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An O(log N)-Time Algorithm to Find the Steps of
a Double-Loop Network with N Nodes and
the Existence of Hyper-L, Triple-Loop Networks

Student : Wen-Shiang Tang Advisor : Dr. Chiuyuan Chen

Department of Applied Mathematics
National Chiao Tung University
Hsinchu 300, Taiwan, R.O.C.

Abstract

Double-loop networks and  triple-loop .networks have been widely studied as
architecture for local area networks. Given an N, it is desirable to find a double-loop
network DL(N; s;, S2) with its' diameter being the minimum among all double-loop
networks with N nodes. It is well"known~that the minimum distance diagram of a
double-loop network yields an L-shape. Since:the diameter can be easily computed from
an L-shape, one method is to start with a“desirable L-shape and then asks whether there
exist s; and s, (also called the steps of the double-loop network) to realize it. While Cheng
and Hwang [8] have given an elegant O(log N)-time algorithm to find the L-shape of a
double-loop network DL(N; si, Sp), it is an open problem whether the steps of a
double-loop network with N nodes can be found in O(log N) time [5]. In this thesis, we
propose an O(log N)-time algorithm to find the steps of a double-loop network with N
nodes.

Hyper-L tiles were proven to be an effective tool to obtain lower bounds for N(D),
the maximum number of nodes in a triple-loop network with diameter D. Unfortunately,
not every hyper-L tile has a triple-loop network realizing it. Up to now, three types of
hyper-L tiles have been proposed; for convenience, call them hyper-Lo, hyper-L;, and
hyper-L,. In [7], Chen et al. derived the necessary and sufficient conditions for the
existence of hyper-L, triple-loop networks. In this thesis, we shall derive the necessary
and sufficient conditions for the existence of hyper-L; triple-loop networks.

Keywords:  Double-loop network, L-shape, diameter, algorithm, triple-loop network,
hyper-L tile
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1 Introduction

Multi-loop networks have been widely studied as architecture for local area networks.
A multi-loop network ML(N; sq, sg, -+, $¢) has N nodes 0,1,2,--- | N — 1 and dN
links, ¢ =i+ 81, 1 —i+89 -+, 14— i+s (mod N), i =0,1,--- N — 1. The
integers s, So, ..., s; are called the steps of the multi-loop network. A multi-loop
network is strongly connected if and only if ged(NV, s1, 9, ..., 8¢) = 1; see [4, 14, 16].
Since the literature considered only strongly connected multi-loop networks, this
thesis considers only strongly connected multi-loop networks, too.

When t = 2, the multi-loop network is usually called the double-loop network and
is denoted by DL(N;s1,ss). See [4, 14, 15, 16, 18] for surveys of these networks.
When t = 3, the multi-loop network is called the triple-loop network and is denoted
by TL(N; s1, s2, s3). For details of multi-loop networks, refer to [3, 4, 15, 16].

Fiol et al. [12] proved that DL(N;siys2) is strongly connected if and only if
ged(N, sq, so) = 1. When DE(N;81) $5)4is strongly connected, then we can talk
about a minimum distance diagram (MDD) which is a diagram with node 0 in cell
(0,0), and node v in cell (#,4) if and only if is; + js; = v (mod N) and i + j is
the minimum among all (¢, j') satisfying the congruence. Namely, a shortest path
from 0 to v is through taking ¢ s;-links and j so-links (in any order). Note that in
a cell (7,7), ¢ is the column index and j is the row index. An MDD includes every
node exactly once (in case of two shortest paths, the convention is to choose the
cell with the smaller row index, i.e., the smaller j). Since DL(N; sy, sq) is clearly
node-symmetric, there is no loss of generality in assuming: node 0 is the origin of a
path.

Wong and Coppersmith [19] proved that the MDD for DL(N; sy, s2) is always
an L-shape (a rectangle is considered a degeneration). An L-shape is determined
by four parameters [, h, p,n as shown in Figure 1. These four parameters are the

lengths of four of the six segments on the boundary of the L-shape. For example,



DL(9;2,5) in Figure 2 has [ =5, h =3, p=3, and n = 2. Let N = [h — pn. Fiol
et al. [12, 13] and Chen and Hwang [6] proved that there exists a DL(N; s1, s2)

realizing the L-shape(l, h, p,n) if and only if

(1.1) Il >mn, h>p, and ged(l,h,p,n) = 1.

l

Figure 1: An L-shape with parameters.

13 31415
5 | 4 61718
0 =294 | 678 01]2

DL(9:2,5) DL(9;1,6)

Figure 2: Two examples of L-shapes.

The diameter d(N; sy, s2) of a double-loop network DL(N; s, s2) is the largest
distance between any pair of nodes. It represents the maximum transmission delay
between two nodes. Thus it is desirable to minimize the diameter and this is the
problem discussed by many authors; see [2, 8, 10, 11, 13, 17, 19]. Let d(N) denote
the best possible diameter of a double-loop network with N nodes. Wong and

Coppersmith [19] showed that
d(N) > Wgzﬂ )

Given an N, it is desirable to find a double-loop network DL(Nj; sy, se) with

its diameter being equal to d(IN). Since the diameter of a double-loop network

2



DL(N;sy,82) can be readily computed from the dimensions of its L-shape, one
method is to start with a desirable L-shape and then asks whether there exist s;
and s, to realize it. Three algorithms have been proposed for finding the steps of
a double-loop network with N nodes: the Smith normalization method [2, 11], the
sieve method [6, 15], and the Chan-Chen-Hong’s algorithm (the CCH algorithm for
short) [5].

While Cheng and Hwang [8] have given an elegant O(log N)-time algorithm to
find the L-shape of a double-loop network DL(N;sy,ss), it is an open problem
whether the steps of a double-loop network can be found in O(log N) time. Both
the Smith normalization method [2, 11] and the CCH algorithm [5] take O((log NV)?)
time; see [5]. The exact time complexity analysis for the sieve method is not known;
see also [5].

Wong and Coppersmith [19], proved, that T'L(N’; s1, s2, s3) is strongly connected
if and only if ged(N, s1, Soys3) = The MDD for a triple-loop network is a 3-
dimensional array with each ‘step in the #;-axis signifying an s;-step. Unfortunately,
the MDD for a triple-loop-network-doesmot have a uniform nice shape like the L-
shape, and this fact has really hampered the study of triple-loop networks. Aguild,
Fiol and Garcia [3] overcame this difficulty by skipping the triple-loop network and
going directly to a nice 3-dimensional shape which they called hyper-L tile. This
hyper-L tile is characterized by three parameters [,m,n, and is highly structured
and symmetrical (see Figure 3). Note that [, m,n are integers, m > n > 0, and
I > m 4+ n. They used the hyper-L tile to derive a dense family of triple-loop
networks which has the property

ND)> =
o7

(D + 3)* ~ 0.074D* + O(D?),
where N (D) is the maximum number of nodes in a triple-loop network for a fixed

diameter D. Note that when a family of triple-loop networks has a good N-D ratio,

we say it is dense.



Figure 3: A hyper-L tile.

Also, Aguil6-Gost [1] presented a new type of hyper-L tiles which is characterized
by three parameters h,m,n, and is also highly structured and symmetrical (see
Figure 4). Aguil6-Gost [1] used it to derive a new dense family of triple-loop networks

which has the property

14
N(D). > £

dots DP.x0.075D° + O(D?).

For convenience, call this hyper<Lotilerthe hyper-L, tile.

Figure 4: A hyper-L; tile.

While the hyper-L and the hyper-L; tiles seem to be promising tools for studying

the triple-loop network, we must be able to verify that those hyper-L tiles producing

4



good results are indeed the MDDs of some triple-loop networks. In [7], Chen et.
al. have presented necessary and sufficient conditions for the existence of hyper-L
triple-loop networks; see also [3].

In this thesis, we first prove that there exists a family of double-loop networks
such that the sieve method requires Q((log N)3/2) time to find the steps for each
double-loop network in this family. We then propose a simple O(log N)-time al-
gorithm to find the steps of a double-loop network with N nodes. We also give
necessary and sufficient conditions for the existence of hyper-L; triple-loop networks.

This thesis is organized as follows: In Section 2, we briefly describe the Smith
normalization method, the sieve method, and the CCH algorithm. In Section 3,
we propose a simple O(log N)-time algorithm to find the steps of a double-loop
network with N nodes. In Section 4, we give necessary and sufficient conditions for

the existence of hyper-L; triple-leop networks.

2 The Smith normalization method, the sieve me-
thod, and the CCH algorithm

For completeness of this thesis, 'we briefly describe the Smith normalization method,
the sieve method, and the CCH algorithm in this section. The sieve method is based
on the sieve method in number theory and is very simple and easy to implement.
The CCH algorithm is based on the Smith normalization method of Aguilé, Esqué
and Fiol [2, 11], but unlike the Smith normalization method, it does not require
any matrix operations and thus greatly simplifies the computation of the Smith
normalization method.

Given an L-shape, Aguilé and Fiol [2], and also Esqué et al. [11] proposed the

following method for computing s; and s, such that DL(N; s1, so) realizes L.

THE-SMITH-NORMALIZATION-METHOD (2, 11].

Input: [, h, p, n of an L-shape L, where | > n, h > p, and gcd(l, h,p,n) = 1.



Output: s; and sy such that DL(N; sy, s9) realizes the L-shape L(I, h,p, n).

1. Let

Moy=M,i=0, j=0, k=0.

2. Repeat the sub-steps 2.1-2.2 until the (1,1) element of M; divides both the (2,1)

element and the (1,2) element of M.

2.1 If the (1,1) element of M does not divide the (2,1) element of M, then let
i=1+1, 7 =741, and find a nonsingular unimodular (i.e., determinant
+ 1) integral matrix £; such that the (1,1) element of M; = £;M;_; is
the greatest common divisor of the first column of M;_;.

2.2 If the (1,1) element of M; does not divide the (1,2) element of M;, then
let 7 = j+1, k'=Fk +1, and find a nonsingular unimodular integral
matrix Ry such that the (1,1) element of M, = M,_1 R, is the greatest

common divisor of thefirst row of M,_;.

3. If the (2,1) element of M} ‘is metszgero, then let i =i+ 1, j = j + 1, and find
a nonsingular unimodular integral matrix £; to make the (2,1) element of

Mj = ;Ci./\/lj_l Zero.

4. If the (1,2) element of M; is not zero, then let j = j+ 1, k = k + 1, and find
a nonsingular unimodular integral matrix R; to make the (1,2) element of

Mj = Mjfle Zero.

5. If the (1,1) element of M, does not divide the (2,2) element of M;, then add

column 2 of M; to column 1 of M, and go to Step 2.

6. Now M, is the Smith normal form of M, i.e.,

M, = Lo Lali MR\ R - Ry, = S(M) = ( L0 )



o B
ﬁz(v 5)’

then let sy = (mod N) and let s =6 (mod N). Return s;, so.

Given an L-shape, Chen and Hwang [6] (see also [15]) proposed the following
method, which is based on the sieve method in number theory, for computing s;

and sy such that DL(N; sy, s9) realizes L.

THE-SIEVE-METHOD [6].

Input: [, h, p, n of an L-shape L, where [ > n, h > p, and ged(l, h,p,n) = 1.
Output: s; and sy such that DL(N; s, s9) realizes the L-shape L(I, h,p,n).

1. Let £ =0 and let F' = the set, of sprime factors of N.

2. Let
a, = kn + h,

F), = the set of prime factors of ged(ay, by).

3. If f & Fj forall feF, then s; = a; (mod N) and sy = b, (mod N) realize L;

otherwise, if f € Fy for any f € F, then go to Step 2.

We now prove that there exists a family of double-loop networks such that the
sieve method requires ©((log N)3/?) time to find the steps for each double-loop

network in this family. The following lemma will be used in the proof.

Lemma 1 Let py,ps,--- ,p: be the smallest t primes, where t > 2 and p; < py <

v < pp. If N =1py X pg X -+ X py, then p; > /log N.



Proof. Suppose N = p; X py X -+ X p;. Then N < (p;)! < p’. Therefore log N <
p:logp, and loglog N < logp; + loglogp: < 2logp:. So logp: > %10glogN =
log v/log N and we have p; > /log N. ]

Theorem 2 There exists a family of double-loop networks such that the sieve method
requires Q((log N)3/2) time to find the steps for each double-loop network in this fam-

aly.

Proof. Let ¢t be an integer such that 2 < ¢t < 100000. Let py,po, -+ ,p; be the

smallest ¢ primes and p; < ps < --- < p;. Let
d=p1 Xpg X Xppq.

It is not difficult to verify that for each ¢ in {2,3,--- 100000}, p; < 2p;_; and thus

V—dJ > 1. Since 2d is not divisible by py, [Z—d—‘ and B—fJ are two consecutive integers.

pt Pt
Therefore
2 2
T}
bt Dt
and
2d 2d
2.3 d(| =], |2 =1
( ) & (’th—‘ Lth)
Let
L= p F—‘ﬂ —d, h=d, p=d, n=p f—dJ —d
Pt Pe

We claim that there exists a DL(N; sq, $2) realizing the L-shape(l, h, p,n). To prove

this claim, we have to show that

[>0, h>0,p>0,n>0,1l>p, h>n, lh—pn=N,

2d
Pt

and to show that the three conditions in (1.1) hold. It is clear that [ > p, ( —d =

N———

d>0, h=d>0, p=d>0. Since {%JZl,Wehaven>pt<i—f— )—dz(). We

2d 2d
l=p {——‘ —d > p (—) —d=d=p.
Pt Pt

have [ > p since

8



We have h > n since

2 2
h:d:pt(—d)—det L—dJ—d:n.
bt

Let

N =pi X pa X -+ X py.

o = (o[2]-9o-a(o[2]-

Then

By (2.2), we have [ > n. Since h = p, we have h > p. Note that

(2.4) ged(pe, d) = ged(Pamix pax - X p_q) = 1.
Thus
2d
ged (1, h,p,n)" = ged (py P—d—’ —d,d,d,p; {—J —d)
2 Di
2d 2d
= ng (pt ’V_-‘ y Pt \‘_J 7d)
Pt Dt
2d 2d
= ged(|—|,|—1,d) (by (2.4
wd (2] 2] oy )
= 1. (by (2.3))

We now claim that for each ¢ in {2,3,---,100000}, the sieve method requires
Q((log N)*?) time to find the steps for each double-loop network with L-shape

L(l, h,p,n). Since N = p; X pg X -+ X py, in the sieve method we will have
F= {plap% e 7Pt}-
Since ged(ag, by) = ged(h, p) = d, we have

FO = {plap2a s 7pt—1}-

9



Since ged(ay,by) = ged(n + h,l + p) = ged(p {Q—dJ —d+d,p B—f-‘ —d+d) =

bt
ged(py LQ—dJ , Dt B—ﬂ ), by (2.3) we have ged(aq, by) = p, and therefore

bt

Fy = {p}.
Recall that py,po,--- ,p; are the smallest ¢ primes and p; < py < -+ < py; ie.,
p1 =2, p2 =3, p3s =5, ---. Note that if f € I appears in F}, for some k and k; is

the smallest such k, then f appears in every f™ k after k;. Therefore

p1 € F appears in ged(ag, by), ged(as,be), ged(ay,by), ged(ag, bg), ete,
pe € F appears in ged(ag, by), ged(as, bs), ged(ae, bs), ged(ag, by), etc,
ps € F appears in ged(ag, b), ged(as,bs), ged(aqo, bio), ged(ass, bis), ete,

ps € I appears in ged(ao, bo), ged(ar, br), ged(ais, bia), ged(asr, bar), ete,

pi—1 € F appears in ged(agiby), ged(ap, ., bp, 1), ged(ay,  x2,bp, 1 x2), etc,
pe € I appears in ng(alabl): ng(apt+1;bpt+1)> ng(asz2+17bth2+1)77 etc.
Thus the first k£ such that f.& F} for all.fie F is p,. By Lemma 1, p, > /log N.

Since each iteration of the sieve method involves the Fuclidean algorithm, the sieve

method requires Q((log N)3/?) time and we have this theorem. ]

We now describe the CCH algorithm. Given an L-shape L, Chan, Chen and Hong
[5] proposed the following algorithm for computing s; and s, such that DL(N;; s, o)
realizes L. For completeness, we append the proof of the correctness of the CCH

algorithm in the appendix.

The CCH algorithm [5].
Input: [, h, p, n of an L-shape L, where | > n, h > p, and gcd(l, h,p,n) = 1.

Output: s; and sy such that DL(N; sy, s2) realizes L.

10



1. Find r; = ged(l, —n).

2. Find integers oy and (3 such that oyl + B1(—n) = 7.

3. Find ry = ged(ry, —aap + G1h).

4. Find integers ay and 3, such that aory + [2(—aap+B1h) = re and ged(fGs, 12) = 1.

5. 51 = agn — Poh (mod N) and sy = asl — fop (mod N).

In [5], Step 4 is performed by the following algorithm.
ALGORITHM-MODIFIED-EUCLIDEAN [5].
Input: Integers a and b, not both zero, and r = ged(a, b).
Output: Integers x and y such that xa + yb = r and ged(y,r) = 1.
1. Find integers o and [ such;that ca=.5b = r.
2. If ged(B,r) = 1, then let © = ayy = [, return z, y and stop this algorithm.
3. Let k = ged(B,r), r' =r,and d = k.

4. WHILE (d > 1) DO

BEGIN

5. Let ' =a/r, 0/ =b/r, x =a+ 7't/ and y = f —r'a’. Return z, y.

For example, let [ = 5, h = 3, p = 3, and n = 2. Then the CCH algorithm
derives

lel, O[1:1, ﬁ1:2, T‘QZ]_, a2:—2, andﬁ2:1.

11



Thus N =9,
s1=—7 (mod9) =2, and s, = —13 (mod 9) = 5.

It can be verified from Figure 2 that DL(9;2,5) realizes L-shape(5,3,3,2).

3 Our algorithm

Our algorithm is based on the CCH algorithm and therefore unlike the Smith nor-
malization method, our algorithm does not require any matrix operations.

It is well-known that

Lemma 3 If a and b are integers, not both zero, then there exist integers v and (3

such that ca + b = ged(a, b).

It is known that ged(a,b) = ged(|al, |b]) and if |b] > |a| > 0, then «, 3, and
ged(a, b) can be found in O(log |a|) time bysusing the Euclidean algorithm [9].

Chan et. al. [5] proved that

Lemma 4 [5] If o, a, (3, b are integers, not all zero, such that ca + b = 1, then

ged(a, ) = 1.
Step 4 of the CCH algorithm is based on Theorem 5 described below.

Theorem 5 [5] If a and b are integers, not both zero, then there exist integers x

and y such that xa + yb = ged(a, b) and ged(y, ged(a, b)) = 1.

Recall that N = [h — pn. It is obvious that Steps 1, 2, and 3 of the CCH
algorithm can be done in O(log V) time by using the Euclidean algorithm. Step 5
of the CCH algorithm takes O(1) time. Since Step 4 of the CCH algorithm takes
O((log N)?) time (see [5] for details), the CCH algorithm takes O((log N)?) time.

We thus conclude that if Step 4 of the CCH algorithm can be done in O(log V)
time, then the CCH algorithm takes only O(log N) time and the steps of a double-

loop network with N nodes can be found in O(log N) time. The key observation of

12



our algorithm is that Theorem 5 can be proved in another way and this new proof

leads to an O(log N)-time implementation for Step 4 of the CCH algorithm.

A new proof for Theorem 5. Set r = ged(a, b) for easy writing. By Lemma 3,

there exist integers a and (3 such that
aa + [Bb=r.

If ged(B,r) = 1, then we are done. In the following, assume that ged(3,7) =k > 1.

Let 7" be the largest integer such that
(3.5) r' | rand ged(r' k) = 1.

Then either " = 1 or ' > 1. In the former case, every prime factor of r is also a
prime factor of k. In the latter case, every prime factor of r is either a prime factor
of k or a prime factor of r'.

Let

a' = a/r, and b= b/r.

Note that ged(r’, 5) = 1; otherwise, we'will have ged(3,7) > k. Since aa + b =,
we have

aad + B = 1.

By Lemma 4, we have ged(a’,3) = 1. Since ged(a’,3) = 1 and k | 5, we have
ged(a’, k) = 1. Since k | 6 and ged(r’, k) = 1 and ged(a, k) = 1, we have

(3.6) ged(B —r'd k) = 1.
Since ged(r’, ) =1 and 7" | r'a’, we have
(3.7) ged(B —r'd,r") = 1.

Recall that 7" = 1 or ' > 1. In the former case, by (3.6), by (3.7), and by the

fact that every prime factor of r is also a prime factor of k, we have
ged(B —r'd,r) = 1.
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In the latter case, by (3.6), by (3.7), and by the fact that every prime factor of r is

either a prime factor of k or a prime factor of r’, we also have

ged(B —r'd,r) = 1.

Let
(3.8) r=a+7rb andy=p—1r"d.
Then
ra+yb=(a+7rb)a+ (B—r'd)b=r
and
ged(y,r) = ged(B —r'd’,r) = 1.
We proved the theorem. 1

The following lemma proyides an efficient way to find " in (3.8), which is the

largest integer satisfying (3.5).

Lemma 6 Let r and k be positive-integers such that k| r and k > 1. Then

= !
ged(kllosar] )

is the largest integer satisfying (3.5).

Proof. Assume that
k=pipy’ -
where p}s are distinct prime factors of k. Also assume that

_ t1 t2 t tmt+1 tma2 t
T =D1DPy " P Pmg1Pmt2 " Pp's

where pgs are distinct prime factors of r. Note that when p,, 11, P2, -+, pn do not
exist (this case occurs when k contains every prime factor of r), we will simple say
that plrHpirt2 .. pte = 1. Tt is clear that the largest integer satisfying (3.5) is

I tmy1 tmy2 tn
r = pm+1pm+2 D
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and it suffices to prove that

r tm+1 t'm+2 tn
(kleogQTJ ) = Pmt1Pmy2 " Pn -
)

ged

Note that

Jollogar] pglogz r]s1 pglogg rlsa pTLrllogz rlsm .
Since 2 is the smallest prime, we have

ti < |logyr], foralli, 1 <i<n.

Therefore
t; < |logyr]s;, foralli, 1 <i<m.
Thus
ged(klog2rd ry = plipl . plm.
So
b 1 b
r _ PR RIS P s
ogo T - - Pm4+1m—+2
gcd(kU g2 J)r) p’ilp? e, %fz + +

in

‘.pn'

The new proof of Theorem 5 and Lemma 6 lead to the following new algorithm

for finding  and y in Theorem 5.

ALGORITHM-NEW-MODIFIED-EUCLIDEAN.

Input: Integers a and b, not both zero, and r = ged(a, b).
Output: Integers x and y such that xa + yb = r and ged(y,r) = 1.
1. Find integers o and [ such that aa + (6b = r.

2. Find k = ged(G, 7).

3. If k=1, then let x = o, y = (3, return z,y and stop this algorithm.
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4. 7t k> 2, find
’ T

" ged(klosar] p)”

5. Let ' =a/r, 0/ =b/r, x =a+r't/ and y = 3 —1’d’. Return z, y.

The correctness of ALGORITHM-NEW-MODIFIED-EUCLIDEAN follows from

Lemma 6. We now prove that:

Theorem 7 If we use ALGORITHM-NEW-MODIFIED-EUCLIDEAN instead of
ALGO RITHM-MODIFIED-EUCLIDEAN in Step 4 of the CCH algorithm, then

the CCH algorithm takes O(log N) time to find the steps of a double-loop network.

Proof. Recall that N = [h — pn. Since Steps 1, 2, 3, and 5 of the CCH algorithm
take O(log N) time, it suffices to prove that ALGORITHM-NEW-MODIFIED-
EUCLIDEAN takes O(log Nijtime. Wheén Step 4 of the CCH algorithm is per-
formed, inputs to ALGORITHM-NEW-MODIFIED-EUCLIDEAN are

a =T
b=—aqp+ (ih,

r = ged(ry, —aap + Bih).

In the following, Step i refers to Step ¢ in ALGORITHM-NEW-MODIFIED-EUCLIDEAN.

Since r; = ged(l, —n), we have
ry >0, 1 <N,

and
min{|al, [b[} = min{|r|[,| — aip + Bih|} < |rif=r < N.
Therefore Step 1 can be done in O(log N) time by using the Euclidean algorithm.
Since r = ged(ry, —a1p + F1h), we have
r>0,r<r <N,
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and

min{|], |r|} < |r|=7r < N.

Therefore, in Step 2, finding & = ged(5,r) can be done in O(log N) time by using
the Euclidean algorithm. It is obvious that Step 3 and Step 5 can be done in O(1)

time. It remains to prove that in Step 4, finding ' = can also be done

gcd(k“gg? r] )
in O(log N) time. Note that computing kU827 takes O(log|log, |) = O(loglog N)

time. Since r > 0 and r < N, we have
ming k15, [r]} < |r| = 7 < .

Therefore, finding ged(kl227) r) takes O(logr) = O(log N) time. Hence finding

/

r’ = takes a total

T
ged(kllos2 7] )

O(loglog N) + O(log N) +1 = O(log N)

time, where +1 is for the division! Erom the above, Step 4 can be done in O(log V)

time. We have this theorem. []

4 Necessary and sufficient conditions for the ex-
istence of hyper-L; triple-loop networks

The following two lemmas will be used in the remaining discussions.

Lemma 8 If a,m,b,n are integers, not all zero, such that am — bn = 1, then

ged(a,n) = 1.

Proof. Assume that am — bn = 1 and ged(a,n) = k. Then k | @ and k | n. Thus

k|lam—bn=1.Sok=1. ]

Lemma 9 If m and n are integers, not both zero, and ged(m,n) = 1, then there

exist integers a and b such that am — bn =1 and ged(a,2m +n) = 1.

17



Proof. By Lemma 3, there exist integers a and b such that am — bn = 1. By

Lemma 8, we have
(4.9) ged(a,n) = 1.

If ged(a,2m +n) = 1, then we are done. In the following, assume that ged(a, 2m +
n)=d> 1. Let

a = pd

and

2m +n = qd.

Then ged(p, q) = 1. Since ged(m,n) = 1, we have

1 if nis odd,

ged(2m + n,n) = ged(2m,n) = { 9 if n is evern.

If ged(2m + n,n) = 1, thenelearly ged(qd, n) = 1 and thus ged(d,n) = 1. Now
suppose that ged(2m + n) = 28 Then ‘ged(gd, n) = 2; therefore ged(d,n) = 1 or
ged(d,n) = 2. If ged(d, n)z= 2, then 2| a and we have ged(a,n) > 2; this contradicts

with(4.9). From the abové; werhave
(4.10) ged(d,n) = 1.

Let ¢ = st, where s is the largest factor of ¢ such that
(4.11) ged(s,d) = 1.

That is, s (t) contains those prime factors of ¢ that are relative prime (not relative
prime) to d. (As an example, if ¢ = 22-:3%.7 and d = 2-3% then s = 7 and t = 22-3%.)

Then
(4.12) ged(s,t) = 1.
Since ged(p, ¢) = 1 and g = st, we have

(4.13) ged(p, s) = 1.
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Since ¢ contains those prime factors of ¢ that are not relative prime to d, by (4.10),

we have
(4.14) ged(t,n) = 1.
Let a’ = a+ sn and b’ = b+ sm. Then
am—tn=(a+ sn)m— (a+ sm)n=am —bn = 1.
Moreover,

ged(a’,2m + n)
= gecd(a+ sn,2m +m)
= ged(pd + sn, qd)
= ged(pd + sneq) (by (4.10) and (4.11))
= gcd(pd +smyst)
= ged(pd + sn;s) (by (4.12) and (4.14))

= T(by-(115and (4.13)).

Thus we have this lemma. (]

Let HL;(h,m,n) denote a hyper-L; tile with parameters h,m,n. Aguilé-Gost
[1] defined

n o -m  —-m
Miy(h,m,n)=| n n+m —m
2h h 2h —n

and derived that the diameter of HL;(h, m,n) is given by
(4.15)  D(h,m,n) = max{3m + h+n,2m+ 2h +n,3h + 3n} — 3.

Note that two sides labelled length n in Figure 5 in [1] are actually of length

m — n; see Figure 5 This flaw can be verified by checking the lengths of the sides
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of the topmost n x n square and the lengths of the sides of the rightmost m x h
rectangle. See Figure 4 for a correction of Figure 5.

Thus matrix M; should be

n —m —m
Mi(h,m,n)=1 n n+m —-m
2h h h4+m—n

and the diameter of HL;(h, m,n) should be

(4.16) D(h,m,n) = max{3m + h +n,2m + 2h + n,

3h 4+ 3n,m +2h +3n} — 3.

Figure 5: The Fig. 5 in [1].

Note that the difference between the diameters derived by (4.15) and by (4.16)

can be quite large. To see this, let

h = 2t—1—k
m = 2t—1

n = t+k,

where ¢ and k are positive integers chosen in such a way that both ged(m,n) = 1

and 3 1 m — n are satisfied. Then the diameter derived by (4.15) is 9t — 6, while the
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diameter derived by (4.16) is 9t — 6+ k. The difference between the two diameters is
k. As an example, when k£ = 5, we can choose t = 10, h = 14, m = 19, and n = 15.
Aguilé-Gost [1] observed that HL;(h, m,n) tessellates the space. By studying

the distribution of node 0 in the space, Aguil6-Gost obtained

S1 0
MEx | sy | =] 0 (mod N) or
S3 0
S1 (0%
(4.17) MT x| sy | = B | N for some integers a, 3,
S3 g

Also, N = det M.
For convenience, we call a triple-loop network whose MDD is HL;(h,m,n) an
HL;(h,m,n) triple-loop. We now give a necessary and sufficient condition for the

existence of an HL;(h, m,n) triple-loop:

Theorem 10 A necessary and sufficient condition for the existence of an HLy(h,m,n)

triple-loop is ged(m,n) =1 and 3 fin —n.

Proof. Note that N = det M. Suppese an HL; (h, m,n) triple-loop exists. From
(4.17), we have

= (MT)" ( % N
Y
h(2m 4+ n) + n)(im+mn) —(h(2m+n)+n(m—n)) —h(2m+n)
= m(m ) h(2m+n)+n(m—n)  —h(2m+n)
m(2m +n) 0 n(2m +n)

Suppose that ged(m,n) = 1 and 3 f m — n. Since ged(m,n) = 1, by Lemma 9,
there exist integers a and b such that am — bn = 1 and ged(a,2m +n) = 1. Since
ged(a,2m +n) = 1, we have a # 0. Since ged(m,n) = 1,

ged(m —n,m) = 1.
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Since ged(m,n) =1, 3tm —n, and ged(m — n,m) = 1,
(4.18)  ged(m — n,2m +n) = ged(m — n,3m) = ged(m —n,3) = 1.

Setting (o, 3,7) = (a,0, —b), we obtain the solution

( 51 ) ( h(a+b)(2m 4+ n) + a(m —n)(m+n) (mod N) )

bh(2m +n) +am(m —n) (mod N)

S3 2m+n

Since N = det M, we have
(4.19) N = (2m+n)(h(2m +n) +n(m — n)).

Let
—1 ifa >0,
o(a) ={ e

if a < 0.

From (4.19), 2m + n | N. Since 2m + n | N, there exists an integer k; such that

h(a + b)(2m =+ n)+ a(m=n)(m+n) (mod N)

= ki(2m+n)+ éla)a(m —n)(m +n)

and 0 < k1 (2m + n) + ¢(a)a{m.— n)(m +mn) < N. Also, there exists an integer ko

such that

bh(2m + n) + am(m —n) (mod N)

= ky(2m+n) + ¢(a)am(m — n)

and 0 < ka(2m + n) 4+ ¢(a)am(m —n) < N. Therefore

S1 ki(2m +n) + ¢(a)a(m — n)(m +n)
sy | = ka(2m +n) + ¢(a)am(m — n)
S3 2m+n
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Note that

ged(ky(2m +n) + ¢(a)a(m — n)(m +n), ke (2m +n) + ¢(a)am(m —n),2m + n)
= ged(a(m —n)(m+n),am(m —n),2m + n)
= gcd(an(m —n),am(m —n),2m +n)
= ged(n(m —n),m(m —n),2m+n) (by the fact that ged(a,2m +n) = 1)
= ged(n,m,2m+n) (by (4.18))
= ged(m,n)
= 1
So if ged(m,n) = 1 and 3 m — n, then clearly

ged(N, 51, 52, 83) = ged(sy, 82, 83) = 1

and T'L(N; s1, sa, S3) exists.

On the other hand, suppose
ged(myn)y=d>1 0t 3| m—n.

In the former case, each s;, ©'=11, 2, 3, is'a-linear combination of terms divisible by
d. Furthermore, from (4.19), N is also a linear combination of terms divisible by d.
Hence

ged(N, sy, 82,83) > d > 1

and T'L(N; sy, 2, s3) does not exist. In the latter case, since 3 | m —n, we have
ged(2m 4+ n,m —n) = ged(3m,m —n) =r > 3.

Therefore each s;, i« = 1,2, 3, is a linear combination of terms divisible by r. Fur-

thermore, from (4.19), N is also a linear combination of terms divisible by r. Hence
ged(N, sy, 89,83) > 1 > 1

and T'L(N; sy, 2, s3) does not exist. ]
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Appendix

Theorem 11 [5] The CCH algorithm is correct and it takes at most O((log N)?)

time.

Proof. Note that N =[lh — pn. Let

Consider column 1 of M: it contains [ and —n. After Step 1 is performed, we have

ry = ged(l, —n) and oql + B1(—n) = ry. Let

and let M; = L; M. Then

bys— —aup + b
o= (3 el - (5 7).

Consider row 1 of M;:fit contains 7, and —a p+ G1h. After Step 2 is performed,

we have ry = ged(ry, —aip4 Byh)yasry + Oy (—aqp + B1h) = ra, and ged (G, r2) = 1.

=(—a1p+p1h)
oy " ——— —
R — T2 .
' ( B2 - >

and let My = M {R;. Then

M, — ( r1 —aip+ Bih ) (0%) —_(_algrﬁlh) - ( re 0 )
2= 0 N 3 1 - NBs N |-
1 2 o r1 ro

Consider column 1 of My: it contains ry and NT—?Q Let r3 = ged(rs, Nr—fQ) Note

Let

that in Step 2 we choose ged(fs,r2) = 1. Thus

r3 = ged(ry, 1\1[132) = ged(rs, %) = ged(ry, —aap + Bk, &)

77»1

We claim that r3 = 1. Suppose this is not true and r3 > 1. Then every entry of M,

is a multiple of r3. Since M; = £, M, we have

a1y 1 L -5 r —aap + Bk
M=Lo M= 8D ( " 0 o '

T1



That is,

e}

1 L —p ) ( r —aiptfih
M= < Tln T3 3 7]1\? .
det(‘cl) T a1 T3

Since 3 = ged(ry, —ayp + B1h Ny,

77»1

r —aaptbih

T3 T

0 N
r1r3

is integral. Since det(L;) = %1, every entry of M must be a multiple of 3. Then

ged(l, h,p,n) > r3 > 1; this contradicts with the assumption that ged(l, h, p,n) = 1.

Therefore r3 = 1.

Since r3 = ged(ra, NT—fQ) and r3 = 1, by Lemma 3, there exist integers ag and 3
such that agry + 53(1\7’52) = 1. Let

«
L= S ).
T1
and let M3 = L3 M. Then

i a3 ﬁ3 To 0 . 1%
- (IR )- (0 %)

Let

and let M4 = MgRQ. Then

1 BN 1 &8 10
M4_<0 N)(O 1 )_(o N)_S(M)'

From the above, LoLi MR Ry = S(M). Moreover, L1, Lo, Ry and Ry are
unimodular integral matrices. Let £ = £,L5. Then

31
r— as s ar B\ [ oasan+ %n s+ é—i
- —Nps2 r n L - —NpBaai+ran —NpB2B1+ral :

1 2 T1 T1 71 71

Using the facts that N = [h — pn and agl + B1(—n) = r1 and agr; + Bo(—aap +
B1h) = ry, we have %ﬁ”” = apn — [Bh and %W = apl — PBop. Thus if
S1 = agn — foh (mod N) and sy = sl — Fop (mod N), then DL(N; sy, s9) realizes
L.
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It is clear that Steps 1, 2, and 3 can be done in O(log N) time by using the Eu-
clidean algorithm. Step 4 can be done in O((log N)?) time by using ALGORITHM-
MODIFIED-EUCLIDEAN. Step 5 can be done in O(1) time. Thus the CCH algo-

rithm takes at most O((log N)?). ]
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