denoted

by TL(N ; s1, s2, s3). For details of multi-loop networks, refer to [3, 4, 15, 16].

Fiol et al. [12] proved that DL(N ; s1, s2) is strongly connected if and only if

gcd(N, s1, s2) = 1. When DL(N ; s1, s2) is strongly connected, then we can talk

about a minimum distance diagram (MDD) which is a diagram with node 0 in cell

(0, 0), and node v in cell (i, j) if and only if is1 + js2 ≡ v (mod N) and i + j is

the minimum among all (i′, j′) satisfying the congruence. Namely, a shortest path

from 0 to v is through taking i s1-links and j s2-links (in any order). Note that in

a cell (i, j), i is the column index and j is the row index. An MDD includes every

node exactly once (in case of two shortest paths, the convention is to choose the

cell with the smaller row index, i.e., the smaller j). Since DL(N ; s1, s2) is clearly

node-symmetric, there is no loss of generality in assuming: node 0 is the origin of a

path.

Wong and Coppersmith [19] proved that the MDD for DL(N ; s1, s2) is always

an L-shape (a rectangle is considered a degeneration). An L-shape is determined

by four parameters l, h, p, n as shown in Figure 1. These four parameters are the

lengths of four of the six segments on the boundary of the L-shape. For example,

1

DL(9; 2, 5) in Figure 2 has l = 5, h = 3, p = 3, and n = 2. Let N = lh − pn. Fiol

et al. [12, 13] and Chen and Hwang [6] proved that there exists a DL(N ; s1, s2)

realizing the L-shape(l, h, p, n) if and only if

l > n, h ≥ p, and gcd(l, h, p, n) = 1.(1.1)

h

l

p
n

Figure 1: An L-shape with parameters.

0 2 4 6 8

5

1

7

3

DL(9; 2, 5)

0 1 2

6 7 8

3 4 5

DL(9; 1, 6)

Figure 2: Two examples of L-shapes.

The diameter d(N ; s1, s2) of a double-loop network DL(N ; s1, s2) is the largest

distance between any pair of nodes. It represents the maximum transmission delay

between two nodes. Thus it is desirable to minimize the diameter and this is the

problem discussed by many authors; see [2, 8, 10, 11, 13, 17, 19]. Let d(N) denote

the best possible diameter of a double-loop network with N nodes. Wong and

Coppersmith [19] showed that

d(N) ≥
⌈√

3N
⌉
− 2.

Given an N , it is desirable to find a double-loop network DL(N ; s1, s2) with

its diameter being equal to d(N). Since the diameter of a double-loop network

2

DL(N ; s1, s2) can be readily computed from the dimensions of its L-shape, one

method is to start with a desirable L-shape and then asks whether there exist s1

and s2 to realize it. Three algorithms have been proposed for finding the steps of

a double-loop network with N nodes: the Smith normalization method [2, 11], the

sieve method [6, 15], and the Chan-Chen-Hong’s algorithm (the CCH algorithm for

short) [5].

While Cheng and Hwang [8] have given an elegant O(log N)-time algorithm to

find the L-shape of a double-loop network DL(N ; s1, s2), it is an open problem

whether the steps of a double-loop network can be found in O(log N) time. Both

the Smith normalization method [2, 11] and the CCH algorithm [5] take O((log N)2)

time; see [5]. The exact time complexity analysis for the sieve method is not known;

see also [5].

Wong and Coppersmith [19] proved that TL(N ; s1, s2, s3) is strongly connected

if and only if gcd(N, s1, s2, s3) = 1. The MDD for a triple-loop network is a 3-

dimensional array with each step in the xi-axis signifying an si-step. Unfortunately,

the MDD for a triple-loop network does not have a uniform nice shape like the L-

shape, and this fact has really hampered the study of triple-loop networks. Aguiló,

Fiol and Garcia [3] overcame this difficulty by skipping the triple-loop network and

going directly to a nice 3-dimensional shape which they called hyper-L tile. This

hyper-L tile is characterized by three parameters l, m, n, and is highly structured

and symmetrical (see Figure 3). Note that l, m, n are integers, m ≥ n ≥ 0, and

l > m + n. They used the hyper-L tile to derive a dense family of triple-loop

networks which has the property

N(D) ≥ 2

27
(D + 3)3 ≈ 0.074D3 + O(D2),

where N(D) is the maximum number of nodes in a triple-loop network for a fixed

diameter D. Note that when a family of triple-loop networks has a good N -D ratio,

we say it is dense.

3

��
��
��

��
��
��

���
���
���
���
���

���
���
���
���
����
�
�

�
�
�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
�
�
�

���
���
���

���
���
���

��
��
��

��
��
��

����

��
��
��
��

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

n
n

m

m

l

Figure 3: A hyper-L tile.

Also, Aguiló-Gost [1] presented a new type of hyper-L tiles which is characterized

by three parameters h,m, n, and is also highly structured and symmetrical (see

Figure 4). Aguiló-Gost [1] used it to derive a new dense family of triple-loop networks

which has the property

N(D) ≥ 1485

273
D3 ≈ 0.075D3 + O(D2).

For convenience, call this hyper-L tile the hyper-L1 tile.

Figure 4: A hyper-L1 tile.

While the hyper-L and the hyper-L1 tiles seem to be promising tools for studying

the triple-loop network, we must be able to verify that those hyper-L tiles producing

4

good results are indeed the MDDs of some triple-loop networks. In [7], Chen et.

al. have presented necessary and sufficient conditions for the existence of hyper-L

triple-loop networks; see also [3].

In this thesis, we first prove that there exists a family of double-loop networks

such that the sieve method requires Ω((log N)3/2) time to find the steps for each

double-loop network in this family. We then propose a simple O(log N)-time al-

gorithm to find the steps of a double-loop network with N nodes. We also give

necessary and sufficient conditions for the existence of hyper-L1 triple-loop networks.

This thesis is organized as follows: In Section 2, we briefly describe the Smith

normalization method, the sieve method, and the CCH algorithm. In Section 3,

we propose a simple O(log N)-time algorithm to find the steps of a double-loop

network with N nodes. In Section 4, we give necessary and sufficient conditions for

the existence of hyper-L1 triple-loop networks.

2 The Smith normalization method, the sieve me-

thod, and the CCH algorithm

For completeness of this thesis, we briefly describe the Smith normalization method,

the sieve method, and the CCH algorithm in this section. The sieve method is based

on the sieve method in number theory and is very simple and easy to implement.

The CCH algorithm is based on the Smith normalization method of Aguiló, Esqué

and Fiol [2, 11], but unlike the Smith normalization method, it does not require

any matrix operations and thus greatly simplifies the computation of the Smith

normalization method.

Given an L-shape, Aguiló and Fiol [2], and also Esqué et al. [11] proposed the

following method for computing s1 and s2 such that DL(N ; s1, s2) realizes L.

THE-SMITH-NORMALIZATION-METHOD [2, 11].

Input: l, h, p, n of an L-shape L, where l > n, h ≥ p, and gcd(l, h, p, n) = 1.

5

Output: s1 and s2 such that DL(N ; s1, s2) realizes the L-shape L(l, h, p, n).

1. Let

M =

(
l −p
−n h

)
,

M0 = M, i = 0, j = 0, k = 0.

2. Repeat the sub-steps 2.1-2.2 until the (1,1) element of Mj divides both the (2,1)

element and the (1,2) element of Mj.

2.1 If the (1,1) element ofMj does not divide the (2,1) element ofMj, then let

i = i+1, j = j +1, and find a nonsingular unimodular (i.e., determinant

± 1) integral matrix Li such that the (1,1) element of Mj = LiMj−1 is

the greatest common divisor of the first column of Mj−1.

2.2 If the (1,1) element of Mj does not divide the (1,2) element of Mj, then

let j = j + 1, k = k + 1, and find a nonsingular unimodular integral

matrix Rk such that the (1,1) element of Mj = Mj−1Rk is the greatest

common divisor of the first row of Mj−1.

3. If the (2,1) element of Mj is not zero, then let i = i + 1, j = j + 1, and find

a nonsingular unimodular integral matrix Li to make the (2,1) element of

Mj = LiMj−1 zero.

4. If the (1,2) element of Mj is not zero, then let j = j + 1, k = k + 1, and find

a nonsingular unimodular integral matrix Rk to make the (1,2) element of

Mj = Mj−1Rk zero.

5. If the (1,1) element of Mj does not divide the (2,2) element of Mj, then add

column 2 of Mj to column 1 of Mj and go to Step 2.

6. Now Mj is the Smith normal form of M, i.e.,

Mj = Li · · · L2L1MR1R2 · · ·Rk = S(M) =

(
1 0
0 N

)
.

6

Let L = Li · · · L2L1. If

L =

(
α β
γ δ

)
,

then let s1 = γ (mod N) and let s2 = δ (mod N). Return s1, s2.

Given an L-shape, Chen and Hwang [6] (see also [15]) proposed the following

method, which is based on the sieve method in number theory, for computing s1

and s2 such that DL(N ; s1, s2) realizes L.

THE-SIEVE-METHOD [6].

Input: l, h, p, n of an L-shape L, where l > n, h ≥ p, and gcd(l, h, p, n) = 1.

Output: s1 and s2 such that DL(N ; s1, s2) realizes the L-shape L(l, h, p, n).

1. Let k = 0 and let F = the set of prime factors of N .

2. Let

ak = kn + h,

bk = kl + p,

Fk = the set of prime factors of gcd(ak, bk).

3. If f 6∈ Fk for all f ∈ F , then s1 = ak (mod N) and s2 = bk (mod N) realize L;

otherwise, if f ∈ Fk for any f ∈ F , then go to Step 2.

We now prove that there exists a family of double-loop networks such that the

sieve method requires Ω((log N)3/2) time to find the steps for each double-loop

network in this family. The following lemma will be used in the proof.

Lemma 1 Let p1, p2, · · · , pt be the smallest t primes, where t ≥ 2 and p1 < p2 <

· · · < pt. If N = p1 × p2 × · · · × pt, then pt ≥
√

log N .

7

Proof. Suppose N = p1 × p2 × · · · × pt. Then N ≤ (pt)! ≤ ppt
t . Therefore log N ≤

pt log pt and log log N ≤ log pt + log log pt ≤ 2 log pt. So log pt ≥ 1
2
log log N =

log
√

log N and we have pt ≥
√

log N .

Theorem 2 There exists a family of double-loop networks such that the sieve method

requires Ω((log N)3/2) time to find the steps for each double-loop network in this fam-

ily.

Proof. Let t be an integer such that 2 ≤ t ≤ 100000. Let p1, p2, · · · , pt be the

smallest t primes and p1 < p2 < · · · < pt. Let

d = p1 × p2 × · · · × pt−1.

It is not difficult to verify that for each t in {2, 3, · · · , 100000}, pt ≤ 2pt−1 and thus
⌊

2d
pt

⌋
≥ 1. Since 2d is not divisible by pt,

⌈
2d
pt

⌉
and

⌊
2d
pt

⌋
are two consecutive integers.

Therefore

⌈
2d

pt

⌉
−

⌊
2d

pt

⌋
= 1(2.2)

and

gcd (

⌈
2d

pt

⌉
,

⌊
2d

pt

⌋
) = 1.(2.3)

Let

l = pt

⌈
2d

pt

⌉
− d, h = d, p = d, n = pt

⌊
2d

pt

⌋
− d.

We claim that there exists a DL(N ; s1, s2) realizing the L-shape(l, h, p, n). To prove

this claim, we have to show that

l > 0, h > 0, p ≥ 0, n ≥ 0, l ≥ p, h ≥ n, lh− pn = N,

and to show that the three conditions in (1.1) hold. It is clear that l > pt

(
2d
pt

)
−d =

d > 0, h = d > 0, p = d ≥ 0. Since
⌊

2d
pt

⌋
≥ 1, we have n > pt

(
2d
pt
− 1

)
− d ≥ 0. We

have l ≥ p since

l = pt

⌈
2d

pt

⌉
− d ≥ pt

(
2d

pt

)
− d = d = p.

8

We have h ≥ n since

h = d = pt

(
2d

pt

)
− d ≥ pt

⌊
2d

pt

⌋
− d = n.

Let

N = p1 × p2 × · · · × pt.

Then

lh− pn =

(
pt

⌈
2d

pt

⌉
− d

)
d− d

(
pt

⌊
2d

pt

⌋
− d

)

= dpt

(⌈
2d

pt

⌉
−

⌊
2d

pt

⌋)

= dpt (by (2.2))

= N.

By (2.2), we have l > n. Since h = p, we have h ≥ p. Note that

gcd(pt, d) = gcd(pt, p1 × p2 × · · · × pt−1) = 1.(2.4)

Thus

gcd (l, h, p, n) = gcd (pt

⌈
2d

pt

⌉
− d, d, d, pt

⌊
2d

pt

⌋
− d)

= gcd (pt

⌈
2d

pt

⌉
, pt

⌊
2d

pt

⌋
, d)

= gcd (

⌈
2d

pt

⌉
,

⌊
2d

pt

⌋
, d) (by (2.4))

= 1. (by (2.3))

We now claim that for each t in {2, 3, · · · , 100000}, the sieve method requires

Ω((log N)3/2) time to find the steps for each double-loop network with L-shape

L(l, h, p, n). Since N = p1 × p2 × · · · × pt, in the sieve method we will have

F = {p1, p2, · · · , pt}.

Since gcd(a0, b0) = gcd(h, p) = d, we have

F0 = {p1, p2, . . . , pt−1}.

9

Since gcd(a1, b1) = gcd(n + h, l + p) = gcd(pt

⌊
2d
pt

⌋
− d + d, pt

⌈
2d
pt

⌉
− d + d) =

gcd(pt

⌊
2d
pt

⌋
, pt

⌈
2d
pt

⌉
), by (2.3) we have gcd(a1, b1) = pt and therefore

F1 = {pt}.

Recall that p1, p2, · · · , pt are the smallest t primes and p1 < p2 < · · · < pt; i.e.,

p1 = 2, p2 = 3, p3 = 5, · · · . Note that if f ∈ F appears in Fk for some k and kf is

the smallest such k, then f appears in every f th k after kf . Therefore

p1 ∈ F appears in gcd(a0, b0), gcd(a2, b2), gcd(a4, b4), gcd(a6, b6), etc,

p2 ∈ F appears in gcd(a0, b0), gcd(a3, b3), gcd(a6, b6), gcd(a9, b9), etc,

p3 ∈ F appears in gcd(a0, b0), gcd(a5, b5), gcd(a10, b10), gcd(a15, b15), etc,

p4 ∈ F appears in gcd(a0, b0), gcd(a7, b7), gcd(a14, b14), gcd(a21, b21), etc,

· · ·

pt−1 ∈ F appears in gcd(a0, b0), gcd(apt−1 , bpt−1), gcd(apt−1×2, bpt−1×2), etc,

pt ∈ F appears in gcd(a1, b1), gcd(apt+1, bpt+1), gcd(apt×2+1, bpt×2+1), , etc.

Thus the first k such that f 6∈ Fk for all f ∈ F is pt. By Lemma 1, pt ≥
√

log N .

Since each iteration of the sieve method involves the Euclidean algorithm, the sieve

method requires Ω((log N)3/2) time and we have this theorem.

We now describe the CCH algorithm. Given an L-shape L, Chan, Chen and Hong

[5] proposed the following algorithm for computing s1 and s2 such that DL(N ; s1, s2)

realizes L. For completeness, we append the proof of the correctness of the CCH

algorithm in the appendix.

The CCH algorithm [5].

Input: l, h, p, n of an L-shape L, where l > n, h ≥ p, and gcd(l, h, p, n) = 1.

Output: s1 and s2 such that DL(N ; s1, s2) realizes L.

10

1. Find r1 = gcd(l,−n).

2. Find integers α1 and β1 such that α1l + β1(−n) = r1.

3. Find r2 = gcd(r1,−α1p + β1h).

4. Find integers α2 and β2 such that α2r1+β2(−α1p+β1h) = r2 and gcd(β2, r2) = 1.

5. s1 = α2n− β2h (mod N) and s2 = α2l − β2p (mod N).

In [5], Step 4 is performed by the following algorithm.

ALGORITHM-MODIFIED-EUCLIDEAN [5].

Input: Integers a and b, not both zero, and r = gcd(a, b).

Output: Integers x and y such that xa + yb = r and gcd(y, r) = 1.

1. Find integers α and β such that αa + βb = r.

2. If gcd(β, r) = 1, then let x = α, y = β, return x, y and stop this algorithm.

3. Let k = gcd(β, r), r′ = r, and d = k.

4. WHILE (d > 1) DO

BEGIN

r′ = r′/d;

d = gcd(r′, k);

END

5. Let a′ = a/r, b′ = b/r, x = α + r′b′ and y = β − r′a′. Return x, y.

For example, let l = 5, h = 3, p = 3, and n = 2. Then the CCH algorithm

derives

r1 = 1, α1 = 1, β1 = 2, r2 = 1, α2 = −2, and β2 = 1.

11

Thus N = 9,

s1 = −7 (mod 9) = 2, and s2 = −13 (mod 9) = 5.

It can be verified from Figure 2 that DL(9; 2, 5) realizes L-shape(5,3,3,2).

3 Our algorithm

Our algorithm is based on the CCH algorithm and therefore unlike the Smith nor-

malization method, our algorithm does not require any matrix operations.

It is well-known that

Lemma 3 If a and b are integers, not both zero, then there exist integers α and β

such that αa + βb = gcd(a, b).

It is known that gcd(a, b) = gcd(|a|, |b|) and if |b| ≥ |a| > 0, then α, β, and

gcd(a, b) can be found in O(log |a|) time by using the Euclidean algorithm [9].

Chan et. al. [5] proved that

Lemma 4 [5] If α, a, β, b are integers, not all zero, such that αa + βb = 1, then

gcd(a, β) = 1.

Step 4 of the CCH algorithm is based on Theorem 5 described below.

Theorem 5 [5] If a and b are integers, not both zero, then there exist integers x

and y such that xa + yb = gcd(a, b) and gcd(y, gcd(a, b)) = 1.

Recall that N = lh − pn. It is obvious that Steps 1, 2, and 3 of the CCH

algorithm can be done in O(log N) time by using the Euclidean algorithm. Step 5

of the CCH algorithm takes O(1) time. Since Step 4 of the CCH algorithm takes

O((log N)2) time (see [5] for details), the CCH algorithm takes O((log N)2) time.

We thus conclude that if Step 4 of the CCH algorithm can be done in O(log N)

time, then the CCH algorithm takes only O(log N) time and the steps of a double-

loop network with N nodes can be found in O(log N) time. The key observation of

12

our algorithm is that Theorem 5 can be proved in another way and this new proof

leads to an O(log N)-time implementation for Step 4 of the CCH algorithm.

A new proof for Theorem 5. Set r = gcd(a, b) for easy writing. By Lemma 3,

there exist integers α and β such that

αa + βb = r.

If gcd(β, r) = 1, then we are done. In the following, assume that gcd(β, r) = k > 1.

Let r′ be the largest integer such that

r′ | r and gcd(r′, k) = 1.(3.5)

Then either r′ = 1 or r′ > 1. In the former case, every prime factor of r is also a

prime factor of k. In the latter case, every prime factor of r is either a prime factor

of k or a prime factor of r′.

Let

a′ = a/r, and b′ = b/r.

Note that gcd(r′, β) = 1; otherwise, we will have gcd(β, r) > k. Since αa + βb = r,

we have

αa′ + βb′ = 1.

By Lemma 4, we have gcd(a′, β) = 1. Since gcd(a′, β) = 1 and k | β, we have

gcd(a′, k) = 1. Since k | β and gcd(r′, k) = 1 and gcd(a′, k) = 1, we have

gcd(β − r′a′, k) = 1.(3.6)

Since gcd(r′, β) = 1 and r′ | r′a′, we have

gcd(β − r′a′, r′) = 1.(3.7)

Recall that r′ = 1 or r′ > 1. In the former case, by (3.6), by (3.7), and by the

fact that every prime factor of r is also a prime factor of k, we have

gcd(β − r′a′, r) = 1.

13

In the latter case, by (3.6), by (3.7), and by the fact that every prime factor of r is

either a prime factor of k or a prime factor of r′, we also have

gcd(β − r′a′, r) = 1.

Let

x = α + r′b′ and y = β − r′a′.(3.8)

Then

xa + yb = (α + r′b′)a + (β − r′a′)b = r

and

gcd(y, r) = gcd(β − r′a′, r) = 1.

We proved the theorem.

The following lemma provides an efficient way to find r′ in (3.8), which is the

largest integer satisfying (3.5).

Lemma 6 Let r and k be positive integers such that k | r and k > 1. Then

r′ =
r

gcd(kblog2 rc, r)

is the largest integer satisfying (3.5).

Proof. Assume that

k = ps1
1 ps2

2 · · · psm
m ,

where p′is are distinct prime factors of k. Also assume that

r = pt1
1 pt2

2 · · · ptm
m p

tm+1

m+1p
tm+2

m+2 · · · ptn
n ,

where p′js are distinct prime factors of r. Note that when pm+1, pm+2, · · · , pn do not

exist (this case occurs when k contains every prime factor of r), we will simple say

that p
tm+1

m+1p
tm+2

m+2 · · · ptn
n = 1. It is clear that the largest integer satisfying (3.5) is

r′ = p
tm+1

m+1p
tm+2

m+2 · · · ptn
n

14

and it suffices to prove that

r

gcd(kblog2 rc, r)
= p

tm+1

m+1p
tm+2

m+2 · · · ptn
n .

Note that

kblog2 rc = p
blog2 rcs1

1 p
blog2 rcs2

2 · · · pblog2 rcsm
m .

Since 2 is the smallest prime, we have

ti ≤ blog2 rc, for all i, 1 ≤ i ≤ n.

Therefore

ti ≤ blog2 rcsi, for all i, 1 ≤ i ≤ m.

Thus

gcd(kblog2 rc, r) = pt1
1 pt2

2 · · · ptm
m .

So

r

gcd(kblog2 rc, r)
=

pt1
1 pt2

2 · · · ptm
m p

tm+1

m+1p
tm+2

m+2 · · · ptn
n

pt1
1 pt2

2 · · · ptm
m

= p
tm+1

m+1p
tm+2

m+2 · · · ptn
n .

The new proof of Theorem 5 and Lemma 6 lead to the following new algorithm

for finding x and y in Theorem 5.

ALGORITHM-NEW-MODIFIED-EUCLIDEAN.

Input: Integers a and b, not both zero, and r = gcd(a, b).

Output: Integers x and y such that xa + yb = r and gcd(y, r) = 1.

1. Find integers α and β such that αa + βb = r.

2. Find k = gcd(β, r).

3. If k = 1, then let x = α, y = β, return x, y and stop this algorithm.

15

4. If k ≥ 2 , find

r′ =
r

gcd(kblog2 rc, r)
.

5. Let a′ = a/r, b′ = b/r, x = α + r′b′ and y = β − r′a′. Return x, y.

The correctness of ALGORITHM-NEW-MODIFIED-EUCLIDEAN follows from

Lemma 6. We now prove that:

Theorem 7 If we use ALGORITHM-NEW-MODIFIED-EUCLIDEAN instead of

ALGO RITHM-MODIFIED-EUCLIDEAN in Step 4 of the CCH algorithm, then

the CCH algorithm takes O(log N) time to find the steps of a double-loop network.

Proof. Recall that N = lh− pn. Since Steps 1, 2, 3, and 5 of the CCH algorithm

take O(log N) time, it suffices to prove that ALGORITHM-NEW-MODIFIED-

EUCLIDEAN takes O(log N) time. When Step 4 of the CCH algorithm is per-

formed, inputs to ALGORITHM-NEW-MODIFIED-EUCLIDEAN are

a = r1,

b = −α1p + β1h,

r = gcd(r1,−α1p + β1h).

In the following, Step i refers to Step i in ALGORITHM-NEW-MODIFIED-EUCLIDEAN.

Since r1 = gcd(l,−n), we have

r1 > 0, r1 ≤ N,

and

min{|a|, |b|} = min{|r1|, | − α1p + β1h|} ≤ |r1| = r1 ≤ N.

Therefore Step 1 can be done in O(log N) time by using the Euclidean algorithm.

Since r = gcd(r1,−α1p + β1h), we have

r > 0, r ≤ r1 ≤ N,

16

and

min{|β|, |r|} ≤ |r| = r ≤ N.

Therefore, in Step 2, finding k = gcd(β, r) can be done in O(log N) time by using

the Euclidean algorithm. It is obvious that Step 3 and Step 5 can be done in O(1)

time. It remains to prove that in Step 4, finding r′ = r
gcd(kblog2 rc,r) can also be done

in O(log N) time. Note that computing kblog2 rc takes O(logblog2 rc) = O(log log N)

time. Since r > 0 and r ≤ N , we have

min{|kblog2 rc|, |r|} ≤ |r| = r ≤ N.

Therefore, finding gcd(kblog2 rc, r) takes O(log r) = O(log N) time. Hence finding

r′ = r
gcd(kblog2 rc,r) takes a total

O(log log N) + O(log N) + 1 = O(log N)

time, where +1 is for the division. From the above, Step 4 can be done in O(log N)

time. We have this theorem.

4 Necessary and sufficient conditions for the ex-

istence of hyper-L1 triple-loop networks

The following two lemmas will be used in the remaining discussions.

Lemma 8 If a,m, b, n are integers, not all zero, such that am − bn = 1, then

gcd(a, n) = 1.

Proof. Assume that am − bn = 1 and gcd(a, n) = k. Then k | a and k | n. Thus

k | am− bn = 1. So k = 1.

Lemma 9 If m and n are integers, not both zero, and gcd(m,n) = 1, then there

exist integers a and b such that am− bn = 1 and gcd(a, 2m + n) = 1.

17

Proof. By Lemma 3, there exist integers a and b such that am − bn = 1. By

Lemma 8, we have

gcd(a, n) = 1.(4.9)

If gcd(a, 2m + n) = 1, then we are done. In the following, assume that gcd(a, 2m +

n) = d > 1. Let

a = pd

and

2m + n = qd.

Then gcd(p, q) = 1. Since gcd(m,n) = 1, we have

gcd(2m + n, n) = gcd(2m,n) =

{
1 if n is odd,
2 if n is even.

If gcd(2m + n, n) = 1, then clearly gcd(qd, n) = 1 and thus gcd(d, n) = 1. Now

suppose that gcd(2m + n, n) = 2. Then gcd(qd, n) = 2; therefore gcd(d, n) = 1 or

gcd(d, n) = 2. If gcd(d, n) = 2, then 2 | a and we have gcd(a, n) ≥ 2; this contradicts

with(4.9). From the above, we have

gcd(d, n) = 1.(4.10)

Let q = st, where s is the largest factor of q such that

gcd(s, d) = 1.(4.11)

That is, s (t) contains those prime factors of q that are relative prime (not relative

prime) to d. (As an example, if q = 22 ·32 ·7 and d = 2·32, then s = 7 and t = 22 ·32.)

Then

gcd(s, t) = 1.(4.12)

Since gcd(p, q) = 1 and q = st, we have

gcd(p, s) = 1.(4.13)

18

Since t contains those prime factors of q that are not relative prime to d, by (4.10),

we have

gcd(t, n) = 1.(4.14)

Let a′ = a + sn and b′ = b + sm. Then

a′m− b′n = (a + sn)m− (a + sm)n = am− bn = 1.

Moreover,

gcd(a′, 2m + n)

= gcd(a + sn, 2m + m)

= gcd(pd + sn, qd)

= gcd(pd + sn, q) (by (4.10) and (4.11))

= gcd(pd + sn, st)

= gcd(pd + sn, s) (by (4.12) and (4.14))

= 1 (by (4.11) and (4.13)).

Thus we have this lemma.

Let HL1(h,m, n) denote a hyper-L1 tile with parameters h,m, n. Aguiló-Gost

[1] defined

M1(h,m, n) =




n −m −m
n n + m −m
2h h 2h− n




and derived that the diameter of HL1(h,m, n) is given by

D(h,m, n) = max{3m + h + n, 2m + 2h + n, 3h + 3n} − 3.(4.15)

Note that two sides labelled length n in Figure 5 in [1] are actually of length

m − n; see Figure 5 This flaw can be verified by checking the lengths of the sides

19

of the topmost n × n square and the lengths of the sides of the rightmost m × h

rectangle. See Figure 4 for a correction of Figure 5.

Thus matrix M1 should be

M1(h,m, n) =




n −m −m
n n + m −m
2h h h + m− n




and the diameter of HL1(h,m, n) should be

D(h,m, n) = max{3m + h + n, 2m + 2h + n,(4.16)

3h + 3n,m + 2h + 3n} − 3.

Figure 5: The Fig. 5 in [1].

Note that the difference between the diameters derived by (4.15) and by (4.16)

can be quite large. To see this, let

h = 2t− 1− k

m = 2t− 1

n = t + k,

where t and k are positive integers chosen in such a way that both gcd(m,n) = 1

and 3 - m− n are satisfied. Then the diameter derived by (4.15) is 9t− 6, while the

20

diameter derived by (4.16) is 9t−6+k. The difference between the two diameters is

k. As an example, when k = 5, we can choose t = 10, h = 14, m = 19, and n = 15.

Aguiló-Gost [1] observed that HL1(h,m, n) tessellates the space. By studying

the distribution of node 0 in the space, Aguiló-Gost obtained

MT ×



s1

s2

s3


 ≡




0
0
0


 (mod N) or

MT ×



s1

s2

s3


 =




α
β
γ


 N for some integers α, β, γ.(4.17)

Also, N = det M .

For convenience, we call a triple-loop network whose MDD is HL1(h, m, n) an

HL1(h,m, n) triple-loop. We now give a necessary and sufficient condition for the

existence of an HL1(h, m, n) triple-loop.

Theorem 10 A necessary and sufficient condition for the existence of an HL1(h,m, n)

triple-loop is gcd(m,n) = 1 and 3 - m− n.

Proof. Note that N = det M . Suppose an HL1(h,m, n) triple-loop exists. From

(4.17), we have




s1

s2

s3




=
(
MT

)−1




α
β
γ


 N

=




h(2m + n) + (m− n)(m + n) −(h(2m + n) + n(m− n)) −h(2m + n)
m(m− n) h(2m + n) + n(m− n) −h(2m + n)
m(2m + n) 0 n(2m + n)







α
β
γ


 .

Suppose that gcd(m,n) = 1 and 3 - m − n. Since gcd(m,n) = 1, by Lemma 9,

there exist integers a and b such that am − bn = 1 and gcd(a, 2m + n) = 1. Since

gcd(a, 2m + n) = 1, we have a 6= 0. Since gcd(m,n) = 1,

gcd(m− n,m) = 1.

21

Since gcd(m,n) = 1, 3 - m− n, and gcd(m− n, m) = 1,

gcd(m− n, 2m + n) = gcd(m− n, 3m) = gcd(m− n, 3) = 1.(4.18)

Setting (α, β, γ) = (a, 0,−b), we obtain the solution




s1

s2

s3


 =




h(a + b)(2m + n) + a(m− n)(m + n) (mod N)
bh(2m + n) + am(m− n) (mod N)

2m + n


 .

Since N = det M , we have

N = (2m + n)(h(2m + n) + n(m− n)).(4.19)

Let

φ(a) =

{ −1 if a > 0,
1 if a < 0.

From (4.19), 2m + n | N . Since 2m + n | N , there exists an integer k1 such that

h(a + b)(2m + n) + a(m− n)(m + n) (mod N)

= k1(2m + n) + φ(a)a(m− n)(m + n)

and 0 < k1(2m + n) + φ(a)a(m − n)(m + n) < N . Also, there exists an integer k2

such that

bh(2m + n) + am(m− n) (mod N)

= k2(2m + n) + φ(a)am(m− n)

and 0 < k2(2m + n) + φ(a)am(m− n) < N . Therefore




s1

s2

s3


 =




k1(2m + n) + φ(a)a(m− n)(m + n)
k2(2m + n) + φ(a)am(m− n)

2m + n


 .

22

Note that

gcd(k1(2m + n) + φ(a)a(m− n)(m + n), k2(2m + n) + φ(a)am(m− n), 2m + n)

= gcd(a(m− n)(m + n), am(m− n), 2m + n)

= gcd(an(m− n), am(m− n), 2m + n)

= gcd(n(m− n),m(m− n), 2m + n) (by the fact that gcd(a, 2m + n) = 1)

= gcd(n,m, 2m + n) (by (4.18))

= gcd(m,n)

= 1.

So if gcd(m,n) = 1 and 3 - m− n, then clearly

gcd(N, s1, s2, s3) = gcd(s1, s2, s3) = 1

and TL(N ; s1, s2, s3) exists.

On the other hand, suppose

gcd(m,n) = d > 1 or 3 | m− n.

In the former case, each si, i = 1, 2, 3, is a linear combination of terms divisible by

d. Furthermore, from (4.19), N is also a linear combination of terms divisible by d.

Hence

gcd(N, s1, s2, s3) ≥ d > 1

and TL(N ; s1, s2, s3) does not exist. In the latter case, since 3 | m− n, we have

gcd(2m + n,m− n) = gcd(3m,m− n) = r ≥ 3.

Therefore each si, i = 1, 2, 3, is a linear combination of terms divisible by r. Fur-

thermore, from (4.19), N is also a linear combination of terms divisible by r. Hence

gcd(N, s1, s2, s3) ≥ r > 1

and TL(N ; s1, s2, s3) does not exist.

23

References

[1] F. Aguiló-Gost, New dense families of triple loop networks, Disc. Math. 197/198

(1999) 15-27.

[2] F. Aguiló and M. A. Fiol, An efficient algorithm to find optimal double loop

networks, Disc. Math. 138 (1995), 15-29.

[3] F. Aguiló, M. A. Fiol and C. Garcia, Triple-loop networks with small transmis-

sion delay, Disc. Math. 167/168 (1997) 3-16.

[4] J.-C. Bermond, F. Comellas and D. F. Hsu, Distributed loop computer net-

works: a survey, J. Parallel Distribut. Comput. 24 (1995), 2-10.

[5] R. C. Chan, C. Y. Chen and Z. X. Hong, A simple algorithm to find the steps

of double-loop networks, Disc. Appl. Math. 121 (2002), 61-72.

[6] C. Y. Chen and F. K. Hwang, The minimum distance diagram of double-loop

networks, IEEE Trans. Comput. 49 (2000), 977-979.

[7] C. Y. Chen, F. K. Hwang, J. S. Lee and S. J. Shih, The existence of hyper-L

triple-loop networks, Disc. Math. 268 (2003) 287-291.

[8] Y. Cheng and F. K. Hwang, Diameters of weighted double loop networks, J.

Algorithms 9 (1988), 401-410.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, 2nd Ed. (2001), The MIT Press, 856-862.

[10] P. Erdös and D. F. Hsu, Distributed loop networks with minimum transmission

delay, Theoret. Comput. Sci. 100 (1992), 223-241.

[11] P. Esqué, F. Aguiló, and M. A. Fiol, Double commutative-step diagraphs with

minimum diameters, Disc. Math. 114 (1993), 147-157.

24

[12] M. A. Fiol, M. Valero, J. L. A. Yebra, I. Alegre, and T. Lang, Optimization of

double-loop structures for local networks, in Proc. XIX Int. Symp. MIMI’82,

Paris, France (1982), 37-41.

[13] M. A. Fiol, J. L. A. Yebra, I. Alegre, and M. Valero, A discrete optimization

problem in local networks and data alignment, IEEE Trans. Comput. C-36

(1987), 702-713.

[14] F. K. Hwang, A survey on double-loop networks, Reliability of Computer and

Communication Networks, Eds: F. Roberts, F. K. Hwang and C. Monma, AMS

series (1991), 143-151.

[15] F. K. Hwang, A complementary survey on double-loop networks, Theoret. Com-

put. Sci. A 263 (2001), 211-229.

[16] F. K. Hwang, A survey on multi-loop networks, Theoret. Comput. Sci. A 299

(2003), 107-121.

[17] F. K. Hwang and Y. H. Xu, Double loop networks with minimum delay, Disc.

Math. 66 (1987), 109-118.

[18] J. M. Peha and F. A. Tobagi, Analyzing the fault tolerance of double-loop

networks, IEEE Trans. Network. 2 (1994), 363-373.

[19] C. K. Wong and D. Coppersmith, A combinatorial problem related to multi-

module memory organizations, J. Assoc. Comput. Mach. 21 (1974), 392-402.

25

Appendix

Theorem 11 [5] The CCH algorithm is correct and it takes at most O((log N)2)

time.

Proof. Note that N = lh− pn. Let

M =

(
l −p
−n h

)

Consider column 1 of M: it contains l and −n. After Step 1 is performed, we have

r1 = gcd(l,−n) and α1l + β1(−n) = r1. Let

L1 =

(
α1 β1
n
r1

l
r1

)
.

and let M1 = L1M. Then

M1 =

(
α1 β1
n
r1

l
r1

)(
l −p
−n h

)
=

(
r1 −α1p + β1h
0 N

r1

)
.

Consider row 1 of M1: it contains r1 and −α1p+β1h. After Step 2 is performed,

we have r2 = gcd(r1,−α1p + β1h), α2r1 + β2(−α1p + β1h) = r2, and gcd(β2, r2) = 1.

Let

R1 =

(
α2

−(−α1p+β1h)
r2

β2
r1

r2

)
.

and let M2 = M1R1. Then

M2 =

(
r1 −α1p + β1h
0 N

r1

) (
α2

−(−α1p+β1h)
r2

β2
r1

r2

)
=

(
r2 0

Nβ2

r1

N
r2

)
.

Consider column 1 of M2: it contains r2 and Nβ2
r1

. Let r3 = gcd(r2,
Nβ2
r1

). Note

that in Step 2 we choose gcd(β2, r2) = 1. Thus

r3 = gcd(r2,
Nβ2
r1

) = gcd(r2,
N
r1

) = gcd(r1,−α1p + β1h, N
r1

).

We claim that r3 = 1. Suppose this is not true and r3 > 1. Then every entry of M1

is a multiple of r3. Since M1 = L1M, we have

M = L−1
1 M1 =

1

det(L1)

(
l

r1
−β1

− n
r1

α1

)(
r1 −α1p + β1h
0 N

r1

)
.

26

That is,

M =
1

det(L1)

(
l

r1
−β1

− n
r1

α1

)
r3

(
r1

r3

−α1p+β1h
r3

0 N
r1r3

)
.

Since r3 = gcd(r1,−α1p + β1h, N
r1

),

(
r1

r3

−α1p+β1h
r3

0 N
r1r3

)

is integral. Since det(L1) = ±1, every entry of M must be a multiple of r3. Then

gcd(l, h, p, n) ≥ r3 > 1; this contradicts with the assumption that gcd(l, h, p, n) = 1.

Therefore r3 = 1.

Since r3 = gcd(r2,
Nβ2
r1

) and r3 = 1, by Lemma 3, there exist integers α3 and β3

such that α3r2 + β3(
Nβ2

r1
) = 1. Let

L2 =

(
α3 β3
−Nβ2

r1
r2

)
.

and let M3 = L2M2. Then

M3 =

(
α3 β3
−Nβ2

r1
r2

)(
r2 0

Nβ2

r1

N
r2

)
=

(
1 β3N

r2

0 N

)
.

Let

R2 =

(
1 −β3N

r2

0 1

)
.

and let M4 = M3R2. Then

M4 =

(
1 β3N

r2

0 N

)(
1 −β3N

r2

0 1

)
=

(
1 0
0 N

)
= S(M).

From the above, L2L1MR1R2 = S(M). Moreover, L1, L2, R1 and R2 are

unimodular integral matrices. Let L = L1L2. Then

L =

(
α3 β3
−Nβ2

r1
r2

)(
α1 β1
n
r1

l
r1

)
=

(
α3α1 + β1n

r1
α3β1 + β3l

r1−Nβ2α1+r2n
r1

−Nβ2β1+r2l
r1

)
.

Using the facts that N = lh − pn and α1l + β1(−n) = r1 and α2r1 + β2(−α1p +

β1h) = r2, we have −Nβ2α1+r2n
r1

= α2n − β2h and −Nβ2β1+r2l
r1

= α2l − β2p. Thus if

S1 = α2n− β2h (mod N) and s2 = α2l− β2p (mod N), then DL(N ; s1, s2) realizes

L.

27

It is clear that Steps 1, 2, and 3 can be done in O(log N) time by using the Eu-

clidean algorithm. Step 4 can be done in O((log N)2) time by using ALGORITHM-

MODIFIED-EUCLIDEAN. Step 5 can be done in O(1) time. Thus the CCH algo-

rithm takes at most O((log N)2).

28

