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Abstract

We are interested in convergence of dynamics for delayed equations with multiple
equilibria as well as multistability in delayed recurrent neural networks. This
dissertation begins from reviewing basic theory of delayed differential equations,
convergence theory of monotone dynamical systems. The multistability and
quasiconvergence for a general 'n-dimensional delayed neural networks are then
investigated. We present the existence—of 2" stable stationary solutions for the
delayed neural networks with saturated and unsaturated sigmoidal activation functions.
The theory is obtained through formulating parameter conditions based on a
geometrical setting. Positively invariant regions for the flows generated by the system
and the basins of attraction for these stationary solutions are also established. It is
further confirmed that quasiconvergence is generic for the network through justifying
the strongly order preserving property. The magnitude of delays is involved in the
conditions which yield such an ordering property. Our theory on existence of multiple
equilibria is then incorporated into this quasiconvergence for the system. A number of
numerical simulations are presented to illustrate our theory.
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Chapter 1

Introduction

This dissertation aims to contribute toward convergence of dynamics for delayed equa-
tions with multiple equilibria as well as multistability in delayed recurrent neural net-
works (DRNN). Multistability of a neural network is referred to coexistence of multiple
stable patterns such as equilibria or periedie orbits. In general, multistability is accom-
panied by coexistence with unstable or saddle states. Existence of many equilibria is a
necessary feature in the applications of neural networks to associative memory storage
or pattern recognition [14, 18, 29, 40]. Retently, further application potentials of multi-
stability have been found in decision-making;-digital selection or analogy amplification
[22]. “Quasiconvergence” for a systemsis.referred to that every solution tends to the
set of stationary solutions, while “convergence” (or “complete stability”) means that
every solution tends to a single stationary solution, as time tends to infinity.

In general, constructing a Lyapunov function, if possible, and then applying the
LaSalle’s invariant principle is a typical methodology in concluding convergence of
dynamics for ordinary differential equations with multiple equilibria. For the case
of delayed differential equations, such a theory is still valid. However, it is more
difficult to apply the theory in plenty of realistic models. In fact, to the best of
our knowledge, there is no example with rigorous justification on the convergence of
dynamics in multi-dimensional delayed differential equations with multiple equilibria.
Recently, Pituk [42] studied the convergence to equilibria in general “scalar” functional

(delayed) differential equations by using monotone dynamics theory, and the results



are applicable to some biological models. Therein, he gave a necessary and sufficient
condition for the convergence of all solutions in the case when a scalar functional
differential equation possesses at most two equilibria. Moreover, motivated by the
existence of a nonconstant periodic solution in a quasimonotone delayed differential
equation with three equilibria even in the case when all solutions are bounded [31],
Pituk also proposed stronger conditions to guarantee the convergence of all solutions
without restriction on the number of equilibria.

The convergence to multiple equilibria has been studied in the Hopfield neural
networks without delays (ordinary differential equation case) [29]. Such a convergence
was derived by constructing a Lyapunov function on the system, when the connecting
weights are symmetric, and then applying the LaSalle’s invariant principle. Similar
treatment has also been adopted to derive complete stability in cellular neural net-
works (CNN), even for the cases of saturated and standard output functions [36, 45].
In [19, 50, 51], the authors studied the cellularmeural network with and without delays
and obtained the complete stability by using a scheme analogous to the Gauss-Seidel
method or M-matrix theory. ‘However, each of these works contains some gaps and
rigorousness remains to be justifieds Fven in-a single neural model with the standard
piecewise linearity, how the whole picture of dynamics depending on parameters has
not been pieced together [20]. Moreover, all the aforementioned results on complete
stability of the delayed models were rigidly restricted to the standard, piecewise lin-
ear, activation functions. Furthermore, convergence dynamics has not been declared
to coexist with multiple equilibria in multi-dimensional delayed neural network with
general nonlinear activation functions.

To be in possession of both comprehension in basic theory and applications for
practical models, this dissertation comprises two parts. The first one contains basic ex-
istence and uniqueness theory of delayed differential equations and convergence theory
of monotone dynamical systems which has been widely applied in studying mathe-
matical models in biology. The global convergence and quasiconvergence theory of a
monotone dynamical systems are addressed for further study of DRNN systems. The

second part contains global dissipativity, comparison of investigations on neural net-



works with and without delays, and several dynamical results of the delayed recurrent
neural networks such as stability of multiple equilibria, basins of attraction and gua-
siconvergent dynamics. Moreover, monotonicity of the DRNN system is derived in a
special partial order, and thus generic quasiconvergence is certified.

The model equation we mainly consider in this presentation is

o = Hati(t) + D (i (0) + > Bigi(a(t — 7)) + I (1.1)
j=1 Jj=1
where ¢ = 1,--- ,n; n corresponds to the number of neurons in the neural network

system, x;(t) describes the state of the ith neuron at time ¢, the constant p; > 0
denotes the rate with which the ith neuron will reset its potential to the resetting
state in isolation when disconnected from the network and external inputs. g;(-) is the
activation function and g¢;(z;(t)) denotes the output of the jth neuron at time ¢. The
constant 0 < 7;; < 7, T := max<; j<n Tij, corresponds to the transmission delay along
the axon and /; stands for an independent bias eurrent source. The constants a;;, 3;; are
connection weights from jth neuron tosth neuron.  The outputs of all neurons are sensed
by another synapse whose weighted sum 327 ;g5 (7;(t)) and 377, Bijg;(z;(t — 75))
contribute to determine the state of theftlimeuron of the system. The outputs g;(z;(¢))
and g;(z;(t — 7)) are generated by:the dynamics of jth neuron, and fed back to all
neurons in this system, including itself. We refer (1.1) as a feedback system and call
i, Bii as self-feedback weights and «;j, B;; as nonself-feedback weights for @ # j. When
all the activation functions are increasing, the positivity and negativity of o;; mean
excitatory and inhibitory effect, respectively. Same interpretation applies to the delay
feedback weights [3;;. System (1.1) reduces to the classical and delayed Hopfield neural
networks [29, 37|, as §;; = 0 for all 7,7, and a;; = 0 for all 7, j, respectively. It also
represents the cellular neural networks without delays [14] and with delays [43]. Indeed,
a CNN system built in a multi-dimensional coupling fashion can always be rewritten in
a one-dimensional coupling form, by renaming the indices [13]. Such an arrangement,
however, suppresses the local connection representation.

In electronic implement, time delays of neural network systems are unavoidable

due to axonal conduction times, distances of interneurons and the finite switching
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speeds of amplifiers. The dynamics for differential equations with delays can be rather
complicated. Although the stationary equations are identical for system (1.1) without
delay (7;; = 0 for all 4, j) and with delay (7;; > 0), the stability for the equilibrium
points and dynamical behaviors of the systems can be very different. There have
been literatures [2, 3, 4, 41, 44] exploring the effects of delays in differential equations
and neural network systems. For system (1.1), the theory on unique equilibrium and
global convergence to the equilibrium have been studied extensively in [5, 6, 7, 8,
17, 30, 33, 34, 39, 43, 55]. These studies indicate a coincidence between the systems
with delays and without delays. The presentation moves up the investigations in this
direction by establishing the existence of multiple stationary solutions for system (1.1).
More specifically, we construct 2" stable stationary solutions for system (1.1) with two
classes of activation functions. The theory is obtained through formulating parameter
conditions based on a geometrical setting. We first derive conditions for the existence of
3" equilibria for Eq (1.1) with sigmaidal activation functions and saturated activation
functions. Some regions containing these stationary. solutions are shown to be positively
invariant under the flows generated by Eq(1.1). In the issue of exponential stability
of the equilibria, we also estimate basins.of attraction for these stationary solutions.
Therein, the basins of attraction<of stationary solutions were derived from a criterion
concerning the slope of the activation funetions. The ranges of the basins depend on the
parameters therein. We further extend the basins of attraction of 2" stable stationary
solutions to the confirmed positively invariant regions.

The existence of multiple equilibria and their attractive domains have been stud-
ied for Eq (1.1) with the standard activation function in [56]. The result therein is
about locally exponential stability of multiple equilibria; and the argument strongly
relies on the piecewise linearity, saturations of the standard activation function and
subsequent partition of phase space. Besides, some of the arguments therein need
modifications to meet rigorousness, and the global dynamics remains as an unsolved
problem. Our geometrical approach can be applied to Eq (1.1) with more general sig-
moidal activation functions. In addition, larger positively invariant sets and basins of

attraction have been established. Moreover, the criteria in our theory is weaker than



those in [56].

In order to approach the convergence results of multi-dimensional delayed neural
networks, we further discuss the strongly order preserving property, hence quasiconver-
gence behaviors for Eq (1.1), by the theory of Smith and Thieme [48]. The magnitude
of delays is involved in the conditions which yield such an ordering property. The
dynamics scenario for system (1.1) is thus composed of quasiconvergence (or conver-
gence) with multiple equilibria. A number of numerical simulations are also performed
to demonstrate our theory.

The remaining part of this dissertation is organized as follows. In Chapter 2,
we introduce some notions and basic theory of delayed differential equations such as
the existence and uniqueness of solution. We also identify these basic properties for
delayed neural networks. In Chapter 3, we recall some notions and basic theory of
monotone dynamical systems from [47], including several dynamical properties of a
strongly order preserving semiflows*generic quasiconvergence and global convergence
property of a monotone dynamiical system. In Chapter 4, we specifically study the
dynamics of neural networks with delays and present several numerical simulations on
the dynamics. Some analytic methodelogy such as-characteristic equations, Lyapunov
function and Lyapunov functional.are compared for the neural networks with and
without delays. We consider two classes'of activation functions which are commonly
employed in neural network theory. Global dissipativity and several dynamical results
of the delayed recurrent neural networks such as stability of multiple equilibria, basins
of attraction are studied. Finally, in Chapter 5, we investigate the guasiconvergent
dynamics of the DRNN system. Specifically, strongly order preserving property is

derived in a special partial order, and thus generic quasiconvergence is confirmed.



Chapter 2

Basic Notions of Delayed
Differential Equations

In this section, we introduce some notions and basic theory of delayed differential
equations including the existence and the uniqueness of solution. In addition, we

apply these theory to delayed neural networksin Section 2.2.

2.1 Fundamental:Theorems in Delayed Equations

Let 7 > 0 be a given positive number (the‘delay time) and denote by C the Banach
space C'([—7, 0], R") endowed with themorm ||$f = supyc, g [¢(¢)|. C is the phase space
when we deal with delayed differential equations. Let ¢ > 0 and x € C([—7,¢],R"),

then for any t € [—7, (], we denote the element x; in C given by
x:(0) =x(t+46), 0 € [—1,0]. (2.1)

Assume S is a subset of C and F': § — R" is a given function. We call

dx(t)
5 = F(x;) (2.2)

a delayed differential equation (DDE) or functional differential equation (FDE) on S,
comparing with an ordinary differential equation

dx(t)

where F : R — R".



Definition 2.1.1. (i) A function x = x(t) is called a solution of Eq (2.2) on [ty —
T, to+0) if x € C([tg — 7,10 + £),R™), x; defined as (2.1) lies in S and satisfies (2.2)
fort € [to, ). (ii) For giventy € R and ¢ € C, we say x(ty, @) is a solution of Eq (2.2)
with initial value ¢ at ty if there is an € > 0 such that x(to, ¢) is a solution of Eq (2.2)
on [to — T,tg + £) and x4, (ty, ) = ¢.

For given subset S of C, we denote the class of all continuous functions from &
to R™ by C'(S,R") and the class of all bounded continuous functions from S to R™ by

CY(S,R™). We recall some well-known results from [25].

Theorem 2.1.2. (Existence of solution) Suppose S is an open subset in C. If W C S
is compact and F° € C(S,R") is given, then there exist a neighborhood V C S of W
with F° € C°(V,R"), a neighborhood U C C°(V,R") of F° and a constant k > 0 such
that for any ¢ € W, F € U, there is a solution x(t; ¢) of Eq (2.2) with initial condition

Xy, = ¢ that exists on [to — T, 1o +.K6)

Theorem 2.1.3. (Uniqueness;of solution) Suppose S is an open subset in C and F is
Lipschitizian in each compact set in'S. Af @ € S, then there is a unique solution of Eq

(2.2) with initial condition ¢ atty.

Theorem 2.1.4. (Extending domain”of ‘existence) Suppose S is an open subset in
C and F is Lipschitizian in each compact set in S. Then for each ¢ € S, there is
a mazimal interval I on which Eq (2.2) has a unique solution, x(to, @); i.e., if Eq
(2.2) has a solution y(ty, @) on an interval J then J C I and y; = x; for allt € J.

Furthermore, the maximal interval J is open.

In contrast to that the phase space for the ordinary differential equations (2.3) is
R™, the one for the delayed differential equation (2.2) is a infinite dimensional Banach
space. Although these two equations have the same existence and uniqueness criteria,
it is more complicated to check the criteria for the function F' which is defined on a

Banach space.



2.2 Fundamental Theorem for Delayed Neural Net-
works

The property of the solution in (1.1) is strongly relevant to the activation functions
gj(+). Based on the above basic theory of delayed differential equations, we have the

following result.

Theorem 2.2.1. Suppose that each of the activation function g; is a Lipschitz function
with Lipschitz constant L;, then DRNN (1.1) has a unique solution for every given

initial condition.

Proof: From (1.1), for all ¢ € C with 7 := maxi<; j<n 7ij, F = (F1, Fy, -+, F,) is
defined as

E(gb) Nz¢z + Zaljg] ¢J + Zﬁl]gj ¢j TZ])) + I;.

So, we have

Fi(¢) = B(@)] = | —mile0) +Zang 6;(0)) — g;(1;(0))]
+Zﬁij[gj(¢j(—ﬂ’j)) — g (i (=7i3))]l
{|Mi\+Z’%‘|Lj+Z\5ij|Lj}||¢—¢||,

Hence, each Fj is Lipschitz, and then F' in Theorem 2.1.3 is Lipschitz. Consequently,

(1.1) has a unique solution for any given initial condition. O

2.3 Lyapunov Functional and Lyapunov-Razumikhin
Theorem

In the case of ordinary differential equations (2.3), complete stability (convergence)
and quasiconvergence could be based on applying the LaSalle’s invariant principle to

the Lyapunov functions. Let us review this principle quoted from [23].
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Suppose the vector field F in (2.3) is locally Lipschitzian. Let L be a scalar
function defined and continuous on R"™ and ¢(¢,x) be the flow map of (2.3). To
determine if L decreases along the orbit of (2.3), we can consider

L(x) := lim sup %[L(gp(h,x)) — L(x)]. (2.4)

h—0t

If L is locally Lipschitz continuous, (2.4) is equal to

lim sup %[L(x +hF(x)) = Lx)]. (2.5)

h—0t

Suppose L is bounded in R” and L(x) < 0 for all x € R”. Let E := {x € R*|L(x) = 0}
and let M be the largest invariant set of (2.3) in E. LaSalle’s invariant principle says
that if ¢(t,x) is bounded for ¢ > 0, then the w-limit set of p(¢,x) belongs to M.

There also exists an analogous theory in delayed equations. Consider the DDE

(2.2)
dx(t)
i

where F': C — R" is completely continuous.

== F(Xt)v

Definition 2.3.1. We say W C+="R=is-a Liyapunov functional on a set S in C
relative to (2.2) if W is continuous om:Sythé closure of S, and W <0 onS, where

W () = limsup ~ [W(xa(6)) — W (o)) (2.6)

h—0t h

For the given S, let
E(S) = {¢ € S|W(¢) = 0}

and let M (S) denote the largest subset of E(S) that is invariant under the flow gen-
erated by Eq (2.2). The following theorem is an invariant principle for autonomous

delayed differential equations.

Theorem 2.3.2. [25] If W is a Lyapunov functional on S and x:(¢) is a bounded
solution of Eq (2.2) that remains in S, then x,(¢) tends to M(S) as t — oo.



The following result is concerned with the stability of a system with a single

equilibrium.

Corollary 2.3.3. [25] Suppose W : C — R is continuous and there exist nonnegative

continuous functions a(-) and b(+), a(0) = b(0) = 0, lim,_, o a(r) = 400 and

a(|o(0)]) < W (o), W(e) < ~b(|$(0)]).

Then the trivial solution is stable and every solution is bounded. If, in addition, b(-) is

positive definite, then every solution approaches the trivial solution as t — oo.

Another approach for studying the stability of steady states in a delayed dif-
ferential equations is constructing an appropriate Lyapunov “function” for the given
system.

We say V : R" — R is a Lyapunov function (or Razumikhin function) if V' has
continuous first partial derivativess!For a Lyapunov function, we define the upper
right-hand derivative of V' withwespect to (2.2) is:defined as

V(g) = limeup VGH0) + E(6)) -~ V(6(0)))

h—0t+

"0V (6(0
_ Z (6(0))

oz, Fi(¢): (2.7)

i=1
The second equality holds when V' has continuous first partial derivatives. For a given

set § C C, define

E(S):={p eS| jngaéOV(xt(@(e)) — max V(¢(#)) for all t > 0}

—7<6<0

and let M(S) denote the largest subset of E(S) that is invariant under the flow gen-
erated by Eq (2.2). The following theorem is an invariance principle for autonomous

delayed differential equations.

Theorem 2.3.4. [21] Suppose there exist a Lyapunov function V and a closed set S
in C that is positively invariant under Eq (2.2) such that

V(p) <0, for all ¢ € S with V(¢(0)) = max V(¢(0)).

—7<6<0

10



Then for any ¢ € S such that x(¢)(-) is defined and bounded on [—T,00), w(¢p) C
M(S) C E(S). Hence x,(¢) — M(S) ast — oo.

As an consequence of Theorem 2.3.4, the following is an asymptotic stability of

an equilibrium for autonomous delayed differential equations.

Corollary 2.3.5. [21] Let F(0) = 0 and suppose there exist a Lyapunov function V

and a constant o > 0 such that

(7)  V(0)=0and V(p) >0 for all 0 # ||¢] < «,

(1)  V(0)=0, and

(1ii) V(o) <0 for all 0 # ||¢]| < a with max V(¢(6)) = V(¢(0)).

—7<60<0

Then the solution x = 0 of Eq (2.2) is asymptotically stable.

The LaSalle’s invariant prineiple 1s an: effective methodology to investigate the
stability of steady states and global dynamics. However, suitable Lyapunov functions
or Lyapunov functionals need to be constructed tofit the practical models. Moreover,
let us recall that the functional W isidefined on the infinite dimensional Banach space C
and the definition (2.7) is concerned with the functional F. From the definitions (2.5),
(2.6) and (2.7), we know that it is more difficult to propose a Lyapunov functional W
or a Lyapunov function V' with negative derivative along solutions of the delayed differ-
ential equation (2.2) than to construct a Lyapunov function in the ordinary differential

equation (2.3).
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Chapter 3

Monotone Dynamical Systems

In [27, 28], Hirsch developed a theory on almost quasiconvergence in continuous time
networks. In such a dynamical scenario, there may exist cycles or other kinds of non-
convergent orbits, but they cannot be stable. We will employ the monotone dynamics
theory to explore the almost quasiconvergence of delayed recurrent neural networks in
Chapter 5. Monotone dynamics, theory_has been, widely applied in systems including
reaction-diffusion systems, semilinear diffusion: equations and various biological sys-
tems. Matano introduced the-important-idea of strongly order preserving semiflows
[38], which is more flexible thah strong monetonicity, proposed by Hirsch. The work
of Smith and Thieme [47, 48] represents-a-synthesis of the approaches of Hirsch and
Matano that attempts to simplify and streamline the arguments. Significant improve-
ments in the theory was obtained therein with additional compactness hypotheses that
are often satisfied in the applications.

In this chapter, we recall some notations and basic theory of monotone dynamical
systems from [47]. In Chapter 5, we will further confirm that quasiconvergence is
generic for the networks through justifying the strongly order preserving property as

the self-feedback time lags are small by using the theory of Smith and Thieme [48].

3.1 Preliminary

In this section, we introduce the basic theory of monotone dynamical systems which

will be applied to study the convergence of dynamics in the topic of neural networks.
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Consider an ordered metric space (2 with metric d and partial order relaton <
which means that:
(1) a <z forall z € Q (reflexive);
(1))  x <yandy < zimplies z < z (transitive);
(7i1)  x <y and y < x implies x = y (antisymmetric).
Definition 3.1.1. (i) We write x < y if t <y and x # y.

(i) Given subsets U and V of Q, we write U < V(U <V ) when x < y(x < y) holds
for each choice of v € U and y € V.

We assume that the partial order relation is closed; it means that the order
relation and the topology on () are compatible in the sense that x < y whenever
z, — x and y, — y as n — oo and x, < y, for all n. For A C Q we write A for the
closure of A and IntA for the interior of A.

In the applications, the order relation tsually comes from a positive cone. It
means that €2 is typically a subset of a Banach space Q with a nonempty closed subset,
positive cone, K possessing the properties

(1) L REEKT K,
(i) TSI C K,
(iid) KN (=K)=A{0},
where R := (0,400) and —K := {—k|k € K}. In this case, the relation defined by

x <y if and only if y — x € K is a closed partial order relation.

Definition 3.1.2. (1) A semiflow on Q is a continuous map ® : Qx RT — Q which

satisfies :
(1) Py =1idg
(1)) Do Py = Dyy, fort,s>0.

Here, ®y(x) := ®(x,t) for x € Q and idg is the identity map on SQ.
(II) The orbit of x is denoted by

O(z) := {®,(x)|t > 0}.

13



Definition 3.1.3. Let &€ be the set of all equilibrium points for ®. (i) The omega limit set,
w(z), of x € Q is defined by

W(ZE) = mtonSth)s (QT)

(ii) A point x € Q is called a quasiconvergent point if w(x) C £. The set of such
points is denoted by Q).
(iii) A point x € § is called a convergent point if w(x) consists of a single point of &.

The set of such points is denoted by C'.

Definition 3.1.4. (i) The semiflow ® is said to be monotone provided
O, (z) < ®y(y) whenever x <y and t > 0.

(ii) @ is called strongly order preserving, SOP, if it is monotone and whenever x <y

there exist open subsets U,V of Q with x € U and y € V and ty > 0 such that

q)to (U) S (I)to (V)

Note that monotonicity jof ® implies that @,(U) < &,(V) for all t > t5. A
dynamical system on €2 is monotene if it preserves the ordering of initial data. A SOP
system has stronger ordering presérving about the neighborhoods of two points, x < y.

The order relation between these two points, x < y, will be kept forever.

3.2 The Convergence Criterion

Hereafter, we assume that ® is monotone and O(z) is a compact subset of 2 for each
x € ). In the remainder of this chapter, all theorems and propositions are quoted
from [47]. We will also give some remarks to catch the key points of the monotone

dynamical theory.

Theorem 3.2.1. (Convergence Criterion) Let & (x) > x for some T' > 0. Then w(z)
is a T-periodic orbit. If ®,(x) > x for t belonging to some nonempty open subset of
(0,00) then ®y(x) — p € € ast — oo. In particular, if & is SOP and &r(x) > x for
some T > 0 then ®4(x) - p e & ast — 0.
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In the previous theorem, since ®7(x) > x, monotonicity implies that @, 41)r(z) >
®,,r(x) for m =1,2,---. Thus, by the compactness of the orbit closure, ®,,7(x) — p
as m — oo for some p. By continuity of @, it could be proved that &, 7(p) = $.(p)
and w(z) = O(p). The next result describes how an omega limit set is imbedded in

the space Q. It is fundamental to the monotone dynamics theory.

Theorem 3.2.2. (Nonordering of Limit Sets) An omega limit set cannot contain dis-
tinct points x and y with the property that there exists neighborhoods U of x and V' of
y such that U < V. If ® is SOP then a limit set cannot contain two points x and y
with x < y.

To interpret the nonordering property, we suppose w(z) contains distinct points
x and y possessing neighborhood U and V', respectively, such that U < V. Then
®,,(z) € U for some t; > 0; in addition, there is a constant to > t; such that ®y,(z) € V
and then ®,(z) € V for all ¢ sufficiently mear to to. For these ¢ we have ®,(z) > &, (2)
by the fact U < V. The Convergence Criterion implies that ®;(z) — p € £ as t — oc.
Therefore, w(z) = {p}, a contradiction.

Hereafter, we assume that @ 1s SOP. Since the fundamental nonordering property
of limit sets, we have the following ‘propeosition. which will imply the important Limit

Set Dichotomy.

Proposition 3.2.3. Whenever the semiflow is SOP, the dynamics has the following

properties:

e (Colimiting Principle) If x < y, tx — oo, Oy, () — p and Oy, (y) — p as k — oo
then p € £.

e (Intersection Principle) If x < y then w(z) Nw(y) C €.

o Letx, y satisfy x <y. Ifty — o0, Oy () — a, Py (y) = bask — oo anda <b
then O(a) < b.

e (Absorption Principle) Let u,v € Q. If there exists x € w(u) such that x < w(v),
then w(u) < w(v). Similarly, if there exists x € w(u) such that w(v) < x, then
w(v) < w(u).
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o (Limit Set Separation Principle) Let z, y satisfy x <y. If t, — oo, Oy, (z) — a,

D, (y) — b ask — oo and a < b then w(z) < w(y).
Based on this proposition, the following fundamental result is derived.

Theorem 3.2.4. (Limit Set Dichotomy) If x < y then either

(a) w(z) <w(y), or

(b) w(z) = wiy) C €.

If case (b) holds and t;, — oo then @y (x) — p if and only if Dy, (y) — p.

Limit Set Dichotomy points out two possible order relations between eventual
behaviors of ordered points. For two ordered points, z < y, their omega limit sets
either preserve the order or are totally equal; moreover, the omega limit set is consisted

of equilibria in the latter case.

3.3 (Generic Quasiconvergence

In this section, we discuss the convergent dynamics: of a semiflow with strongly order-
preserving property. Herein, a ecompactness-assumption is required, and the main result

is about the generic quasiconvergence. To start with, we give the following definition.

Definition 3.3.1. If z € Q, we say that x can be approximated from below (above) in
Q if there exists a sequence {x,} in 0 such that x, < x,11 < T (x < Tpyy < T,) for

n>1andx, —  asn — 0.

Consider a relatively weak compactness assumption :

(T) For each zy € €2, O(x) has compact closure in €. Furthermore, if {x;};>1 approx-

imates xy from below or from above then U;>ow(z;) has compact closure contained in

Q.

Remark. (1) The compactness assumption (T) is satisfied when the following hold:
(i) The orbit O(B) := |U,cp O(x) is bounded whenever B is a bounded set in €. (ii)

There exists some ¢, > 0 such that the operator ®;, is compact.
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(2) In fact, when these two conditions in (1) hold and zg is approximated from below

by {xi}i>1, then {z;};>0 is compact and therefore | J;5, O(w;) is bounded. Since @y, is

a compact operator, @, (>0 O(z;)) is compact in Q. The set (J;5w(z;) is contained

in the latter closure and then has compact closure.

The assumption (T) is assumed to hold throughout the remainder of this section.
The key to the proof that the generic point of ) is a quasiconvergence point is the

following result.

Theorem 3.3.2. (Sequential Limit Set Trichotomy) Let xq € € have the property
that it can be approrimated from below in ) by a sequence x,,. Then there exists a
subsequence x, such that x, < T,41 < x9, n > 1, with x,, — xy satisfying one of the

following.

(a) There exists ug € € such that
w(2n) < W(Tppt) <t =w(zo), n>1
and

lim: dist(w(x,,), uo) = 0.

n—oo

(b) There exists ug € € such that

w(Ty) = up < w(wzg), n > 1.

(¢) w(xy,) =w(zg) CE forn>1.

An analogous result holds if xo can be approzimated from above in 2.

Remark. In each of these three cases of the Sequential Limi Set Trichotomy, the
point z possesses typical dynamics. In case (a), the point xq is convergent. In case (b),
xo belongs to the closure of the set of convergent points. And z( is a quasiconvergent

point in case (c).
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Under the strongly order-preserving property and the compactness assumption
(T), a semiflow has the following generic quasiconvergent result, based on the property

Sequential Limit Set Trichotomy.

Theorem 3.3.3. Suppose each point of €2 can be approximated either from above or
from below in Q. If the semiflow ® possesses the property (T) and has the strongly
order-preserving property. Then € = IntQ U IntC'. In particular, IntQ is dense in ).

Although the result in previous theorem does not confirm the behavior of every
orbit, it establishes the fact that there does not exist any non-trivial attractive periodic
orbit, and this is a significant result in the applications. The following is an immediate
consequence of the Limit Set Trichotomy. It describes the possibilities for the omega
limit sets in the case that a point can be approximated from above and from below on

Q.

Proposition 3.3.4. Let Q) be awvordered metric space and ®; be a strongly order
preserving semiflow on §2. Let &g € 1be such.that it can be approzimated from above
i  and from below in Q. Then there exists sequences x, and z, in §2 satisfying

Tp — Tg, Zn — Lo, Tn < Tpi1 <&y K prr—<zn, 0> 1, and one of the following holds:
(a) There exists ug € € such that, forn.>1;
W(Tn) < w(Tpi1) < w(zo) = up < w(Znt1) < w(zn) and

lim dist(w(x,), up) = lim dist(w(zy,), uy) = 0.

(b) There exist ug, vy € € such that, for n > 1, either
(1) w(zy) < w(Tpi1) < w(xg) = up < Vg = wW(2n), limy, o dist(w(x,), up) =0
and whenever v € £, v > ug then v > vy,
or
(1) w(z,) = up < vg = w(xg) < wW(znt1) < w(zp), lim, . dist(w(zy,), vo) =0

and whenever u € £, u < vy then u < uyg.

(¢) There exists ug € € such that, for n > 1, either

(1) w(zy) < w(Tpi1) < w(xg) = up = w(zy), limy, o dist(w(zy), up) =0
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or

(1) w(zy,) = ug = w(zg) < w(znt1) < w(zy), and lim,, . dist(w(z,), uy) = 0.
(d) There exist equilibria ug and vy such that, for n > 1,
w(zy) = uy < w(zo) < vo = w(zy).
Ifu e & and u < w(xg) then u < wg. If v € € and w(xg) < v then v > vy.

(e) There exists ug € € such that, for n > 1, either
(i) w(z,) = uy < w(zg) = w(z,) C € and, whenever u € & satisfies u < w(xy),
then u < ug
or
(ii) w(z,) = up > w(rg) = w(z,) C € and, whenever u € & satisfies u > w(xy),

then u > wuyg.

(f) Forn>1, w(z,) = w(z) =w(z, el

3.4 Global Results

When there exists only one equilibrium in €2, the dynamic is globally attracting as the

following.

Theorem 3.4.1. (Global Asymptotic Stability.) Suppose that the semiflow is SOP, Q
contains exactly one equilibrium e and every point of QN\{e} can be approzimated from

above and from below in Q. Then w(x) = e for all x € Q.

Remark. If z € O\ {e} then only alternatives (a), (e) and (f) of Proposition 3.3.4
may hold since the others imply more than a single equilibrium. In particular x € @,

hence w(z) = e.

If there exists multiple equilibria in €2, the dynamics is more complicated even in
a scalar delayed differential equation. Pituk [42] considered a class of scalar DDEs gen-

erating a strongly order preserving semiflow with respect to the “exponential ordering”,
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<., generated by the closed cone
K, :={¢ € C([-7,0,R) | > 0 and ¢(s)e is nondecreasing on [—7,0]}.  (3.1)

Herein, > is the standard partial order and p > 0 will be given in hypotheses. The
main result said that, the global convergence of the solutions of scalar DDE (2.2) is
equivalent (without any restriction on the number of equilibria) to the boundedness
of the solutions of the relative ordinary differential equation, under hypotheses: there

exist ¢ > 0 and a bounded linear functional II : C — R such that

|f () = f(@)l <II(J¢ — @) for all ¢, € C (3-2)

and

—II(¢) + up(0) > 0 whenever ¢ € C and ¢ >, 0. (3.3)

In the case of multi-dimensional delayed differential equations with multiple equilibria,

the global convergence of dynamies remains-as an, unsolved problem.
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Chapter 4

Neural Networks with Delays

4.1 Global Dissipativity

The concept of dissipativity has been applied in diverse areas of neural networks such
as stability theory, chaos and synchronization theory, and robust control. A flow on
a complete metric space is said te'be dissipative if there is a bounded subset, of the
metric space, which attracts eagh point of the whole space under the flow [24]. In [35],
the global dissipation and global“exponential dissipation of delayed neural networks
(1.1) with several activation funetions weremanalyzed. We give the explicit definitions

for delayed recurrent neural networks.

Definition 4.1.1. (i) The system (1.1) is said to be a dissipative system, if there exists
a compact set U C C such that for each ¢ € C there exists T > 0 with x(t;¢) € U
whenever t > T. In this case, U is called a globally attractive set. (ii)A set U is called
positive invariant if for each ¢ € U, x(t;¢) € U whenever t > 0.

Definition 4.1.2. The system (1.1) is said to be a globally exponentially dissipative
system, if it is a dissipative system with a globally attractive set U and there exists a
compact set U D U such that for each ¢ € C\U, there exists constants r(¢) > 0 and
s > 0 such that

inf {|| x,(¢) — % ||| X €U} < r(p)e* for all t > 0.
peC\U

The set U is called a globally exponentially attractive set.
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In [35], the dissipative property was discussed in DRNN system with several

classes of activation functions as following:

e The set of bounded activation functions is defined as

Gr = {gillg:(©)] < pir 0 < Dygil€) < 7 for all € € R},
where D, denotes the right-hand derivative of a function and 0 < p;,v; < c0.

e The set of Lipschitz activation functions is defined as

gi(&1) — gi(&2)

Gri=lol0 =" g

< ; < oo for all &,& € R}.

e The general set of continuous nondecreasing activation functions is denoted as

g3 = {gz|gl € C(Ra R)J Drgz(f) >0 for all f € R}

By constructing Lyapunov functiong and-using certain matrix theory, the authors in [35]
demonstrated that the DRNN (1.1) is a dissipative system. Particularly, the dissipative
property of DRNN system with activatien-funetions in each of the previous three class
is summarized as following: (i) #f\g; € Gy, fer+all i = 1,--- ,n, the system (1.1) is
dissipative with a positive invariant and globally attractive set. Furthermore, it is also
globally exponentially dissipative with another globally exponentially attractive set.
(ii) If g; € Go, ¢:(0) = 0 and |g;(€)] — oo as |{| — oo, for all i = 1,--- ,n, the system
(1.1) is dissipative under additional conditions on interconnection weights. (iii) Finally,
if g; € G3 and ¢;(0) =0, for all i = 1,--- ,n, the system (1.1) is also dissipative under
suitable conditions on interconnection weights. Herein, we recall one dissipative results

of the system with activation functions in class G;.

Theorem 4.1.3. [35] With each activation function g; € G, the delayed recurrent

neural network (1.1) is a dissipative system. The set U = Uy NUz is a positive invariant
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and globally attractive set, where

U —{¢€C!Zuz |6:(9)

§24

={¢ e Cl[¢:(0)] < i[Z(IO@H +18i)p; + L], for all 6 € [—7,0]}.

]

Dps + L))

1
o [Z(|%’| +1Bi1)p; + [L]]?, for all § € [—7,0]},

|

The dynamics of the DRNN system depends on the characteristic of the activa-
tion functions, interconnection weights and the amount of the delay time. The last
theorem declared the delay independent dissipation property of the DRNN system
(1.1) with bounded activation functions, and the globally attractive set is estimated
by this bound and parameters. In case of g; € Gy, Lipschitz activation functions, the
globally attractive set concerning Lipschitz constant ~; and parameters was obtained.
As for g; € Gs, general continuous nondeereasing activation functions, the condition on

parameter is crucial for dissipative.property:

Remark. When we consider (1:1) with activation functions in one of the previous
classes, this system has the global‘dissipativity property. Then {x;|t > 0} has compact

closure in C, and therefore each solution exists for all ¢ > 0 by Theorem 4.1.3.

4.2 Comparison of Neural Networks with and with-
out Delays

In this section, we summarize some difference between neural networks with and with-
out delays, involving characteristic equations, Lyapunov function and Lyapunov func-

tional theory and some different dynamics induced from delay.

4.2.1 Characteristic Equations

Utilizing the linearized theory and computing roots of the associated characteristic

equations are often effective in studying local behaviors of the system. In the recurrent
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neural network without delay, the characteristic equation of the linearized system at

an equilibrium X = (21,9, -+ ,T,) is

det(A(N)) = 0,
A(\) ==X, +D—A—-B, (4.1)

where D = diag[—p, -+, —pn], A = [a;;], and B = [b;;] are n X n matrices with
a;; = aijg;-(:?j), by = Bijg;- (Z;). On the other hand, for the delayed case, even if 7,; = 7

for all 7, 7, with 7 positive, the characteristic equation is

det(A(N)) =0,
AN =M, +D—A—e VB (4.2)

Thus, the characteristic equations corresponding to the linearized delayed differential
equations are no longer ordinary polynomials; instead, they are exponential polynomi-
als. It is well known [49] that the equilibriutusof DRNN (1.1) is asymptotically stable
if all the roots of the transcendental fuh¢tion.(4.2) have negative real parts. Analysis
on zeros in (4.2) is much moré complicated than the situation in (4.1). A standard
result [32] tells us that the equilibrimm-of (1.1) can only lose stability as parameters
vary in a way that the characteristic equation has.a root passing through the imaginary
axis. By Rouché’s Theorem [16], the bifurcations could be determined at the points in

parameter space or delay values, see [4], for example.

4.2.2 Lyapunov Functionals and Lyapunov Functions

In neural network systems without delays, complete stability (convergence) and qua-
siconvergence could be obtained by applying the LaSalle’s invariant principle to their
respective Lyapunov functions. Such functions are originated from the studies of Co-
han and Grossberg [15]. We recall some Lyapunov functions and functional from the

literatures.

e In a classical neural network (3;;=0 for all 7,j in Eq (1.1)), if the connection
weights matrix [oy;] is symmetric, the activation functions are bounded, differen-

tial and ¢g/(§) > 0 for all £ € R and i = 1,2,--- ,n, the authors in [54] proposed
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the Lyapunov function

n o rgi(z)
L) = —3(00 Agto+2m + > [ Tgta @)

i=1 gi(o)

where g = (g1,--- ,n), A is the matrix [oy;], and I = ([, -+, I,,).

In the delayed Hopfield neural network (c;;=0 for all 4, j in Eq (1.1)), the authors
in [52] addressed Lyapunov functionals for this system with a unique equilibrium.
If x is the unique equilibrium and x; is a solution of the system, by defining
u(t) ;== x(t) — x, Eq (1.1) becomes

du; ~ .
udit) = —pwi(t) + Y Byf(ui(t —7y)), i =1, ,m, (44)
=1

where g;(u;) = g;(u; + Z;) — g;(Z;). For a solution u; of (4.4), the authors used

the following Lyapunov functional

n 1 n. n |ﬁz| t )

LACHESS =G =Y | g (4.5)
i=1| "% i=1 j=1 =" Ji-Ty

In the general delayed nearal nétwork Eq(1.1), the author in [5] used the Lya-

punov functional

n

Wa(t) = Wa(u)(t) = D (%uf(t) 5D IAILE / u§<s>ds) . (46)

i=1 ~Tij

where u(t) := x(t)—x*, L, is the Lipschitz constant of g;(-) and {(;} are constants
chosen in the proof. The globally asymptotical stability is concluded by using

the LaSalle’s invariant principle.

The global stability of the unique equilibrium was demonstrated in delayed Hop-

field neural networks and delayed cellular neural networks in many literatures (see the

aforementioned [5, 52] for example), by constructing an appropriate Lyapunov func-

tion or Lyapunov functional. It seems that the Lyapunov functionals used in DRNNs

are usually more complicated, involving the delay terms, than those analogously used
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in neural networks without delays. Besides, to the best of our knowledge, the global
Lyapunov function or functional has not been proposed to deal with the delayed neu-
ral network system with multiple equilibria. However, we will justify the stability of

multiple equilibria by constructing a local Lyapunov functional latter.

4.3 Activation Functions and Multiple Equilibria

Existence and stability of stationary patterns for neural networks certainly depend
on properties of activation functions. We shall consider general sigmoidal activation
functions g;(-) as well as the standard activation function for Eq (1.1):
! —0;)g) for all R
as A gece { HO>0 €oME <0 fral ¢ <R
lime 400 9i(§) = vi, lime o0 Gi(§) = w;;
U it —oo<&<p,
eclass B : gie€C, gi(§) =14 g:(§) if pp<E<yq,
v if ¢; <& < o0,
where, u;, v;, p;, ¢; and o; are eonstants with w; < v; and p; < ¢;, §;(-) are increasing
functions, i = 1,--- ,n. Class A contains general bounded smooth sigmoidal functions,
and class B consists of nondecréasing functions with saturation. Typical configurations
of these functions are depicted in Figure 4.1:7 Class B contains the piecewise linear

functions with two corner points at p;, ¢;:

Ul: : ul (€ —pi), €€ [piail; (4.7)

3 K3

Gi(§) = wi +
and in particular, the standard activation function for the CNN:

9(e) = e+ 11—l - 1)), €€ R (1.9

as depicted in Figure 4.2 (a). Notably, in practical implementation, the transition from
the linear regime to the saturated regime in the standard activation function is smooth.
Thus, the theory developed for the dynamics of Eq(1.1) should be also valid for the
activation function with smooth corners at £ = £1, as demonstrated in Figure 4.2 (b).
Our investigations have provided theoretical basis for all these activation functions.

In Section 4.7, we will see some differences between the dynamics for Eq (1.1) with
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activation functions of classes A and the ones of class B. Let p; = max{|w;|, |vi]},

Vi = SuPgeg 9i(§), i =1,--- ;.

(b)

(pis i)

Figure 4.1: The configurations of (a) typical smooth sigmoidal activation functions in
class A and (b) saturated activation functions in class B.

(a) (b)

(1,9 (1,1)

(-1,-1) (-1,-1)

Figure 4.2: The graphs for (a) the standard activation function g(¢&) = 3(|+1|—|¢—1]),
(b) saturated activation functions with smooth corners.

Let us review some basic notion of delayed differential equations. We set 7 =
max;<; j<n T;j. Lhe initial condition for Eq (1.1) is z;(0) = ¢;(0), —7 <60 <0, i =
Lo+ ,nwith ¢ = (¢1,--+, ¢,) € C([—7,0],R"). Recall that the norm of ¢ is defined
as [|¢]] = maxi< i< n{SUPse(_,, o 19i(s)[}. Let us denote F' = (FY,--- , F},), where F; is
the right hand side of system (1.1),

Fi(x:) = — pizi(t) + Z aigi(z;(t)) + Z Bijgi(x;(t — 7i5)) + L.
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A function x(-) is called a solution of Eq (1.1) on [—7,¢) if x(-) € C([-7,¢),R"),
and x; defined as (2.1) lies in the domain of F' and satisfies Eq (1.1) for ¢ € [0, ).
For a given ¢ € C([—,0],R"), let us denote by x(t;¢) the solution of Eq (1.1) with
x0(0; ¢) = x(0 4 0; ¢) = ¢(0), for 0 € [—7,0].

Notably, the stationary equation for Eq (1.1) is

F1<X> = — ;T + Z(O&ij + @j)g](x]) + Il = O, 1, = 1, e, N (49)

j=1
We introduce an analogue of single neuron equation d§/dt = f;(§) = —pu€ + (v +
Gi)gi(&) + I;, € € R. Next, we shall consider the above activation functions and
formulate sufficient conditions for existence of multiple stationary solutions for Eq
(1.1). Our approach is based on a geometrical observation. The first condition for Eq
(1.1) with activation functions in classes A and B is, respectively,

(B{) = 0= inf g/ (@)% e, < maxi(6) (= (1))

(HT) = (0w + Bi) maxgi(€) > .

for i = 1,---,n. Condition (H) reduces to-(a;; + Bii)e= > p, if piecewise linear
activation functions (4.7) are adepted, and reduees to
i + B > iy, 1=1,--+,m, (4.10)

if the standard activation function g(-) in Eq (4.8) is employed, with p; = u; = —1,¢; =

’Uizl.

Lemma 4.3.1. (i) For activation functions in class A, there exist two points p; and
G; with p; < 0; < §;, such that fl(p;) =0 and f/(¢;) =0,i=1,--- ,n, under condition
(H{). (ii) For activation functions in class B, there exist two points p; and §; with
pi > pi and G; < q;, such that fl/(p;) =0, fi(G;) =0,i=1,---,n, under condition
().

Proof. We only prove case (i). For each i, since f/(&) = —u; + (o + Bii) 95 (€), we have
fi(€) = 0 if and only if ¢;(§) = pi/(ui; + Bi;). The graph of function g;(€) is concave

(2
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down and has its maximal value at o;. Note that limg 1. g;(€) = 0. Hence, since
each g, is continuous, if
: i / / .
0= f/ < —X i = 9;\0i))s :17"'77
infgi(€) < 5 < maxgi(§) (= gi(oi)), 1 n
there exist two points p;, ¢;, with p; < 0; < g, such that g;(p;) = g;(G:) = pi/ (i + Bi)-
This completes the proof. [J

For Eq (1.1) with piecewise linear activation functions, f; attains its local mini-
mum at p; = p;, and local maximum at ¢; = ¢;, under assumption (H¥). In particular,
for the standard activation function g, p; = —1,¢; = 1,7 =1,--- ,n. A consequence of
Lemma 4.3.1 is that f; is strictly increasing on (—oo, p;|, decreasing on [g;, 00), under
condition (HY).

Note that condition (Hf),* = A, B, implies a;; + ; > 0 for each i = 1,--- | n,

since u; is already assumed positive. Wewdefine, for i = 1,--- | n,

fi(€) =g+ o B gi(6) + ki

fi€) = =€+ + Pii)gi(€) + ki, (4.11)
where
ko= Z pi(leusl + 1Bil) + Li
=1
keo= = Y pillagl +18;5) + L
=L
It follows that f;(z;) < Fi(x) < fi(z;), for all x = (21,++ ,2,) and i = 1,--- ,n, since

u; < g; < v, for all j, in each class of activation functions.
We consider the second parameter condition which is used to establish existence

of multiple equilibria for Eq (1.1) :
(Hy) : fi(ps) <0, fi(@)>0,i=1,--- n.

The configuration that motivates (Hy) is depicted in Figure 4.3 and 4.4. Under as-
sumptions (H}) and (Hsy), * = A, B, there exist points a;, b;, & with a; < b; < & such
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that fl(dz) = ﬁ(i)z) = ﬁ(éz) = 0 as well as points a;, b;, ¢ with a; < b; < ¢, such that
fila;) = fi(b;) = fi(¢;) = 0. Then, by applying the Brouwer’s fixed point theorem, we

could derive multiequilibria as following.

Theorem 4.3.2. There exist 3" equilibria for system (1.1) with activation functions

in class *, x = A, B, under conditions (H}) and (Hy).

Proof. We only prove the case of class A, i.e., under conditions (Hs!) and (Hy). The
equilibria of system (1.1) are zeros of Eq (4.9). According to the configurations in Fig-
ure 4.3 and 4.4, there are 3" disjoint closed regions in R”, namely, Q% = {(xy,--- ,z,) €

R™ | x; € Q" } with w = (wq, -+ ,wy), w; =17, “m” or “r”, where
2 = {(eRla<E<al,
OF = {LeR[b<€<b,

2 (1))

Herein, “I”, “m”, “r” mean respectively “left”, “middle” and “right”. Let Q% be one

of these regions. For any given'X ={(&z=rrsip) €.QV, we solve for x; in
hi(z:) = — i + (i + Ba) gi(w) + Z (aij + Bij)gi(%;) + 1; = 0, (4.13)
J=1j#i

i=1,---,n. Note that h; is a vertical shift of f; or f;, due to Eq (4.11). Accordingly,
one can always find three solutions to Eq (4.13) and each of them lies in one of the

regions in Eq (4.12), for each i. We define a mapping Hy, : Q% — QY by

Hw(i) =X= <£17 T 7In)7

where z; is the solution of Eq (4.13) lying in ;. The mapping Hy as defined is
continuous, since g; is continuous. It follows from the Brouwer’s fixed point theorem
that there exists one fixed point X = (Zy, -+ ,Z,) of Hy, in @V, which is also a zero
of Fin Eq (4.9). Consequently, there exist 3" equilibria for system (1.1) and each of

them lies in one of the 3" regions 2%. This completes the proof. [
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Figure 4.3: (a) The graph of activation function g; in class A, (b) Configurations of
functions f; and f;.
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(a) (b)

fi fi
fi f i
i & Di qi ¢

N Y/
Figure 4.4: (a) The graphs of f; and f; induced from the activation function of class
B. (b) The graphs of f; and f; induced from the standard activation function .

4.4 Stability of Equilibria and Basins of Attraction

In this section, we first establish some positively invariant sets for system (1.1) and
investigate stability of the equilibrium in each invariant set. As a result, we also obtain
the basin of attraction for each of the asymptotically stable equilibrium.

We consider the following: 2" subsets of C({-7,0],R"). Let w = (wy, -+, wy)

with w; = “1” or “r”, and set
A" = {p= (01, , pn) T EMMERDI= 4| o, € AL if w; = 17}, (4.14)
where
Al = {g; €C(|-7,0,R) | pi(0) < b; for all § € [—7,0]},
AN = {p; €C([-7,0],R) | ;(8) > b; for all # € [—7,0]}.

Theorem 4.4.1. Assume that (H}), (Hy), * = A, B, and G; > 0,9 = 1,--- ,n, then
each AV is positively invariant under the solution flow generated by system (1.1) with

activation functions in class *.

Proof. We only prove the A case. Let A™ be a subset defined in (4.14). Consider
any initial condition ¢ = (¢1,--- ,¢,) € A¥, there exists a sufficiently small constant
g0 > 0 such that ¢;(0) > b; + & for all § € [—7,0], if w; =*“r”, and ¢;(#) < b; — &, for
all § € [—7,0], if w; =“I”. We claim that the solution x(t; ¢) remains in A% for all
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t > 0. If this is not true, there exists a component of x(t; ¢) which is the first one (or
one of the first ones) decreasing across the value bi + £o or increasing across the value
b; —&p; 1.e., there exists some i € {1,--- ,n} and t; > 0 such that either x;(t;) = b+ <o,
(dz;/dt)(t1) <0, and x;(t) > b;+eo for —7 < t < t; or zi(t) = Bi—eo, (dz;/dt)(t1) > 0
and x;(t) < b; — g9 for —7 < t < t,. For the first case, we derive from Eq (1.1) that

d(L’Z' v -
7 (t1) = — pilbi +e0) + @igi(bi + o) + Biigi(zi(t1 — 735))
+ iigi (i) + Y Bygi(wi(t — 7)) + L < 0. (4.15)
j=1,j#i J=Lj#i

On the other hand,

—/M(Bi +¢eo) + aiigi<6i +e0) + Biigi(zi(t1 — 735))

+ Y aggi(mi(t) + Y Bugila(th — 7)) + I
J=1,j#i j=1,ji
n

> —pi(bi + 20) + (s FBi) gs (b +80) — D pilla| + [8y]) + I
j=Li#i

= fi(b; +¢£9) > 0, (4.16)
due to (Hy), Bi; > 0, |g;(-)| < pjsandgi(@iti=7:))> g:(b;i+<o), from the monotonicity
of g; and the definition of ¢;. This yields a contradiction to Eq (4.15). Hence, z;(t) >
b;+¢eo for all t > 0. Similar arguments can be employed to show that z;(t) < ZA)Z — &y, for
all t > 0 for the situation that z;(t;) = b; — eo and (dx;/dt)(t;) > 0. Therefore, A% is
positively invariant under the flow generated by system (1.1). The proof is completed.
O

Next, we consider the following criterion concerning stability of the equilibria for
classes A and B. Let 1); be real numbers satisfying v; > n; > max{g}(§) | £ = ¢;, a,}

for j =1,--- ,n. Consider

(Hs) : Mz'>Z77j(|04z’j\+|ﬂij’),i=1>"' 2

Jj=1

For activation functions g;(-) in classes A, we define d; and d; as
d; = min{&|g;(¢) = n;}, d; = max{¢|g;(€) = n;}. (4.17)
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Then d; > aj, d; < ¢;. For the activation functions g; in class B, §; in (4.7), and g in

Eq (4.8), we define, respectively,

d; =pj, dj=q; dj=pj, dj=q; dj=-1,d; =1 (4.18)

We consider the following 2" subsets of C([—7,0],R"). Let w = (wy,--- ,w,) with

(130}

w; = “1I” or “r”, and set
AV ={p= (o1, ,0n) | i € ALif w; = 1", @; € AT if w; = 07}, (4.19)
where

Ai = {901' € C([_T’ O]>R> ’ 901((9) < C_iz‘a Ve [_T7 0]}7
A = {sz’ € C([_Ta O]7R> | 801(9) > 32'7 Ve [_T’ 0]}

(3

In the following, we will derive that, eaich ofrthese 2™ subsets A% of C(|—7,0],R") is a
basin of attraction for the respeetive equilibriunt.and justify that these 2" equilibria

are exponentially stable.

Theorem 4.4.2. Under conditions (H{");:1(Hz), (Hs), and B; > 0,i = 1,--- ,n, there
exist 2™ exponentially stable equilibria.for system*(1.1) with activation functions of class

A. Same assertion holds for activation functions of class B, under conditions (H%),
(Ha).

Proof. We only prove the case of class A. Let AW be a subset defined in (4.19)
and X be an equilibrium lying in AY. For each ¢« = 1,--- ,n, we consider the single-
variable function Gy(¢) = p; — ¢ — Y27y mylev;| = Y27 141 6i5le™. Then, (Hz) implies
Gi(0) > 0, and there exists a constant A > 0 such that G;(\) > 0, foralli=1,--- n,
due to continuity of G;. Let x(t) = x(¢; ¢) be the solution to system (1.1) with initial
condition ¢ € A¥. With translation y(¢) = x(¢) — X, system (1.1) becomes

dy;it) = —piyi(t) + Y ouglg;(a (1) — g;(F)] + Z Bijlgj(x;(t — 7i3)) — g;(x;)], (4.20)

j=1
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where y = (y1,- -+ ,¥n). Now, consider functions z;(-) defined by z;(t) = e*|y;(t)|, i =
Lo+ n. Let 6 > 1 and let K = max;<i<n{Supge(_, g |7i(0) — Z:[} > 0. It follows that
zi(t) < K¢, fort € [-7,0] and i = 1,--- ,n. We shall justify that

zi(t) < K¢, forallt >0, i=1,--- ,n. (4.21)

Suppose Eq (4.21) does not hold, then thereisa k € {1,--- ;n} and at; > 0 for the first
time such that z;(t) < K¢, t € [-7,t1], i = 1,-+- ,n, i # k,z,(t) < K6, t € [-7,11),
and z(t1) = Ko, with Z¢(t;) > 0. Note that |yx(t)| and zx(t) are differentiable at
t = ty, since zx(t1) = K > 0 implies yx(t1) # 0. From Eq (4.20), we compute that

d n n
219l < —plyn(t2)] + D o g (€)ui (O] + D 1Bkig () (b — 7)),

j=1 j=1

for some &; between z;(t1) and z; as well as ¢; between z;(t; — 74;) and z;. Hence,

de(tl)
dt
< A yi(t)] + e [— il gt D lagh(§9v (0] + D 1Bk (s)ys(tr — )]
j=1 j=1
= Az(ty) — meze(ty) + Y |oghg}(65) 2 (00 4D 1Brilg) () ™ 25t — 7ij)
P =1
< = (e = Na(t) + D lowslnizi(t) + > [Brglne*™ [9 sup ]ZJ(Q)]-
j=1 j=1 Elt1—7,t1

Herein, the positive invariance property of A¥ can be verified using the same treatment
as the proof of Theorem 4.4.1, under condition (3; > 0,7 = 1,--- ,n, for activation

functions in class A (and for B). Due to Gi(A) > 0, we obtain a contradiction that

dz(t - Y j
]Zlif ) < (= A=Yyl = milBile*™ } K6 < 0.
P =1

0<

Hence assertion (4.21) holds and z;(t) < K for all t > 0, ¢ = 1,--- ,n, by taking
0 — 1*. We thus obtain |z;(t) — Z;| < e max<j<n{suppe|_, g [2;(6) — T,]}, for t > 0
and ¢ = 1,--- ,n. Therefore, x(t) converges to X exponentially. This completes the

proof. [
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In the above theorem, we have imposed a restriction: (; > 0,7 = 1,--- ., n
(positive self-feedback delays) for the cases of activation functions A, B. The situation
is different for the activation functions in class B’. In fact, since the slopes v; =
(v; — u;)/(g; — p;) in the middle parts of the activation functions in B’ are fixed, there
can not exist parameters ji;, a;;, 3i;, and 7; satisfying both (Hz) and (H¥'). Indeed, a
contradiction arises in p; > VZ-(Z;; loij| + |Bi;]) versus vi(cu; + Bi;) > pi. Thus, the
definition of AW for the activation functions in B’ and the standard activation function
g are as indicated in (4.18) and every AY lies in the saturated parts corresponding to

the activation functions.

Corollary 4.4.3. Each of these 2™ subsets AV of C([—7,0],R"), defined in (4.19), is
a basin of attraction for the unique equilibrium lying in A, under the assumptions of

Theorem 3.

Corollary 4.4.4. Under condition aigd % Biz ez > 5 ;2i(loig| + 8i]) — L] > i, i =
L,--- ,n, there exist 2" exponentially stablesequilibria for Eq (1.1) with activation func-

tion g in (4.8).

Proof. The condition yields 4.10; and eondition (Hs) with p; = —1 and ¢; = 1 for all

i =1,---,n. Hence, the assertion follows-from Theorem 4.4.2. []

Remark. (i) Theorems 4.4.2 indicates that there exists an unique equilibrium in
each of the 2" regions AV, w = (wy,wsq, -+ ,wy,), w; = “I” or “r”  under respective
conditions.

(ii) There exists a globally attracting set for system (1.1), according to [35]. Therefore,
it can be concluded that every solution of (1.1) is bounded in forward time.

(iii) In [56], (1.1) with g; =1, ¢ = 1,--- ,n, and standard activation function (4.8) is

investigated. It was proved therein that, under condition

Qi — Z |OZZJ|—Z|BZJ|—|]Z|>]_, ’L:]., , T, (422)
j=1

=1
there exist exactly 2" isolated locally exponential stable equilibria. It is obvious that

our condition in Corollary 4.4.4. is weaker than (4.22). In addition, it was shown that
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the set {x | x = (21, - ,2,), ¥; < —1 or x; > 1} is positively invariant under the
flow induced by (1.1). Our Theorem 4.4.1. has exploited larger positively invariant
set A¥ under the flow induced by (1.1). The computations in deriving the results in
[56] heavily depends on the saturation properties of the output functions. Restated, as
xj(t — 7;) lies in {§ < —1} or {& > 1}, the output g(x;(t — 7;;)) is either —1 or 1, and
thus the delay in the equation (1.1) does not have any actual effect in these regions.
The numerical simulations therein are thus dealing with ordinary differential equations
basically. As mentioned in Section 4.2, the transition from the linear regime to the
saturated regime in the standard output function is smooth in practical situation. Our
theory is based on a geometrical observation and has been established to take into
account these practical considerations.

(iv) It will be justified in Section 4.5 that the basins of attractions for the equilibrium
can be extended from AY to A%. Moreover, the solution lying entirely in A converges
exponentially to the equilibrium in-A"Y, whereas the convergence for the solutions lying
entirely in A% may not have exponential rates.

(v) Consider (1.1) with periodic input, i.e:I; = 1;(t) = L;(t + T) for all t > 0, for
some 1" > 0. It could be established that there exist 2" exponentially stable T-period
solutions for the system with aétivation functions of class *, under conditions (HY),

(Hy), (Hs), * = A, B and ; > 0,7 =1, n, respectively.

The result in Theorem 4.4.2 confirms the exponential stability of 2" equilibria.
Other criterion for concluding exponential stability of the equilibria can be derived
through different treatments. The further result concerns different parameters where
the previous criterion could not apply. Herein we also consider the following criterion

concerning exponential stability of the equilibria.

n

(Hy) : 3 m > max{gi(§) | { = ¢, a;} such that p; > n; Z(|aji| + 1B5il)

j=1
foralle=1,2,--- ,n.

Let D, denote the right-hand derivative of a function.
Lemma 4.4.5. Let u(t) = (uq(t), ua(t), -+ ,u,(t)) and u(t) = (a1 (t), ao(t), -, Un(t))
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be continuously differentiable functions on ¢ <t < d and both satisfy
Ui(t) = —pyi(t) + Fi(ye), i =1,2,--- | n,

where F; : C([—7,0],R") — R is continuously differentiable and y = (y1,- - ,Yn).
Then D,|u(t) — a(t)| exists on ¢ <t < d and

Dy lui(t) — w(t)| < —pilui(t) — a;(t)| + [Fi(u) — Fi(ag)].

Proof. Via a similar argument as Lemma 1.6.1 in [23], D, |u;(t) — @;(t)| exists and

D, |u;(t) — a;(t)]
lim |ui(t) — ;i (t) + h[—paui(t) + Fi(u(t)) + ity (t) — Fy(a(?))]] — |ui(t) — a,(t)|
h—OF A .

Hence, we have

Dr|ui(t) - az(t)’

o iy [ ) [0 = O ARTE(87) — Fi(@)]] — [ui(t) — @ ()]

~ h—0+t ‘ h

_ g )l @) a1+ R Ew) — F(@y)]| — |w() — @)
h—0+t h

= —ului(t) — a; ()| + |Fi(wg) — Fi(ay

~—

The assertion is justified. [J

Theorem 4.4.6. Assume that conditions (H{'), (Hy), and (Hy) hold and 3; > 0, then
there exist 2™ exponentially stable equilibria for DRNN (1.1) with activation functions
of class A.

Proof. Consider an equilibrium X = (%1, Za, -+ ,T,) € AV, for some w = (wq, wo, - -+, wy,),

(1))

with w; = “1” or “r”. For a fixed i, we consider the single-variable continuous function

L;(+), defined by
Li(¢) = pi — ¢ — s Z |ovi| — mz |B;:leSi
Jj=1 j=1
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Then, L;(0) > 0 from (Hj). Moreover, there exists a constant A\ > 0 such that L;(\) >
0, for all i = 1,2,--- ,n, due to continuity of L;. Let x(¢) = x(t; ) be the solution to
(1.1) with initial condition ¢ € AW. From (1.1) and Lemma 4.4.5, we obtain

Di|zi(t) — @i < —palwi(t) — Zi] ZHJ‘O‘ZJH% ;]
+ Z%’Wij“xj(t — Tij) — Zjl, (4.23)
j=1
for all ¢ > 0. Define functions

zi(t) = eMai(t) — 7|, t € [-7,00), i =1,2,--- ,n. (4.24)

Then, by (4.23) and (4.24) we have

Dy zi(t) < — (i ) + ZTM%\ZJ t) + iﬁﬂﬁiﬂeh”zj(t — Tij); (4.25)
j=1
forallt >0,72=1,2,--- ,n. Next, we define.a Lyapunov functional V' as follows:
Vi -3 (A ( i Zm e [ zj<s>ds> -
i=1 —Tij

Then, by (4.25) and L;(A) > 0, we derive

DY) < 3~ Va0 + Zwm + meww (t-1)

i=1

T Z 1318351 25(t) — Z 03 |Bij1e™ 25 (t — 755)]

= > [ +Zml%l% +Zm|ﬁule””zj()]

i=1 j=1

= —Z[Ni—A—ﬁiZMjA—ﬁiZIﬁﬂ\eW]zz(t)
i=1 j=1 j=1

< 0, (4.26)
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for all t > 0. Since for given initial condition ¢ € C([—7,0],R"™), V(¢) is continuous in

t, (4.26) implies V (t) < V(0) for all t > 0. Consequently, we obtain

Zzi(t) < VsV = ZKZi(O) +Z77jwij‘€/\nj/_ %(s)ds]
= D La(O) +m ) 15l / (s)ds],

for all ¢ > 0. From (4.24), we derive

n

S lai(t) = < e MY 1+ m Y 1Bule’ ) ( sup |ai(s) — z).
i=1 j=1

i—1 s€[—1,0]

Therefore, x(t) converges to X exponentially. This completes the proof. [

Remark. (i) Theorem 4.4.6 indicates that there exists an unique equilibrium in each
of the 2" regions AW, w = (wy, wa,ax+w,)fw; = “17 or “r”, under respective condi-
tions.

(ii) The basin of the equilibrium ineach A% could be proved to be as large as the posi-
tively invariant region by Theorem 4.4:6; although sve are uncertain of the exponential

stability.

4.5 Numerical Illustrations

In this section, two two-dimensional examples are presented to illustrate our theory.
In particular, Example 4.5.2 demonstrates the multistability of system (1.1) with the
standard activation function (4.8). This example adopts parameters satisfying the

criteria in our theory but not the one in [56].

Example 4.5.1. Consider the following system with activation functions g;(§) =

g2(&) = tanh(&), which belongs to class A:

dxét(t) = —xy(t) +4g1(21(1)) + g2(22(t)) + 3g1(z1(t — 10)) + ga(x2(t — 10))
dx;t(t) = —3wa(t) + 291 (21 (1)) + Tga(22(t)) + g1 (21 (t — 10)) + 5ga(w2(t — 10)).
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Direct computation gives fl(:cl) = —x1+7g(x1)+2, fi(x1) = —24 +7g(:c1)—2,f2(x2) =
—3xy + 12g(xy) + 3, faxs) = =329 4+ 12g(22) — 3. Herein, the parameters satisfy our

conditions in Theorem 4.4.2:

Condition (H{Y) : 0 < pu1/(cy; + Bi1) = 1/7 < 1,0 < pip/(cvgg + Boz) = 3/12 < 1.
Condition (Hp) :  fi(p1) = —2.8524 < 0, fi(q1) = 2.8524 > 0,

falps) = —3.4414 < 0, fo(q2) = 3.4414 > 0.
Condition (H3) : py = 1> 0.98 = (|ay| + |Bu])m + (|aia] + |Biz])ne,

pr2 =3 > 1.98 = (|az| + [Bar])m + (lovzz| + [B22])n2,

where 7; = 0.1 and 7o = 0.14 are chosen in (H3) and the other related numbers are

listed in Table 4.1.

a1 = —4.9994 d; =—1.8184 p; =—1.6283 by =-0.3491 G=1.6283 d; =1.8184 & =9.0000

a; = —9.0000 b1=0.3491 ¢1=4.9993
az = —2.9793 d, = —1.6392 p2 = —k3170 by =—-0:3518 G2=1.3170 dy = 1.6392  2=4.9996
az = —4.9996 b2=0:3518 €2=2.9793

Table 4.1: Local-extreme points andzeros of fl, fi, fg, fo.

The dynamics of this system are illustrated in Figure 4.5, where evolutions of
72 initial conditions have been tracked. The constant initial conditions are plotted in
red color, and the time-dependent initial conditions are plotted in purple. There are
four exponentially stable equilibria in the system, as confirmed by our theory. The
simulation demonstrates convergence to these four equilibria from initial functions ¢

lying in the respective basin for the equilibrium.

Example 4.5.2. Consider the following system with the standard activation function

(4.8):
dl‘1<t)
10— (1) + 2000 (0) + galaalt)) + 391 (21— 5)) + galalt — 5)
WO a(t) — g (@1 (6) + Agaa(8) + 2011 (¢ — 5)) + galaalt — 5)) + 1,
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Figure 4.5: Hlustration.for thesdynamics in Example 4.5.1.

where 1(£) = g2(€) = g(&) = H|&§+ 1] = [&¢= 1]). The parameters satisfy the criterion
in Corollary 4.4.4:

agr + O — (JenslBzl) — |1 =3 > 1 = 1,
oo + Bao — (Jaor| + | F21]) — [Io] =5 > 1 = po.

Therefore, there exist 2" exponentially stable equilibria. The parameters herein do not
satisfy the criterion (4.22) for the theory in [56]: a1 — |aue| — (|Bui] + |Brz]) — |I1] =
—3 < 1 = py. The dynamic of the system is illustrated in Figure 4.6.

4.6 Extending Basins of Attraction

In the previous section, the basins of attraction of stationary solutions for DRNN (1.1)
were derived from a criteria related to the slope of the activation functions. The ranges
of the basins depend on the parameters therein. As mentioned in the previous section,

the basin of attraction of each equilibrium confirmed in Theorem 4.4.2 and 4.4.6 is not
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Figure 4.6: Illustration for the dynamics in Example 4.5.2 (p; = —1, ¢; = 1).

as large as the positive invariant regions. "This section is dedicated to extending basins
of attraction of 2" stable stationary'solutions to their confirmed positively invariant

regions.

Theorem 4.6.1. Suppose that (H{'), (Hy), (Hs) hold and B3; > 0 for all i, then each
A¥ is the basin of the equilibrium therein of system (1.1) with activation functions of

classes A. Same assertion holds for activation functions of class B, under conditions

(H{S)’ (H2)

Proof. We only prove the case of class A. For a fixed w, let ¢ € A¥ be an initial
condition. Consider any neuron, say, the i-th one, in the case w; = “r” (the argument
also works in the case w; = “1”). By the result in Theorem 4.4.2, it is sufficient to
prove it for b; < minge(—, ¢i(0) < d;. Since ¢;(-) is a continuous function, there exists

a positive constant 7, such that ¢;(6) > b; +n, for all § € [—7,0]. Define
t, = max{t\qﬁl(t) = Iv)l + 1, t e [—T, 0]}
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We claim that the state z; with initial condition ¢ will run into A} in finite time and
justify it in four steps.

Claim 1: If t; = 0, then dd? (t1) > 0.

Since ; > 0 and the activation function g; is increasing, @-igi(éi +m) < Bugi(xi(ty —
7;1)). Hence,

dzx i
dt

(t1) = —pixi(t) + augi(zi(th)) + Biugi(zi(ts — 7))

+ Z ijgi(zi(t)) + Z Bijgi(@;(ty — 735)) + I
j=1,j#i j=1,j#i

> —pi(b; +m) + aiigi(bi +m) + Biigi(bi +m) — Z pi(laij + Bi]) + I
j=l#i
> 0.

Claim 2: There does not exist any t > t; such that z;(t) = b; 4 7.
If there exists the first time t, >, ¢} such thatrz;(t;) = b; + 11, we have %(h) < 0.
This contradicts the fact that

) il + ) 0.

The first inequality could be proved as previous'step. Hence, z;(t) > b; + 1, for all
t> 1.

Claim 3: There exists a positive constant 7y, depends on ¢, such that z;(t) >
bi 4+ m + 1o, for all t > 7.
Since the state z;(t) is a continuous function, the minimum on the compact set [r, 27]
exists. By Claim 2, the minimum is greater than b; +7;. We denote

s 1= ( min xi(t)) — (b +m).-

te(r,27]

Then 7 is positive. As in Claim 2, we could show that x;(t) > bi+n1 4+, for all t > 7.
Claim 4: There exists a finite 7; > 0 such that x;(t) > d; for all t > T;.

Suppose there exists a finite 7; > 0 such that z;(¢t) > d; for T, — 7 < t < T,. Because

fi(d;) > 0, we could obtain z;(t) > d; for all t > T} by the argument in Claim 1 and 2.

On the other hand, suppose there does not exist any finite 7; > 0 such that z;(¢) > d
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for T, — 7 < t < T;. Since z;(t) > bi +m +m, for 7 < t < 27, there exists a finite
constant 75 > 0, justified as in Claim 3, such that z;(t) > b; + n1 + 12 + 13 for all
t > 37. Under the hypotheses of nonexistence of finite 7; > 0 with x;(t) > d; for all

T, — 7 <t < T, there exists a sequence of positive constants {7}, such that

N+1
zi(t) > b+ Z n, for all ¢ > (2N — 1),
k=1
N
zi(t) > b+ an, for all t > (2N — 2)7. (4.27)
k=1
Suppose that
k=1
Then since b; < M; < d; we have
Fi(My) = —piM; + (i + B)giMid= > pi(Jis| + [85]) + L > 0.
LA

By the continuity of activation functions g;, there exists positive constant pg such that

n

—pibr + iigi(&r) gl ¥=—  pilloi| +185]) + I > 0, (4.29)

=1

whenever &, & € [M; — po, M; + pol- Forsthis pg, there exists integer Ny such that

No
61—1—27716 > M; — po.
k=1
Then, for t > (2N — 3)7,
No
zi(t) > b+ me > M — po
k=1

When t > (2Ny — 2)7 and x;(t) € [M; — po, M,

dl’i
(0 = () + ongi(wi(t) + Bagilwi(t — 7)) = D pille| + 1850 + 1
=1
> —pxi(t) + cugi(wi(t)) + Bugi(Mi — po) — Z pilaig| +1651) + L
=1,

= Ky>0.
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The last inequality is due to (4.29). Hence, there exists a finite time 7j such that
z;(t) > M; for all t > Ty, contradicting with (4.28). Thus, we have b; + S e > di,
then there exists integer N; such that b; + chvzl ni > d;. And then we conclude that
for all t > (2NV; — 3)1 =: T},

N;
x;(t) > b; + an > d;.
k=1

It means that the state z; with initial condition ¢; runs into A} in finite time 7;.

Next, taking 7T := maxj<;<,T;, we derive that the solution x(0,¢) runs into
the region AY in finite time 7. Therefore, by Theorem 4.4.2, the solution x(0, )
approaches the equilibrium therein. The proof is completed. [

The estimates in confirming that the size of basins of attraction for the equilibria
are at least as large as the established positively invariant sets are independent to
the ones for deriving exponential stability for'the equilibria. Although the confirmed
attracting domains are extended, the rates of. convergence to the equilibrium for the
solutions lying in the larger and smaller regions may-be different. In fact, our derivation
only indicates convergence to the equilibrium-for the solutions starting from the larger
regions, while convergence to the equilibrium for the solutions starting from the smaller

regions is of exponential rates.

4.7 Numerical Illustrations

Herein, we present a two-dimensional systems to illustrate our theory for system (1.1).
Example 4.7.1 demonstrates the coincidence of positively invariant regions and basins

of traction which are confirmed in this work.

Example 4.7.1. Consider the following system with activation functions g;(§) =

g2(&) = tanh(¢), which belongs to class A:

dxallt(t) = —221(t) + 3g1(x1(t)) + g2(wa(t)) + 3g1(z1(t — 10)) + go(z2(t — 10))
dx;t(t) = —3wa(t) + 291 (21 (1)) + 6g2(2(t)) + g1 (21 (t — 10)) + 6ga(w2(t — 10)).
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A computation gives

A

filzr) = =221 + 6g(x1) + 2, fi(z1) = =231 + 6g(21) — 2,

fg(fbg) = —3ZL’Q -+ 129(1’2) + 37 fg(l’g) = —31’2 + 129(1‘2) - 3.

Herein, the parameters satisfy our conditions in Theorem 3:

Condition (Hy) : 0 < py/(cq1 + F11) = 1/3 < 1,0 < pa/ (e + Fa2) = 1/4 < 1.
Condition (H,) : f1(p1) = —0.6065 < 0, f1(G1) = 0.6065 > 0,

fo(Pa) = —3.4414 < 0, fo(qp) = 3.4414 > 0.
Condition (Hy) : g1 =2 > 1.6 = (Jayi| + |8u)m + (Jeara| + |Biz|)ne,

po =3 > 2.7 = (|aa1| + [Bar|)n + (|oaz| + |Baz])m2,

where 71 = 0.2 and 7, = 0.18 are chosen and the other related numbers are listed

in Table 1. The dynamics of this system and.the evolutions of state variables xy,

ap = —1.8573 p1 = —1.1462 by =—0.5903 q1=1.1462 ¢1=3.9980

a; = —3.9980 b1=0.5903 ¢1=1.8573
ag = —2.9794 Py = —1.31705 b3 ==0.3518 G2=1.3170 ¢2=4.9996
as = —4.9996 by=0.3518 C2=2.9794

Table 4.2: Local extreme points and zeros of fl, fl, fQ, fg.

xo are illustrated in Figure 4.7-4.9. The constant initial conditions are plotted in res
color, and the time-dependent initial conditions are plotted in purple. The simulation
demonstrates that the basins of attraction of each equilibrium is at least as large as

the positively invariant regions.
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Figure 4.8: Evolution of state variable x;(t) in Example 4.7.1.
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Figure 4.9: Evolution of state variable xo(t) in Example 4.7.1.

49



Chapter 5

Monotonicity, Convergence and
Quasiconvergence in Delayed
Neural Networks

Global convergence had been investigated in delayed Hopfield neural network models
by employing the theory of monotene dynamical systems [52]. It was proved that under
some additional conditions all’solutions® converge to the unique equilibrium provided
that the negative delay feedback time is sufficiently small. This result was based on the
globally convergent criterion in Theorem 3:4.1." Contrasting with single equilibrium, the
existence of multiple equilibria has been.deelared in the previous chapter. The structure
of global dynamics is therefore the next issue. In the remainder of this chapter, we
will discuss the monotonicity and quasiconvergence in general delayed neural networks

with multiple equilibria.

5.1 Quasiconvergence

Generic convergence was proposed in a class of networks with interconnection ma-
trix satisfying “sign symmetry” and “irreducibility” properties and without delays in
[26, 28]. Therein, the convergence is guaranteed for almost every trajectory in the
term of Lebesgue measure zero. Relatively, in this section, we discuss the monotone
dynamics for delayed system (1.1) by the theory of Smith and Thieme [48] and confirm

that quasiconvergence is generic for the networks through justifying the strongly order
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preserving property. Explicitly, the system (1.1) possesses multiple equilibria and the
set of quasiconvergent points is more than dense in the phase space C. Let us first

recall the following definition.

Definition 5.1.1. Let £ be the set of all equilibrium points. We say that ¢ € C is a
quasiconvergent point, if its w-limit set w(¢) C E. The set of such points is denoted by
Q. A point ¢ € C is called a convergent point, if w(¢) consists of a single point of £.

Note that if all equilibria are isolated, then quasiconvergence yields convergence
for continuous-time dynamical systems. In order to apply the theory of monotone
dynamical systems, we need the following notations and definitions. Consider the

standard componentwise partial order “ <7 and inequality “<” on R™:
x<y & x; <y, forall i
x<(K)y & x<yandux; <y for some (all) i.

Then the partial order “ <7, called the standard order, and the inequality “ < ” on
C = C(|—,0],R™) are defined by

o<1 S o@)y<P(@) for @ e [—T,0],
o<t S9p< P and gFEY,
Py & o(0) L Y() for all § € [—T,0].

Definition 5.1.2. (i) A semiflow ® is said to be monotone provided ®,(¢) < Dy()
whenever ¢ < ¥ and t > 0. (i) ® is called strongly order preserving (SOP), if it is
monotone and whenever ¢ < 1, there exist open subsets U,V of C with ¢ € U and
eV and ty > 0 such that O, (U) < Oy (V).

It has been shown in [47] that if the phase space can be approximated from below
or above, then Int(Q is dense in C for a SOP system, under a compactness assumption.

The conditions in this theorem can all be justified in our situations herein.

Trivially, the one-dimensional delayed equation

dx

== —az(t) + bg(z(t — 7)), a >0, b <0,
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fails to be monotone under the standard ordering in C [47], so do the higher dimensional
cases. We shall adopt a special order introduced in [48] to conclude the monotone
behavior for system (1.1). Let M be an n X n essentially nonnegative matrix, which

means that M + AI is entrywise nonnegative for all sufficiently large A. Define
Ky :={ € Clp > 0 and e ™Mu(t) > e *My(s), for —7 < s <t <0} (5.1)

Then K, is a cone in the space C, that is, under addition and scalar multiplication
by nonnegative scalars, K, is closed in C and Ky N (—Ky;) = (. Moreover, K, is a
normal cone, which means that every order interval is a bounded set in C [1]. According

to [48], Ky induces a partial order on C.

Definition 5.1.3. If ¢, € C, we say ¢ <p; ¥ whenever v — ¢ € Ky. We write
¢ <ur ¥ to indicate that ¢ <p; ¥ and ¢ # 1.

Theorem 5.1.4. [48] Consider thd delayed differential equation

d);—it) = F(x:), (5.2)
where F € C'(C,R"™). Then the'semiflow @ generated by (5.2) is SOP on C under
order “<,;”7, if the following conditions hold :

(i) dF(p)1p — M1p(0) > 0 for every ¢ € C and every ¥ € Ky with ¢ > 0,

(i) If ¢ € C, ¥ € Ky and J is a (nonempty) proper subset of {1,--- ,n} such that

;>0 for j € J and y(0) =0 for k ¢ J, then (dF(¢)y); > 0, for some i & J.

Definition 5.1.5. An n x n matriv A = [A;;] is called irreducible if whenever the set
{1,2,--- ,n} is expressed as the union of two disjoint proper subsets S, S’, then for

every © € S there exists j, k € S" such that A;; # 0, Ay # 0.

Remark. This means that the linear map A : R” — R" does not map into itself any
nonzero proper linear subspace spanned by a subset of the standard basis. Equivalently,
the directed graph with vertices 1,2,--- ,n and directed edges (i,7) for A;; # 0, is
connected by directed paths.
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Herein, we set the n x n matrix M = diag(—pu; — v1,-++ , —tn — V), where

v; > 0 will be chosen later. Indeed, the matrix M is essentially nonnegative. Let
Vi = maxeer ()
Proposition 5.1.6. Assume that one of the matrices A and B is irreducible, where
A = ay4], B=1[0], aij >0, Bi; >0 for all i # j, a; + By > 0 for all i, and the time
lags {7;} satisfy

i < 1/ (i + el Bl i), (5.3)

for all i with B;; < 0. Then the semiflow ® generated by the solutions of (1.1) is SOP

i the order <y,.

Proof. Recall the previous definition of F' defined from (1.1):
Fi(¢) = =i (0) + Zawg] O Z@]gj &i(—7ij)) + Ly i =1,

For any ¢ € C and ¥ € K, we¢ have

(dF(¢)1/J)'— (M (0));
= 1h(0 +Z%9] 950 1(0)+Zﬁi;’g}(%(—ﬁj))%(—ﬂj) (5.4)
> [(ne” T“““”’ +ﬁiigl((ﬁi(_ﬁi))]wi(_ni)+aiig£(¢i(0>>>wi(0>

+ Z ;g (;(0 Z Bi39;(5 (= 7)o (—=7i5), (5.5)

J=1,j#i j=1,ji

since 1;(0) > e ity (—7,), from 1 € Ky, and 9(0) > e *My(s), for all s €
[—7,0]. Here, we take v; > 0 satisfying v; = e|f;|v;. If Bi; < 0, then a;; > 0, and the
assumption 7 < 1/(si + e|ab) vields v; exp[—ria(pi + )] + Bagi(éi(—7a)) > 0. Thus
(dF(9)1)i—(M(0)); > 0, from (5.5). When 3;; > 0, (dF(¢));—(M1)(0)); > 0 follows
from v; + a;;7y; > 0 and (5.4). Next, we will prove that condition (ii) in Theorem 5.1.4
holds. For any ¢ € C and ¢ € K, let J be a (nonempty) proper subset of {1,--- ,n}
such that ¢; > 0 for j € J and ¢,(0) = 0 for k ¢ J. Then v;(—7;) = 0 for each i ¢ J,
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due to ¥;(—7;) < exp[d;7;]1;(0). Since one of the matrices A and B is irreducible,

there is some ¢ ¢ J such that

(@F(@))i = —niti(0) + > gy (65(0)05(0) + 3 Bigg(65(=7ig) 1oy (=)

= > aygi(@i(0)e(0)+ Y Bugi (i (—7i))i(—7i)

J=1j#i j=1,j#i
= > ayg;(6;(0)0;(0) + > Biyg;(¢5(—7i)) s (=7is) > 0.
JjeJ jeJ

Hence, it follows from Theorem 5.1.4 that the semiflow ® generated by the solutions

of (1.1) is SOP under order “<,,”. O

Notably, condition (H;) yields ay; + (3 > 0 for all i. Thus, under conditions
(Hy) and (Hs), and the assumptions in Proposition 1, there are 3" equilibria for (1.1)
and int@ is dense in C. In fact,«the assumptions of irreducibility of A, B and non-
inhibitory interactions, a;j, B;; 2 0 forallé # g aremnot necessary. We will remove these

assumptions by using a decomposition approach in competitive-cooperative systems
(53, 12].

Theorem 5.1.7. Assume that (Hi) and (Hy) hold and the delay time {7;;} satisfy
(5.3). Then system (1.1) has 3" equilibria and int@ is dense in C.

Proof. Define matrices A* = [a}}], A~ = [a;;], BT = [b}] and B~ = [b;] by

ij ij]

ot - { +aii, forjizzi a“:{ ) 0, for]::z:
K aj; +s, forj#d, Y a;; + s, forj#i,
o= L e izl n={aat i

ij ) ) ij ) )

;; = —: s> 0 will be chosen

where o max{c;;, 0}, a;; = max{—ay;, 0}, similarly for 5}, 3

YR

54



latter. Since ay; = a;; — a;; and fi; = b; — by, (1.1) becomes

da:;it) = —pizi(t) + Z a;;-gj (z;(t)) — Z a;;g;(z;(t))
+ > b0t = 7ig)) = D b50(wi(t = 7ig)) + L (5.6)

i=1,---,n. Define y; = —x;, and set §;(¢) := —g;(—¢€), i =1,--- ,n. Then (5.6) is
embedded into the following system :

dxét(t) = —uwi(t) + Z a;“jgj (z;(t)) + Z a;3; (y;(1))

+ bt — 7))+ ) bygiy(t — 7)) + I
J=1

Jj=1

i = )+ Queei ) + 3 s (ui()

+Zb;jgj(xj(t_7ij)) + 3 b5yt — 7)) — I (5.7)

7=1
i =1,---,n. Note that each g also admits-the characteristics of g;. We define z(t)
and hi(§) by zi(t) = @i(t), zn+i(0) Fpgel@)iiand hi(§) = gi(€), hnti(§) = Gi(§), for

i=1,---,n. Then (5.7) can be written as

le(t . 2n . 2n ~ . _
o ) —fizi(t) + Y dshi(z() + Y bishy(z(t — 7)) + L, (5.8)
j=1 j=1
i=1,---,2n, where the 2n x 2n matrices A and B are defined by
~ AT A ~ = BT B~
A=lay = {A— A+}’ B =[b] == {B— B+}’

and fi;, I;, 7 are given by fi; = pi, finsi = pis L = Iy Inyi = =L, i = 1,-++ ,m
Tij = Tntij = Tintj = Tnvintj = Tijy 4,J =1,--+,2n.
Note that A, B are both irreducible and a;; > O,Z;ij > 0, for all i # j. System

(5.8) thus satisfies the assumptions other than a;; + B” > 0, for all 4, in Proposition
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1. It can be justified that under (H;) and (H) for system (1.1), conditions analo-
gous to (H;) and (Hs) hold for (5.8) so that there exist 3*" equilibria for (5.8). One
also observes that if x;(0) + y;(0) = 0, then z;(t) + y;(t) = 0 for all ¢ for solutions
(x1(t), -+ yxn(t), y1(t), - ,yn(t)) of (5.8). Restated, the dynamics of (5.8) on the in-
variant regions {z1 =y, -+ , T, = yn} are exactly the dynamics for (1.1). Thereafter,
under the assumption (H;) and (Hj), there exist 3™ equilibria for (1.1) and we could
choose s > 0 sufficiently small as in Proposition 5.1.6 so that, the semiflow ® generated
by the solutions of (5.8) is SOP. Therefore, IntQ is dense in C([—7, 0], R*") for system
(5.8), hence Int@ is dense in C([—7, 0], R™) for system (1.1),if 0 < 7;; < 1/(b; +e|Sii|vi),
fori=1,--- ,n. 0O

5.2 Numerical Illustrations

The parameters in Example 5.2.1 satisfyconditions (Hj),* = A, B, and (H,), but not
(Hs).

Example 5.2.1. Consider the following system with activation functions g;(§) =
g2(&) = tanh(€), which belongs:to class#;

dx;t(t) = —xy(t) + g1 (z1(t)) + 0.5ga(@s(t)) — 4g1 (1 (t — 711)) + 0.5g2(a(t — T12))
dac;t(?f) = —25(t) + 0.5g1(21(2)) + Tga(22(t)) + 0.5g1 (21 (t — T21)) — 4g2(@2(t — T22)).

Direct computation gives

1(z1) = —x1+Tg(21) + 2,
fi(z1) = —z1+ Tg(z1) — 2,
Ag(xg) = —3wy + 12g(xs) + 3,
fo(1y) = —3my+ 12g(z5) — 3.

Herein, the parameters satisfy condition (Hi'):

0 < p1/(o1 + Bi1) = pa/ (e + Ba2) = 1/3 < 1,
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and condition (H):

Filp) =—2.8524 <0,  fi(q)=2.8524 > 0,

A

fa(po) = —3.4414 <0,  folgy) = 3.4414 > 0.

The other related numbers are listed in Table 5.1.

a; = —1.8572 p1 = —1.1462 by = —0.5903 ¢1=1.1462 ¢1=3.9980

a; = —3.9980 b, =0.5903 ¢1=1.8573
ag = —1.8572 py = —1.1462 by = —0.5902 q2=1.1462 C2=3.9980
as = —3.9980 b,=0.5902 Co=1.8572

Table 5.1: Local extreme points and zeros of fl, fi, fg, fo.

Note that ¢'(£) is decreasing for £ > 0 and increasing for ¢ < 0. Condition (Hj)
does not hold since p; = 1 < (Jagaf+ 1)) g’ (@r)+ (|ara| + |Gi2])g'(a1) =~ 11 x 0.0929 +
1 x 0.0929 = 1.1148. We choose 711 =-0:08,7 = 10,79, = 10,79 = 0.08 to satisfy
Eq (5.3): 711 = T = 0.08 < /(1" +4e) =~ 0.08475: The dynamics of this system are

illustrated in Figure 5.1.

Remark. Figure 5.2 depicts the dynamics for the system with the same parameters
but with time lags 71 = 719 = T91 = T9o = 10, which do not satisfy criterion (5.3). It
appears that two of the four equilibria become unstable. The dynamics are apparently
different if we replace the activation function tanh(§) by the standard activation func-
tion g(¢) = 3(|€ + 1| — [€ — 1]). There still exist four stable equilibria, as illustrated in
Figure 5.3.
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Figure 5.1: Illustration for the dynamics in Example 5.2.1 with activation function
gl(f) = tanh(E) and T11 = 0.08,712"5 10, T21 = 10{7'22 = 0.08.
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Figure 5.2: Illustration for the dynamics in Example 5.2.1 with activation function
gl(g) = tcmh(f) and T11 = T12 = T91 = Tog = 10.
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Figure 5.3: Hlustration for the dynamics in Example 5.2.1 with the standard activation
function ¢;(§) =g(§) = %(!f + 1| — [ = 1]) and 797 = 712 = T21 = 29 = 10.
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