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Abstract

The optimal partition problem considers the partition of n objects into p
nonempty parts, and finding a partition(optimal partition) to maximize the
objective function F' : RP — R. A brute force method is to compare the
values of objective function F(7) for each partition 7. Thus, we are concerned
with the number of all partitions which determines whether the brute force
method is practical. However, a more desirable solution is to prove that the
objective function has some suitable ptoperty which leads to the existence
of an optimal partition in a specialjelass of*partitions. Then, we need pay
attention only to this clas§ of partitions.

The vector of the size of each part.is called a-shape. If a partition problem
has a restriction where thesize of €éach part lies in an interval, then it is called
a bounded-shape partition problem. If each interval is degenerated, then it
is called single-shape partition problem. In Chapter 2, we use the generating
function to count the number of ordered(unordered) shapes and the number
of bounded-shape partitions. In Chapter 3, we prove that for bounded-shape
sum-partition problem with Schur-convex objective function, there must be
a nonmajorized shape such that the corresponding size-consecutive partition
is optimal. We also bound the number of nonmajorized shapes, and develop
an algorithm to find all nonmajorized shape-types. In Chapter 4, we prove
that for single-shape mean-partition problem with quasi-convex objective
function, there must be a consecutive optimal partition. We also give some

new results for the mean-partition problems.
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Chapter 1

Introduction

In this Chapter, we introduce the background of the optimal partition prob-

lem and give a summary of the following Chapters.

1.1 The one dimensional partition problem

The partition problem studies the partitioningof n numbers into finite nonempty
parts so as to maximize an objective function subject to certain constraints
on the number of element§ in each-part--Applications of the partition prob-
lem include inventory grouping, scheduling; reliability, graph partitioning,
hypothesis testing in statistics, circuit layout, clustering, symbolic computa-
tion, location problems, storage allocation, group testing, system reliability,
etc.., see [16] for a survey.

Consider a partition 7 of {1,...,n} into p nonempty parts 7, ..., m,. If the
number of parts is fixed to be p, we call it a p-partition(size-partition); other-

wise we call it an open partition. Let ng, ..., n, be the sizes of 7y, ..., 7, where

P
Y- n; = n. We define the shape of 7 as the vector (ny,...,n,). If the cardi-
i=1

nalities of the p parts are fixed to be (ny,...,n,), then we call it a (ny, ..., n,)-

partition(single-shape-partition). If the size of each parts must lie in a range,

i.e., nonnegative integer p-vectors L = (L4, ...,L,) and U = (Uy,...,U,) are



given where
p

d L §n§iUi, (1.1.1)

i=1 =1

and the shape (ny, ...,n,) of a feasible partition satisfies for each i

then we call it a bounded-shape-partition. Define I'(L,U) to be the set of
all partitions whose shapes satisfy (1.1.1) and (1.1.2). If the number of
parts is fixed at p and only a set of shapes is allowed, then we called it a
constrained-shape-partition. In addition, we have the two categories of or-
dered partitions and unordered partitions. An ordered partition is a sequence
(71, ..., Tp), while an unordered partition is a set {my, ..., Ty }.

Given an objective function F(w), our goal is to find a partition(optimal
solution) to maximize it. A brute-force way is to enumerate and evaluate
all legitimate partitions to get the optimal solution of the objective func-
tion. Whether this is a pragtical method depend on the number of legitimate
partitions. The counting of ordered and unordered partitions for open par-
titions, size partitions and shape partitions are fundamental combinatorial
problems and have been well do¢cumented {16]. Although, theoretically, we
could count bounded-shape parfitions also by summing up all legitimate
shapes, that could be unwieldy in practice. We will study the generating
function approach to count bounded-shape partitions in Chapter 2.
Suppose we know that the objective function has an optimal solution in a
special class of partitions, then we need pay attention only to this class of
partitions. Two such classes are consecutive partitions and size-consecutive
partitions. A partition is called consecutive if each part consists of consecu-
tive integers. A consecutive partition is called size-consecutive(reverse-size-
consecutive) if n; > n; implies that every member in 7; is larger (smaller)

than every member in 7;. Of course, given any integer vector (nq,...,n,)
P
which satisfies > n; = n, there exist a size-consecutive and a reverse-size-

i=1
consecutive partition with shape (nq,...,n,); in fact, they are unique when-



ever the n;’s and the 6,’s are distinct. In Chapter 3, we prove that when the
objective function of the sum-partition problem with bounded-shape is Schur
convex(see Sec.1.2), we need pay attention only to size-consecutive partitions
with nonmajorized shapes. In Chapter 4, we show that for the single-shape
partition, results obtained for the sum-partition problem also apply to the

mean-partition problems.

1.2 The bounded-shape sum-partition prob-
lem for Schur convex objective function

For a vector a = (ai,...,ap) in RP, let a) be the i-th largest member of

ai,...,a,}. Given vectors a and b in RP, we say that a majorizes b if
P y ]

K K
> ay Zzb[i] for k=1,....p—1 (1.2.1)
i=1 =

and

P p
Y b | (1.2.2)

i=1 i=1
We say that a strictly magorizes b it @ € S majorizes b but b does not
majorize a. If @ majorizes b for each b/&€"S C RP, then a is called majorizing
vector in S, if a is not majorized by any b € S, a is called a nonmajorized
vector in S. A real-valued function f on RP is Schur convex if f(a) > f(b)
whenever a majorizes b. A Schur convex function is known to be symmetric.

For a partition m = (7, ..., mp) let
O = (D 05, > 0)), (1.2.3)
JeE™ JETY

Hwang and Rothblum [15] considered the sum-partition problem of maxi-

mizing the objective function

F(r)=f(O_ 0, ) 0;,....> 0, (1.2.4)

JE™L JET JET
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over partitions 7 having shape in a prescribed set with f being Schur convex.

In particular, they proved Theorem 1.2.1.

Theorem 1.2.1. Suppose f is Schur convez, I" is a set of positive integer
p-vector that sum ton and m 1s a partition with shape in 1" which is majorized

by a shape (nq,...,n,) €T.

(a) If 0; > 0 fori=1,...,n, then every size-consecutive partition w’ with
shape (nq,...,n,) has f(0.) > f(0:).
(b) If 0; <0 fori=1,...,n, then every reverse-size-consecutive partition

7" with shape (nq,...,n,) has f(0r) > f(0).

In particular, when I' contains a single shape, if n; < ... < n,, then the

following explicit partitions are optimal under (a) or (b), respectively

i—1 i
™= (an+1,...,an) fori=1,...p (1.2.5)
j=1 =1

and

i oyl
™= (n—an+1,...,n—an) fori=1,..,p. (1.2.6)
j=1 =i

They also considered the problem with bounded shapes. They gave the
example where n = 9, p = 3, I'=1(1,2,2) and U = (5,4,4) to show that
a majorizing shape may not exist. They also gave a sufficient condition for
the existence of the majorizing shape. The sufficient condition is that the
order of upper bounds over the p parts equal to the order of lower bounds.
By Theorem 1.2.1, if f is Schur convex and I' = ['(L, U) has the majorized
shape, then we can find an optimal solution in the (reverse)size-consecutive
class.

In Chapter 3, we extend Theorem 1.2.1 to the case when the majorized shape

doesn’t exist and I' is a set of bounded-shapes.



1.3 The polytope approach to the sum-partition
problem

Given a real-value function A on the subsets of {1, ...,p} with A(¢) = 0, each
permutation o = (o4, ..., 0,) of {1, ..., p} defines a vector Ay = ((As)1, ..., (As)p)
such that

Aok = MUy 01) = MUZ{ 00), with o; = k for 1 <k < p.
A is called supermodular if for all subsets I, J of {1, ..., p},
AMITUJ)+AXINJT) =)+ A(J),

and strictly supermodular if the inequality is strict for all I, J not satisfying
I C Jor J CI. The permutation polytope induced by X, denoted H*, is the
convex hull of {), : all ¢}. For example, Shapley [18] studied the case of
convex p-person game. For a subset I C {1,...,p}, let A(I) denote the payoff
to I, if the members of I formsan allianee.»Then stability of an alliance I U J
requires A to be supermodular. Fhe core of & convex p-person game is the

solution set of the linear inequality system

Zmi > \(I) for all FC {1, pFand zp:xi = {1, ...,p}). (1.3.1)

i€l i—1
Let C* denoted the polytope defined by (1.3.1). Shapley [18] proved

Theorem 1.3.1. Suppose A is supermodular. Then
(a) H* = C*,
(b) the vectices of H* are precisely the \,’s where o ranges over all per-

mutations of {1, ...,p}.

Gao et al.[9] studied the single-shape sum-partition problem to maximize
an objective function f( > 6;,..., > 6;). For I a subset of {1, ...,p}, define

isust JETp
n(I) =Y n;. They defined
i€l
n(l)
As(I) =0, (1.3.2)
j=1



and proved \g is supermodular. Here, H$ is the convex hull of all partitions
corresponding to {(Ag), : all o} (each partition is a point), and C*s is the
polytope defined by

S0, 3 As(1) for all 1 C {1,...p} and 3 6, = As({1, ... p}).

iel jem; J=1
Let P denote the convex hull of all partitions satisfying the given single
shape. Clearly, H*s C P C C*s. By Theorem 1.3.1, H*s = P = C*s. They
proved the existence of a consecutive optimal partition for the single-shape

partition problem when f is quasi-convex.

1.4 The mean-partition problem

Consider N = {1,...,n} where each element ¢ in N is associated with a
number §; € R. Partition problems are further classified by their objective
function F'(.). For a subset S.of {1,...;n};let

(A I_qul YN bhe R, (1.4.1)

icS
and for a partition m = (7, ..., T)5let

O = (Gryyeissl,) € RV (1.4.2)
A class of partition is the mean-partition problem in R in which
F(m) = 9(0s), (1.4.3)

where ¢ is a real-valued function on RP. The mean-partition polytope corre-
sponding to a set of partitions II is denoted by M. While the sum partition
problem has been dominating in optimal partition problems, the mean par-
tition problems have also been considered. Anily and Federgruen [1] first
studied the single-shape mean-partition problem. In Chapter 4, we will give
an approach to solve the single-shape mean-partition problem, and discuss
the difficulties of the bounded-shape mean-partition problem. Finally, we

give some new results in the mean-partition problem.



Chapter 2

Counting the Number of
Bounded-shape

In this chapter, we use the generating function approach to count bounded-
shape partitions. When the 6;’s are,constant, then the number of bounded-
shape partitions is reduced to the number‘of bounded shapes. We obtain a

neat solution of that number for ordered partitions.

2.1 The generating function approach
For given lower bound L; and upper bounds U;, 1 < i < p, define

#>: The number of ordered bounded shapes.

n

#Z: The number of unordered bounded shapes.
#.,: The number of ordered bounded-shape partitions.

#.: The number of unordered bounded-shape partitions.

Define

L= Zp: L;
=1



and

It is well known [2] that

k!

We show that #, #Z, #, and #, can be expressed as different functions
of ¢,

Theorem 2.1.1.

(1) #: = ¢, by setting a; =1 in g,(z).

(i) #. = the number of distinct derms. ine,.
(iii) #, = nle, by setting aj = 1/(j1):

(iv) #, = same as (iii) emcept counting only distinct terms in c,, and di-
viding a term [15_, a7 by LIL_, (e:h)s

Proof.
(i) Every ordered shape (ng,ns,...,n,) summing to n contributes 1 to c,.
(ii) Two shapes (n1,...,n,) and (n},...,n,) are not distinguishable if {n,,
ompt =A{nf,...,n,}. A shape (ny,...,n,) is preserved in the coef-
ficient term ay,,,...,a,,. Hence we count only distinct ay,,...,a,,(as

coefficient, the ordering is not important) terms.
(iii) Each shape (nq,...,n,) yields (m"np) distinct partitions.

(iv) The division is because interchanging two parts of same size results in

the same unordered partition.



Example 1.
n=10,ny € [2,4],ns € [2,6],n3 € [3,5].

(i)
g(z) = (2% + 2 + 2*)(2® + 2° + 2* + 2° + 2°)(2® + 2* + 2°)
=1z + 32% + 627 4+ 8z'° 4+ 9z + 822 + 6213 + 321 + 210,

There are ¢19 = 8 ordered bounded shapes which are (2,3,5), (2,4,4),
(2,5,3), (3,2,5), (3,3,4), (3,4,3), (4,2,4), (4,3,3).

(ii)
g(x) = (agx® + asx® + agx?)(asx® + - - + agx®) (asz® + agz® + asz®)
= -+ + (3agazas + 2aza; + 3aza,)z™ + . ...

Hence, there are 3 unorderedsbounded shapes which are (2, 3,5), (2,4,4),
(3,3,4).

(iii) |
2 7 i b3 ot b

9(37)=(§+§+1)(§+'“+§)(§+Z+a)
RPN T ST S
=217 o hmeo” T o60” e T

7

Hence, there are 10! x gg = 26460 ordered bounded-shape partitions.

(iv)

as® asxt . asw? agx
ot G ) e )
- 3asazas  2asa3  3ajas, 1
=t (g Y Tee et
The number of unordered bounded-shape partitions is

10 X ! + 10! X ! +1—0!><—1 =6195
1440 & (1H(1H(1) T 1152 T (AN(2) 864 T (2H(1!) '

Although a generating function counting is equivalent to enumeration, it

gives a particular way of enumeration, hence doable by a computer program.

9



2.2 A neat solution

We show that the generating function approach leads to a neat formula for
the number of ordered bounded shapes.
Define
Ry =U; — Lj,1<1<p,

p
S={(s1,---,5) | siE{O,Ri—l—l}for1§i§p,23i§n—L*}

i=1
and
p
Spr1 =n—L* —Zsi.
i=1
Let [(s1,...,sp)| denote the number of positive s;.

Theorem 2.2.1.
+ S 1—1
= ) srsp)l (P S0+ .
#= Y (Y N

Proof.
:(:CLl _|-;gL1+1—|—--~—|—xU1)__.(xL”—I—xL”Jrl—I—-“—l—:CUP)
=z (1 +o+ - T erases £ 2™) (T4 a+ -+ 2)

=2 (1 — (1 Sty @ (1 - 2) 7P

g9(z)

Using the Leibniz formula,

(i) = 5 ()i

ni+-+nm=n =1

where n; is the largest exponent of f;(x), on the first p + 1 terms of g(x),

dsr+1
M (0) = " Bl A P T 1— )7
g ( ) ( Z)GS <L*7 81) e 7Sp’ Sp-‘rl) ( ) 51 Sp dl'sp+1 ( x> 2=0
S1ye-58p
— n‘ (_1)|(51 7777 sP)' <p + Sp+1 _ 1)' |:(]~ — Qj)_p—sm.l}
o s =
S15e-5Sp
S1yeeesS P+ Sp+1 1 —p—s
=nl Z ( 1)|( 1, :p)( p_ . > [(1 —x)7? p+1}x:0
(81,...,8p)ES p



gn (O) I( )l p+ Sp+1 — 1
Th n — Cn = = —1)18tdp . ]
whma B 3 (T

A size-partition can be interpreted as a bounded-shape partition with
uniform bounds L; = 1,U; = n. Then

L* =p,
R=n—-11<1<p.
Necessarily,
s; =0for 1 <i<np.
and
Spr1 ==L =n—p.
Corollary 2.2.2. The number of ardered. size-partitions is (Zj)

Example 2.

n=14n; € {2,4],”2 S [2,8],”3 S [3,6]
R1:2,R2:6,R3=3,L*:7,TL—L*:7.
S ={(0,0,0), (3,0,0), (0,7,0), (0,0,4), (3,0,4)}.

Hence

#(2,41,[2,8],13,6) = (-1 (57 + D' + D)

The shapes are: (2,6,6), (2,7,5), (2,8,4), (3,5,6), (3,6,5), (3,7,4),
(3,8,3), (4,4,6), (4,5,5), (4,6,4), (4,7,3).

11



Chapter 3

The Bounded-shape
Sum-partition Problem in R!

with Schur Convex Objective
Function

In this chapter, we consider the bounded-shape sum-partition problem in
R' with Schur convex objective function.. We will show that the 6;’s are
one-sided, one can restrict-attention to (reverse) size-consecutive partitions
with a nonmajorized shape.*As a (reverse) size-consecutive partition with
a given shape is easy to determine(see (1.2.5) and (1.2.6)), the problem of
finding an optimal partition is reduced to the task of identifying a set of
shapes that contains all nonmajorized ones. Since Schur convex functions
are symmetric, they do not differentiate between partitions that are obtained
by part-permutations as long as the corresponding coordinate-permutations
of the shapes are feasible. Thus, we may restrict attention to representatives
of shape-types which are the equivalence classes of shapes with respect to
coordinate-permutations. We will study nonmajorized shapes, bound their
numbers and develop algorithms to enumerate them, too. Our study extends
the analysis of a previous paper [15] which discussed the above problem

assuming the existence of a majorizing shape.

12



3.1 Nonmajorized shapes

We explore the relation between shape-majorization and the optimization
problem with Schur-convex objective function over partitions introduced in
the Introduction. In particular, we explore the role of nonmajorized shapes,
with respect to I'(L, U).

Corollary 3.1.1. Suppose f and I are as in Theorem 1.2.1, but no majoriz-
ing shape exists.

(a) If ; > 0 fori = 1,...,n, then there is a nonmajorized shape in T’
such that any corresponding size-consecutive partition is optimal.

(b) If ; < 0 fori = 1,...,n, then there is a nonmajorized shape in I’

such that any corresponding reverse-size-consecutive partition is optimal.

Corollary 3.1.1 implies that when f is Schur convex and the 6;’s are
one-sided, it suffices to restrict_attention to (reverse) size-consecutive par-
titions whose shapes are noumajorized. “Of course, the symmetry of Schur
convex functions implies that all size;consecutive partitions with the same
shape have the same objective value £ (as defermined by (1.2.4)). We con-
clude that the underlying-optimization problem can be solved by obtaining
a list that contains all nonmajorized shapes,.determining corresponding size-
consecutive partitions, and evaluating the right-hand side of (1.2.4) for each
one of them to select the best. Further, it suffices to consider only repre-
sentatives of all nonmajorized shape-types. The remainder of our paper will
focus on studying and identifying nonmajorized shapes and shape-types with
respect to sets of the form I'(L, U).

In the bounded-shape case which the majoring shape doesn’t exist [4],
consider a vector a € R? and J C {1,...,p}, let a; denote the subvector of

a consisting of the coordinates indexed by J.

P P

Lemma 3.1.2. Consider vectors a and b in RP with Y a; = Y b; and a set
i=1 i=1

J CAL,...,p} for which a; = b; for each i € {1,...,p}\ J. Then

[a; majorizes bj] < [a majorizes b; (3.1.1)

13



further (3.1.1) holds with “majorizes” replaced by “strictly majorizes”.

Proof. Suppose a; majorizes by. Let k € {1,...,p—1} be given and let K be

a subset of {1,...,p} with Z bg = > bi. Set m = |KNJ|. As a; majorizes
136

by we have that Z(aJ)[Z > Z(bj) > > b;, hence, the assertion a; = b;
zEKﬁJ
for each i € {1,... ,p} \J 1mphes that

k m
Zam > Z ay) + Z a;
i=1 i=1 ieKNJe
> Y b+ Y, b= b —Zb
i€eKNJ i=KNJe¢ €K

Ask e {1,...,p—1} was selected arbitrarily and (by assumption) > *_ a; =

>F | b, we conclude that a majorizessb.

Next, assume that a majorizes b. As'a;»= b; for each i € {1,...,p} \ J
p
and > a; = sz, we have that > agz=>" b Next, let k € {1,...,]|J| — 1}

i=1 i=1 ieJ ieJ
k
be given and let K be a subsetiof L with-> " @; = > (a;)p. Consider the set
1€ K i=1

W consisting of all indices 7€ {1, ..., p} \J for Wthh a; > min{a; : i € K},

and let m = |W| (W = ¢ and m ='¢ is possible). For k' = k 4+ m, we have
k,

that > ay = > a; + > a;. Consider any set H \ J with |H| = k. As a

i=1 i€K iew

majorizes b,

Zai+2az—2al]>2b[z>zb+2b

€K ieEW i€H iEW
As a; =b; for each i € {1,...,p} \ J 2 W, we conclude that
k

Z(aj)m =Y a>>b,.

€K i€H
The freedom in selecting H and k allows us to conclude that a; majorizes
by.

14



The strict version of (3.1.1) follows directly from the weak version and
the observation that a vector u strictly majorizes another vector v if and only

if u majorizes v and v does not majorize u. O]

Lemma 3.1.2 will be used particularly with sets J consisting of two ele-
ments.

Throughout the remainder of this section, let L and U be nonnegative
integer p-vectors that satisfy (1.1.1)—(1.1.2). In particular, we refer to a
nonmajorized shape under I'(L, U) as a nonmagjorized shape. We next explore

the properties of such shapes.

Lemma 3.1.3. Consider the following properties of a shape s = (nq,...,n,):
(a) s is nonmajorized;

(b) there exist no distinct i and j such that
Lj <n; <U and Lj <n; < Ui, (312)

(c) if for distinct i and.j, L; <mgrand ni.< U;, then n; < n;; and
(d) there ezists at most one indexi aith Ly < n; < U,.
Then (a) = (b) = (¢} = (d).

Proof. (a) = (b). Supposé:n; and n; satisfy (3.1.2) where ¢ # j. Without
loss of generality, assume that*n;>=n;. "Then s is majorized by the shape
obtained from s by increasing n; to max{n;,n;} + 1, and decreasing n; to
min{n;,n;} — 1 (see Lemma 3.1.2).

(b) = (c). Suppose condition (b) holds, and i and j are indices satisfying
L; <nj, n; <U; and i # j. By condition (b), either L; > n; or n; > U;. In
the former case, n, < L; < n; and in the latter case n; > U; > n,.

(¢) = (d). Suppose condition (c) holds, and 7 and j are indices satisfying
Li <n; <U, Lj <nj <Ujand i # j. We will establish a contradiction.
Indeed, if n; > n; we get a direct violation of (c) and if n; < n; we get a

violation of (¢) with the roles of i and j reversed. ]

The following examples shows that condition (b) of Lemma 3.1.3 does

not imply condition (a).
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Example 3. Let U = (5,5,5,2), L = (1,4,3,1), s = (5,4,3,1) and s =
(2,5,5,1). It is easy to verify that s is majorized by s’. To see that there
exist no 7 and j satisfying (3.1.2), observe that the only coordinate of s that
is strictly larger than the lower bound is the first one, so if (3.1.2) is satisfied

necessarily j = 1. But, ny is not strictly below any upper bound.

For a given shape s, call part ¢ an upper part, a middle part or a lower
part if, respectively, n; = U;, L; < n; < U;, n; = L;. If part ¢« has L; = U;,
each shape (n,...,n,) € I'(L,U) has n; = L; = U;. Thus, in search of
nondominated shapes under (L,U), one can ignore such parts. Of course,
when L < U (i.e., L; < U; for each i), the parts are classified uniquely.
Lemma 3.1.3 shows that a nonmajorized shape can have at most one middle
part.

Suppose L < U. Given a shape s = (ny,...,n,), let B(s) stand for
the p-vector whose elements are sthesymbols L, M and U constructed in
the following way: For a permutation i1,..+,1, of the coordinates for which
Ny > Mgy > - > n,, leb B(s) fort =.1,. . p be L, M,U according to
17; being an upper, middle or lower-part.  The next result shows that no
ambiguity can arise in the-definition-of-B(s); i.e., it is uniquely defined, and

that B(s) has a simple structure.

Lemma 3.1.4. Suppose L < U and s = (ny,...,n,) is a nonmagjorized
shape. Let (iy,...,i,) be a permutation of (1,...,p) such that n;, > n;, >
<o 2>my,. Then:

(a) n;, = n;, forr;t € {1,...,p} implies i, and iy are either both upper
parts or both lower parts.

(b) B(s) has the form (U,..., U, M,L,..., L) or (U,...,U,L,... L).

Proof. (a) If n;, = n;,, i, is a lower-part and 4; is not, then L; < n; =
n;, = L;. < U, in contradiction to implication (a) = (b) in Lemma 3.1.3.
A similar argument applies to prove that if 7, is an upper-part, so is ;.

(b) The implication (a) = (c) in Lemma 3.1.3 assures that if n; = U; > L;
and n; < U;, then n; < nj, and that if n;, = L; < U; and n; > L;, then
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n; < nj. It follows that for every permutation i;,...,¢, of 1,...,p with
ny, >--->mn;, and r,t € {1,...,p}

[n;, = U;, and n;, < U,;,] = [r < ]
and
[ni, = Li, and n;. > L; | = [r <t].
These implications establish the asserted structure of B(s). ]

We conclude this section with an observation about a necessary difference

between two nonmajorized shapes.

Lemma 3.1.5. Two distinct nonmagjorized shapes s = (ny,...,n,) and s’ =

(nf,...,n,

differ in exactly two coordinates, say coordinates i and coordinate j, where

) must differ in at least two coordinates; further, if such s and s’

n; > n,, then s' is obtained from s by permuting these coordinates,
ng=-0% 0t =4, (3.1.3)

and
n; Edormy =/U;. (3.1.4)

Proof. Suppose shapes s and ‘s’ /differ-qn only one part, then ) . n; # >, n},

contradicting the fact that both are shapes and their coordinate sum is n.

/
p

jorized shapes that differ only in coordinates ¢ and j. As neither strictly

Next, assume that s = (n4,...,n,) and s’ = (nf,...,n)) are nonma-
dominates the other (they are nonmajorized), we have that s’ is obtained
from s by permuting two coordinates, say coordinates ¢ and 5. Now, suppose
n; < n, =n;. As L; < n; = n, <n; < U, the implication (a) = (b) in
Lemma 3.1.3 assures that either n, = U; or n; = L;, and (applying the result

on s’ with the roles of i and j reversed), either n; = U; or nj = L;. O

We say that two shapes are equivalent if one is obtained from the other

by coordinate-permutation. Of course, not all coordinate-permutations of a
shape in I'(L, U) are necessarily in I'(L, U).

17



Corollary 3.1.6. If s and s’ are nonmajorized shapes which are not equiv-

alent, then they differ in at least 3 coordinates.

3.2 The number of nonmajorized shape-types

In this section, we continue to assume that L and U are integer p-vectors
satisfying (1.1.1) and L < U. As strict-majorization is invariant of the
corresponding shape-types, we can and will refer to nonmajorized shape-
types.

We note that a single nonmajorized shape-type may correspond to many

shapes as example 4.

Example 4. Let L = (1,...,1), U = (2,...,2) and p < n < 2p. Then all
nonmajorized shapes are equivalent and each such shape, say (ni,...,n,) is
determined by a set J of {1,...,p} consisting of n— p elements, where n; = 2
if i € J and n; = 1 otherwise:r So, there is a.single nonmajorized shape-type

that corresponds to (n’_’ p) nonmajorized shapes.

A shape-type can be identified with the multiset {ni,...,n,} where (n,
...,ny) is a shape in I'(L,T).

For a nonmajorized shape s.= (ny,..4,n,), let U(s), M(s) and L(s) be
set of corresponding upper-, middle-"and lower-parts of s, that is, U(s) =
{7 e{l,...;p} :n; =U;}, M(s) = {5 € {1,....,p} : L; < n; < U;} and
L(s)={je{l,....p}:n; = L;}.

/ /

Lemma 3.2.1. Suppose s = (ni,...,n,) and 8" = (n},...,n,) are nonma-

jorized shapes that are not equivalent. Then:
(a)U(s) #U(s'), and
(b)if U(s') is included in U(s), then M(s') contains a single element j ¢
U(s) that satisfies
Uy > n; for every i in U(s') (3.2.1)

and
U < s for every i in U(s) \ U(s'). (3.2.2)
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Proof. (a) Lemma 3.1.3 assures that |M(s)| < 1 and |M(s")] < 1. Thus,
it U(s) = U(s'), then s and s can differ in at most 2 coordinates; it then
follows from Corollary 3.1.6 that s and s’ are equivalent, in contradiction to
the assertion that they are not.

(b) Suppose U(s) 2 U(s'). As s’ # s, there is a coordinate j with
n; > n;. We will show that such a j must be in M(s'). Indeed, such j
cannot be in U(s’) for the assertion U(s) 2 U(s’") would imply j € U(s) and
n; > n; = Uj; such j can neither be in L(s’) because n; > n; > L;. So, j
must be in M(s’). By Lemma 3.1.3, there can be at most a single part in
M(s'"). Thus, M(s") = {j} and j is the single coordinate for which s’ exceeds
S.

Now, for i in U(s'), nj = U; > L;. As n; < Uj, the (a)=(c) part of
Lemma 3.1.3 implies that n); < nj = U;, proving (3.1.6).

Next, assume that i is in U(s) \ U(s"). As s and s differ by at least
3 coordinates (Corollary 3.1.6); as 7 isithe single coordinate for which s’

exceeds s and as n; = U; >}, we havethat’ # j' and
ns—my > me= = U — ;. (3.2.3)

Assume that U; > n} and’we will establish-a contradiction. By summing
Ui > nj and (3.2.3), we get thatypms> ;. As i is not in U(s'), nj < U,
Consider the shape obtained from s’ by increasing n; to U; and decreasing n/
to n; — [U; — n;]. As U; > n’j, this shape majorizes s" (recall Lemma 3.1.2).
Further, (3.2.3) implies that n; — [U; — nj] > n; > L;, assuring that the new
shape is in I'(L,U). As s’ is assumed to be nonmajorized, we have derived a

contradiction which established (3.2.2). O

Corollary 3.2.2. Suppose s, s’ and s" are nonmajorized shapes where no
pair consists of two equivalent shapes, and suppose U(s") and U(s") are both
included in U(s). Then U(s") and U(s") are ordered by set-inclusion.

Proof. Let s' = (ny,...,n;) and 8" = (nf,...,n;). Part (b) of Lemma

3.2.1 assures that M(s') and M(s”) are nonempty. Let M(s') = {i} and
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M(s") = {j}. Without loss of generality, assume that n; < n}. By Lemma
3.2.1(a), U(s") # U(s"). Suppose U(s') 2 U(s”). Then there exists k €
U(s")N(U(s)\U(s)). By Lemma 3.2.1(b), n; > Uy > n}, contradicting our

assumption n; < n}’ ) O

We next explore the combinatorial restriction imposed by the conclusion
of Corollary 3.2.2. For that purpose, for each integer p > 1, let f(p) be
the maximal size of a class C' of subsets of {1,...,p} which satisfies the
conclusions of Corollary 3.2.2; that is, every pair of subsets in C' that are
included in a third subset of C' must be comparable by set-inclusion. The
next table lists values of f(p) for p =0,1,2,3,4,5,6.

p | f(p) | A realizing class for f(p)

0 1 |o

1 2 | {1}, &

2 3 {12}, {1}, ¢

3| 5 {12} {13}, {2841, 0

4 8 | {1,2}, {13} 41,4}, {2,3}-{2,4}, {3,4}, {1}, ¢

5| 14 | {1,2,5), {133, 5}.001.4.5), £2,3,5), {2,4,5), {3,4,5)
{1,2}, {130 {14}, {2:3) {24}, {3,4}, {1}, ¢

6 | 23 | All subsetsof {1,..4,6} of size'3, {1,2}, {1}, ¢

Table 1
Theorem 3.2.3. f(p) < 2P~ forp > 4.

Proof. Consider any p € {1,2,...} and let F(p) realize f(p). Also, let
Fo(p) ={U € F(p) :p¢ U} and Fi(p) ={U € F(p) : pe€ U}. As Fy(p) and
{U\{p} : U € Fi(p)} are classes of subsets of {1, ..., p—1} with the property
that every pair of sets in class that are included in a third set in the class
must be comparable by set-inclusion, we have that |Fy(p)| < f(p — 1) and
[Fi(p)| < f(p—1), implying that f(p) = [F(p)| = [Fo(p)|+|Fi(p)| < 2f(p—1).
As f(4) =8 = 23, we conclude that f(p) < 2P~! for each p > 4. O

Corollary 3.2.4. For p > 4, there are at most 2°~1 nonmajorized shape-

types.
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Proof. Corollary 3.2.2 and Lemma 3.2.1 show that f(p) bounds the number
of nonmajorized shape-types and Theorem 3.2.3 shows that f(p) < 2°~L. [

The proof of Corollary 3.2.4 relies on the facts that 2P~! is an upper
bound on f(p) (for p > 4) and that f(p) is an upper bound on the number
of unmajorized shape-types. Table 1 demonstrates that 2P~! is not a tight
bound on f(p) and we believe that neither is the second bound. In fact, we
conjecture that the number of nonmajorized shape-types can be bounded by
(L(pﬁ_l)lm), a smaller expression than 2P~'. (By the Sperner’s lemma [19],

L(pf_l)l /2 J) is the maximum number of independent subsets in the lattice of
subsets of {1, ..., p—1} with set-inclusion as the partial order.) The following

examples achieve this (conjectured) bound.
Example 5. Let U = (20,19,18,17,16), L = (1,2,3,4,5), n = 51. Using
the algorithms of Section 4 (see Example 7), one can show that the set of all

nonmajorized shape-types contains'6 shapes that are listed below in Table 2.

N1 | Ny IMg.1q |15
20719453 o4 155
20 2 18|14 | 1%
20p 23 117 19
11197187 459
Fa L 34117 | 11
1] 2718|1713

Table 2

Example 6. For any p > 3, let U = (2(p + ([E2])([5])) — 1,2(p +

(MDD =2, o+ 2[5 D5 D), L= (1,2, p), and n = p* +
(p—XP)([E) (151 ]), where X (p) = 1, if p is odd, otherwise, X (p) = 0.
Then the number of nonmajorized shape-types achieve conjectured bound.

3.3 Identifying all nonmajorized shapes and
shape-types
Algorithm 1. (For enumerating all nonmajorized shapes in I'(L,U))
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The input for the algorithm consists of integer p-vectors L and U that
satisfy (1.1.1) and L < U.

(a) Foru=1,..,pand A C{1,...,p} \ {u} do:

(i) Set B = {1,...,p} \ A\ {u}, Us = > ,cu Ui, Lp = >, Li and
M,=n—Us— Lpg.

(i) If L, < M, <U,, set

Ui forjeA,
n;j={ L; forje B, andinclude (ny,...,n,)in a temporary list that
M, forj=u,

we denote TEMP.
(b) Test each shape in TEMP for being nonmajorized by testing if it
majorized by any shape in TEMP.

The next lemma analyzes Algorithm 1. For the complexity analysis, com-

putational effort counts arithmetic operations and comparisons.

Lemma 3.3.1. (a) At the end of step (a)-TEMP contains all nonmagjorized
shapes.

(b) The output of Algorithm 1 consists of all nonmajorized shapes in
(L, U).

(¢) The computational time in*erecutingstep (a) of Algorithm 1 is bounded

by O(p2P~1), and the computational-time i executing the complete algorithm
is bounded by O(p*2P).

Proof. (a) Lemma 3.1.3 (part (b)) assures that at the completion of step (a),
TEMP contains all nonmajorized shapes.

(b) As transitivity of the majorization relation assures that a majorized
shape is majorized by some nonmajorized shape, a test for a shape to be
nonmajorized is to compare it with all the shapes in TEMP.

(c) The number of iterations within step (a) is p2P~!. The initial calcula-
tion of the quantity Ua, Lp and M, requires p — 1 addition/subtraction and
the updates within each iteration requires O(1) computational time. Hence,
the total time to execute step (a) is O(p2P~!) and the output may contain

up to p2P~! shapes.
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In step (b), each output shape of step (a) is tested against all others.
The test requires determining the order statistics of the shapes, creating
their partial sums, and executing p comparisons for each pair of shapes. The
total time is then bounded by O[(p+plgp)p2P~' 4 (p20~1)?*p] = O[p*2%?]. O

Given integer p-vectors L and U satisfying (1.1.1)—(1.1.2), the set of float-
ing indices of (L,U) isdefined as {i = 1,...,p: L; < U;}. Also, if G is the set
of indices of (L, U) which are not floating, we refer ton— > L;(=n—>Y_ U;)

i€G i€G
as the availability under (L,U). We say that the upper bound of index i is
effective for (L,U) if
Ui+ L <n; (3.3.1)
J#i
when the upper bound of index ¢ is not effective, we refer to the replacement
of Uy by n— > L; > L; as the adjustment of the upper bound of i. Similarly,
i#i
we say that the lower bound ofimdex iisseffective for (L, U) if
L+ ¥E U5 s (3.3.2)
J#E
and if the lower bound of index zjisnot efféctive, we refer to the replacement of
L; by n— Z#i U; < U; as the adjustment of the upper bound of i. Evidently,
(1.2.6) and (1.1.1) stay in effect when an upper bound or a lower bound is

adjusted.

Lemma 3.3.2. Consecutive adjustment of bounds results in a pair of vectors
for which all bounds are effective, and this outcome is independent of the

order in which bounds are adjusted.

Proof. Trivially, consecutive adjustment of bounds must terminate with a
pair of vectors for which all bounds are effective.

Evidently, (1.2.6) and (1.1.1) stay in effect when a bound is adjusted.
Further, if the upper bound of 7 needs adjustment, all the lower bounds of

indices j # i are effective throughout any sequence of adjustments; this is the
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case because a decrease of an upper bound does not invalidate the effective-
ness of a lower bound and an increase of a lower bound does not invalidate
effectiveness of an upper bound. We conclude that if an upper/lower bound
of i is adjusted, no lower/upper bound of another j # i will require adjust-
ment. Further, the order of consecutive adjustment of upper bounds or of
lower bounds has no effect on the outcome. The only remaining case is the
adjustment of the upper bound and the lower bound of a particular i—it is
easy to verify that here, too, the order of executing these adjustments does

not influence the outcome. O

We refer to the operation that is described in Lemma 3.3.2 as an ad-
Justment of the bounds. We observe that (1.2.6) assures that the bounds of
indices that are not floating, are always effective and will therefore not be
affected by an adjustment of the bounds. But, bound-adjusting can reduce
the set of floating indices.

Algorithm 2. (For enumerating all. nonmajorized shape-types in
['(L,U))

The input for the algérithm consists of integer p-vectors L and U that
satisfy (1.2.6). Set r = 1.

Iteration r:

(a) Adjust the bounds (L,U). Let F' and v be the set of floating indices
and the availability with respect to the adjusted bounds and set n;, = L; = U;
for each i € {1,...,p} \ F.

If =0, set r=pand go to step (c¢). Otherwise, set @ = maxgep Uy
and 0 = mingep Ly.

(b) Execute, in parallel and record separately the outcome of the following
three steps:

(i) Select i as any index that maximizes the lower bound among those
whose upper bound is a. Set n; < U; and L; «— U,.

(71) Select ¢ as any index that minimizes the upper bound among those

whose lower bound is 3. Set n; < L; and U; < L;.
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(737) This option is executed only if one identifies an index i that satisfies
Ui=a > U, for each j # i, L; = f < L; for each j # i and F'\ {i} can be
partitioned into two sets A and B such that

|A| > 2, |B| >2 (3.3.3)
max Uy <n-— Z U; — Z L, < %ijl L, (3.3.4)
JEA keB

and
Li<n—>» U= Ly<U. (3.3.5)
jeA keB
When the above holds with 3.3.4 in strict inequalities, do for each such pair
A, B the following: Set n; «— U; and L; «— U, for t € A, ny, «— L, and
Ug «— Ly for s € B,and n; «— u=n — ZjeAUj — > wep Lk, Uiy — p and
L; — p.

Let n; denote the middle partof 3.3.4: Suppose n; = max Ur = U,. Check
the existence of a part y inB\ {z}suchithat, |(L,, U,) N (L,,U,)| > 2. If no
such y exists, then output.this shape-type as in the 3.3.4 in strict inequalities
case.

Similarly, suppose n; = mifrll Lj = L. Check the existence of a part w in
j€

A\ {z} such that |(L., U,) N (LgyUw)|.=2:" If no such w exists, then output
this shape-type.

(c) If r = p, output the shape-types of all generated shapes in step (b)(i) and
(b)(ii). Otherwise, replace r with r+ 1 and go to step (a) with each outcome
of step (b)(i) and of step (b)(ii).

Remarks.

(1)Step (b) of Algorithm 2 allows a selection between 3 options. Option
(iii) can be executed only if one identifies an index ¢ with U; > U; and L; < L;
for each j # i. When such an index i is identified, options (i) and (ii) will be
executed with this particular selection of i. Option (iii) will then be followed
for each partition of F'\ {i} into sets A and B that satisfy (3.3.3)—(3.3.5). It

is possible to have no such pair A, B, or alternatively, to have multiple pairs.
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(2)Ambiguity can occur in Algorithm 2 only in steps (b)(i) and (b)(ii)
when there is more than one index ¢ with U; = o and L; = max{Ly, : Uy = o}
or, respectively, with L; = B and U; = min{Uy, : Ly = }. In these cases,
the corresponding outputs of the algorithm will obviously generate the same
shape-types.

(3)Whenever option (b)(iii) is completed with a particular selection of
A, B, there will be no free variables in the next iteration and the algorithm
will stop.

(4)If in a given iteration, option (b)(i)/(b)(ii) selects index i whose up-
per/lower bound was adjusted in that iteration, then the next iteration will
have F' = () and the algorithm will stop.

(5)If at the beginning of an iteration there is only one index ¢ with L; < Uj,
then the adjustment of the bounds will result in ' = () and the algorithm
will stop. In particular, as each iteration eliminates at least one free index,
one will never enter step (b) initeration p.

We refer to option (i),.(i1) andi(iii),in Algorithm 2 as, respectively, a
U-step, an L-step and an- F-step. Wesrefer to an FE-shape as one that is
determined when an E-step is executed.

The next example shows hew. Algorithm 2 is executed without the need
for an E-step.

Example 7. Applying Algorithm 2 to Example 5 is summarized in Figure
1.
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/ \4 9
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/ \3/17 11
14 17
1\ 18/17 13
_ TT1——7
2\13/18717
17 18
Figure 1.

The corresponding nonmajorized shapes-are listed in Table 2.

The following examples demonstrate that there may be more than one
option in executing step (b)(iii) of Algorithm 2 and that step (b)(i) (or (b)(ii))

may be followed even when step (b)(iii) is possible.

Example 8. U = (13,12,12,8,8,4,4), L = (1,10,10,6,6,2,2) and n = 49.
Then the nonmajorized shapes (13,10,10,6,6,2,2) and (1,12,12,8,8,4,4)
are determined by following a U-step and an L-step, respectively, in the first
iteration. We also find two shapes (5,12,12,8,8,2,2) and (9,12, 12,6, 6, 2, 2),
by initial use of E-steps, corresponding respectively to the partitions A =
{2,3,4,5}, B=1{6,7} and A’ = {2,3}, B’ = {4,5,6,7}.

There are two partitions of the three groups {2,3}, {4,5}, {6, 7} of parts
in Example 8 having, respectively, the same bounds. In general, g groups

would yield up to g — 1 partitions.
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Example 9. U = (11,10, 10,10,7,7,7,5,3,3,3), L = (1,9,9,9,6,6,6, 4, 2, 2,
2) and n = 66. Then the nonmajorized shapes are: s' = (11,9,9,9,6,6,6,4,
2,2,2), s* = (8,10, 10, 10,6,6,6,4,2,2,2), s3=(5,10,10,10,7,7,7,4,2,2,2),
st = (4,10,10,10,7,7,7,5,2,2,2) and s* = (1,10,10,10,7,7,7,5,3,3,3).
Then s? is an example of an E-shape with strict inequalities in (3.3.4), and

s3 and s* are examples of an E-shape with nonstrict inequalities in (3.3.4).

Example 10. U = (11,9,8,10,4,4,4,4,4), L = (3,6,6,0,2,2,2,2,2) and
n = 43. If one starts with a U-step, an output can be determined in the
next iteration by an F-step, or a U-step resulting, respectively, in the output
(11,9,8,5,2,2,2,2,2) and (11,6,6,10,2,2,2,2,2). Alternatively, one may
start with an L-step, which will eliminate the option of an E-step with ¢ = 4;
then L; will be adjusted to 6, and the output (11,9,8,0,4,4,4,3,2) can be

generated.

The next lemma refers to sensitivity ‘of being nonmajorized.

Lemma 3.3.3. Let {(L;,&;) | j'= 1, s, ppand {(L},U) | j =1,...,p}
be two sets of bounds which differ onlyin one bound corresponding to part
J where either L; = L) and Uy < U7 or Lji> L. and U; = UL. Then, for
a given n, every shape in T:{L, U) is majorized by a nonmajorized shape in

T(L,U").

Proof. Let s be a nonmajorized shape in I'(L,U). Then s is also a shape
in I'(L/,U"). Thus, it is either a nonmajorized shape, or is majorized by a

nonmajorized shape in I'(L', U"). O

By Lemma 3.3.4, we order the upper bounds such that U; = U; either if
Uy >U; or Uy =U; but L; > L;. Similarly, L, < L; either if L; < L; or
L; = L; but U; < U;. Obviously, if U; = U; and L; = L;, then the order
between ¢ and j does not matter. Under <, we have a linear order for the

upper(lower) bounds.

Lemma 3.3.4. Let s be a shape output by Algorithm 2. Suppose Ny, con-

sisting of § upper bounds and k — 7 lower bounds, is the set of values obtained
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before an E-step in s (if no E-step occurs, then k = p). Let s’ be any other
shape. If s' majorizes s, then the j largest n, and the k — j smallest n); must

be equivalent to Nj.

Proof. We prove Lemma 3.3.4 by induction on k. The case k = 1 is trivial.
Consider a general k. Without loss of generality, assume the first step of s is
taking the largest upper bound Up;. If the largest n; < Upj. Then s’ cannot
majorize s. If they are equal, then by Lemma 3.3.3 we may assume s’ takes
the same part as s. Delete this part from the problem and k is reduced to
k — 1. Use induction. O]

Corollary 3.3.5. A regular shape output by Algorithm 2 is nonmajorized.

Theorem 3.3.6. (a)Every shape that is constructed by Algorithm 2 is non-
majorized.

(b)For every nonmajorized shape, there is an equivalent shape that is con-
structed by Algorithm 2.

(c)The number of outputs of the algowithin is bounded by 2P (duplica-
tions are possible).

(d)The computational time of-all executions of Algorithm 2 is bounded by
O(2F + p2P=>logp).

Proof. (a) By Corollary 3.3.5, we ‘only need to consider an E-shape s. Sup-
pose to the contrary that s’ majorizes s. By Lemma 3.3.4, s’ majorizes s in
the remaining p — k parts. But this is impossible by our construction of an
E-shape whose largest k-sum, 1 < k < |A|, is > the largest k-sum of s’, and
whose smallest k-sum, 1 < k < |B|, < the smallest | B|-sum of s’. This proves
that for the remaining parts, s either majorize s’ or they are equivalent.

(b) Now, suppose at a given iteration, there exists a nonmajorized shape
s which contains neither the maximum upper bound U; nor the minimum
lower bound L;. Suppose ¢ # j. Let s choose n; < U; and n; > Lj;.
Since U; > n; and n; > Lj, we can choose nj = max{n;,n;} + 1 and n} =
min{n;,n;} —1 to obtain a shape majorizing s, contradicting the assumption

that s is nonmajorized.
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Assume i = j but s takes n; such that L; < n; < U;. By the comment
after Lemma 3.3.3, U; > U; and L; < L; for any remaining part j.

Suppose there exists a part j such that L; < n; < U;. Without loss of
generality, assume n; = U;. Then s is majorized by s’ with n; = U; + 1 and
n=n; — 1.

Next suppose L; = n;, which implies n; = Uj, i.e., j € A. Suppose that
there exists another part  in A such that (L;,U;) N (L, U,) # @. Then s
is majorized by s with n} = max{U;,U,} + 1, n} = Lj, nj, = U, — (n} — Uj).
Note that if n; = U, + 1, then n}, = U; — 1 > L, implies the part-j range
and the part-x range must overlap by at least 2. We have shown that s can
be a nonmajorized shape only if condition (3.3.4) is satisfied.

Finally, we justify (3.3.3). Suppose that there exists an E-shape s with
|A| = 1. Without loss of generality, assume U; = max{U;}, L; = min{L;},
A={2}, B={3,4,...,p}, Ly >ny > U; for all i € B, and n = ny +
Uy+ (L3 + Ly + ---+ L,). Then'Uiisiadjusted to U] such that U] < U,
because Uy + (Lg + L3 + - =+ Ly)i=ma Then s, as an non-E-shape, will be
generated by selecting thedargest upperbound U,. Therefore we can restrict
our construction of E-shape underthe conditions |A| > 2 and |B| > 2.

(¢) The underlying graph of the part of Algorithm 2 yielding regular
shapes is a complete binary free with.depth p — 1 (n; of the last part is
determined by the previous p — 1 choices). Hence there are at most 2P~1
terminal points yielding 2P~! regular shapes. At every path and every stage
1, 1 <1 < p—4, an E-step may occur. The reason of the upper bound of 7 is
due to 3.3.3 which specifies that at lest 5 parts remain for an E-shape to exist.
The maximum number of E-shapes at stage i is 14 (n —7—4), since the first
A-set and the last B-set must contain at lest two parts, while the other A(B)-
set can increase by 1. Summing over 4, we obtain 2P~ + I)ZLLQi(n —i—3) =

=1

(%) x 2P~ 4 1.

(d) For easier analysis of time complexity, we write the subroutine which
separates the remaining parts into A and B in pseudo code. Suppose the
inputs are U = (Uy,...,U,), L = (L4, ...,L,), and n. The outputs are all
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possible combinations of A and B.

1: Obtain Uy > Uy > --- > U, by sorting U.

2: sep =14

3: Determine the order statistic, say r, of sep in U.
4: for 1 =2 to p do

5. if i=r then

6 sep := L,

7. elseif i =r —1 then

8: Output A ={1,2,...,i}, B={i+1,i+2,...,p}
9: elseif L; < sep then

10: sep = L;

11: Determine the order statistic, say r, of sep in U.
12:  end if

13: end for

The running time in Ling 1 needs O(plogp) to sort. Line 3 needs O(log p)
by using binary search. The loop from.dine 5to 13 runs p — 1 times. Inside
loop body, every line runssconstant time except Line 12 which needs O(log p)
by using binary search. The total time is plogp + logp + (p — 1)logp =
O(plogp).

Furthermore, back to Algorithm 2, for every output of A and B from
above, we need to check whether (3.3.4) and (3.3.5) hold. We count ) L;
before the algorithm starts. Then count ) U; and ) L; in every loop.
Once Line 8 is executed, count ) L; = fz, -y L]je.A Thus we save the
checking time to constant time. < e

Therefore, an E-step taking O(plogp) time. There are O(2P) steps in
Algorithm 2 with at most O(2°~°) of them can contain an FE-step. The
generation of regular shapes takes constant time at every step. Therefore

the total time is O(2P) + O(2P75)O(plog p) = O(2F + p2P~>log p). O
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3.4 Determining the existence of a majoriz-
ing shape

In some problems, the goal is to find a majorizing shape, or to determine if
one exists. If Algorithm 2 given in Section 3.3 yields a single shape, then it
is the majorizing shape. However, there is a much faster way of finding out
whether a majorizing shape exists, and identifying it if it exists. Even if our
goal is to find all nonmajorized shapes, we can still use the faster algorithm
as preprocessing. In case it finds a majorizing shape, then there is no need
to go through Algorithm 2.

This procedure constructs two nonmajorized shapes in I'(L, U), i.e., the
one which goes the upper bound route as much as possible in Algorithm 2 and
the one which goes the lower bound route as much as possible. We will refer
to them as the top shape and the bottom shape. Note that in constructing
the top shape sy, we need only:to adjust.upper bounds; and in constructing

the bottom shape sg, only.to adjustrlower bounds.

Theorem 3.4.1. If sy and sg are equivalent, then either of them is a ma-

jorizing shape; if not, then no majorizing. shape exists.

Proof. 1) sy = sg. Suppose U= lnax U;. Consider the reduced problem
SIRP

where part i is deleted and n changes to n —U;. Let s, s’z be the two shapes
identified by our procedure in the reduced problem. Clearly, s = sr \ {U;}.
We prove sy = sp \ {U;} (here we refer to shape-types as multisets).

A lower bound L, will be adjusted in the reduced problem only if
Lo+, Ui <n—="U;
or equivalently,
Lo+, U; <n,

which is the criterion of adjusting L, in the original problem. Therefore, the

adjustment of lower bounds in choosing s; is the same as sg, which implies
sy =sp \ {U;}.
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Next we prove by induction on p that all regular shapes generated by
Algorithm 2 are equivalent to sp. It is trivially true for p = 1. Assume that
it holds for general p — 1 > 1, we prove it for p.

Suppose to the contrary, that s’ # sy is also a nonmajorized regular
shape. Then s chooses U; or L,. Without loss of generality, assume s’
chooses U;. By induction, s\ {U;} majorizes s’ \ {U;}. Hence, s majorizes s'.

Finally, we prove that no E-shape can exist. Let the common regular
shape contains r upper bounds and ¢ lower bounds where r +¢ =p —1 or p.
Suppose to the contrary that an E-step occurs at stage j + k after j upper
bounds and k lower bounds are selected. Among the remaining parts, the
largest(in the < ordering) effective upper bound is U}j41; and the smallest
effective lower bounds is Li41). Necessarily, j <r+1and k <t+1, or s(s')
would not agree with the common regular shape. If U1 and L) are from
the same part, then selecting one means not selecting the other in a shape.
In particular, Ly41) would notbein s and. Uj;,1) not in s’, contradicting the
common regular shape.

(i) If sy # sp, then=Theorem 3.4:1 assures that both sy and sp are

nonmajorized shapes; in particular-ho majorizing shape exists. [

If we calculate ) L; at the béginning, then U = min{U;,n— (>_ L; — L;)
can be computed with one subtraction. Therefore, adjusting each U, takes
a constant time. It takes O(p) time to adjust all U; in each calling of the
algorithm and O(p) time to select maximum of {U;}. The algorithm is called
p times to obtain sy, so the total time is O(p(p + p)) = O(p?). The time
complexity of constructing sp is the same. Finally, checking s = sp takes
O(p) time.

An improvement of this algorithm is to sort {U;}, and to sort {L;} among
those parts with the same upper bound at the beginning, so that we don’t

have to do it at every stage. But the running time is still O(p?).

Example 11. sy = (20,19,3,4,5) and sp = (1,2,18,17,13). Hence no

majorizing shape exists.
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Example 12. U = (100,90, 60,50, 17), L = (10,70, 10,48,10). If n = 228,
we obtain sr = sg = {90, 70, 10,48, 10} which is a majorizing shape. But, if
219 < n < 226, then there is no majorizing shape.
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Chapter 4

The Mean-partition Problem

In the mean-partition problem the goal is to partition a finite set of ele-
ments, each associated with a number, into p disjoint parts so as to optimize
an objective function which depends on the averages of the vectors that
are assigned to each part. A patfitién.is then associated with a p-vector
0. = (01,04, ...,0,) where @ is the;mean of part i. A useful approach in
studying the problem is to explore the mean-partition polytope M.

When f is quasi-convex, there exists an optimal partition 7* with 6, being
a vertex of the mean-partitionypolytoper M™. In such a case, it is useful
to study MUY, in particular,“to.identify properties of partitions 7 for which
0, is a vertex of the mean-partition ‘polytope. In Sec 4.1, we will make a
linear transformation of the mean-partition polytope to the sum-partition
polytope, thus allowing the transformation of results from the latter to the
former. Unfortunately, this linear transformation technique can not be ex-
tended to the bounded-shape problem since we cannot identify the linear
transformation. We also explore the approache introduced in Sec. 1.3 for
the sum-partition problem to construct mean-partition polytopes. Note that
this approach works depending on two things: (i)H* C P C C* and (i4)\ is
supermodular. We will study the two issues separately for the single-shape
mean-partition problem. In particular, we will shaw that (7) is not satisfied
but (44) is. Thus we cannot conclude H* = P = C*. However, the proof of

supermodularity is mathematically interesting, and hopefully, accomplishing
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this challenging proof may bring some benefit in some unexpected direction

in the future.

4.1 Linear transformation of mean-partition
problems to sum-partition problems

We observe that the single-shape mean-partition problem with prescribed-
shape (n1,...,n,) and objective function given by (1.4.3) coincides with the
corresponding sum-partition problem with objective function given by (1.2.4)

where f satisfies

ﬂ, o ﬁ) for v € RP (4.1.1)

n1 np

f(x1, ...y zp) = g(

In particular, properties of optimal solutions for single-shape mean-partition
problems are deducible from established properties of optimal solutions of
corresponding sum-partitionsproblems. Forexample, it is known [3] that:

A real number function fis called quasi-convex if the maximum over
every line segment contained in the demain of f is attained at one of the two

endpoints.

Theorem 4.1.1. When the 05 s-are distinct, every single-shape sum-partition

problem with f quasi-convex has at least one consecutive optimal partition.

This result establish the polynomial solvability of the single-shape sum-
partition problem. Now, as a function ¢ is quasi-convex if and only if so is
the function f that is defined through (4.1.1), we conclude Theorem 4.1.1
that when ¢ is quasi-convex, each single-shape mean-partition problem has
at least one consecutive optimal solution and is solvable in polynomial time.

Furthermore, by applying the one-to-one transformation
T Tp
Ty, ey Tp) = (— 5 oeey — 4.1.2
( 1 ) P) (nl ) np) ( )
we see that the single-shape mean-partition polytope is the one-to-one linear

image of the corresponding single-shape sum-partition polytope. A virtue of
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this transformation is that it preserves vertices.
Let (n1, ...,n,) be a vector of positive integers with coordinate-sum n and let

IT be the set of partitions with shape (n4,...,n,). We observe that for every

partition 7 € II, 0, = (%1, s %), and therefore
11 n 871’1 eﬁp
M" = conv{l, : m € II} = conv{(—, ..., —%) : 7w € II}
nq Ny
t Iy

={(— -, ):(xl,...,a:p)Econv{eﬂzweﬂ}:PH}
s np

={(y1,.--,yp) : (Mmy1,...,npYp) € PH}.

Using the representation of P through (1.3.1) we get the representation of
MM as the set of vectors y € RP that satisfy

p
> nay; > A(I) forall 1 C{1,....,p} and > ngy; = A({L,...p}). (4.1.3)
=1

icl
Thus we have Theorem 4.1:2.

Theorem 4.1.2. When the 0, ’s are distinct, every single-shape mean-partition

problem with g quasi-convex has at-least-one consecutive optimal partition.

The linear transformation appreach-does not apply to the bounded-shape
mean-partition problem, since the variation in shape prevent the transforma-
tion form being linear as in (4.1.2). Consequently, vertices are not preserved
in this nonlinear transformation. Example 13 shows that a partition which
is not a vertex of bounded-shape sum-partition polytope becomes a vertex

of bounded-shape mean-partition polytope.

Example 13. Let n = 4,0, = i, fori = 1,...,4,p = 2, U = (2,3),L =
(1,2). Then the sum-partition polytope is the line-segment connecting (1,9)
and (7,3), the mean-partition polytope is the parallelogram with vertices
{(1,3),(4,2),(1.5,3.5),(3.5,1.5)}. A partition 7 = ({1,2},{3,4}) is not a
vertex of the sum-partition polytope but is a vertex of the mean-partition

polytope.
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Although we cannot use the linear transformation approach to obtain the

bounded shape mean-partition polytope, we still have the following result.

Theorem 4.1.3. When the 0,’s are distinct and g is quasi-convez, each
constrained-shape mean-partition problem has a consecutive optimal parti-

tion.

Proof. An optimal mean-partition must have a shape. Theorem 4.1.3 now
follows from Theorem 4.1.2. O]

Anily and Federgruen [1] studied the bounded-shape mean-partition prob-
P
lem under the objective function f(7) = >_ h(6.,n;). They proved that if
i=1

for each n;, h(x,n;) is convex and nondecreasing in z, then there exists a
disjoint optimal partition. Their result follows form Theorem 4.1.3 when the
objective function f(m) as a special type of quasi-convex function. We note
that with stronger assumptionston h(zy), Anily and Federgruen obtained

additional, tighter, results which aremot.available from our approach.

4.2 Supermodularity of ),

In this section, we explore a direct approach; along the line of Sec. 1.3 to con-
struct the single-shape mean partition polytope. Without loss of generality,
we assume that n; <ng < ... <,
For I = {iy,is,...,1} C {1,...,p}, we suppose that i; < ip < ... < if.
k
Define N;, = > n;, for 1 <k < |I|. Set
=1

T

1] Ni
M =30 S 0/n). (42.1)
k=1 j=N;,_,+1
Example 14. Let n = 3,0, =1, for i =1,2,3,p = 2 and consider the mean
partition problem corresponding to the set II of partitions with shape (1, 2).
The set II contains the three partitions the three partitions ({1}, {2,3}),
({2},4{1,3}) and ({3}, {1,2}) whose corresponding vectors are, respectively,
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(1,2.5), (2,2) and (3,1.5). The mean-partition polytope M is then the line-
segment connecting (1,2.5) and (3,1.5). Also, we have that A\y({1}) = 1 =
LAv({2}) = 22 =15and Ay ({1,2}) = min{3+22 =35, 24188 =4 34
% = 4.5} = 3.5. So, C* is the polytope defined by the inequalities x; >
1,29 > 1.5, x14+x9 = 3.5, that is, it is the line-segment connecting (1,2.5) and
(2,1.5). Finally, the two permutations (1,2) and (2,1) of {1,2} correspond,
respectively, to the vectors (Aar)a2) = (Am({1}), Amr({1,2}) — A ({1}) =
(1,2.5) and (Am)er) = (Au({1,2}) = Au({2}), An({2})) = (2,1.5), and

H*™ is the line-segment connecting these points.

Example 14 explains that (i) H* C M C C* isn’t satisfied. Now we

show that (i7) Ay is supermodular. We first prove

Lemma 4.2.1. For any shape partition ™ = (71, ...,7,) , > 0. > Aar(I).
iel

Proof. Define A = {0; : j € ahi'€ I}.and B = {91,...,01\71.‘”}. Suppose

Ar(I) is defined on A but. 4 # BmiFhen we.can reduce > 0, by replacing
iel

any 0; € A\ B with a 6, & B\ A. Thetefore we assume A = B. Note that

O =005 /), (4.2.2)

JE;

and 04, ..., QNim are ordered from small to large. In A\y/(I), the sequence of

the multipliers for the 6;’s is
1 1 1 1 1 1

s eeey ,
T4y Ty \niz Ty nim ni‘I|

M4y Nig Mg
which are ordered from large to small. Since for any 7, > 0, is computed

i€l
by multiplying the same set of 6;’s with the same set of multipliers, except

in different parings, Ay/(I) achieves the minimum by pairing reversely. [
Define A[(T{') = )\M(I) - )\M(I \ {21})
Lemma 4.2.2. Suppose I C J and iy = ji. Then Aj(m) < Ay(m).

39



Proof. First assume n;, =1

Tj1 Tjo T3
7\ 7\

~

J: 91 7‘927~-->6nj27‘9nj2+179nj2+27---uenj2+nj3>9nj2+nj3+17---

/.
T 01,02, o Oy Oy 1, O s oo O s Oy g 41 -
Vo

N

g

/ /
. e
J2 I3

Figure 2.7(J) and 7'(J’)

Let 7’ represent the corresponding partition on J' = J\ {j1}. We use the
same subscript j to remind the reader that n; = n) for all 2 <k < [J|.
Figure 2 illustrates 7(J) and 7'(J’). Note that the components of gﬁjk (as

in the representation (4.2.2)) cancels with the components in @,r; except the
k

first one in gﬂjk and the last one in §7r;_ . Hence
k

Oni = Om; = (On,, — On, )/ for 1 <k < |J].
Consequently,
LY 0% O
Ap(m)y = 3 T
k=1 K
Similarly,
U] gt =6,
APV
k=1 ‘K

Suppose i = jyk) with k < g(k), 2 <k < |I|. Then

B On, — 6 90 gy 0 Oy — Oy
Nj NJ 1 N] NJ _1 Ng Ng .
Gr(J) = Z Thz Z hn- h-1 ”k)n. Totk1)
h=g(k—1)+1 Th h=g(k—1)+1 Jg(k) (k)
(4.2.3)
Note that
ol On; —On, )
As(m) = Arlm) 2 3 [Ga(]) - e Pt
=1 £
We prove for all 1 <k < |I|,
& (On;, =0, )y O o =On)
> (G () — L)y Do )

r=1



by induction on k. For k =1

Gy () — Cra=Om) Oy i) Oy Oy)

iy i1 iy

since j1 = 41, N;y =n;, =n;, = Nj, = 1,91\% = 9Ni0 = 0. For general k > 1,

k On. —On. ) On, —O0n, )  (On; —On, )
iz ip—1 i ie—1 Jg(k—1) 'k—1
> Gu(J) = — = =2 Ge(J) - —; + =
o ia ik k-1
On . —0OnN . — On . —OnN. On . —OnN.
> ( Nig(i) N]g(k—l)) . (eNik eNikfl) + ( Nig(k—1) lefl) _ ( Nig(k) le)
= n; n; n; - n; ’
9(k) k k k

since Moy = Mig = Mgy - Lemma 4.2.2 is proved.

For n; > 1, we can handle in two ways. The first way is to notice that the
only difference from the nj, = 1 case is that 7;, and 7, would miss each other
out in nj, elements instead of 1 in Figure 2.1. So the numerator of (4.2.3)
would be a difference between two n;, -sums; but the same logic applies. The
second way is to notice that 9% gets cancelled out in Ay(7) — Az(m). So
the scenario is to compare theidimpact on'l and J when both moves back n;,

elements. But this is equivalent te moving one element back n; times. [
Finally, we are ready to prove the main result of this section.
Theorem 4.2.3. )\ as defined.an'(4:2:1) is supermodular.

Proof. Let I and J, be two subsets ofi{1,...,p}. Without loss of generality,
assume [ U J = {1,2,...,m}. We prove Theorem 4.2.3 by induction on m.
Theorem 4.2.3 is trivially true for m = 1. We prove the general m > 2 case.
Case(1) 1 € INJ, ie. both I and J contain 1. Delete 7 and the 6,’s in it.
Suppose n; = k. Then the reduced partition problem is to partition the set
{011, ...,0,} into p — 1 parts. Theorem 4.2.3 follows by induction.

Case(2) 1 ¢ INJ. Without loss of generality, assume 1 € I. Let J* = JU{1}.
By case(1),

0 < Ar(TUJ*) 4 Aar (10 T*) = Aar(1) — Aar ()
= Par(TUJ*) = Ar(D] + Par (I 0T = Aar(J9)]
<P UJ) = Au(D] + a0 T) = A (J)].
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Since the first difference is unchanged, and the second becomes larger by
Lemma 4.2.2 ,ie, A\pyy(INJ*) = A (INJ) = Aprg (1) < Ay (1) = A (J*) —
A (). O

4.3 Some new results in the mean-partition
problem

Given vectors a and b in RP, we say that a weakly submajorizes b, written
a o >bif
k k
Zam Z Zb[i] for k= 1,...,]9 (431)
=1 =1

It is also well known [17]:

Theorem 4.3.1. Suppose [ is Schur convexr nondecreasing and a , =b. Then

fla) = f(b).

Lemma 4.3.2. Suppose (0@, ...,Gﬂ;) is:the mean vector of the reverse size-

consecutive partition, m ,-and let (0., 0 ) denote the mean vector of an

arbitrary partition w with~the shape-is—-equivalent to the shape of ©*. Then
(Onss oo O ) o = Oy s ooy O, )

Proof. 1t was proved in [5] that reverse size-consecutive is a 2-shape-sortable
property, namely, it suffices to prove Lemma 4.3.2 by assuming p = 2. Define
W to be the set consisting of n—ll, ny, of them, and n%, ng of them. In the
sum 0., + 0,,, each 6; € m contributes % and each 0; € m, contributes z—;
Therefore 0, + 0, is determined by a ont-to-one mapping between W and
the set of ny +nsy 0’s. By the Hardy, Littlewood and Polya theorem, the sum
is maximized when the mapping is monotone, larger element in W mapped
to larger 6, which implies the reverse size-consecutive partition achieves the
maximum sum.

Next, we prove that

max{0y:, 05} >max{0r,,0r,}.
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Without loss of generality, assume n; < ns. It is trivial that 6+ > ém.

Let 7 consist of the ny largest 6’s. Then clearly,
éﬂ'g S éﬂ’é

and the average of the ny largest €’s is larger than the average of the n,

largest 6’s, that means

.\,\
IN
3

- %

So,

max{éﬂ,@r;} = 9}; >max{0y,, 0, }.

Using Theorem 4.3.1 and Lemma 4.3.2, we obtain

Theorem 4.3.3. There exists a reverse size-consecutive optimal partition

for the single-shape mean partition problem.

Corollary 4.3.4. There exists o reverse size-consecutive optimal partition

for the constrained-shape :mean partition problem.

Note that for a given shape; the size-consecutive partition is unique. So
for the mean-partition problem with-the constrained-shape set I', we only
need to compare the f-values of |I'| partitions, one from each shape in |T|.
For bounded-shape partitions, |['| is not explicit. It suffices to consider only
those shapes in |I'| which is not majorized by any other shape in I'. Further, in
Chapter 3, we bounded the number of these nonmajorized shape by 27! (Sec.
3.3).

Although we don’t know how to characterize the constrained-shape mean
partition polytope, we can bound its number of vertices by the sum of the
number of vertices on the single-shape mean-partition polytope for each
shape in I'. Since there is a one-to-one mapping between the vertices of

the single-shape mean-partition polytope and the vertices of the single-shape
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sum-partition polytope, and also a one-to-one mapping is well known [18] be-
tween the latter and the set of consecutive partitions, we obtain a bound of
IC|p!. This is indeed an upper bound as the following example shows that a

consecutive partition of a shape in I' is not a vertex of the constrained-shape
polytope.

Example 15. Let I' = {(1,3),(2,2),(3, 1)} n=4,60; =i fori =1..4,p = 2.

We give the two points generated by the two consecutive partitions for each

shape:
shape | consecutive partitions
(1,3) (1,3) (4,2)
(2,2) (3.3) (5.3
(3,1) (3,1) (2,4)

Thus the polytope has 4 vertices (1,38)(4, 2)(3,1)(2,4) while the two points
yielded by shape (2,2) are iternal

Theorem 4.3.5. Suppose fis quasi-conver. Then there exists a consecutive
optimal partition in a set of cardinality at-most|L'|p! for the constrained-shape
mean-partition problem with setT".
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Chapter 5

Conclusion and remarks

In this thesis, we develop the generation function approach to count the
number of bounded-shape partitions, which helps us to estimate the practi-
cability of the brute-force method to find an optimal partition. We extend
the concept of majorizing shapetté’the concept of nonmajorized shape for
bounded-shape sum-partitiont problem,with'Schur convex objective function,
we prove that there exists 'a nommajorized shape for which the corresponding
size-consecutive partitionzis optimal. Moreover, we prove 2P~! is an upper
bound of nonmajorized shape-types;yanddevelop algorithms to find all non-
majorized shapes(shape-types).. In the last‘chapter, we research the mean-
partition problem. We use the linear ‘transformation approach to character-
ize the single-shape mean-partition polytope and prove that if the objective
function is quasi-convex, then there exist a consecutive optimal partition.
We also give a bound of the cardinality of the candidate set to find optimal
partition for constrained-shape mean-partition case.

We list some topics for future research:

(i) to find a more explicit formula to count the number of bounded-shape

partitions,
(ii) to give the exactly value of f(p),

1 .
(iii) prove our <L(plil)/2j) conjecture,
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(iv) develop the faster algorithm to find all nonmajorized shapes(shape-
types),

(v) characterize the bounded-shape mean-partition polytope.

46



References

1]

S. Anily and A. Federgruen, Structured partition problems, Oper. Res.
39 (1991), 130-149.

R. A. Brualdi, Introductory Combinatorics, 3nd ed., Prentice Hall, 1999,
Chapter 8.

E. R. Barnes, A. J. Hoffman and U. G. Rothblum, Optimal partitions
having disjoint convex andi¢onic hulls, Mathematical Programming: Se-
ries A, 54 (1992) 69-86.

F. H. Chang, H. B. Chen; J. Y. Guo, F. K-Hwang and U. G. Rothblum,
One-dimensional optimal bounded-shape partitions for Schur convex sum

objective functions, to dppear.

G. J. Chang, F. L. Chen, L. L. Hwang, F. K. Hwang, S. T. Nuan, U.
G. Rothblum, I-Fan Sun, J. W. Wang, and H. G. Yen, Sortabilities of

partition properties, Journal of Combinatorial Optimization 2 (1999) 413-
427.

F. H. Chang, J. Y. Guo, F. K. Hwang and Y. C. Pan, A generating
function approach to count the number of bounded-shape partitions, to

appear.

F. H. Chang and F. K. Hwang, Supermodularity in mean-partition prob-

lems, Journal of Global Optimization.

47



[8] F. H. Chang, F. K. Hwang and U. G. Rothblum, The mean-partition

problem, preprint.

9] B. Gao, F. K. Hwang, W. W.-C. Li and U. G. Rothblum, Partition poly-
topes over 1-dimensional points, Math. Program. 85 (1999) 335-362.

[10] F. K. Hwang, M. M. Liao and C. Y. Chen, Supermodularity of various
partition problems, J. Global Optimization 18 (2000) 275-282.

[11] F. K. Hwang, J. S. Lee and U. G. Rothblum, Permutation polytopes
corresponding to strongly supermodular functions, Disc. Appl. Math. 142
(2004) 52-97.

[12] F. K. Hwang, S. Onn and U. G. Rothblum, Representations and char-
acterizations of vertices of bounded-shape partition polytopes, Linear
Algebra and its Applications, 278 (1998) 263-284.

[13] F. K. Hwang, S. Onn and U. GgRothblum, Explicit solution of partition
problems over a 1-diménsional parameter space, Naval Research Logistics,
47 (2000) 531-540.

[14] F. K. Hwang and U. G. Rothblum, Directional-quasi-convexity, asym-
metric Schur-convexity and ‘optionality of consecutive partitions, Math.
Oper. Res. 21 (1996) 540-554.

[15] F. K. Hwang and U. G. Rothblum, Partition-optimization with Schur-

convex sum objective functions, SIAM J. Disc. Math., to appear.

[16] F. K. Hwang and U. G. Rothblum, Partition: Optimality and clustering,
World Scientific, Singapore, to appear.

[17] A. W. Marshall and I. Olkin, Inequalties, Theory of majorization and
its applications, Academic Press, New York, 1979.

[18] L. S. Shapely, Cores of convex gormes, Intern. J. Game Theory 1 (1971)
11-29.

48



[19] E. Sperner, Ein Satz tiber Untermengen einer endlichen Menge, Mathe-
matische Zeitschrift. 27 (1928) 544-548.

49



