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摘    要 

 

本論文主要在於研究延遲型神經網路系統具有多平衡點時的動

態收斂性及多重穩定性。此篇論文首先討論了延遲型微分方程的基礎

理論及單調性動態系統之收斂性質，繼而研究高維度延遲型神經網路

系統中的多重穩定性和擬收斂性。我們在具有飽和或非飽和 S型活化

函數的延遲型神經系統中，藉由幾何方法設定參數條件以證明多平衡

點的存在性，並在擁有多平衡點的系統中建立正向不變區域以及穩定

性平衡點的吸引盆。當限制抑制性延遲回饋時間夠小時，可以更進一

步探討此系統的強保序性質，並得知一般解存有擬收斂性。因此、本

文在高維度延遲型神經網路系統中同時建立了多平衡點的存在性及

一般解的擬收斂性。我們也在文中描敘幾個數值模擬，以佐證所獲得

之理論。 

 

 

 

 

 i



Multistability and convergence in delayed neural networks 

 

Student : Chang-Yuan Cheng                         Advisor : Chih-Wen Shih 
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Abstract 

 

We are interested in convergence of dynamics for delayed equations with multiple 

equilibria as well as multistability in delayed recurrent neural networks. This 

dissertation begins from reviewing basic theory of delayed differential equations, 

convergence theory of monotone dynamical systems. The multistability and 

quasiconvergence for a general n-dimensional delayed neural networks are then 

investigated. We present the existence of  stable stationary solutions for the 

delayed neural networks with saturated and unsaturated sigmoidal activation functions. 

The theory is obtained through formulating parameter conditions based on a 

geometrical setting. Positively invariant regions for the flows generated by the system 

and the basins of attraction for these stationary solutions are also established. It is 

further confirmed that quasiconvergence is generic for the network through justifying 

the strongly order preserving property. The magnitude of delays is involved in the 

conditions which yield such an ordering property. Our theory on existence of multiple 

equilibria is then incorporated into this quasiconvergence for the system. A number of 

numerical simulations are presented to illustrate our theory. 
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Chapter 1

Introduction

This dissertation aims to contribute toward convergence of dynamics for delayed equa-

tions with multiple equilibria as well as multistability in delayed recurrent neural net-

works (DRNN). Multistability of a neural network is referred to coexistence of multiple

stable patterns such as equilibria or periodic orbits. In general, multistability is accom-

panied by coexistence with unstable or saddle states. Existence of many equilibria is a

necessary feature in the applications of neural networks to associative memory storage

or pattern recognition [14, 18, 29, 40]. Recently, further application potentials of multi-

stability have been found in decision making, digital selection or analogy amplification

[22]. “Quasiconvergence” for a system is referred to that every solution tends to the

set of stationary solutions, while “convergence” (or “complete stability”) means that

every solution tends to a single stationary solution, as time tends to infinity.

In general, constructing a Lyapunov function, if possible, and then applying the

LaSalle’s invariant principle is a typical methodology in concluding convergence of

dynamics for ordinary differential equations with multiple equilibria. For the case

of delayed differential equations, such a theory is still valid. However, it is more

difficult to apply the theory in plenty of realistic models. In fact, to the best of

our knowledge, there is no example with rigorous justification on the convergence of

dynamics in multi-dimensional delayed differential equations with multiple equilibria.

Recently, Pituk [42] studied the convergence to equilibria in general “scalar” functional

(delayed) differential equations by using monotone dynamics theory, and the results
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are applicable to some biological models. Therein, he gave a necessary and sufficient

condition for the convergence of all solutions in the case when a scalar functional

differential equation possesses at most two equilibria. Moreover, motivated by the

existence of a nonconstant periodic solution in a quasimonotone delayed differential

equation with three equilibria even in the case when all solutions are bounded [31],

Pituk also proposed stronger conditions to guarantee the convergence of all solutions

without restriction on the number of equilibria.

The convergence to multiple equilibria has been studied in the Hopfield neural

networks without delays (ordinary differential equation case) [29]. Such a convergence

was derived by constructing a Lyapunov function on the system, when the connecting

weights are symmetric, and then applying the LaSalle’s invariant principle. Similar

treatment has also been adopted to derive complete stability in cellular neural net-

works (CNN), even for the cases of saturated and standard output functions [36, 45].

In [19, 50, 51], the authors studied the cellular neural network with and without delays

and obtained the complete stability by using a scheme analogous to the Gauss-Seidel

method or M -matrix theory. However, each of these works contains some gaps and

rigorousness remains to be justified. Even in a single neural model with the standard

piecewise linearity, how the whole picture of dynamics depending on parameters has

not been pieced together [20]. Moreover, all the aforementioned results on complete

stability of the delayed models were rigidly restricted to the standard, piecewise lin-

ear, activation functions. Furthermore, convergence dynamics has not been declared

to coexist with multiple equilibria in multi-dimensional delayed neural network with

general nonlinear activation functions.

To be in possession of both comprehension in basic theory and applications for

practical models, this dissertation comprises two parts. The first one contains basic ex-

istence and uniqueness theory of delayed differential equations and convergence theory

of monotone dynamical systems which has been widely applied in studying mathe-

matical models in biology. The global convergence and quasiconvergence theory of a

monotone dynamical systems are addressed for further study of DRNN systems. The

second part contains global dissipativity, comparison of investigations on neural net-
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works with and without delays, and several dynamical results of the delayed recurrent

neural networks such as stability of multiple equilibria, basins of attraction and gua-

siconvergent dynamics. Moreover, monotonicity of the DRNN system is derived in a

special partial order, and thus generic quasiconvergence is certified.

The model equation we mainly consider in this presentation is

dxi(t)

dt
= −µixi(t) +

n∑
j=1

αijgj(xj(t)) +
n∑

j=1

βijgj(xj(t− τij)) + Ii, (1.1)

where i = 1, · · · , n; n corresponds to the number of neurons in the neural network

system, xi(t) describes the state of the ith neuron at time t, the constant µi > 0

denotes the rate with which the ith neuron will reset its potential to the resetting

state in isolation when disconnected from the network and external inputs. gj(·) is the

activation function and gj(xj(t)) denotes the output of the jth neuron at time t. The

constant 0 ≤ τij ≤ τ , τ := max1≤i,j≤n τij, corresponds to the transmission delay along

the axon and Ii stands for an independent bias current source. The constants αij, βij are

connection weights from jth neuron to ith neuron. The outputs of all neurons are sensed

by another synapse whose weighted sum
∑n

j=1 αijgj(xj(t)) and
∑n

j=1 βijgj(xj(t− τij))

contribute to determine the state of the ith neuron of the system. The outputs gj(xj(t))

and gj(xj(t − τ)) are generated by the dynamics of jth neuron, and fed back to all

neurons in this system, including itself. We refer (1.1) as a feedback system and call

αii, βii as self-feedback weights and αij, βij as nonself-feedback weights for i 6= j. When

all the activation functions are increasing, the positivity and negativity of αij mean

excitatory and inhibitory effect, respectively. Same interpretation applies to the delay

feedback weights βij. System (1.1) reduces to the classical and delayed Hopfield neural

networks [29, 37], as βij = 0 for all i, j, and αij = 0 for all i, j, respectively. It also

represents the cellular neural networks without delays [14] and with delays [43]. Indeed,

a CNN system built in a multi-dimensional coupling fashion can always be rewritten in

a one-dimensional coupling form, by renaming the indices [13]. Such an arrangement,

however, suppresses the local connection representation.

In electronic implement, time delays of neural network systems are unavoidable

due to axonal conduction times, distances of interneurons and the finite switching
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speeds of amplifiers. The dynamics for differential equations with delays can be rather

complicated. Although the stationary equations are identical for system (1.1) without

delay (τij = 0 for all i, j) and with delay (τij > 0), the stability for the equilibrium

points and dynamical behaviors of the systems can be very different. There have

been literatures [2, 3, 4, 41, 44] exploring the effects of delays in differential equations

and neural network systems. For system (1.1), the theory on unique equilibrium and

global convergence to the equilibrium have been studied extensively in [5, 6, 7, 8,

17, 30, 33, 34, 39, 43, 55]. These studies indicate a coincidence between the systems

with delays and without delays. The presentation moves up the investigations in this

direction by establishing the existence of multiple stationary solutions for system (1.1).

More specifically, we construct 2n stable stationary solutions for system (1.1) with two

classes of activation functions. The theory is obtained through formulating parameter

conditions based on a geometrical setting. We first derive conditions for the existence of

3n equilibria for Eq (1.1) with sigmoidal activation functions and saturated activation

functions. Some regions containing these stationary solutions are shown to be positively

invariant under the flows generated by Eq (1.1). In the issue of exponential stability

of the equilibria, we also estimate basins of attraction for these stationary solutions.

Therein, the basins of attraction of stationary solutions were derived from a criterion

concerning the slope of the activation functions. The ranges of the basins depend on the

parameters therein. We further extend the basins of attraction of 2n stable stationary

solutions to the confirmed positively invariant regions.

The existence of multiple equilibria and their attractive domains have been stud-

ied for Eq (1.1) with the standard activation function in [56]. The result therein is

about locally exponential stability of multiple equilibria; and the argument strongly

relies on the piecewise linearity, saturations of the standard activation function and

subsequent partition of phase space. Besides, some of the arguments therein need

modifications to meet rigorousness, and the global dynamics remains as an unsolved

problem. Our geometrical approach can be applied to Eq (1.1) with more general sig-

moidal activation functions. In addition, larger positively invariant sets and basins of

attraction have been established. Moreover, the criteria in our theory is weaker than
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those in [56].

In order to approach the convergence results of multi-dimensional delayed neural

networks, we further discuss the strongly order preserving property, hence quasiconver-

gence behaviors for Eq (1.1), by the theory of Smith and Thieme [48]. The magnitude

of delays is involved in the conditions which yield such an ordering property. The

dynamics scenario for system (1.1) is thus composed of quasiconvergence (or conver-

gence) with multiple equilibria. A number of numerical simulations are also performed

to demonstrate our theory.

The remaining part of this dissertation is organized as follows. In Chapter 2,

we introduce some notions and basic theory of delayed differential equations such as

the existence and uniqueness of solution. We also identify these basic properties for

delayed neural networks. In Chapter 3, we recall some notions and basic theory of

monotone dynamical systems from [47], including several dynamical properties of a

strongly order preserving semiflow, generic quasiconvergence and global convergence

property of a monotone dynamical system. In Chapter 4, we specifically study the

dynamics of neural networks with delays and present several numerical simulations on

the dynamics. Some analytic methodology such as characteristic equations, Lyapunov

function and Lyapunov functional are compared for the neural networks with and

without delays. We consider two classes of activation functions which are commonly

employed in neural network theory. Global dissipativity and several dynamical results

of the delayed recurrent neural networks such as stability of multiple equilibria, basins

of attraction are studied. Finally, in Chapter 5, we investigate the guasiconvergent

dynamics of the DRNN system. Specifically, strongly order preserving property is

derived in a special partial order, and thus generic quasiconvergence is confirmed.
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Chapter 2

Basic Notions of Delayed
Differential Equations

In this section, we introduce some notions and basic theory of delayed differential

equations including the existence and the uniqueness of solution. In addition, we

apply these theory to delayed neural networks in Section 2.2.

2.1 Fundamental Theorems in Delayed Equations

Let τ > 0 be a given positive number (the delay time) and denote by C the Banach

space C([−τ, 0],Rn) endowed with the norm ‖φ‖ = supθ∈[τ,0] |φ(θ)|. C is the phase space

when we deal with delayed differential equations. Let ` ≥ 0 and x ∈ C([−τ, `],Rn),

then for any t ∈ [−τ, `], we denote the element xt in C given by

xt(θ) = x(t + θ), θ ∈ [−τ, 0]. (2.1)

Assume S is a subset of C and F : S → Rn is a given function. We call

dx(t)

dt
= F (xt) (2.2)

a delayed differential equation (DDE) or functional differential equation (FDE) on S,

comparing with an ordinary differential equation

dx(t)

dt
= F(x), (2.3)

where F : Rn → Rn.
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Definition 2.1.1. (i) A function x = x(t) is called a solution of Eq (2.2) on [t0 −
τ, t0 + `) if x ∈ C([t0 − τ, t0 + `),Rn), xt defined as (2.1) lies in S and satisfies (2.2)

for t ∈ [t0, `). (ii) For given t0 ∈ R and φ ∈ C, we say x(t0, φ) is a solution of Eq (2.2)

with initial value φ at t0 if there is an ` > 0 such that x(t0, φ) is a solution of Eq (2.2)

on [t0 − τ, t0 + `) and xt0(t0, φ) = φ.

For given subset S of C, we denote the class of all continuous functions from S
to Rn by C(S,Rn) and the class of all bounded continuous functions from S to Rn by

C0(S,Rn). We recall some well-known results from [25].

Theorem 2.1.2. (Existence of solution) Suppose S is an open subset in C. If W ⊆ S
is compact and F 0 ∈ C(S,Rn) is given, then there exist a neighborhood V ⊆ S of W
with F 0 ∈ C0(V ,Rn), a neighborhood U ⊆ C0(V ,Rn) of F 0 and a constant κ > 0 such

that for any φ ∈ W, F ∈ U , there is a solution x(t; φ) of Eq (2.2) with initial condition

xt0 = φ that exists on [t0 − τ, t0 + κ].

Theorem 2.1.3. (Uniqueness of solution) Suppose S is an open subset in C and F is

Lipschitizian in each compact set in S. If φ ∈ S, then there is a unique solution of Eq

(2.2) with initial condition φ at t0.

Theorem 2.1.4. (Extending domain of existence) Suppose S is an open subset in

C and F is Lipschitizian in each compact set in S. Then for each φ ∈ S, there is

a maximal interval I on which Eq (2.2) has a unique solution, x(t0, φ); i.e., if Eq

(2.2) has a solution y(t0, φ) on an interval J then J ⊂ I and yt = xt for all t ∈ J .

Furthermore, the maximal interval J is open.

In contrast to that the phase space for the ordinary differential equations (2.3) is

Rn, the one for the delayed differential equation (2.2) is a infinite dimensional Banach

space. Although these two equations have the same existence and uniqueness criteria,

it is more complicated to check the criteria for the function F which is defined on a

Banach space.
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2.2 Fundamental Theorem for Delayed Neural Net-

works

The property of the solution in (1.1) is strongly relevant to the activation functions

gj(·). Based on the above basic theory of delayed differential equations, we have the

following result.

Theorem 2.2.1. Suppose that each of the activation function gj is a Lipschitz function

with Lipschitz constant Lj, then DRNN (1.1) has a unique solution for every given

initial condition.

Proof: From (1.1), for all φ ∈ C with τ := max1≤i,j≤n τij, F = (F1, F2, · · · , Fn) is

defined as

Fi(φ) = −µiφi(0) +
n∑

j=1

αijgj(φj(0)) +
n∑

j=1

βijgj(φj(−τij)) + Ii.

So, we have

|Fi(φ)− Fi(ψ)| = | − µi[φi(0)− ψi(0)] +
n∑

j=1

αij[gj(φj(0))− gj(ψj(0))]

+
n∑

j=1

βij[gj(φj(−τij))− gj(ψj(−τij))]|

≤ {|µi|+
n∑

j=1

|αij|Lj +
n∑

j=1

|βij|Lj}‖φ− ψ‖,

Hence, each Fi is Lipschitz, and then F in Theorem 2.1.3 is Lipschitz. Consequently,

(1.1) has a unique solution for any given initial condition. ¤

2.3 Lyapunov Functional and Lyapunov-Razumikhin

Theorem

In the case of ordinary differential equations (2.3), complete stability (convergence)

and quasiconvergence could be based on applying the LaSalle’s invariant principle to

the Lyapunov functions. Let us review this principle quoted from [23].
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Suppose the vector field F in (2.3) is locally Lipschitzian. Let L be a scalar

function defined and continuous on Rn and ϕ(t,x) be the flow map of (2.3). To

determine if L decreases along the orbit of (2.3), we can consider

L̇(x) := lim sup
h→0+

1

h
[L(ϕ(h,x))− L(x)]. (2.4)

If L is locally Lipschitz continuous, (2.4) is equal to

lim sup
h→0+

1

h
[L(x + hF(x))− L(x)]. (2.5)

Suppose L is bounded in Rn and L̇(x) ≤ 0 for all x ∈ Rn. Let E := {x ∈ Rn|L̇(x) = 0}
and let M be the largest invariant set of (2.3) in E. LaSalle’s invariant principle says

that if ϕ(t,x) is bounded for t ≥ 0, then the ω-limit set of ϕ(t,x) belongs to M .

There also exists an analogous theory in delayed equations. Consider the DDE

(2.2)
dx(t)

dt
= F (xt),

where F : C → Rn is completely continuous.

Definition 2.3.1. We say W : C → R is a Lyapunov functional on a set S in C
relative to (2.2) if W is continuous on S̄, the closure of S, and Ẇ ≤ 0 on S, where

Ẇ (φ) := lim sup
h→0+

1

h
[W (xh(φ))−W (φ)]. (2.6)

For the given S, let

E(S) := {φ ∈ S̄|Ẇ (φ) = 0}

and let M(S) denote the largest subset of E(S) that is invariant under the flow gen-

erated by Eq (2.2). The following theorem is an invariant principle for autonomous

delayed differential equations.

Theorem 2.3.2. [25] If W is a Lyapunov functional on S and xt(φ) is a bounded

solution of Eq (2.2) that remains in S, then xt(φ) tends to M(S) as t →∞.
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The following result is concerned with the stability of a system with a single

equilibrium.

Corollary 2.3.3. [25] Suppose W : C → R is continuous and there exist nonnegative

continuous functions a(·) and b(·), a(0) = b(0) = 0, limr→+∞ a(r) = +∞ and

a(|φ(0)|) ≤ W (φ), Ẇ (φ) ≤ −b(|φ(0)|).

Then the trivial solution is stable and every solution is bounded. If, in addition, b(·) is

positive definite, then every solution approaches the trivial solution as t →∞.

Another approach for studying the stability of steady states in a delayed dif-

ferential equations is constructing an appropriate Lyapunov “function” for the given

system.

We say V : Rn → R is a Lyapunov function (or Razumikhin function) if V has

continuous first partial derivatives. For a Lyapunov function, we define the upper

right-hand derivative of V with respect to (2.2) is defined as

V̇ (φ) := lim sup
h→0+

1

h
{V (φ(0) + hF (φ))− V (φ(0))}

=
n∑

i=1

∂V (φ(0))

∂xi

Fi(φ). (2.7)

The second equality holds when V has continuous first partial derivatives. For a given

set S ⊆ C, define

Ẽ(S) := {φ ∈ S̄| max
−τ≤θ≤0

V (xt(φ)(θ)) = max
−τ≤θ≤0

V (φ(θ)) for all t ≥ 0}

and let M̃(S) denote the largest subset of Ẽ(S) that is invariant under the flow gen-

erated by Eq (2.2). The following theorem is an invariance principle for autonomous

delayed differential equations.

Theorem 2.3.4. [21] Suppose there exist a Lyapunov function V and a closed set S
in C that is positively invariant under Eq (2.2) such that

V̇ (φ) ≤ 0, for all φ ∈ S with V (φ(0)) = max
−τ≤θ≤0

V (φ(θ)).
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Then for any φ ∈ S such that x(φ)(·) is defined and bounded on [−τ,∞), ω(φ) ⊆
M̃(S) ⊆ Ẽ(S). Hence xt(φ) → M̃(S) as t →∞.

As an consequence of Theorem 2.3.4, the following is an asymptotic stability of

an equilibrium for autonomous delayed differential equations.

Corollary 2.3.5. [21] Let F (0) = 0 and suppose there exist a Lyapunov function V

and a constant α > 0 such that

(i) V (0) = 0 and V (φ) > 0 for all 0 6= ‖φ‖ < α,

(ii) V̇ (0) = 0, and

(iii) V̇ (φ) < 0 for all 0 6= ‖φ‖ < α with max
−τ≤θ≤0

V (φ(θ)) = V (φ(0)).

Then the solution x = 0 of Eq (2.2) is asymptotically stable.

The LaSalle’s invariant principle is an effective methodology to investigate the

stability of steady states and global dynamics. However, suitable Lyapunov functions

or Lyapunov functionals need to be constructed to fit the practical models. Moreover,

let us recall that the functional W is defined on the infinite dimensional Banach space C
and the definition (2.7) is concerned with the functional F . From the definitions (2.5),

(2.6) and (2.7), we know that it is more difficult to propose a Lyapunov functional W

or a Lyapunov function V with negative derivative along solutions of the delayed differ-

ential equation (2.2) than to construct a Lyapunov function in the ordinary differential

equation (2.3).
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Chapter 3

Monotone Dynamical Systems

In [27, 28], Hirsch developed a theory on almost quasiconvergence in continuous time

networks. In such a dynamical scenario, there may exist cycles or other kinds of non-

convergent orbits, but they cannot be stable. We will employ the monotone dynamics

theory to explore the almost quasiconvergence of delayed recurrent neural networks in

Chapter 5. Monotone dynamics theory has been widely applied in systems including

reaction-diffusion systems, semilinear diffusion equations and various biological sys-

tems. Matano introduced the important idea of strongly order preserving semiflows

[38], which is more flexible than strong monotonicity, proposed by Hirsch. The work

of Smith and Thieme [47, 48] represents a synthesis of the approaches of Hirsch and

Matano that attempts to simplify and streamline the arguments. Significant improve-

ments in the theory was obtained therein with additional compactness hypotheses that

are often satisfied in the applications.

In this chapter, we recall some notations and basic theory of monotone dynamical

systems from [47]. In Chapter 5, we will further confirm that quasiconvergence is

generic for the networks through justifying the strongly order preserving property as

the self-feedback time lags are small by using the theory of Smith and Thieme [48].

3.1 Preliminary

In this section, we introduce the basic theory of monotone dynamical systems which

will be applied to study the convergence of dynamics in the topic of neural networks.
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Consider an ordered metric space Ω with metric d and partial order relaton ≤
which means that:

(i) x ≤ x for all x ∈ Ω (reflexive);

(ii) x ≤ y and y ≤ z implies x ≤ z (transitive);

(iii) x ≤ y and y ≤ x implies x = y (antisymmetric).

Definition 3.1.1. (i) We write x < y if x ≤ y and x 6= y.

(ii) Given subsets U and V of Ω, we write U ≤ V (U < V ) when x ≤ y(x < y) holds

for each choice of x ∈ U and y ∈ V .

We assume that the partial order relation is closed; it means that the order

relation and the topology on Ω are compatible in the sense that x ≤ y whenever

xn → x and yn → y as n → ∞ and xn ≤ yn for all n. For A ⊂ Ω we write A for the

closure of A and IntA for the interior of A.

In the applications, the order relation usually comes from a positive cone. It

means that Ω is typically a subset of a Banach space Ω̃ with a nonempty closed subset,

positive cone, K possessing the properties :

(i) R+ ·K ⊂ K,

(ii) K + K ⊂ K,

(iii) K ∩ (−K) = {0},

where R+ := (0, +∞) and −K := {−k|k ∈ K}. In this case, the relation defined by

x ≤ y if and only if y − x ∈ K is a closed partial order relation.

Definition 3.1.2. (I) A semiflow on Ω is a continuous map Φ : Ω×R+ → Ω which

satisfies :

(i) Φ0 = idΩ

(ii) Φt ◦ Φs = Φt+s for t, s ≥ 0.

Here, Φt(x) := Φ(x, t) for x ∈ Ω and idΩ is the identity map on Ω.

(II) The orbit of x is denoted by

O(x) := {Φt(x)|t ≥ 0}.
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Definition 3.1.3. Let E be the set of all equilibrium points for Φ. (i) The omega limit set,

ω(x), of x ∈ Ω is defined by

ω(x) = ∩t≥0∪s≥tΦs(x).

(ii) A point x ∈ Ω is called a quasiconvergent point if ω(x) ⊂ E. The set of such

points is denoted by Q.

(iii) A point x ∈ Ω is called a convergent point if ω(x) consists of a single point of E.

The set of such points is denoted by C.

Definition 3.1.4. (i) The semiflow Φ is said to be monotone provided

Φt(x) ≤ Φt(y) whenever x ≤ y and t ≥ 0.

(ii) Φ is called strongly order preserving, SOP, if it is monotone and whenever x < y

there exist open subsets U, V of Ω with x ∈ U and y ∈ V and t0 > 0 such that

Φt0(U) ≤ Φt0(V ).

Note that monotonicity of Φ implies that Φt(U) ≤ Φt(V ) for all t ≥ t0. A

dynamical system on Ω is monotone if it preserves the ordering of initial data. A SOP

system has stronger ordering preserving about the neighborhoods of two points, x < y.

The order relation between these two points, x < y, will be kept forever.

3.2 The Convergence Criterion

Hereafter, we assume that Φ is monotone and O(x) is a compact subset of Ω for each

x ∈ Ω. In the remainder of this chapter, all theorems and propositions are quoted

from [47]. We will also give some remarks to catch the key points of the monotone

dynamical theory.

Theorem 3.2.1. (Convergence Criterion) Let ΦT (x) ≥ x for some T > 0. Then ω(x)

is a T -periodic orbit. If Φt(x) ≥ x for t belonging to some nonempty open subset of

(0,∞) then Φt(x) → p ∈ E as t → ∞. In particular, if Φ is SOP and ΦT (x) > x for

some T > 0 then Φt(x) → p ∈ E as t →∞.
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In the previous theorem, since ΦT (x) ≥ x, monotonicity implies that Φ(m+1)T (x) ≥
ΦmT (x) for m = 1, 2, · · · . Thus, by the compactness of the orbit closure, ΦmT (x) → p

as m → ∞ for some p. By continuity of Φ, it could be proved that Φt+T (p) = Φt(p)

and ω(x) = O(p). The next result describes how an omega limit set is imbedded in

the space Ω. It is fundamental to the monotone dynamics theory.

Theorem 3.2.2. (Nonordering of Limit Sets) An omega limit set cannot contain dis-

tinct points x and y with the property that there exists neighborhoods U of x and V of

y such that U ≤ V . If Φ is SOP then a limit set cannot contain two points x and y

with x < y.

To interpret the nonordering property, we suppose ω(z) contains distinct points

x and y possessing neighborhood U and V , respectively, such that U ≤ V . Then

Φt1(z) ∈ U for some t1 > 0; in addition, there is a constant t2 > t1 such that Φt2(z) ∈ V

and then Φt(z) ∈ V for all t sufficiently near to t2. For these t we have Φt(z) ≥ Φt1(z)

by the fact U < V . The Convergence Criterion implies that Φt(z) → p ∈ E as t →∞.

Therefore, ω(z) = {p}, a contradiction.

Hereafter, we assume that Φ is SOP . Since the fundamental nonordering property

of limit sets, we have the following proposition which will imply the important Limit

Set Dichotomy.

Proposition 3.2.3. Whenever the semiflow is SOP, the dynamics has the following

properties:

• (Colimiting Principle) If x < y, tk →∞, Φtk(x) → p and Φtk(y) → p as k →∞
then p ∈ E .

• (Intersection Principle) If x < y then ω(x) ∩ ω(y) ⊂ E .

• Let x, y satisfy x < y. If tk →∞, Φtk(x) → a, Φtk(y) → b as k →∞ and a < b

then O(a) < b.

• (Absorption Principle) Let u, v ∈ Ω. If there exists x ∈ ω(u) such that x < ω(v),

then ω(u) < ω(v). Similarly, if there exists x ∈ ω(u) such that ω(v) < x, then

ω(v) < ω(u).
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• (Limit Set Separation Principle) Let x, y satisfy x < y. If tk →∞, Φtk(x) → a,

Φtk(y) → b as k →∞ and a < b then ω(x) < ω(y).

Based on this proposition, the following fundamental result is derived.

Theorem 3.2.4. (Limit Set Dichotomy) If x < y then either

(a) ω(x) < ω(y), or

(b) ω(x) = ω(y) ⊂ E .

If case (b) holds and tk →∞ then Φtk(x) → p if and only if Φtk(y) → p.

Limit Set Dichotomy points out two possible order relations between eventual

behaviors of ordered points. For two ordered points, x < y, their omega limit sets

either preserve the order or are totally equal; moreover, the omega limit set is consisted

of equilibria in the latter case.

3.3 Generic Quasiconvergence

In this section, we discuss the convergent dynamics of a semiflow with strongly order-

preserving property. Herein, a compactness assumption is required, and the main result

is about the generic quasiconvergence. To start with, we give the following definition.

Definition 3.3.1. If x ∈ Ω, we say that x can be approximated from below (above) in

Ω if there exists a sequence {xn} in Ω such that xn < xn+1 < x (x < xn+1 < xn) for

n ≥ 1 and xn → x as n →∞.

Consider a relatively weak compactness assumption :

(T) For each x0 ∈ Ω, O(x0) has compact closure in Ω. Furthermore, if {xi}i≥1 approx-

imates x0 from below or from above then ∪i≥0ω(xi) has compact closure contained in

Ω.

Remark. (1) The compactness assumption (T) is satisfied when the following hold:

(i) The orbit O(B) :=
⋃

x∈B O(x) is bounded whenever B is a bounded set in Ω. (ii)

There exists some t0 > 0 such that the operator Φt0 is compact.
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(2) In fact, when these two conditions in (1) hold and x0 is approximated from below

by {xi}i≥1, then {xi}i≥0 is compact and therefore
⋃

i≥0O(xi) is bounded. Since Φt0 is

a compact operator, Φt0(
⋃

i≥0O(xi)) is compact in Ω. The set
⋃

i≥0 ω(xi) is contained

in the latter closure and then has compact closure.

The assumption (T) is assumed to hold throughout the remainder of this section.

The key to the proof that the generic point of Ω is a quasiconvergence point is the

following result.

Theorem 3.3.2. (Sequential Limit Set Trichotomy) Let x0 ∈ Ω have the property

that it can be approximated from below in Ω by a sequence x̃n. Then there exists a

subsequence xn such that xn < xn+1 < x0, n ≥ 1, with xn → x0 satisfying one of the

following.

(a) There exists u0 ∈ E such that

ω(xn) < ω(xn+1) < u0 = ω(x0), n ≥ 1

and

lim
n→∞

dist(ω(xn), u0) = 0.

(b) There exists u0 ∈ E such that

ω(xn) = u0 < ω(x0), n ≥ 1.

(c) ω(xn) = ω(x0) ⊂ E for n ≥ 1.

An analogous result holds if x0 can be approximated from above in Ω.

Remark. In each of these three cases of the Sequential Limi Set Trichotomy, the

point x0 possesses typical dynamics. In case (a), the point x0 is convergent. In case (b),

x0 belongs to the closure of the set of convergent points. And x0 is a quasiconvergent

point in case (c).
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Under the strongly order-preserving property and the compactness assumption

(T), a semiflow has the following generic quasiconvergent result, based on the property

Sequential Limit Set Trichotomy.

Theorem 3.3.3. Suppose each point of Ω can be approximated either from above or

from below in Ω. If the semiflow Φ possesses the property (T) and has the strongly

order-preserving property. Then Ω = IntQ ∪ IntC. In particular, IntQ is dense in Ω.

Although the result in previous theorem does not confirm the behavior of every

orbit, it establishes the fact that there does not exist any non-trivial attractive periodic

orbit, and this is a significant result in the applications. The following is an immediate

consequence of the Limit Set Trichotomy. It describes the possibilities for the omega

limit sets in the case that a point can be approximated from above and from below on

Ω.

Proposition 3.3.4. Let Ω be an ordered metric space and Φt be a strongly order

preserving semiflow on Ω. Let x0 ∈ Ω be such that it can be approximated from above

in Ω and from below in Ω. Then there exists sequences xn and zn in Ω satisfying

xn → x0, zn → x0, xn < xn+1 < x0 < zn+1 < zn, n ≥ 1, and one of the following holds:

(a) There exists u0 ∈ E such that, for n ≥ 1,

ω(xn) < ω(xn+1) < ω(x0) = u0 < ω(zn+1) < ω(zn) and

lim
n→∞

dist(ω(xn), u0) = lim
n→∞

dist(ω(zn), u0) = 0.

(b) There exist u0, v0 ∈ E such that, for n ≥ 1, either

(i) ω(xn) < ω(xn+1) < ω(x0) = u0 < v0 = ω(zn), limn→∞ dist(ω(xn), u0) = 0

and whenever v ∈ E , v > u0 then v ≥ v0,

or

(ii) ω(xn) = u0 < v0 = ω(x0) < ω(zn+1) < ω(zn), limn→∞ dist(ω(zn), v0) = 0

and whenever u ∈ E , u < v0 then u ≤ u0.

(c) There exists u0 ∈ E such that, for n ≥ 1, either

(i) ω(xn) < ω(xn+1) < ω(x0) = u0 = ω(zn), limn→∞ dist(ω(xn), u0) = 0
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or

(ii) ω(xn) = u0 = ω(x0) < ω(zn+1) < ω(zn), and limn→∞ dist(ω(zn), u0) = 0.

(d) There exist equilibria u0 and v0 such that, for n ≥ 1,

ω(xn) = u0 < ω(x0) < v0 = ω(zn).

If u ∈ E and u < ω(x0) then u ≤ u0. If v ∈ E and ω(x0) < v then v ≥ v0.

(e) There exists u0 ∈ E such that, for n ≥ 1, either

(i) ω(xn) = u0 < ω(x0) = ω(zn) ⊂ E and, whenever u ∈ E satisfies u < ω(x0),

then u ≤ u0

or

(ii) ω(xn) = u0 > ω(x0) = ω(xn) ⊂ E and, whenever u ∈ E satisfies u > ω(x0),

then u ≥ u0.

(f) For n ≥ 1, ω(xn) = ω(x0) = ω(zn) ⊆ E .

3.4 Global Results

When there exists only one equilibrium in Ω, the dynamic is globally attracting as the

following.

Theorem 3.4.1. (Global Asymptotic Stability.) Suppose that the semiflow is SOP, Ω

contains exactly one equilibrium e and every point of Ω�{e} can be approximated from

above and from below in Ω. Then ω(x) = e for all x ∈ Ω.

Remark. If x ∈ Ω�{e} then only alternatives (a), (e) and (f) of Proposition 3.3.4

may hold since the others imply more than a single equilibrium. In particular x ∈ Q,

hence ω(x) = e.

If there exists multiple equilibria in Ω, the dynamics is more complicated even in

a scalar delayed differential equation. Pituk [42] considered a class of scalar DDEs gen-

erating a strongly order preserving semiflow with respect to the “exponential ordering”,
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≤µ, generated by the closed cone

Kµ := {φ ∈ C([−τ, 0],R) | φ ≥ 0 and φ(s)eµs is nondecreasing on [−τ, 0]}. (3.1)

Herein, ≥ is the standard partial order and µ ≥ 0 will be given in hypotheses. The

main result said that, the global convergence of the solutions of scalar DDE (2.2) is

equivalent (without any restriction on the number of equilibria) to the boundedness

of the solutions of the relative ordinary differential equation, under hypotheses: there

exist µ > 0 and a bounded linear functional Π : C → R such that

|f(ψ)− f(φ)| ≤ Π(|ψ − φ|) for all ψ, φ ∈ C (3.2)

and

−Π(φ) + µφ(0) > 0 whenever φ ∈ C and φ >µ 0. (3.3)

In the case of multi-dimensional delayed differential equations with multiple equilibria,

the global convergence of dynamics remains as an unsolved problem.
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Chapter 4

Neural Networks with Delays

4.1 Global Dissipativity

The concept of dissipativity has been applied in diverse areas of neural networks such

as stability theory, chaos and synchronization theory, and robust control. A flow on

a complete metric space is said to be dissipative if there is a bounded subset, of the

metric space, which attracts each point of the whole space under the flow [24]. In [35],

the global dissipation and global exponential dissipation of delayed neural networks

(1.1) with several activation functions were analyzed. We give the explicit definitions

for delayed recurrent neural networks.

Definition 4.1.1. (i)The system (1.1) is said to be a dissipative system, if there exists

a compact set U ⊂ C such that for each φ ∈ C there exists T > 0 with x(t; φ) ∈ U
whenever t ≥ T . In this case, U is called a globally attractive set. (ii)A set U is called

positive invariant if for each φ ∈ U , x(t; φ) ∈ U whenever t ≥ 0.

Definition 4.1.2. The system (1.1) is said to be a globally exponentially dissipative

system, if it is a dissipative system with a globally attractive set U and there exists a

compact set Ũ ⊃ U such that for each φ ∈ C�Ũ , there exists constants r(φ) > 0 and

s > 0 such that

inf
φ∈C\Ũ

{‖ xt(φ)− x̃ ‖| x̃ ∈ Ũ} ≤ r(φ)e−st for all t ≥ 0.

The set Ũ is called a globally exponentially attractive set.
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In [35], the dissipative property was discussed in DRNN system with several

classes of activation functions as following:

• The set of bounded activation functions is defined as

G1 := {gi||gi(ξ)| ≤ ρi, 0 ≤ Drgi(ξ) ≤ γi for all ξ ∈ R},

where Dr denotes the right-hand derivative of a function and 0 ≤ ρi, γi < ∞.

• The set of Lipschitz activation functions is defined as

G2 := {gi|0 ≤ gi(ξ1)− gi(ξ2)

ξ1 − ξ2

≤ γi < ∞ for all ξ1, ξ2 ∈ R}.

• The general set of continuous nondecreasing activation functions is denoted as

G3 := {gi|gi ∈ C(R,R), Drgi(ξ) ≥ 0 for all ξ ∈ R}.

By constructing Lyapunov functions and using certain matrix theory, the authors in [35]

demonstrated that the DRNN (1.1) is a dissipative system. Particularly, the dissipative

property of DRNN system with activation functions in each of the previous three class

is summarized as following: (i) If gi ∈ G1, for all i = 1, · · · , n, the system (1.1) is

dissipative with a positive invariant and globally attractive set. Furthermore, it is also

globally exponentially dissipative with another globally exponentially attractive set.

(ii) If gi ∈ G2, gi(0) = 0 and |gi(ξ)| → ∞ as |ξ| → ∞, for all i = 1, · · · , n, the system

(1.1) is dissipative under additional conditions on interconnection weights. (iii) Finally,

if gi ∈ G3 and gi(0) = 0, for all i = 1, · · · , n, the system (1.1) is also dissipative under

suitable conditions on interconnection weights. Herein, we recall one dissipative results

of the system with activation functions in class G1.

Theorem 4.1.3. [35] With each activation function gi ∈ G1, the delayed recurrent

neural network (1.1) is a dissipative system. The set U = U1∩U2 is a positive invariant
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and globally attractive set, where

U1 := {φ ∈ C|
n∑

i=1

µi[|φi(θ)| − 1

2µi

(
n∑

j=1

(|αij|+ |βij|)ρj + |Ii|)]2

≤
n∑

i=1

1

4µi

[
n∑

j=1

(|αij|+ |βij|)ρj + |Ii|]2, for all θ ∈ [−τ, 0]},

U2 := {φ ∈ C||φi(θ)| ≤ 1

µi

[
n∑

j=1

(|αij|+ |βij|)ρj + |Ii|], for all θ ∈ [−τ, 0]}.

The dynamics of the DRNN system depends on the characteristic of the activa-

tion functions, interconnection weights and the amount of the delay time. The last

theorem declared the delay independent dissipation property of the DRNN system

(1.1) with bounded activation functions, and the globally attractive set is estimated

by this bound and parameters. In case of gi ∈ G2, Lipschitz activation functions, the

globally attractive set concerning Lipschitz constant γi and parameters was obtained.

As for gi ∈ G3, general continuous nondecreasing activation functions, the condition on

parameter is crucial for dissipative property.

Remark. When we consider (1.1) with activation functions in one of the previous

classes, this system has the global dissipativity property. Then {xt|t ≥ 0} has compact

closure in C, and therefore each solution exists for all t > 0 by Theorem 4.1.3.

4.2 Comparison of Neural Networks with and with-

out Delays

In this section, we summarize some difference between neural networks with and with-

out delays, involving characteristic equations, Lyapunov function and Lyapunov func-

tional theory and some different dynamics induced from delay.

4.2.1 Characteristic Equations

Utilizing the linearized theory and computing roots of the associated characteristic

equations are often effective in studying local behaviors of the system. In the recurrent
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neural network without delay, the characteristic equation of the linearized system at

an equilibrium x̄ = (x̄1, x̄2, · · · , x̄n) is

det(∆(λ)) = 0,

∆(λ) := λIn + D − A−B, (4.1)

where D = diag[−µ1, · · · ,−µn], A = [aij], and B = [bij] are n × n matrices with

aij = αijg
′
j(x̄j), bij = βijg

′
j(x̄j). On the other hand, for the delayed case, even if τij = τ

for all i, j, with τ positive, the characteristic equation is

det(∆(λ)) = 0,

∆(λ) := λIn + D − A− e−λτB. (4.2)

Thus, the characteristic equations corresponding to the linearized delayed differential

equations are no longer ordinary polynomials; instead, they are exponential polynomi-

als. It is well known [49] that the equilibrium of DRNN (1.1) is asymptotically stable

if all the roots of the transcendental function (4.2) have negative real parts. Analysis

on zeros in (4.2) is much more complicated than the situation in (4.1). A standard

result [32] tells us that the equilibrium of (1.1) can only lose stability as parameters

vary in a way that the characteristic equation has a root passing through the imaginary

axis. By Rouché’s Theorem [16], the bifurcations could be determined at the points in

parameter space or delay values, see [4], for example.

4.2.2 Lyapunov Functionals and Lyapunov Functions

In neural network systems without delays, complete stability (convergence) and qua-

siconvergence could be obtained by applying the LaSalle’s invariant principle to their

respective Lyapunov functions. Such functions are originated from the studies of Co-

han and Grossberg [15]. We recall some Lyapunov functions and functional from the

literatures.

• In a classical neural network (βij=0 for all i, j in Eq (1.1)), if the connection

weights matrix [αij] is symmetric, the activation functions are bounded, differen-

tial and g′i(ξ) > 0 for all ξ ∈ R and i = 1, 2, · · · , n, the authors in [54] proposed
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the Lyapunov function

L(x) = −1

2
〈g(x),Ag(x) + 2I〉+

n∑
i=1

∫ gi(xi)

gi(0)

g−1
i (ξ)dξ, (4.3)

where g = (g1, · · · , n), A is the matrix [αij], and I = (I1, · · · , In).

• In the delayed Hopfield neural network (αij=0 for all i, j in Eq (1.1)), the authors

in [52] addressed Lyapunov functionals for this system with a unique equilibrium.

If x̄ is the unique equilibrium and xt is a solution of the system, by defining

u(t) := x(t)− x̄, Eq (1.1) becomes

dui(t)

dt
= −µiui(t) +

n∑
j=1

βij g̃j(uj(t− τij)), i = 1, · · · , n, (4.4)

where g̃j(uj) = gj(uj + x̄j)− gj(x̄j). For a solution ut of (4.4), the authors used

the following Lyapunov functional

W1(ut) =
n∑

i=1

1

µi

ui(t)
2 +

n∑
i=1

n∑
j=1

|βij|
µi

∫ t

t−τij

g̃2
j (uj(s))ds. (4.5)

• In the general delayed neural network Eq (1.1), the author in [5] used the Lya-

punov functional

W2(t) = W2(u)(t) =
n∑

i=1

(
1

2
u2

i (t) +
1

2

n∑
j=1

|βij|L2ζj

j

∫ t

t−τij

u2
j(s)ds

)
, (4.6)

where u(t) := x(t)−x∗, Lj is the Lipschitz constant of gj(·) and {ζj} are constants

chosen in the proof. The globally asymptotical stability is concluded by using

the LaSalle’s invariant principle.

The global stability of the unique equilibrium was demonstrated in delayed Hop-

field neural networks and delayed cellular neural networks in many literatures (see the

aforementioned [5, 52] for example), by constructing an appropriate Lyapunov func-

tion or Lyapunov functional. It seems that the Lyapunov functionals used in DRNNs

are usually more complicated, involving the delay terms, than those analogously used
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in neural networks without delays. Besides, to the best of our knowledge, the global

Lyapunov function or functional has not been proposed to deal with the delayed neu-

ral network system with multiple equilibria. However, we will justify the stability of

multiple equilibria by constructing a local Lyapunov functional latter.

4.3 Activation Functions and Multiple Equilibria

Existence and stability of stationary patterns for neural networks certainly depend

on properties of activation functions. We shall consider general sigmoidal activation

functions gi(·) as well as the standard activation function for Eq (1.1):

• class A : gi ∈ C2,

{
g′i(ξ) > 0, (ξ − σi)g

′′
i (ξ) < 0, for all ξ ∈ R,

limξ →+∞ gi(ξ) = vi, limξ →−∞ gi(ξ) = ui;

• class B : gi ∈ C, gi(ξ) =





ui if −∞ < ξ < pi,
g̃i(ξ) if pi ≤ ξ ≤ qi,
vi if qi < ξ < ∞,

where, ui, vi, pi, qi and σi are constants with ui < vi and pi < qi, g̃i(·) are increasing

functions, i = 1, · · · , n. Class A contains general bounded smooth sigmoidal functions,

and class B consists of nondecreasing functions with saturation. Typical configurations

of these functions are depicted in Figure 4.1. Class B contains the piecewise linear

functions with two corner points at pi, qi:

g̃i(ξ) = ui +
vi − ui

qi − pi

(ξ − pi), ξ ∈ [pi, qi]; (4.7)

and in particular, the standard activation function for the CNN:

g(ξ) =
1

2
(|ξ + 1| − |ξ − 1|), ξ ∈ R, (4.8)

as depicted in Figure 4.2 (a). Notably, in practical implementation, the transition from

the linear regime to the saturated regime in the standard activation function is smooth.

Thus, the theory developed for the dynamics of Eq(1.1) should be also valid for the

activation function with smooth corners at ξ = ±1, as demonstrated in Figure 4.2 (b).

Our investigations have provided theoretical basis for all these activation functions.

In Section 4.7, we will see some differences between the dynamics for Eq (1.1) with
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activation functions of classes A and the ones of class B. Let ρi = max{|ui|, |vi|},
γi = supξ∈R g′i(ξ), i = 1, · · · , n.

Figure 4.1: The configurations of (a) typical smooth sigmoidal activation functions in
class A and (b) saturated activation functions in class B.

Figure 4.2: The graphs for (a) the standard activation function g(ξ) = 1
2
(|ξ+1|−|ξ−1|),

(b) saturated activation functions with smooth corners.

Let us review some basic notion of delayed differential equations. We set τ =

max1≤i,j≤n τij. The initial condition for Eq (1.1) is xi(θ) = φi(θ), − τ ≤ θ ≤ 0, i =

1, · · · , n with φ = (φ1, · · · , φn) ∈ C([−τ, 0],Rn). Recall that the norm of φ is defined

as ‖φ‖ = max1≤ i≤ n{sups∈[−τ, 0] |φi(s)|}. Let us denote F = (F1, · · · , Fn), where Fi is

the right hand side of system (1.1),

Fi(xt) = − µixi(t) +
n∑

j=1

αijgj(xj(t)) +
n∑

j=1

βijgj(xj(t− τij)) + Ii.
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A function x(·) is called a solution of Eq (1.1) on [−τ, `) if x(·) ∈ C([−τ, `),Rn),

and xt defined as (2.1) lies in the domain of F and satisfies Eq (1.1) for t ∈ [0, `).

For a given φ ∈ C([−τ, 0],Rn), let us denote by x(t; φ) the solution of Eq (1.1) with

x0(θ; φ) = x(0 + θ; φ) = φ(θ), for θ ∈ [−τ, 0].

Notably, the stationary equation for Eq (1.1) is

F̃i(x) = − µixi +
n∑

j=1

(αij + βij)gj(xj) + Ii = 0, i = 1, · · · , n. (4.9)

We introduce an analogue of single neuron equation dξ/dt = fi(ξ) = −µiξ + (αii +

βii)gi(ξ) + Ii, ξ ∈ R. Next, we shall consider the above activation functions and

formulate sufficient conditions for existence of multiple stationary solutions for Eq

(1.1). Our approach is based on a geometrical observation. The first condition for Eq

(1.1) with activation functions in classes A and B is, respectively,

(HA
1 ) : 0 = inf

ξ∈R
g′i(ξ) <

µi

αii + βii

< max
ξ∈R

g′i(ξ) (= g′i(σi)),

(HB
1 ) : (αii + βii) max g̃′i(ξ) > µi,

for i = 1, · · · , n. Condition (HB
1 ) reduces to (αii + βii)

vi−ui

qi−pi
> µi, if piecewise linear

activation functions (4.7) are adopted, and reduces to

αii + βii > µi, i = 1, · · · , n, (4.10)

if the standard activation function g(·) in Eq (4.8) is employed, with pi = ui = −1, qi =

vi = 1.

Lemma 4.3.1. (i) For activation functions in class A, there exist two points p̃i and

q̃i with p̃i < σi < q̃i, such that f ′i(p̃i) = 0 and f ′i(q̃i) = 0, i = 1, · · · , n, under condition

(HA
1 ). (ii) For activation functions in class B, there exist two points p̃i and q̃i with

p̃i ≥ pi and q̃i ≤ qi, such that f ′i(p̃i) = 0, f ′i(q̃i) = 0, i = 1, · · · , n, under condition

(HB
1 ).

Proof. We only prove case (i). For each i, since f ′i(ξ) = −µi +(αii +βii)g
′
i(ξ), we have

f ′i(ξ) = 0 if and only if g′i(ξ) = µi/(αii + βii). The graph of function g′i(ξ) is concave

28



down and has its maximal value at σi. Note that limξ →±∞ g
′
i(ξ) = 0. Hence, since

each g′i is continuous, if

0 = inf
ξ∈R

g′i(ξ) <
µi

αii + βii

< max
ξ∈R

g′i(ξ) (= g′i(σi)), i = 1, · · · , n,

there exist two points p̃i, q̃i, with p̃i < σi < q̃i, such that g′i(p̃i) = g′i(q̃i) = µi/(αii +βii).

This completes the proof. ¤

For Eq (1.1) with piecewise linear activation functions, fi attains its local mini-

mum at p̃i = pi, and local maximum at q̃i = qi, under assumption (HB
1 ). In particular,

for the standard activation function g, p̃i = −1, q̃i = 1, i = 1, · · · , n. A consequence of

Lemma 4.3.1 is that fi is strictly increasing on (−∞, p̃i], decreasing on [q̃i,∞), under

condition (H∗
1).

Note that condition (H∗
1), ∗ = A,B, implies αii + βii > 0 for each i = 1, · · · , n,

since µi is already assumed positive. We define, for i = 1, · · · , n,

f̂i(ξ) = −µiξ + (αii + βii)gi(ξ) + k+
i

f̌i(ξ) = −µiξ + (αii + βii)gi(ξ) + k−i , (4.11)

where

k+
i =

n∑

j=1,j 6=i

ρj(|αij|+ |βij|) + Ii

k−i = −
n∑

j=1,j 6=i

ρj(|αij|+ |βij|) + Ii.

It follows that f̌i(xi) ≤ F̃i(x) ≤ f̂i(xi), for all x = (x1, · · · , xn) and i = 1, · · · , n, since

uj ≤ gj ≤ vj for all j, in each class of activation functions.

We consider the second parameter condition which is used to establish existence

of multiple equilibria for Eq (1.1) :

(H2) : f̂i(p̃i) < 0, f̌i(q̃i) > 0, i = 1, · · · , n.

The configuration that motivates (H2) is depicted in Figure 4.3 and 4.4. Under as-

sumptions (H∗
1) and (H2), ∗ = A, B, there exist points âi, b̂i, ĉi with âi < b̂i < ĉi such
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that f̂i(âi) = f̂i(b̂i) = f̂i(ĉi) = 0 as well as points ǎi, b̌i, či with ǎi < b̌i < či, such that

f̌i(ǎi) = f̌i(b̌i) = f̌i(či) = 0. Then, by applying the Brouwer’s fixed point theorem, we

could derive multiequilibria as following.

Theorem 4.3.2. There exist 3n equilibria for system (1.1) with activation functions

in class ∗, ∗ = A,B, under conditions (H∗
1) and (H2).

Proof. We only prove the case of class A, i.e., under conditions (HA
1 ) and (H2). The

equilibria of system (1.1) are zeros of Eq (4.9). According to the configurations in Fig-

ure 4.3 and 4.4, there are 3n disjoint closed regions in Rn, namely, Ωw = {(x1, · · · , xn) ∈
Rn | xi ∈ Ωwi

i } with w = (w1, · · · , wn), wi =“l”, “m” or “r”, where

Ωl
i = {ξ ∈ R| ǎi ≤ ξ ≤ âi},

Ωm
i = {ξ ∈ R| b̂i ≤ ξ ≤ b̌i},

Ωr
i = {ξ ∈ R| či ≤ ξ ≤ ĉi}. (4.12)

Herein, “l”, “m”, “r” mean respectively “left”, “middle” and “right”. Let Ωw be one

of these regions. For any given x̃ = (x̃1, · · · , x̃n) ∈ Ωw, we solve for xi in

hi(xi) = − µixi + (αii + βii)gi(xi) +
n∑

j=1,j 6=i

(αij + βij)gi(x̃j) + Ii = 0, (4.13)

i = 1, · · · , n. Note that hi is a vertical shift of f̂i or f̌i, due to Eq (4.11). Accordingly,

one can always find three solutions to Eq (4.13) and each of them lies in one of the

regions in Eq (4.12), for each i. We define a mapping Hw : Ωw → Ωw by

Hw(x̃) = x = (x1, · · · , xn),

where xi is the solution of Eq (4.13) lying in Ωwi
i . The mapping Hw as defined is

continuous, since gi is continuous. It follows from the Brouwer’s fixed point theorem

that there exists one fixed point x̄ = (x̄1, · · · , x̄n) of Hw in Ωw, which is also a zero

of F̃ in Eq (4.9). Consequently, there exist 3n equilibria for system (1.1) and each of

them lies in one of the 3n regions Ωw. This completes the proof. ¤
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Figure 4.3: (a) The graph of activation function gi in class A, (b) Configurations of
functions f̂i and f̌i.
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Figure 4.4: (a) The graphs of f̂i and f̌i induced from the activation function of class
B. (b) The graphs of f̂i and f̌i induced from the standard activation function g.

4.4 Stability of Equilibria and Basins of Attraction

In this section, we first establish some positively invariant sets for system (1.1) and

investigate stability of the equilibrium in each invariant set. As a result, we also obtain

the basin of attraction for each of the asymptotically stable equilibrium.

We consider the following 2n subsets of C([−τ, 0],Rn). Let w = (w1, · · · , wn)

with wi = “l” or “r”, and set

Λ̃w = {ϕ = (ϕ1, · · · , ϕn) | ϕi ∈ Λ̃l
i if wi = “l”, ϕi ∈ Λ̃r

i if wi = “r”}, (4.14)

where

Λ̃l
i = {ϕi ∈ C([−τ, 0],R) | ϕi(θ) < b̂i for all θ ∈ [−τ, 0]},

Λ̃r
i = {ϕi ∈ C([−τ, 0],R) | ϕi(θ) > b̌i for all θ ∈ [−τ, 0]}.

Theorem 4.4.1. Assume that (H∗
1), (H2), ∗ = A,B, and βii > 0, i = 1, · · · , n, then

each Λ̃w is positively invariant under the solution flow generated by system (1.1) with

activation functions in class ∗.

Proof. We only prove the A case. Let Λ̃w be a subset defined in (4.14). Consider

any initial condition φ = (φ1, · · · , φn) ∈ Λ̃w, there exists a sufficiently small constant

ε0 > 0 such that φi(θ) ≥ b̌i + ε0 for all θ ∈ [−τ, 0], if wi =“r”, and φi(θ) ≤ b̂i − ε0 for

all θ ∈ [−τ, 0], if wi =“l”. We claim that the solution x(t; φ) remains in Λ̃w for all
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t ≥ 0. If this is not true, there exists a component of x(t; φ) which is the first one (or

one of the first ones) decreasing across the value b̌i + ε0 or increasing across the value

b̂i−ε0; i.e., there exists some i ∈ {1, · · · , n} and t1 > 0 such that either xi(t1) = b̌i +ε0,

(dxi/dt)(t1) ≤ 0, and xi(t) > b̌i +ε0 for −τ ≤ t < t1 or xi(t1) = b̂i−ε0, (dxi/dt)(t1) ≥ 0

and xi(t) < b̂i − ε0 for −τ ≤ t < t1. For the first case, we derive from Eq (1.1) that

dxi

dt
(t1) = − µi(b̌i + ε0) + αiigi(b̌i + ε0) + βiigi(xi(t1 − τii))

+
n∑

j=1,j 6=i

αijgj(xj(t1)) +
n∑

j=1,j 6=i

βijgj(xj(t1 − τij)) + Ii ≤ 0. (4.15)

On the other hand,

−µi(b̌i + ε0) + αiigi(b̌i + ε0) + βiigi(xi(t1 − τii))

+
n∑

j=1,j 6=i

αijgj(xj(t1)) +
n∑

j=1,j 6=i

βijgj(xj(t1 − τij)) + Ii

≥ −µi(b̌i + ε0) + (αii + βii)gi(b̌i + ε0)−
n∑

j=1,j 6=i

ρj(|αij|+ |βij|) + Ii

= f̌i(b̌i + ε0) > 0, (4.16)

due to (H2), βii > 0, |gj(·)| ≤ ρj, and gi(xi(t1−τii)) ≥ gi(b̌i+ε0), from the monotonicity

of gi and the definition of t1. This yields a contradiction to Eq (4.15). Hence, xi(t) ≥
b̌i +ε0 for all t > 0. Similar arguments can be employed to show that xi(t) ≤ b̂i−ε0, for

all t > 0 for the situation that xi(t1) = b̂i − ε0 and (dxi/dt)(t1) ≥ 0. Therefore, Λ̃w is

positively invariant under the flow generated by system (1.1). The proof is completed.

¤

Next, we consider the following criterion concerning stability of the equilibria for

classes A and B. Let ηj be real numbers satisfying γj ≥ ηj ≥ max{g′j(ξ) | ξ = čj, âj}
for j = 1, · · · , n. Consider

(H3) : µi >

n∑
j=1

ηj(|αij|+ |βij|), i = 1, · · · , n.

For activation functions gj(·) in classes A, we define dj and d̄j as

dj = min{ξ|g′j(ξ) = ηj}, dj = max{ξ|g′j(ξ) = ηj}. (4.17)
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Then dj ≥ âj, dj ≤ čj. For the activation functions gj in class B′, g̃i in (4.7), and g in

Eq (4.8), we define, respectively,

dj = p̃j, dj = q̃j; dj = pj, dj = qj; dj = −1, dj = 1. (4.18)

We consider the following 2n subsets of C([−τ, 0],Rn). Let w = (w1, · · · , wn) with

wi = “l” or “r”, and set

Λw = {ϕ = (ϕ1, · · · , ϕn) | ϕi ∈ Λl
i if wi = “l”, ϕi ∈ Λr

i if wi = “r”}, (4.19)

where

Λl
i = {ϕi ∈ C([−τ, 0],R) | ϕi(θ) < di, ∀ θ ∈ [−τ, 0]},

Λr
i = {ϕi ∈ C([−τ, 0],R) | ϕi(θ) > di, ∀ θ ∈ [−τ, 0]}.

In the following, we will derive that each of these 2n subsets Λw of C([−τ, 0],Rn) is a

basin of attraction for the respective equilibrium and justify that these 2n equilibria

are exponentially stable.

Theorem 4.4.2. Under conditions (HA
1 ), (H2), (H3), and βii > 0, i = 1, · · · , n, there

exist 2n exponentially stable equilibria for system (1.1) with activation functions of class

A. Same assertion holds for activation functions of class B, under conditions (HB
1 ),

(H2).

Proof. We only prove the case of class A. Let Λw be a subset defined in (4.19)

and x̄ be an equilibrium lying in Λw. For each i = 1, · · · , n, we consider the single-

variable function Gi(ζ) = µi − ζ −∑n
j=1 ηj|αij| −

∑n
j=1 ηj|βij|eζτij . Then, (H3) implies

Gi(0) > 0, and there exists a constant λ > 0 such that Gi(λ) > 0, for all i = 1, · · · , n,

due to continuity of Gi. Let x(t) = x(t; φ) be the solution to system (1.1) with initial

condition φ ∈ Λw. With translation y(t) = x(t)− x̄, system (1.1) becomes

dyi(t)

dt
= −µiyi(t) +

n∑
j=1

αij[gj(xj(t))− gj(xj)] +
n∑

j=1

βij[gj(xj(t− τij))− gj(xj)], (4.20)
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where y = (y1, · · · , yn). Now, consider functions zi(·) defined by zi(t) = eλt|yi(t)|, i =

1, · · · , n. Let δ > 1 and let K = max1≤i≤n{supθ∈[−τ,0] |xi(θ)− x̄i|} > 0. It follows that

zi(t) < Kδ, for t ∈ [−τ, 0] and i = 1, · · · , n. We shall justify that

zi(t) < Kδ, for all t > 0, i = 1, · · · , n. (4.21)

Suppose Eq (4.21) does not hold, then there is a k ∈ {1, · · · , n} and a t1 > 0 for the first

time such that zi(t) ≤ Kδ, t ∈ [−τ, t1], i = 1, · · · , n, i 6= k, zk(t) ≤ Kδ, t ∈ [−τ, t1),

and zk(t1) = Kδ, with żk(t1) ≥ 0. Note that |yk(t)| and zk(t) are differentiable at

t = t1, since zk(t1) = Kδ > 0 implies yk(t1) 6= 0. From Eq (4.20), we compute that

d

dt
|yk(t1)| ≤ −µk|yk(t1)|+

n∑
j=1

|αkjg
′
j(ξj)yj(t)|+

n∑
j=1

|βkjg
′
j(ςj)yj(t1 − τkj)|,

for some ξj between xj(t1) and x̄j as well as ςj between xj(t1 − τkj) and x̄j. Hence,

dzk(t1)

dt

≤ λeλt1|yk(t1)|+ eλt1 [−µk|yk(t1)|+
n∑

j=1

|αkjg
′
j(ξj)yj(t)|+

n∑
j=1

|βkjg
′
j(ςj)yj(t1 − τkj)|]

= λzk(t1)− µkzk(t1) +
n∑

j=1

|αkj|g′j(ξj)zj(t1) +
n∑

j=1

|βkj|g′j(ςj)eλτkjzj(t1 − τkj)

≤ −(µk − λ)zk(t1) +
n∑

j=1

|αkj|ηjzj(t1) +
n∑

j=1

|βkj|ηje
λτkj [ sup

θ∈[t1−τ,t1]

zj(θ)].

Herein, the positive invariance property of Λw can be verified using the same treatment

as the proof of Theorem 4.4.1, under condition βii > 0, i = 1, · · · , n, for activation

functions in class A (and for B). Due to Gk(λ) > 0, we obtain a contradiction that

0 ≤ dzk(t1)

dt
≤ −{µk − λ−

n∑
j=1

ηj|αkj| −
n∑

j=1

ηj|βkj|eλτkj}Kδ < 0.

Hence assertion (4.21) holds and zi(t) ≤ K for all t > 0, i = 1, · · · , n, by taking

δ → 1+. We thus obtain |xi(t)− x̄i| ≤ e−λt max1≤j≤n{supθ∈[−τ,0] |xj(θ)− x̄j|}, for t > 0

and i = 1, · · · , n. Therefore, x(t) converges to x̄ exponentially. This completes the

proof. ¤
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In the above theorem, we have imposed a restriction: βii > 0, i = 1, · · · , n

(positive self-feedback delays) for the cases of activation functions A,B. The situation

is different for the activation functions in class B′. In fact, since the slopes νi =

(vi − ui)/(qi − pi) in the middle parts of the activation functions in B′ are fixed, there

can not exist parameters µi, αij, βij, and ηi satisfying both (H3) and (HB′
1 ). Indeed, a

contradiction arises in µi > νi(
∑n

j=1 |αij| + |βij|) versus νi(αii + βii) > µi. Thus, the

definition of Λw for the activation functions in B′ and the standard activation function

g are as indicated in (4.18) and every Λw lies in the saturated parts corresponding to

the activation functions.

Corollary 4.4.3. Each of these 2n subsets Λw of C([−τ, 0],Rn), defined in (4.19), is

a basin of attraction for the unique equilibrium lying in Λw, under the assumptions of

Theorem 3.

Corollary 4.4.4. Under condition αii + βii −
∑n

j=1,j 6=i(|αij| + |βij|) − |Ii| > µi, i =

1, · · · , n, there exist 2n exponentially stable equilibria for Eq (1.1) with activation func-

tion g in (4.8).

Proof. The condition yields 4.10, and condition (H2) with p̃i = −1 and q̃i = 1 for all

i = 1, · · · , n. Hence, the assertion follows from Theorem 4.4.2. ¤

Remark. (i) Theorems 4.4.2 indicates that there exists an unique equilibrium in

each of the 2n regions Λw, w = (w1, w2, · · · , wn), wi = “l” or “r”, under respective

conditions.

(ii) There exists a globally attracting set for system (1.1), according to [35]. Therefore,

it can be concluded that every solution of (1.1) is bounded in forward time.

(iii) In [56], (1.1) with µi = 1, i = 1, · · · , n, and standard activation function (4.8) is

investigated. It was proved therein that, under condition

αii −
n∑

j=1,j 6=i

|αij| −
n∑

j=1

|βij| − |Ii| > 1, i = 1, · · · , n, (4.22)

there exist exactly 2n isolated locally exponential stable equilibria. It is obvious that

our condition in Corollary 4.4.4. is weaker than (4.22). In addition, it was shown that
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the set {x | x = (x1, · · · , xn), xi < −1 or xi > 1} is positively invariant under the

flow induced by (1.1). Our Theorem 4.4.1. has exploited larger positively invariant

set Λ̃w under the flow induced by (1.1). The computations in deriving the results in

[56] heavily depends on the saturation properties of the output functions. Restated, as

xj(t− τij) lies in {ξ < −1} or {ξ > 1}, the output g(xj(t− τij)) is either −1 or 1, and

thus the delay in the equation (1.1) does not have any actual effect in these regions.

The numerical simulations therein are thus dealing with ordinary differential equations

basically. As mentioned in Section 4.2, the transition from the linear regime to the

saturated regime in the standard output function is smooth in practical situation. Our

theory is based on a geometrical observation and has been established to take into

account these practical considerations.

(iv) It will be justified in Section 4.5 that the basins of attractions for the equilibrium

can be extended from Λw to Λ̃w. Moreover, the solution lying entirely in Λw converges

exponentially to the equilibrium in Λw, whereas the convergence for the solutions lying

entirely in Λ̃w may not have exponential rates.

(v) Consider (1.1) with periodic input, i.e. Ii = Ii(t) = Ii(t + T ) for all t ≥ 0, for

some T > 0. It could be established that there exist 2n exponentially stable T -period

solutions for the system with activation functions of class ∗, under conditions (H∗
1 ),

(H2), (H3), ∗ = A,B and βii > 0, i = 1, · · · , n, respectively.

The result in Theorem 4.4.2 confirms the exponential stability of 2n equilibria.

Other criterion for concluding exponential stability of the equilibria can be derived

through different treatments. The further result concerns different parameters where

the previous criterion could not apply. Herein we also consider the following criterion

concerning exponential stability of the equilibria.

(H′
3) : ∃ ηi > max{g′i(ξ) | ξ = či, âi} such that µi > ηi

n∑
j=1

(|αji|+ |βji|),

for all i = 1, 2, · · · , n.

Let Dr denote the right-hand derivative of a function.

Lemma 4.4.5. Let u(t) = (u1(t), u2(t), · · · , un(t)) and ũ(t) = (ũ1(t), ũ2(t), · · · , ũn(t))
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be continuously differentiable functions on c ≤ t ≤ d and both satisfy

ẏi(t) = −µiyi(t) + Fi(yt), i = 1, 2, · · · , n,

where Fi : C([−τ, 0],Rn) → R is continuously differentiable and y = (y1, · · · , yn).

Then Dr|u(t)− ũ(t)| exists on c ≤ t < d and

Dr|ui(t)− ũi(t)| ≤ −µi|ui(t)− ũi(t)|+ |Fi(ut)− Fi(ũt)|.

Proof. Via a similar argument as Lemma I.6.1 in [23], Dr|ui(t)− ũi(t)| exists and

Dr|ui(t)− ũi(t)|
= lim

h→0+

|ui(t)− ũi(t) + h[−µiui(t) + Fi(u(t)) + µiũi(t)− Fi(ũ(t))]| − |ui(t)− ũi(t)|
h

.

Hence, we have

Dr|ui(t)− ũi(t)|
≤ lim

h→0+

|(1− hµi)[ui(t)− ũi(t)]|+ |h[Fi(ut)− Fi(ũt)]| − |ui(t)− ũi(t)|
h

= lim
h→0+

(1− hµi)|ui(t)− ũi(t)|+ |h[Fi(ut)− Fi(ũt)]| − |ui(t)− ũi(t)|
h

= −µi|ui(t)− ũi(t)|+ |Fi(ut)− Fi(ũt)|.

The assertion is justified. ¤

Theorem 4.4.6. Assume that conditions (HA
1 ), (H2), and (H

′
3) hold and βii > 0, then

there exist 2n exponentially stable equilibria for DRNN (1.1) with activation functions

of class A.

Proof. Consider an equilibrium x̄ = (x̄1, x̄2, · · · , x̄n) ∈ Λw, for some w = (w1, w2, · · · , wn),

with wi = “l” or “r”. For a fixed i, we consider the single-variable continuous function

Li(·), defined by

Li(ζ) = µi − ζ − ηi

n∑
j=1

|αji| − ηi

n∑
j=1

|βji|eζτji .
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Then, Li(0) > 0 from (H
′
3). Moreover, there exists a constant λ > 0 such that Li(λ) >

0, for all i = 1, 2, · · · , n, due to continuity of Li. Let x(t) = x(t; φ) be the solution to

(1.1) with initial condition φ ∈ Λw. From (1.1) and Lemma 4.4.5, we obtain

Dr|xi(t)− x̄i| ≤ −µi|xi(t)− x̄i| +
n∑

j=1

ηj|αij||xj(t)− x̄j|

+
n∑

j=1

ηj|βij||xj(t− τij)− x̄j|, (4.23)

for all t > 0. Define functions

zi(t) = eλt|xi(t)− x̄i|, t ∈ [−τ,∞), i = 1, 2, · · · , n. (4.24)

Then, by (4.23) and (4.24) we have

Drzi(t) ≤ −(µi − λ)zi(t) +
n∑

j=1

ηj|αij|zj(t) +
n∑

j=1

ηj|βij|eλτijzj(t− τij), (4.25)

for all t > 0, i = 1, 2, · · · , n. Next, we define a Lyapunov functional V as follows:

V (zt) =
n∑

i=1

(
zi(t) +

n∑
j=1

ηj|βij|eλτij

∫ t

t−τij

zj(s)ds

)
.

Then, by (4.25) and Li(λ) > 0, we derive

DrV (t) ≤
n∑

i=1

[−(µi − λ)zi(t) +
n∑

j=1

ηj|αij|zj(t) +
n∑

j=1

ηj|βij|eλτijzj(t− τij)

+
n∑

j=1

ηj|βij|eλτijzj(t)−
n∑

j=1

ηj|βij|eλτijzj(t− τij)]

=
n∑

i=1

[−(µi − λ)zi(t) +
n∑

j=1

ηj|αij|zj(t) +
n∑

j=1

ηj|βij|eλτijzj(t)]

= −
n∑

i=1

[µi − λ− ηi

n∑
j=1

|αji| − ηi

n∑
j=1

|βji|eλτji ]zi(t)

< 0, (4.26)
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for all t > 0. Since for given initial condition φ ∈ C([−τ, 0],Rn), V (t) is continuous in

t, (4.26) implies V (t) ≤ V (0) for all t > 0. Consequently, we obtain

n∑
i=1

zi(t) ≤ V (t) ≤ V (0) =
n∑

i=1

[(zi(0) +
n∑

j=1

ηj|βij|eλτij

∫ 0

−τij

zj(s)ds]

=
n∑

i=1

[zi(0) + ηi

n∑
j=1

|βji|eλτji

∫ 0

−τji

zi(s)ds],

for all t > 0. From (4.24), we derive

n∑
i=1

|xi(t)− x̄i| ≤ e−λt

n∑
i=1

(1 + ηi

n∑
j=1

|βji|eλτjiτji)( sup
s∈[−τ,0]

|xi(s)− x̄i|).

Therefore, x(t) converges to x̄ exponentially. This completes the proof. ¤

Remark. (i) Theorem 4.4.6 indicates that there exists an unique equilibrium in each

of the 2n regions Λw, w = (w1, w2, · · · , wn), wi = “l” or “r”, under respective condi-

tions.

(ii) The basin of the equilibrium in each Λw could be proved to be as large as the posi-

tively invariant region by Theorem 4.4.6, although we are uncertain of the exponential

stability.

4.5 Numerical Illustrations

In this section, two two-dimensional examples are presented to illustrate our theory.

In particular, Example 4.5.2 demonstrates the multistability of system (1.1) with the

standard activation function (4.8). This example adopts parameters satisfying the

criteria in our theory but not the one in [56].

Example 4.5.1. Consider the following system with activation functions g1(ξ) =

g2(ξ) = tanh(ξ), which belongs to class A:

dx1(t)

dt
= −x1(t) + 4g1(x1(t)) + g2(x2(t)) + 3g1(x1(t− 10)) + g2(x2(t− 10))

dx2(t)

dt
= −3x2(t) + 2g1(x1(t)) + 7g2(x2(t)) + g1(x1(t− 10)) + 5g2(x2(t− 10)).
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Direct computation gives f̂1(x1) = −x1+7g(x1)+2, f̌1(x1) = −x1+7g(x1)−2, f̂2(x2) =

−3x2 + 12g(x2) + 3, f̌2(x2) = −3x2 + 12g(x2)− 3. Herein, the parameters satisfy our

conditions in Theorem 4.4.2:

Condition (HA
1 ) : 0 < µ1/(α11 + β11) = 1/7 < 1, 0 < µ2/(α22 + β22) = 3/12 < 1.

Condition (H2) : f̂1(p1) = −2.8524 < 0, f̌1(q1) = 2.8524 > 0,

f̂2(p2) = −3.4414 < 0, f̌2(q2) = 3.4414 > 0.

Condition (H3) : µ1 = 1 > 0.98 = (|α11|+ |β11|)η1 + (|α12|+ |β12|)η2,

µ2 = 3 > 1.98 = (|α21|+ |β21|)η1 + (|α22|+ |β22|)η2,

where η1 = 0.1 and η2 = 0.14 are chosen in (H3) and the other related numbers are

listed in Table 4.1.

â1 = −4.9994 d1 = −1.8184 p̃1 = −1.6283 b̂1 = −0.3491 q̃1=1.6283 d1 = 1.8184 ĉ1=9.0000
ǎ1 = −9.0000 b̌1=0.3491 č1=4.9993

â2 = −2.9793 d2 = −1.6392 p̃2 = −1.3170 b̂2 = −0.3518 q̃2=1.3170 d2 = 1.6392 ĉ2=4.9996
ǎ2 = −4.9996 b̌2=0.3518 č2=2.9793

Table 4.1: Local extreme points and zeros of f̂1, f̌1, f̂2, f̌2.

The dynamics of this system are illustrated in Figure 4.5, where evolutions of

72 initial conditions have been tracked. The constant initial conditions are plotted in

red color, and the time-dependent initial conditions are plotted in purple. There are

four exponentially stable equilibria in the system, as confirmed by our theory. The

simulation demonstrates convergence to these four equilibria from initial functions φ

lying in the respective basin for the equilibrium.

Example 4.5.2. Consider the following system with the standard activation function

(4.8):

dx1(t)

dt
= −x1(t) + 2g1(x1(t)) + g2(x2(t)) + 3g1(x1(t− 5)) + g2(x2(t− 5))

dx2(t)

dt
= −x2(t)− g1(x1(t)) + 4g2(x2(t)) + 2g1(x1(t− 5)) + 5g2(x2(t− 5)) + 1,
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Figure 4.5: Illustration for the dynamics in Example 4.5.1.

where g1(ξ) = g2(ξ) = g(ξ) = 1
2
(|ξ + 1| − |ξ − 1|). The parameters satisfy the criterion

in Corollary 4.4.4:

α11 + β11 − (|α12|+ |β12|)− |I1| = 3 > 1 = µ1,

α22 + β22 − (|α21|+ |β21|)− |I2| = 5 > 1 = µ2.

Therefore, there exist 2n exponentially stable equilibria. The parameters herein do not

satisfy the criterion (4.22) for the theory in [56]: α11 − |α12| − (|β11| + |β12|) − |I1| =

−3 < 1 = µ1. The dynamic of the system is illustrated in Figure 4.6.

4.6 Extending Basins of Attraction

In the previous section, the basins of attraction of stationary solutions for DRNN (1.1)

were derived from a criteria related to the slope of the activation functions. The ranges

of the basins depend on the parameters therein. As mentioned in the previous section,

the basin of attraction of each equilibrium confirmed in Theorem 4.4.2 and 4.4.6 is not
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Figure 4.6: Illustration for the dynamics in Example 4.5.2 (p̃i = −1, q̃i = 1).

as large as the positive invariant regions. This section is dedicated to extending basins

of attraction of 2n stable stationary solutions to their confirmed positively invariant

regions.

Theorem 4.6.1. Suppose that (HA
1 ), (H2), (H3) hold and βii > 0 for all i, then each

Λ̃w is the basin of the equilibrium therein of system (1.1) with activation functions of

classes A. Same assertion holds for activation functions of class B, under conditions

(HB
1 ), (H2)

Proof. We only prove the case of class A. For a fixed w, let φ ∈ Λ̃w be an initial

condition. Consider any neuron, say, the i-th one, in the case wi = “r” (the argument

also works in the case wi = “l”). By the result in Theorem 4.4.2, it is sufficient to

prove it for b̂i < minθ∈[−τ,0] φi(θ) ≤ di. Since φi(·) is a continuous function, there exists

a positive constant η1 such that φi(θ) ≥ b̌i + η1 for all θ ∈ [−τ, 0]. Define

t1 := max{t|φi(t) = b̌i + η1, t ∈ [−τ, 0]}.
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We claim that the state xi with initial condition φ will run into Λr
i in finite time and

justify it in four steps.

Claim 1: If t1 = 0, then dxi

dt
(t1) > 0.

Since βii > 0 and the activation function gi is increasing, βiigi(b̌i + η1) ≤ βiigi(xi(t1 −
τii)). Hence,

dxi

dt
(t1) = −µixi(t1) + αiigi(xi(t1)) + βiigi(xi(t1 − τii))

+
n∑

j=1,j 6=i

αijgj(xj(t1)) +
n∑

j=1,j 6=i

βijgj(xj(t1 − τij)) + Ii

≥ −µi(b̌i + η1) + αiigi(b̌i + η1) + βiigi(b̌i + η1)−
n∑

j=1,j 6=i

ρj(|αij + βij|) + Ii

> 0.

Claim 2: There does not exist any t > t1 such that xi(t) = b̌i + η1.

If there exists the first time t2 > t1 such that xi(t2) = b̌i + η1, we have dxi

dt
(t2) ≤ 0.

This contradicts the fact that

dxi

dt
(t2) ≥ f̌i(b̌i + η1) > 0.

The first inequality could be proved as previous step. Hence, xi(t) > b̌i + η1, for all

t > t1.

Claim 3: There exists a positive constant η2, depends on φ, such that xi(t) ≥
b̌i + η1 + η2, for all t ≥ τ .

Since the state xi(t) is a continuous function, the minimum on the compact set [τ, 2τ ]

exists. By Claim 2, the minimum is greater than b̌i + η1. We denote

η2 :=

(
min

t∈[τ,2τ ]
xi(t)

)
− (b̌i + η1).

Then η2 is positive. As in Claim 2, we could show that xi(t) ≥ b̌i +η1 +η2 for all t ≥ τ .

Claim 4: There exists a finite Ti > 0 such that xi(t) > di for all t ≥ Ti.

Suppose there exists a finite Ti > 0 such that xi(t) > di for Ti − τ ≤ t ≤ Ti. Because

f̌i(di) > 0, we could obtain xi(t) > di for all t ≥ Ti by the argument in Claim 1 and 2.

On the other hand, suppose there does not exist any finite Ti > 0 such that xi(t) > di
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for Ti − τ ≤ t ≤ Ti. Since xi(t) ≥ b̌i + η1 + η2 for τ ≤ t ≤ 2τ , there exists a finite

constant η3 > 0, justified as in Claim 3, such that xi(t) ≥ b̌i + η1 + η2 + η3 for all

t ≥ 3τ . Under the hypotheses of nonexistence of finite Ti > 0 with xi(t) > di for all

Ti − τ ≤ t ≤ Ti, there exists a sequence of positive constants {ηk}∞k=1, such that

xi(t) ≥ b̌i +
N+1∑

k=1

ηk, for all t ≥ (2N − 1)τ,

xi(t) ≥ b̌i +
N∑

k=1

ηk, for all t ≥ (2N − 2)τ. (4.27)

Suppose that

Mi := b̌i +
∞∑

k=1

ηk ≤ di. (4.28)

Then since b̌i < Mi ≤ di we have

f̌i(Mi) = −µiMi + (αii + βii)gi(Mi)−
n∑

j=1,j 6=i

ρj(|αij|+ |βij|) + Ii > 0.

By the continuity of activation functions gi, there exists positive constant ρ0 such that

−µiξ1 + αiigi(ξ1) + βiigi(ξ2)−
n∑

j=1,j 6=i

ρj(|αij|+ |βij|) + Ii > 0, (4.29)

whenever ξ1, ξ2 ∈ [Mi − ρ0,Mi + ρ0]. For this ρ0, there exists integer N0 such that

b̌i +

N0∑

k=1

ηk > Mi − ρ0.

Then, for t ≥ (2N0 − 3)τ ,

xi(t) ≥ b̌i +

N0∑

k=1

ηk > Mi − ρ0.

When t ≥ (2N0 − 2)τ and xi(t) ∈ [Mi − ρ0,Mi],

dxi

dt
(t) ≥ −µixi(t) + αiigi(xi(t)) + βiigi(xi(t− τii))−

n∑

j=1,j 6=i

ρj(|αij|+ |βij|) + Ii

≥ −µixi(t) + αiigi(xi(t)) + βiigi(Mi − ρ0)−
n∑

j=1,j 6=i

ρj(|αij|+ |βij|) + Ii

=: K0 > 0.
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The last inequality is due to (4.29). Hence, there exists a finite time T0 such that

xi(t) > Mi for all t > T0, contradicting with (4.28). Thus, we have b̌i +
∑∞

k=1 ηk > di,

then there exists integer Ni such that b̌i +
∑Ni

k=1 ηk ≥ di. And then we conclude that

for all t > (2Ni − 3)τ =: Ti,

xi(t) ≥ b̌i +

Ni∑

k=1

ηk ≥ di.

It means that the state xi with initial condition φi runs into Λr
i in finite time Ti.

Next, taking T := max1≤i≤n Ti, we derive that the solution x(0, φ) runs into

the region Λw in finite time T . Therefore, by Theorem 4.4.2, the solution x(0, φ)

approaches the equilibrium therein. The proof is completed. ¤

The estimates in confirming that the size of basins of attraction for the equilibria

are at least as large as the established positively invariant sets are independent to

the ones for deriving exponential stability for the equilibria. Although the confirmed

attracting domains are extended, the rates of convergence to the equilibrium for the

solutions lying in the larger and smaller regions may be different. In fact, our derivation

only indicates convergence to the equilibrium for the solutions starting from the larger

regions, while convergence to the equilibrium for the solutions starting from the smaller

regions is of exponential rates.

4.7 Numerical Illustrations

Herein, we present a two-dimensional systems to illustrate our theory for system (1.1).

Example 4.7.1 demonstrates the coincidence of positively invariant regions and basins

of traction which are confirmed in this work.

Example 4.7.1. Consider the following system with activation functions g1(ξ) =

g2(ξ) = tanh(ξ), which belongs to class A:

dx1(t)

dt
= −2x1(t) + 3g1(x1(t)) + g2(x2(t)) + 3g1(x1(t− 10)) + g2(x2(t− 10))

dx2(t)

dt
= −3x2(t) + 2g1(x1(t)) + 6g2(x2(t)) + g1(x1(t− 10)) + 6g2(x2(t− 10)).
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A computation gives

f̂1(x1) = −2x1 + 6g(x1) + 2, f̌1(x1) = −2x1 + 6g(x1)− 2,

f̂2(x2) = −3x2 + 12g(x2) + 3, f̌2(x2) = −3x2 + 12g(x2)− 3.

Herein, the parameters satisfy our conditions in Theorem 3:

Condition (H1) : 0 < µ1/(α11 + β11) = 1/3 < 1, 0 < µ2/(α22 + β22) = 1/4 < 1.

Condition (H2) : f̂1(p̃1) = −0.6065 < 0, f̌1(q̃1) = 0.6065 > 0,

f̂2(p̃2) = −3.4414 < 0, f̌2(q2) = 3.4414 > 0.

Condition (H
′
3) : µ1 = 2 > 1.6 = (|α11|+ |β11|)η1 + (|α12|+ |β12|)η2,

µ2 = 3 > 2.7 = (|α21|+ |β21|)η1 + (|α22|+ |β22|)η2,

where η1 = 0.2 and η2 = 0.18 are chosen and the other related numbers are listed

in Table 1. The dynamics of this system and the evolutions of state variables x1,

â1 = −1.8573 p̃1 = −1.1462 b̂1 = −0.5903 q̃1=1.1462 ĉ1=3.9980

ǎ1 = −3.9980 b̌1=0.5903 č1=1.8573

â2 = −2.9794 p̃2 = −1.31705 b̂2 = −0.3518 q̃2=1.3170 ĉ2=4.9996

ǎ2 = −4.9996 b̌2=0.3518 č2=2.9794

Table 4.2: Local extreme points and zeros of f̂1, f̌1, f̂2, f̌2.

x2 are illustrated in Figure 4.7-4.9. The constant initial conditions are plotted in res

color, and the time-dependent initial conditions are plotted in purple. The simulation

demonstrates that the basins of attraction of each equilibrium is at least as large as

the positively invariant regions.
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Figure 4.7: Illustrations for the dynamics in Example 4.7.1.
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Figure 4.8: Evolution of state variable x1(t) in Example 4.7.1.
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Figure 4.9: Evolution of state variable x2(t) in Example 4.7.1.
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Chapter 5

Monotonicity, Convergence and
Quasiconvergence in Delayed
Neural Networks

Global convergence had been investigated in delayed Hopfield neural network models

by employing the theory of monotone dynamical systems [52]. It was proved that under

some additional conditions all solutions converge to the unique equilibrium provided

that the negative delay feedback time is sufficiently small. This result was based on the

globally convergent criterion in Theorem 3.4.1. Contrasting with single equilibrium, the

existence of multiple equilibria has been declared in the previous chapter. The structure

of global dynamics is therefore the next issue. In the remainder of this chapter, we

will discuss the monotonicity and quasiconvergence in general delayed neural networks

with multiple equilibria.

5.1 Quasiconvergence

Generic convergence was proposed in a class of networks with interconnection ma-

trix satisfying “sign symmetry” and “irreducibility” properties and without delays in

[26, 28]. Therein, the convergence is guaranteed for almost every trajectory in the

term of Lebesgue measure zero. Relatively, in this section, we discuss the monotone

dynamics for delayed system (1.1) by the theory of Smith and Thieme [48] and confirm

that quasiconvergence is generic for the networks through justifying the strongly order
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preserving property. Explicitly, the system (1.1) possesses multiple equilibria and the

set of quasiconvergent points is more than dense in the phase space C. Let us first

recall the following definition.

Definition 5.1.1. Let E be the set of all equilibrium points. We say that φ ∈ C is a

quasiconvergent point, if its ω-limit set ω(φ) ⊂ E . The set of such points is denoted by

Q. A point φ ∈ C is called a convergent point, if ω(φ) consists of a single point of E.

Note that if all equilibria are isolated, then quasiconvergence yields convergence

for continuous-time dynamical systems. In order to apply the theory of monotone

dynamical systems, we need the following notations and definitions. Consider the

standard componentwise partial order “ ≤ ” and inequality “<” on Rn:

x ≤ y ⇔ xi ≤ yi, for all i,

x < (¿) y ⇔ x ≤ y and xi < yi for some (all) i.

Then the partial order “ ≤ ”, called the standard order, and the inequality “ < ” on

C = C([−τ, 0],Rn) are defined by

φ ≤ ψ ⇔ φ(θ) ≤ ψ(θ) for θ ∈ [−τ, 0],

φ < ψ ⇔ φ ≤ ψ and φ 6= ψ,

φ ¿ ψ ⇔ φ(θ) ¿ ψ(θ) for all θ ∈ [−τ, 0].

Definition 5.1.2. (i) A semiflow Φ is said to be monotone provided Φt(φ) ≤ Φt(ψ)

whenever φ ≤ ψ and t ≥ 0. (ii) Φ is called strongly order preserving (SOP), if it is

monotone and whenever φ < ψ, there exist open subsets U, V of C with φ ∈ U and

ψ ∈ V and t0 > 0 such that Φt0(U) ≤ Φt0(V ).

It has been shown in [47] that if the phase space can be approximated from below

or above, then IntQ is dense in C for a SOP system, under a compactness assumption.

The conditions in this theorem can all be justified in our situations herein.

Trivially, the one-dimensional delayed equation

dx

dt
= −ax(t) + bg(x(t− τ)), a > 0, b < 0,
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fails to be monotone under the standard ordering in C [47], so do the higher dimensional

cases. We shall adopt a special order introduced in [48] to conclude the monotone

behavior for system (1.1). Let M be an n × n essentially nonnegative matrix, which

means that M + λI is entrywise nonnegative for all sufficiently large λ. Define

KM := {ψ ∈ C|ψ ≥ 0 and e−tMψ(t) ≥ e−sMψ(s), for − τ ≤ s ≤ t ≤ 0}. (5.1)

Then KM is a cone in the space C, that is, under addition and scalar multiplication

by nonnegative scalars, KM is closed in C and KM ∩ (−KM) = ∅. Moreover, KM is a

normal cone, which means that every order interval is a bounded set in C [1]. According

to [48], KM induces a partial order on C.

Definition 5.1.3. If φ, ψ ∈ C, we say φ ≤M ψ whenever ψ − φ ∈ KM . We write

φ <M ψ to indicate that φ ≤M ψ and φ 6= ψ.

Theorem 5.1.4. [48] Consider the delayed differential equation

dx(t)

dt
= F (xt), (5.2)

where F ∈ C1(C,Rn). Then the semiflow Φ generated by (5.2) is SOP on C under

order “≤M”, if the following conditions hold :

(i) dF (φ)ψ −Mψ(0) À 0 for every φ ∈ C and every ψ ∈ KM with ψ À 0,

(ii) If φ ∈ C, ψ ∈ KM and J is a (nonempty) proper subset of {1, · · · , n} such that

ψj À 0 for j ∈ J and ψk(0) = 0 for k /∈ J , then (dF (φ)ψ)i > 0, for some i /∈ J .

Definition 5.1.5. An n× n matrix A = [Aij] is called irreducible if whenever the set

{1, 2, · · · , n} is expressed as the union of two disjoint proper subsets S, S ′, then for

every i ∈ S there exists j, k ∈ S ′ such that Aij 6= 0, Aki 6= 0.

Remark. This means that the linear map A : Rn → Rn does not map into itself any

nonzero proper linear subspace spanned by a subset of the standard basis. Equivalently,

the directed graph with vertices 1, 2, · · · , n and directed edges (i, j) for Aij 6= 0, is

connected by directed paths.
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Herein, we set the n × n matrix M = diag(−µ1 − ν1, · · · ,−µn − νn), where

νi > 0 will be chosen later. Indeed, the matrix M is essentially nonnegative. Let

γi := maxξ∈R g′i(ξ).

Proposition 5.1.6. Assume that one of the matrices A and B is irreducible, where

A = [αij], B = [βij], αij ≥ 0, βij ≥ 0 for all i 6= j, αii + βii > 0 for all i, and the time

lags {τij} satisfy

τii ≤ 1/(µi + e|βii|γi), (5.3)

for all i with βii < 0. Then the semiflow Φ generated by the solutions of (1.1) is SOP

in the order ≤M .

Proof. Recall the previous definition of F defined from (1.1):

Fi(φ) = −µiφi(0) +
n∑

j=1

αijgj(φj(0)) +
n∑

j=1

βijgj(φj(−τij)) + Ii, i = 1, · · · , n.

For any φ ∈ C and ψ ∈ KM , we have

(dF (φ)ψ)i − (Mψ(0))i

= νiψi(0) +
n∑

j=1

αijg
′
j(φj(0))ψj(0) +

n∑
j=1

βijg
′
j(φj(−τij))ψj(−τij) (5.4)

≥ [(νie
−τii(µi+νi) + βiig

′
i(φi(−τii))]ψi(−τii) + αiig

′
i(φi(0)))ψi(0)

+
n∑

j=1,j 6=i

αijg
′
j(φj(0))ψj(0) +

n∑

j=1,j 6=i

βijg
′
j(φj(−τij))ψj(−τij), (5.5)

since ψi(0) ≥ e−τii(µi+νi)ψ(−τii), from ψ ∈ KM , and ψ(0) ≥ e−sMψ(s), for all s ∈
[−τ, 0]. Here, we take νi > 0 satisfying νi = e|βii|γi. If βii < 0, then αii > 0, and the

assumption τii ≤ 1/(µi + e|βii|γi) yields νi exp[−τii(µi +νi)]+βiig
′
i(φi(−τii)) > 0. Thus

(dF (φ)ψ)i−(Mψ(0))i > 0, from (5.5). When βii ≥ 0, (dF (φ)ψ)i−(Mψ(0))i > 0 follows

from νi + αiiγi > 0 and (5.4). Next, we will prove that condition (ii) in Theorem 5.1.4

holds. For any φ ∈ C and ψ ∈ KM , let J be a (nonempty) proper subset of {1, · · · , n}
such that ψj À 0 for j ∈ J and ψk(0) = 0 for k /∈ J . Then ψi(−τii) = 0 for each i /∈ J ,
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due to ψi(−τii) ≤ exp[diτii]ψi(0). Since one of the matrices A and B is irreducible,

there is some i /∈ J such that

(dF (φ)ψ)i = −µiψi(0) +
n∑

j=1

αijg
′
j(φj(0))ψj(0) +

n∑
j=1

βijg
′
j(φj(−τij))ψj(−τij)

=
n∑

j=1,j 6=i

αijg
′
j(φj(0))ψj(0) +

n∑

j=1,j 6=i

βijg
′
j(φj(−τij))ψj(−τij)

=
n∑

j∈J

αijg
′
j(φj(0))ψj(0) +

n∑
j∈J

βijg
′
j(φj(−τij))ψj(−τij) > 0.

Hence, it follows from Theorem 5.1.4 that the semiflow Φ generated by the solutions

of (1.1) is SOP under order “≤M”. ¤

Notably, condition (H1) yields αii + βii > 0 for all i. Thus, under conditions

(H1) and (H2), and the assumptions in Proposition 1, there are 3n equilibria for (1.1)

and intQ is dense in C. In fact, the assumptions of irreducibility of A, B and non-

inhibitory interactions, αij, βij ≥ 0 for all i 6= j, are not necessary. We will remove these

assumptions by using a decomposition approach in competitive-cooperative systems

[53, 12].

Theorem 5.1.7. Assume that (H1) and (H2) hold and the delay time {τij} satisfy

(5.3). Then system (1.1) has 3n equilibria and intQ is dense in C.

Proof. Define matrices A+ = [a+
ij], A− = [a−ij], B+ = [b+

ij] and B− = [b−ij] by

a+
ij =

{
αii, for j = i

α+
ij + s, for j 6= i,

a−ij =

{
0, for j = i

α−ij + s, for j 6= i,

b+
ij =

{
βii, for j = i

β+
ij + s, for j 6= i,

b−ij =

{
0, for j = i

β−ij + s, for j 6= i,

where α+
ij = max{αij, 0}, α−ij = max{−αij, 0}, similarly for β+

ij , β
−
ij ; s > 0 will be chosen
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latter. Since αij = a+
ij − a−ij and βij = b+

ij − b−ij, (1.1) becomes

dxi(t)

dt
= −µixi(t) +

n∑
j=1

a+
ijgj(xj(t))−

n∑
j=1

a−ijgj(xj(t))

+
n∑

j=1

b+
ijgj(xj(t− τij))−

n∑
j=1

b−ijgj(xj(t− τij)) + Ii, (5.6)

i = 1, · · · , n. Define yi = −xi, and set g̃i(ξ) := −gi(−ξ), i = 1, · · · , n. Then (5.6) is

embedded into the following system :

dxi(t)

dt
= −µixi(t) +

n∑
j=1

a+
ijgj(xj(t)) +

n∑
j=1

a−ij g̃j(yj(t))

+
n∑

j=1

b+
ijgj(xj(t− τij)) +

n∑
j=1

b−ij g̃j(yj(t− τij)) + Ii

dyi(t)

dt
= −µiyi(t) +

n∑
j=1

a−ijgj(xj(t)) +
n∑

j=1

a+
ij g̃j(yj(t))

+
n∑

j=1

b−ijgj(xj(t− τij)) +
n∑

j=1

b+
ij g̃j(yj(t− τij))− Ii, (5.7)

i = 1, · · · , n. Note that each g̃i also admits the characteristics of gi. We define zk(t)

and hk(ξ) by zi(t) = xi(t), zn+i(t) = yi(t), and hi(ξ) = gi(ξ), hn+i(ξ) = g̃i(ξ), for

i = 1, · · · , n. Then (5.7) can be written as

dzi(t)

dt
= −µ̃izi(t) +

2n∑
j=1

ãijhj(zj(t)) +
2n∑

j=1

b̃ijhj(zj(t− τ̃ij)) + Ĩi, (5.8)

i = 1, · · · , 2n, where the 2n× 2n matrices Ã and B̃ are defined by

Ã = [ãij] :=

[
A+ A−

A− A+

]
, B̃ = [b̃ij] :=

[
B+ B−

B− B+

]
,

and µ̃i, Ĩi, τ̃ij are given by µ̃i = µi, µ̃n+i = µi; Ĩi = Ii, Ĩn+i = −Ii, i = 1, · · · , n;

τ̃ij = τ̃n+i,j = τ̃i,n+j = τ̃n+i,n+j = τij, i, j = 1, · · · , 2n.

Note that Ã, B̃ are both irreducible and ãij > 0, b̃ij > 0, for all i 6= j. System

(5.8) thus satisfies the assumptions other than ãii + b̃ii > 0, for all i, in Proposition
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1. It can be justified that under (H1) and (H2) for system (1.1), conditions analo-

gous to (H1) and (H2) hold for (5.8) so that there exist 32n equilibria for (5.8). One

also observes that if xi(0) + yi(0) = 0, then xi(t) + yi(t) = 0 for all t for solutions

(x1(t), · · · , xn(t), y1(t), · · · , yn(t)) of (5.8). Restated, the dynamics of (5.8) on the in-

variant regions {x1 = y1, · · · , xn = yn} are exactly the dynamics for (1.1). Thereafter,

under the assumption (H1) and (H2), there exist 3n equilibria for (1.1) and we could

choose s > 0 sufficiently small as in Proposition 5.1.6 so that, the semiflow Φ generated

by the solutions of (5.8) is SOP. Therefore, IntQ is dense in C([−τ, 0],R2n) for system

(5.8), hence IntQ is dense in C([−τ, 0],Rn) for system (1.1), if 0 ≤ τii ≤ 1/(bi+e|βii|γi),

for i = 1, · · · , n. ¤

5.2 Numerical Illustrations

The parameters in Example 5.2.1 satisfy conditions (H∗
1), ∗ = A,B′, and (H2), but not

(H3).

Example 5.2.1. Consider the following system with activation functions g1(ξ) =

g2(ξ) = tanh(ξ), which belongs to class A,

dx1(t)

dt
= −x1(t) + 7g1(x1(t)) + 0.5g2(x2(t))− 4g1(x1(t− τ11)) + 0.5g2(x2(t− τ12))

dx2(t)

dt
= −x2(t) + 0.5g1(x1(t)) + 7g2(x2(t)) + 0.5g1(x1(t− τ21))− 4g2(x2(t− τ22)).

Direct computation gives

f̂1(x1) = −x1 + 7g(x1) + 2,

f̌1(x1) = −x1 + 7g(x1)− 2,

f̂2(x2) = −3x2 + 12g(x2) + 3,

f̌2(x2) = −3x2 + 12g(x2)− 3.

Herein, the parameters satisfy condition (HA
1 ):

0 < µ1/(α11 + β11) = µ2/(α22 + β22) = 1/3 < 1,
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and condition (H2):

f̂1(p1) = −2.8524 < 0, f̌1(q1) = 2.8524 > 0,

f̂2(p2) = −3.4414 < 0, f̌2(q2) = 3.4414 > 0.

The other related numbers are listed in Table 5.1.

â1 = −1.8572 p̃1 = −1.1462 b̂1 = −0.5903 q̃1=1.1462 ĉ1=3.9980

ǎ1 = −3.9980 b̌1=0.5903 č1=1.8573

â2 = −1.8572 p2 = −1.1462 b̂2 = −0.5902 q2=1.1462 ĉ2=3.9980

ǎ2 = −3.9980 b̌2=0.5902 č2=1.8572

Table 5.1: Local extreme points and zeros of f̂1, f̌1, f̂2, f̌2.

Note that g′(ξ) is decreasing for ξ > 0 and increasing for ξ < 0. Condition (H3)

does not hold since µ1 = 1 < (|α11|+ |β11|)g′(â1)+ (|α12|+ |β12|)g′(â1) ' 11× 0.0929+

1 × 0.0929 = 1.1148. We choose τ11 = 0.08, τ12 = 10, τ21 = 10, τ22 = 0.08 to satisfy

Eq (5.3): τ11 = τ22 = 0.08 < 1/(1 + 4e) ' 0.08475. The dynamics of this system are

illustrated in Figure 5.1.

Remark. Figure 5.2 depicts the dynamics for the system with the same parameters

but with time lags τ11 = τ12 = τ21 = τ22 = 10, which do not satisfy criterion (5.3). It

appears that two of the four equilibria become unstable. The dynamics are apparently

different if we replace the activation function tanh(ξ) by the standard activation func-

tion g(ξ) = 1
2
(|ξ + 1| − |ξ − 1|). There still exist four stable equilibria, as illustrated in

Figure 5.3.
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Figure 5.1: Illustration for the dynamics in Example 5.2.1 with activation function
gi(ξ) = tanh(ξ) and τ11 = 0.08, τ12 = 10, τ21 = 10, τ22 = 0.08.
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Figure 5.2: Illustration for the dynamics in Example 5.2.1 with activation function
gi(ξ) = tanh(ξ) and τ11 = τ12 = τ21 = τ22 = 10.
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Figure 5.3: Illustration for the dynamics in Example 5.2.1 with the standard activation
function gi(ξ) = g(ξ) = 1

2
(|ξ + 1| − |ξ − 1|) and τ11 = τ12 = τ21 = τ22 = 10.
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