
國 立 交 通 大 學

應 用 數 學 系

博士論文

在一維度上的有界形和分割及單一形均分割問題

The Bounded-shape Sum-partition and the Single-shape

Mean-partition Problems in One-dimension

研 究 生 : 張飛黃

指導教授: 黃光明 教授

中 華 民 國 九 十 四 年 六 月

在一維度上的有界形和分割及單一形均分割問題

The Bounded-shape Sum-partition and the Single-shape

Mean-partition Problems in One-dimension

研 究 生 : 張飛黃 Student: Fei-huang Chang

指導教授: 黃光明 教授 Advisor: Frank K. Hwang

國 立 交 通 大 學

應 用 數 學 系

博 士 論 文

A Dissertation
Submitted to Department of Applied Mathematics

College of Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in

Applied Mathematics
June 2005

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 四 年 六 月

Abstract

The optimal partition problem considers the partition of n objects into p

nonempty parts, and finding a partition(optimal partition) to maximize the

objective function F : Rp → R. A brute force method is to compare the

values of objective function F (π) for each partition π. Thus, we are concerned

with the number of all partitions which determines whether the brute force

method is practical. However, a more desirable solution is to prove that the

objective function has some suitable property which leads to the existence

of an optimal partition in a special class of partitions. Then, we need pay

attention only to this class of partitions.

The vector of the size of each part is called a shape. If a partition problem

has a restriction where the size of each part lies in an interval, then it is called

a bounded-shape partition problem. If each interval is degenerated, then it

is called single-shape partition problem. In Chapter 2, we use the generating

function to count the number of ordered(unordered) shapes and the number

of bounded-shape partitions. In Chapter 3, we prove that for bounded-shape

sum-partition problem with Schur-convex objective function, there must be

a nonmajorized shape such that the corresponding size-consecutive partition

is optimal. We also bound the number of nonmajorized shapes, and develop

an algorithm to find all nonmajorized shape-types. In Chapter 4, we prove

that for single-shape mean-partition problem with quasi-convex objective

function, there must be a consecutive optimal partition. We also give some

new results for the mean-partition problems.

iii

摘要

最優分法問題主要是對於目標函數F : Rp → R考慮n個物件分成p個

非空部份, 如何找到一個分法π(最優分法), 使得F (π)為最大值。 一個
最直接的方法是去比較所有分法的目標函數值。 此時, 我們關心所有分
法的數量, 因為它決定了直接法是否可行。 更好的是當目標函數具備有
某些性質, 使得某些特定的分法類中含有一最優分法, 我們就可以只關
心這一些數量較小的特定分法。

每個部分容量所形成的向量我們稱為形,若一個問題對每個部分的容
量分別落於一個區間內, 我們稱為有限形分割問題。 若每個區間為單一
的點, 則我們稱為單一形分割問題。 在第二章, 我們使用生成函數去計
算對於有序及無序的有界形分割各有多少形及分法。 在第三章, 我們証
明對於有界形和分割問題, 當目標函數為 Schur 凸函數, 必存在一不被
偏形其所對應的容量連續分法為最優分法。 並給出了不被偏形的數量上

界及發展了找出所有不被偏等價形的演算法。 在第四章, 我們証明對於
單一形均分割問題, 當目標函數為準凸函數, 其最優分法必是一連續分
法。 並且對均分割問題給了一些新的結果。

iv

誌謝

二十幾年的就學生涯到此算是告一段落了, 今日的我能夠以理工博士的
身份結束個人的求學生涯, 要感謝的人實在太多太多, 第一: 要感謝的
是在我求學期間指導過我的老師, 首先是當我就讀東華應數系三年級時,
遠從清大來花蓮任教一年的張企老師, 您給了我大學生涯中最有意義的
一個A+, 這個全班唯一的一個A+, 讓我重新開始拾起書本, 也讓我了解
問一個好問題是多麼的有價值, 沒有您就沒有今日的我。 再來是我碩士
班的指導教授王立中老師以及在我就讀大學及碩士期間給我很多生涯規

劃上建議的郭大衛老師, 是因為這二位老師對學生我的指導及愛護, 使
我能在碩士期間得以有論文發表, 也種下了來交大就讀博士班的種子。
而來到交大後,感謝系上的黃大原老師、傅恆霖老師以及翁志文老師,教
導了我許多組合學上的基本知識;也謝謝陳秋媛老師給予我很多課業及
生活上的意見, 最後也是最重要的要感謝我博士班的指導老師, 黃光明
老師, 是您做學問及做人做事的態度深深影響著我, 不但能夠給予我課
業上的解惑, 也能在我偷懶或做錯事時給我當頭棒喝, 還能忍受我天馬
行空的想法以及耐心的指導我許許多多的缺點; 當學生的我只要有一點
點表現, 就給予很大的讚賞及鼓勵, 而當表現不好時, 就馬上給予告誡,
但於他人前仍是稱許學生的好, 對於您的身教及言教, 做學生的我現在
無以為謝, 只有將來於研究這條路上盡心盡力, 方是最好的回報。
第二: 還要感謝我許許多多的好朋友, 首先是陪我一同走過十幾個年

頭的國小、 國中同窗及好友, 欽垚、 世芳、 奕霖、 麒銘、 志銘, 有你們在
身旁的日子裡總是特別歡樂, 總會在不經意時想起一同騎機車上草山的
日子, 總是在半夜蹺家打撞球, 還有兩個瘋子半夜騎機車到花蓮來找我
還是當天來回, 讓我在情緒煩燥的同時或隨時, 有人可以陪我一起瘋狂,

v

一起打球, 一起做一些很無聊的事, 但這卻是我一直往前走的動力之一,
也一直是我很珍惜的回憶。 高中同學, 翊帆、 明謙, 雖是不常見面, 但是
一見面卻又熟得跟天天見面似的, 能認識你們是我的福氣; 大學好友及
碩士同學, 鴻志、 于菁、 俊良, 總是可以常常一聊就聊得沒日沒夜的朋
友; 最後感謝交大碩班91及92級組合組的學弟妹 (族繁不及備載), 同學
君逸、 宏賓以及學姐琲琪, 謝謝你們在交大期間的陪伴、 照顧及帶給我
一個歡樂的交大生活。

第三: 就是謝謝我的家人,爸、媽及老弟是你們在背後的支持,我才能
無憂無慮的完成我的學業, 當然也要謝謝我的岳父及岳母, 能夠體諒我
的難處, 肯將您們心愛的女兒托付給我, 也在我求學的最後一段時間能
幫我照顧小孩, 當然最要感謝的是一直支持我的親愛老婆蕙慈, 從大學
時期起, 就一直陪伴在我的身旁, 很多時候都是有你的鼓勵與支持, 才能
讓我這一路走的這樣順利, 最後也謝謝最新產生的動力及希望, ”騰達”,
看著你小小的身軀, 老爸就會覺得一切的努力都是值得的。誌謝文短, 感
謝卻意長, 謹以此篇論文, 獻給您們。

(p.s.要感謝的人實在太多太多, 總之謝謝曾經或者一路陪我走來的
師長、 朋友及家人們)

vi

Contents

Abstract iii

中文摘要 iv

誌謝 v

Contents vii

1 Introduction 1

1.1 The one dimensional partition problem 1

1.2 The bounded-shape sum-partition problem for Schur convex

objective function . 3

1.3 The polytope approach to the sum-partition problem 5

1.4 The mean-partition problem 6

2 Counting the Number of Bounded-shape 7

2.1 The generating function approach 7

2.2 A neat solution . 10

3 The Sum-partition Problem 12

3.1 Nonmajorized shapes . 13

3.2 The number of nonmajorized shape-types 18

3.3 Identifying all nonmajorized shapes and shape-types 21

3.4 Determining the existence of a majorizing shape 32

vii

4 The Mean-partition Problem 35

4.1 Linear transformation of mean-partition problems to sum-partition

problems . 36

4.2 Supermodularity of λM . 38

4.3 Some new results in the mean-partition problem 42

5 Conclusion and remarks 45

Reference 47

viii

Chapter 1

Introduction

In this Chapter, we introduce the background of the optimal partition prob-

lem and give a summary of the following Chapters.

1.1 The one dimensional partition problem

The partition problem studies the partitioning of n numbers into finite nonempty

parts so as to maximize an objective function subject to certain constraints

on the number of elements in each part. Applications of the partition prob-

lem include inventory grouping, scheduling, reliability, graph partitioning,

hypothesis testing in statistics, circuit layout, clustering, symbolic computa-

tion, location problems, storage allocation, group testing, system reliability,

etc.., see [16] for a survey.

Consider a partition π of {1, ..., n} into p nonempty parts π1, ..., πp. If the

number of parts is fixed to be p, we call it a p-partition(size-partition); other-

wise we call it an open partition. Let n1, ..., np be the sizes of π1, ..., πp where
p∑

i=1

ni = n. We define the shape of π as the vector (n1, ..., np). If the cardi-

nalities of the p parts are fixed to be (n1, ..., np), then we call it a (n1, ..., np)-

partition(single-shape-partition). If the size of each parts must lie in a range,

i.e., nonnegative integer p-vectors L = (L1, ..., Lp) and U = (U1, ..., Up) are

1

given where
p∑

i=1

Li ≤ n ≤
p∑

i=1

Ui, (1.1.1)

and the shape (n1, ..., np) of a feasible partition satisfies for each i

Li ≤ ni ≤ Ui, i ∈ {1, ..., p}, (1.1.2)

then we call it a bounded-shape-partition. Define Γ(L,U) to be the set of

all partitions whose shapes satisfy (1.1.1) and (1.1.2). If the number of

parts is fixed at p and only a set of shapes is allowed, then we called it a

constrained-shape-partition. In addition, we have the two categories of or-

dered partitions and unordered partitions. An ordered partition is a sequence

(π1, ..., πp), while an unordered partition is a set {π1, ..., πp}.
Given an objective function F (π), our goal is to find a partition(optimal

solution) to maximize it. A brute-force way is to enumerate and evaluate

all legitimate partitions to get the optimal solution of the objective func-

tion. Whether this is a practical method depend on the number of legitimate

partitions. The counting of ordered and unordered partitions for open par-

titions, size partitions and shape partitions are fundamental combinatorial

problems and have been well documented [16]. Although, theoretically, we

could count bounded-shape partitions also by summing up all legitimate

shapes, that could be unwieldy in practice. We will study the generating

function approach to count bounded-shape partitions in Chapter 2.

Suppose we know that the objective function has an optimal solution in a

special class of partitions, then we need pay attention only to this class of

partitions. Two such classes are consecutive partitions and size-consecutive

partitions. A partition is called consecutive if each part consists of consecu-

tive integers. A consecutive partition is called size-consecutive(reverse-size-

consecutive) if ni > nj implies that every member in πi is larger (smaller)

than every member in πj. Of course, given any integer vector (n1, . . . , np)

which satisfies
p∑

i=1

ni = n, there exist a size-consecutive and a reverse-size-

consecutive partition with shape (n1, . . . , np); in fact, they are unique when-

2

ever the ni’s and the θi’s are distinct. In Chapter 3, we prove that when the

objective function of the sum-partition problem with bounded-shape is Schur

convex(see Sec.1.2), we need pay attention only to size-consecutive partitions

with nonmajorized shapes. In Chapter 4, we show that for the single-shape

partition, results obtained for the sum-partition problem also apply to the

mean-partition problems.

1.2 The bounded-shape sum-partition prob-

lem for Schur convex objective function

For a vector a = (a1, ..., ap) in Rp, let a[i] be the i-th largest member of

{a1, . . . , ap}. Given vectors a and b in Rp, we say that a majorizes b if

k∑
i=1

a[i] ≥
k∑

i=1

b[i] for k = 1, . . . , p− 1 (1.2.1)

and
p∑

i=1

ai =

p∑
i=1

bi . (1.2.2)

We say that a strictly majorizes b if a ∈ S majorizes b but b does not

majorize a. If a majorizes b for each b ∈ S ⊆ Rp, then a is called majorizing

vector in S, if a is not majorized by any b ∈ S, a is called a nonmajorized

vector in S. A real-valued function f on Rp is Schur convex if f(a) ≥ f(b)

whenever a majorizes b. A Schur convex function is known to be symmetric.

For a partition π = (π1, ..., πp) let

θπ = (
∑
j∈π1

θj, . . . ,
∑
j∈πp

θj), (1.2.3)

Hwang and Rothblum [15] considered the sum-partition problem of maxi-

mizing the objective function

F (π) = f(
∑
j∈π1

θj,
∑
j∈π2

θj, . . . ,
∑
j∈πp

θj), (1.2.4)

3

over partitions π having shape in a prescribed set with f being Schur convex.

In particular, they proved Theorem 1.2.1.

Theorem 1.2.1. Suppose f is Schur convex, Γ is a set of positive integer

p-vector that sum to n and π is a partition with shape in Γ which is majorized

by a shape (n1, . . . , np) ∈ Γ.

(a) If θi ≥ 0 for i = 1, . . . , n, then every size-consecutive partition π′ with

shape (n1, . . . , np) has f(θπ′) ≥ f(θπ).

(b) If θi ≤ 0 for i = 1, . . . , n, then every reverse-size-consecutive partition

π′ with shape (n1, . . . , np) has f(θπ′) ≥ f(θπ).

In particular, when Γ contains a single shape, if n1 ≤ ... ≤ np, then the

following explicit partitions are optimal under (a) or (b), respectively

πi = (
i−1∑
j=1

nj + 1, ...,
i∑

j=1

nj) for i = 1, ..., p (1.2.5)

and

πi = (n−
i∑

j=1

nj + 1, ..., n−
i−1∑
j=1

nj) for i = 1, ..., p. (1.2.6)

They also considered the problem with bounded shapes. They gave the

example where n = 9, p = 3, L = (1, 2, 2) and U = (5, 4, 4) to show that

a majorizing shape may not exist. They also gave a sufficient condition for

the existence of the majorizing shape. The sufficient condition is that the

order of upper bounds over the p parts equal to the order of lower bounds.

By Theorem 1.2.1, if f is Schur convex and Γ = Γ(L,U) has the majorized

shape, then we can find an optimal solution in the (reverse)size-consecutive

class.

In Chapter 3, we extend Theorem 1.2.1 to the case when the majorized shape

doesn’t exist and Γ is a set of bounded-shapes.

4

1.3 The polytope approach to the sum-partition

problem

Given a real-value function λ on the subsets of {1, ..., p} with λ(φ) = 0, each

permutation σ = (σ1, ..., σp) of {1, ..., p} defines a vector λσ = ((λσ)1, ..., (λσ)p)

such that

(λσ)k = λ(
⋃j

i=1 σi)− λ(
⋃j−1

i=1 σi), with σj = k for 1 6 k 6 p.

λ is called supermodular if for all subsets I, J of {1, ..., p},
λ(I ∪ J) + λ(I ∩ J) > λ(I) + λ(J),

and strictly supermodular if the inequality is strict for all I, J not satisfying

I ⊆ J or J ⊆ I. The permutation polytope induced by λ, denoted Hλ, is the

convex hull of {λσ : all σ}. For example, Shapley [18] studied the case of

convex p-person game. For a subset I ⊆ {1, ..., p}, let λ(I) denote the payoff

to I, if the members of I form an alliance. Then stability of an alliance I ∪J

requires λ to be supermodular. The core of a convex p-person game is the

solution set of the linear inequality system

∑
i∈I

xi ≥ λ(I) for all I ⊆ {1, ..., p} and

p∑
i=1

xi = λ({1, ..., p}). (1.3.1)

Let Cλ denoted the polytope defined by (1.3.1). Shapley [18] proved

Theorem 1.3.1. Suppose λ is supermodular. Then

(a) Hλ = Cλ,

(b) the vectices of Hλ are precisely the λσ’s where σ ranges over all per-

mutations of {1, ..., p}.
Gao et al.[9] studied the single-shape sum-partition problem to maximize

an objective function f(
∑

j∈π1

θj, ...,
∑

j∈πp

θj). For I a subset of {1, ..., p}, define

n(I) =
∑
i∈I

ni. They defined

λS(I) =

n(I)∑
j=1

θj (1.3.2)

5

and proved λS is supermodular. Here, HλS is the convex hull of all partitions

corresponding to {(λS)σ : all σ} (each partition is a point), and CλS is the

polytope defined by

∑
i∈I

∑
j∈πi

θj > λS(I) for all I ⊆ {1, ..., p} and
n∑

j=1

θj = λS({1, ..., p}).

Let P denote the convex hull of all partitions satisfying the given single

shape. Clearly, HλS ⊆ P ⊆ CλS . By Theorem 1.3.1, HλS = P = CλS . They

proved the existence of a consecutive optimal partition for the single-shape

partition problem when f is quasi-convex.

1.4 The mean-partition problem

Consider N = {1, ..., n} where each element i in N is associated with a

number θi ∈ R. Partition problems are further classified by their objective

function F (.). For a subset S of {1, ..., n}, let

θ̄S =
1

|S|
∑
i∈S

θi ∈ R, (1.4.1)

and for a partition π = (π1, ..., πp), let

θ̄π = (θ̄π1 , ..., θ̄πp) ∈ Rp. (1.4.2)

A class of partition is the mean-partition problem in R in which

F (π) = g(θ̄π), (1.4.3)

where g is a real-valued function on Rp. The mean-partition polytope corre-

sponding to a set of partitions Π is denoted by MΠ. While the sum partition

problem has been dominating in optimal partition problems, the mean par-

tition problems have also been considered. Anily and Federgruen [1] first

studied the single-shape mean-partition problem. In Chapter 4, we will give

an approach to solve the single-shape mean-partition problem, and discuss

the difficulties of the bounded-shape mean-partition problem. Finally, we

give some new results in the mean-partition problem.

6

Chapter 2

Counting the Number of
Bounded-shape

In this chapter, we use the generating function approach to count bounded-

shape partitions. When the θi’s are constant, then the number of bounded-

shape partitions is reduced to the number of bounded shapes. We obtain a

neat solution of that number for ordered partitions.

2.1 The generating function approach

For given lower bound Li and upper bounds Ui, 1 ≤ i ≤ p, define

#∗
n: The number of ordered bounded shapes.

#
∗
n: The number of unordered bounded shapes.

#n: The number of ordered bounded-shape partitions.

#n: The number of unordered bounded-shape partitions.

Define

L∗ =

p∑
i=1

Li

7

and

gn(x) =

p∏
i=1

(
Ui∑

j=Li

ajx
j

)

≡
∑

k≥L∗
ckx

k.

It is well known [2] that

ck =
g

(k)
n (0)

k!
.

We show that #∗
n, #

∗
n, #n and #n can be expressed as different functions

of cn.

Theorem 2.1.1.

(i) #∗
n = cn by setting aj = 1 in gn(x).

(ii) #
∗
n = the number of distinct terms in cn.

(iii) #n = n!cn by setting aj = 1/(j!).

(iv) #n = same as (iii) except counting only distinct terms in cn, and di-

viding a term
∏p

i=1 aei
i by

∏p
i=1(ei!).

Proof.

(i) Every ordered shape (n1, n2, . . . , np) summing to n contributes 1 to cn.

(ii) Two shapes (n1, . . . , np) and (n′1, . . . , n
′
p) are not distinguishable if {n1,

. . . , np} = {n′1, . . . , n′p}. A shape (n1, . . . , np) is preserved in the coef-

ficient term an1 , . . . , anp . Hence we count only distinct an1 , . . . , anp(as

coefficient, the ordering is not important) terms.

(iii) Each shape (n1, . . . , np) yields
(

n
n1,...,np

)
distinct partitions.

(iv) The division is because interchanging two parts of same size results in

the same unordered partition.

8

Example 1.

n = 10, n1 ∈ [2, 4], n2 ∈ [2, 6], n3 ∈ [3, 5].

(i)

g(x) = (x2 + x3 + x4)(x2 + x3 + x4 + x5 + x6)(x3 + x4 + x5)

= x7 + 3x8 + 6x9 + 8x10 + 9x11 + 8x12 + 6x13 + 3x14 + x15.

There are c10 = 8 ordered bounded shapes which are (2, 3, 5), (2, 4, 4),

(2, 5, 3), (3, 2, 5), (3, 3, 4), (3, 4, 3), (4, 2, 4), (4, 3, 3).

(ii)

g(x) = (a2x
2 + a3x

3 + a4x
4)(a2x

2 + · · ·+ a6x
6)(a3x

3 + a4x
4 + a5x

5)

= · · ·+ (3a2a3a5 + 2a2a
2
4 + 3a2

3a4)x
10 +

Hence, there are 3 unordered bounded shapes which are (2, 3, 5), (2, 4, 4),

(3, 3, 4).

(iii)

g(x) = (
x2

2!
+

x3

3!
+

x4

4!
)(

x2

2!
+ · · ·+ x6

6!
)(

x3

3!
+

x4

4!
+

x5

5!
)

=
1

24
x7 +

11

288
x8 +

89

4320
x9 +

7

960
x10 +

17

8640
x11 +

Hence, there are 10!× 7
960

= 26460 ordered bounded-shape partitions.

(iv)

g(x) = (
a2x

2

2!
+ · · ·+ a4x

4

4!
)(

a2x
2

2!
+ · · ·+ a6x

6

6!
)(

a3x
3

3!
+ · · ·+ a5x

5

5!
)

= · · ·+ (
3a2a3a5

1440
+

2a2a
2
4

1152
+

3a2
3a4

864
)x10 +

The number of unordered bounded-shape partitions is

10!

1440
× 1

(1!)(1!)(1!)
+

10!

1152
× 1

(1!)(2!)
+

10!

864
× 1

(2!)(1!)
= 6195.

Although a generating function counting is equivalent to enumeration, it

gives a particular way of enumeration, hence doable by a computer program.

9

2.2 A neat solution

We show that the generating function approach leads to a neat formula for

the number of ordered bounded shapes.

Define

Ri = Ui − Li, 1 ≤ i ≤ p,

S = {(s1, . . . , sp) | si ∈ {0, Ri + 1} for 1 ≤ i ≤ p,

p∑
i=1

si ≤ n− L∗}

and

sp+1 = n− L∗ −
p∑

i=1

si.

Let |(s1, . . . , sp)| denote the number of positive si.

Theorem 2.2.1.

#n =
∑

(s1,...,sp)∈S

(−1)|(s1,...,sp)|
(

p + sp+1 − 1

p− 1

)
.

Proof.

g(x) = (xL1 + xL1+1 + · · ·+ xU1) . . . (xLp + xLp+1 + · · ·+ xUp)

= xL∗(1 + x + · · ·+ xR1)(1 + x + · · ·+ xR2) . . . (1 + x + · · ·+ xRp)

= xL∗(1− xR1+1)(1− xR2+1) . . . (1− xRp+1)(1− x)−p.

Using the Leibniz formula,
(

m∏
i=1

fi(x)

)(n)

=
∑

n1+···+nm=n

(
n

n1, . . . , nm

) m∏
i=1

f
(ni)
i (x),

where ni is the largest exponent of fi(x), on the first p + 1 terms of g(x),

g(n)(0) =
∑

(s1,...,sp)∈S

(
n

L∗, s1, . . . , sp, sp+1

)
(−1)|(s1,...,sp)|L∗!s1! . . . sp!

[
dsp+1

dxsp+1
(1− x)−p

]

x=0

=
∑

(s1,...,sp)∈S

n!

sp+1!
(−1)|(s1,...,sp)| (p + sp+1 − 1)!

(p− 1)!

[
(1− x)−p−sp+1

]
x=0

= n!
∑

(s1,...,sp)∈S

(−1)|(s1,...,sp)|
(

p + sp+1 − 1

p− 1

) [
(1− x)−p−sp+1

]
x=0

.

10

Thus #n = cn =
g

(n)
n (0)

n!
=

∑

(s1,...,sp)∈S

(−1)|(s1,...,sp)|
(

p + sp+1 − 1

p− 1

)
.

A size-partition can be interpreted as a bounded-shape partition with

uniform bounds Li = 1, Ui = n. Then

L∗ = p,

Ri = n− 1, 1 ≤ i ≤ p.

Necessarily,

si = 0 for 1 ≤ i ≤ p.

and

sp+1 = n− L∗ = n− p.

Corollary 2.2.2. The number of ordered size-partitions is
(

n−1
p−1

)
.

Example 2.

n = 14, n1 ∈ [2, 4], n2 ∈ [2, 8], n3 ∈ [3, 6].

R1 = 2, R2 = 6, R3 = 3, L∗ = 7, n− L∗ = 7.

S = {(0, 0, 0), (3, 0, 0), (0, 7, 0), (0, 0, 4), (3, 0, 4)}.

Hence

#([2, 4], [2, 8], [3, 6]) = (−1)0
(
3+7−1
3−1

)
+ (−1)1

(
3+4−1
3−1

)
+ (−1)1

(
3+0−1
3−1

)

+ (−1)1
(
3+3−1
3−1

)
+ (−1)2

(
3+0−1
3−1

)

=
(
9
2

)− (
6
2

)− 1− (
5
2

)
+ 1

= 11.

The shapes are: (2, 6, 6), (2, 7, 5), (2, 8, 4), (3, 5, 6), (3, 6, 5), (3, 7, 4),

(3, 8, 3), (4, 4, 6), (4, 5, 5), (4, 6, 4), (4, 7, 3).

11

Chapter 3

The Bounded-shape
Sum-partition Problem in R1

with Schur Convex Objective
Function

In this chapter, we consider the bounded-shape sum-partition problem in

R1 with Schur convex objective function. We will show that the θi’s are

one-sided, one can restrict attention to (reverse) size-consecutive partitions

with a nonmajorized shape. As a (reverse) size-consecutive partition with

a given shape is easy to determine(see (1.2.5) and (1.2.6)), the problem of

finding an optimal partition is reduced to the task of identifying a set of

shapes that contains all nonmajorized ones. Since Schur convex functions

are symmetric, they do not differentiate between partitions that are obtained

by part-permutations as long as the corresponding coordinate-permutations

of the shapes are feasible. Thus, we may restrict attention to representatives

of shape-types which are the equivalence classes of shapes with respect to

coordinate-permutations. We will study nonmajorized shapes, bound their

numbers and develop algorithms to enumerate them, too. Our study extends

the analysis of a previous paper [15] which discussed the above problem

assuming the existence of a majorizing shape.

12

3.1 Nonmajorized shapes

We explore the relation between shape-majorization and the optimization

problem with Schur-convex objective function over partitions introduced in

the Introduction. In particular, we explore the role of nonmajorized shapes,

with respect to Γ(L,U).

Corollary 3.1.1. Suppose f and Γ are as in Theorem 1.2.1, but no majoriz-

ing shape exists.

(a) If θi ≥ 0 for i = 1, . . . , n, then there is a nonmajorized shape in Γ

such that any corresponding size-consecutive partition is optimal.

(b) If θi ≤ 0 for i = 1, . . . , n, then there is a nonmajorized shape in Γ

such that any corresponding reverse-size-consecutive partition is optimal.

Corollary 3.1.1 implies that when f is Schur convex and the θi’s are

one-sided, it suffices to restrict attention to (reverse) size-consecutive par-

titions whose shapes are nonmajorized. Of course, the symmetry of Schur

convex functions implies that all size-consecutive partitions with the same

shape have the same objective value F (as determined by (1.2.4)). We con-

clude that the underlying optimization problem can be solved by obtaining

a list that contains all nonmajorized shapes, determining corresponding size-

consecutive partitions, and evaluating the right-hand side of (1.2.4) for each

one of them to select the best. Further, it suffices to consider only repre-

sentatives of all nonmajorized shape-types. The remainder of our paper will

focus on studying and identifying nonmajorized shapes and shape-types with

respect to sets of the form Γ(L,U).

In the bounded-shape case which the majoring shape doesn’t exist [4],

consider a vector a ∈ IRp and J ⊆ {1, . . . , p}, let aJ denote the subvector of

a consisting of the coordinates indexed by J .

Lemma 3.1.2. Consider vectors a and b in IRp with
p∑

i=1

ai =
p∑

i=1

bi and a set

J ⊆ {1, . . . , p} for which ai = bi for each i ∈ {1, . . . , p} \ J . Then

[aJ majorizes bJ] ⇔ [a majorizes b]; (3.1.1)

13

further (3.1.1) holds with “majorizes” replaced by “strictly majorizes”.

Proof. Suppose aJ majorizes bJ . Let k ∈ {1, . . . , p−1} be given and let K be

a subset of {1, . . . , p} with
k∑

i=1

b[i] =
∑
i∈K

bi. Set m ≡ |K ∩J |. As aJ majorizes

bJ we have that
m∑

i=1

(aJ)[i] ≥
m∑

i=1

(bJ)[i] ≥
∑

i∈K∩J

bi , hence, the assertion ai = bi

for each i ∈ {1, . . . , p} \ J implies that

k∑
i=1

a[i] ≥
m∑

i=1

(aJ)[i] +
∑

i∈K∩Jc

ai

≥
∑

i∈K∩J

bi +
∑

i=K∩Jc

bi =
∑
i∈K

bi =
k∑

i=1

b[i] .

As k ∈ {1, . . . , p−1} was selected arbitrarily and (by assumption)
∑p

i=1 ai =∑p
i=1 bi, we conclude that a majorizes b.

Next, assume that a majorizes b. As ai = bi for each i ∈ {1, . . . , p} \ J

and
p∑

i=1

ai =
p∑

i=1

bi, we have that
∑
i∈J

ai =
∑
i∈J

bi. Next, let k ∈ {1, . . . , |J | − 1}

be given and let K be a subset of J with
∑
i∈K

ai =
k∑

i=1

(aJ)[i]. Consider the set

W consisting of all indices i ∈ {1, . . . , p} \ J for which ai ≥ min{ai : i ∈ K},
and let m ≡ |W | (W = φ and m = φ is possible). For k′ = k + m, we have

that
k′∑

i=1

a[i] =
∑
i∈K

ai +
∑
i∈W

ai. Consider any set H \ J with |H| = k. As a

majorizes b,

∑
i∈K

ai +
∑
i∈W

ai =
k′∑

i=1

a[i] ≥
k′∑

i=1

b[i] ≥
∑
i∈H

bi +
∑
i∈W

bi .

As ai = bi for each i ∈ {1, . . . , p} \ J ⊇ W , we conclude that

k∑
i=1

(aJ)[i] =
∑
i∈K

ai ≥
∑
i∈H

bi , .

The freedom in selecting H and k allows us to conclude that aJ majorizes

bJ .

14

The strict version of (3.1.1) follows directly from the weak version and

the observation that a vector u strictly majorizes another vector v if and only

if u majorizes v and v does not majorize u.

Lemma 3.1.2 will be used particularly with sets J consisting of two ele-

ments.

Throughout the remainder of this section, let L and U be nonnegative

integer p-vectors that satisfy (1.1.1)–(1.1.2). In particular, we refer to a

nonmajorized shape under Γ(L,U) as a nonmajorized shape. We next explore

the properties of such shapes.

Lemma 3.1.3. Consider the following properties of a shape s = (n1, . . . , np):

(a) s is nonmajorized;

(b) there exist no distinct i and j such that

Lj < ni < Ui and Lj < nj < Ui, (3.1.2)

(c) if for distinct i and j, Lj < nj and ni < Ui, then ni < nj; and

(d) there exists at most one index i with Li < ni < Ui.

Then (a) ⇒ (b) ⇒ (c) ⇒ (d).

Proof. (a) ⇒ (b). Suppose ni and nj satisfy (3.1.2) where i 6= j. Without

loss of generality, assume that ni ≥ nj. Then s is majorized by the shape

obtained from s by increasing ni to max{ni, nj} + 1, and decreasing nj to

min{ni, nj} − 1 (see Lemma 3.1.2).

(b) ⇒ (c). Suppose condition (b) holds, and i and j are indices satisfying

Lj < nj, ni < Ui and i 6= j. By condition (b), either Lj ≥ ni or nj ≥ Ui. In

the former case, ni ≤ Lj < nj and in the latter case nj ≥ Ui > ni.

(c) ⇒ (d). Suppose condition (c) holds, and i and j are indices satisfying

Li < ni < Ui, Lj < nj < Uj and i 6= j. We will establish a contradiction.

Indeed, if ni ≥ nj we get a direct violation of (c) and if ni < nj we get a

violation of (c) with the roles of i and j reversed.

The following examples shows that condition (b) of Lemma 3.1.3 does

not imply condition (a).

15

Example 3. Let U = (5, 5, 5, 2), L = (1, 4, 3, 1), s = (5, 4, 3, 1) and s′ =

(2, 5, 5, 1). It is easy to verify that s is majorized by s′. To see that there

exist no i and j satisfying (3.1.2), observe that the only coordinate of s that

is strictly larger than the lower bound is the first one, so if (3.1.2) is satisfied

necessarily j = 1. But, n1 is not strictly below any upper bound.

For a given shape s, call part i an upper part, a middle part or a lower

part if, respectively, ni = Ui, Li < ni < Ui, ni = Li. If part i has Li = Ui,

each shape (n1, . . . , np) ∈ Γ(L,U) has ni = Li = Ui. Thus, in search of

nondominated shapes under (L,U), one can ignore such parts. Of course,

when L ¿ U (i.e., Li < Ui for each i), the parts are classified uniquely.

Lemma 3.1.3 shows that a nonmajorized shape can have at most one middle

part.

Suppose L ¿ U . Given a shape s = (n1, . . . , np), let B(s) stand for

the p-vector whose elements are the symbols L,M and U constructed in

the following way: For a permutation i1, . . . , ip of the coordinates for which

ni1 ≥ ni2 ≥ · · · ≥ nip , let B(s)t for t = 1, . . . , p be L,M, U according to

it being an upper, middle or lower part. The next result shows that no

ambiguity can arise in the definition of B(s), i.e., it is uniquely defined, and

that B(s) has a simple structure.

Lemma 3.1.4. Suppose L ¿ U and s = (n1, . . . , np) is a nonmajorized

shape. Let (i1, . . . , ip) be a permutation of (1, . . . , p) such that ni1 ≥ ni2 ≥
· · · ≥ nip. Then:

(a) nir = nit for r, t ∈ {1, . . . , p} implies ir and it are either both upper

parts or both lower parts.

(b) B(s) has the form (U, . . . , U,M,L, . . . , L) or (U, . . . , U, L, . . . , L).

Proof. (a) If nir = nit , ir is a lower-part and it is not, then Lit < nit =

nir = Lir < Uir , in contradiction to implication (a) ⇒ (b) in Lemma 3.1.3.

A similar argument applies to prove that if ir is an upper-part, so is it.

(b) The implication (a)⇒ (c) in Lemma 3.1.3 assures that if nj = Uj > Lj

and ni < Ui, then ni < nj, and that if ni = Li < Ui and nj > Lj, then

16

ni < nj. It follows that for every permutation i1, . . . , ip of 1, . . . , p with

ni1 ≥ · · · ≥ nip and r, t ∈ {1, . . . , p}
[nir = Uir and nit < Uit] ⇒ [r < t]

and

[nit = Lit and nir > Lir] ⇒ [r < t].

These implications establish the asserted structure of B(s).

We conclude this section with an observation about a necessary difference

between two nonmajorized shapes.

Lemma 3.1.5. Two distinct nonmajorized shapes s = (n1, . . . , np) and s′ =

(n′1, . . . , n
′
p) must differ in at least two coordinates; further, if such s and s′

differ in exactly two coordinates, say coordinates i and coordinate j, where

ni > n′i, then s′ is obtained from s by permuting these coordinates,

ni = Ui or nj = Lj (3.1.3)

and

n′i = Li or n′j = Uj. (3.1.4)

Proof. Suppose shapes s and s′ differ in only one part, then
∑

i ni 6=
∑

i n
′
i,

contradicting the fact that both are shapes and their coordinate sum is n.

Next, assume that s = (n1, . . . , np) and s′ = (n′1, . . . , n
′
p) are nonma-

jorized shapes that differ only in coordinates i and j. As neither strictly

dominates the other (they are nonmajorized), we have that s′ is obtained

from s by permuting two coordinates, say coordinates i and j. Now, suppose

ni < n′i = nj. As Lj ≤ nj = n′i < ni ≤ Ui, the implication (a) ⇒ (b) in

Lemma 3.1.3 assures that either ni = Ui or nj = Lj, and (applying the result

on s′ with the roles of i and j reversed), either n′j = Uj or n′i = Li.

We say that two shapes are equivalent if one is obtained from the other

by coordinate-permutation. Of course, not all coordinate-permutations of a

shape in Γ(L,U) are necessarily in Γ(L,U).

17

Corollary 3.1.6. If s and s′ are nonmajorized shapes which are not equiv-

alent, then they differ in at least 3 coordinates.

3.2 The number of nonmajorized shape-types

In this section, we continue to assume that L and U are integer p-vectors

satisfying (1.1.1) and L ¿ U . As strict-majorization is invariant of the

corresponding shape-types, we can and will refer to nonmajorized shape-

types.

We note that a single nonmajorized shape-type may correspond to many

shapes as example 4.

Example 4. Let L = (1, . . . , 1), U = (2, . . . , 2) and p < n < 2p. Then all

nonmajorized shapes are equivalent and each such shape, say (n1, . . . , np) is

determined by a set J of {1, . . . , p} consisting of n−p elements, where ni = 2

if i ∈ J and ni = 1 otherwise. So, there is a single nonmajorized shape-type

that corresponds to
(

p
n−p

)
nonmajorized shapes.

A shape-type can be identified with the multiset {n1, . . . , np} where (n1,

. . . , np) is a shape in Γ(L,U).

For a nonmajorized shape s = (n1, . . . , np), let U(s), M(s) and L(s) be

set of corresponding upper-, middle- and lower-parts of s, that is, U(s) =

{j ∈ {1, . . . , p} : nj = Uj}, M(s) = {j ∈ {1, . . . , p} : Lj < nj < Uj} and

L(s) = {j ∈ {1, . . . , p} : nj = Lj}.
Lemma 3.2.1. Suppose s = (n1, . . . , np) and s′ = (n′1, . . . , n

′
p) are nonma-

jorized shapes that are not equivalent. Then:

(a)U(s) 6= U(s′), and

(b)if U(s′) is included in U(s), then M(s′) contains a single element j /∈
U(s) that satisfies

Ui′ > n′j for every i in U(s′) (3.2.1)

and

Ui ≤ n′j for every i in U(s) \ U(s′). (3.2.2)

18

Proof. (a) Lemma 3.1.3 assures that |M(s)| ≤ 1 and |M(s′)| ≤ 1. Thus,

if U(s) = U(s′), then s and s′ can differ in at most 2 coordinates; it then

follows from Corollary 3.1.6 that s and s′ are equivalent, in contradiction to

the assertion that they are not.

(b) Suppose U(s) ⊇ U(s′). As s′ 6= s, there is a coordinate j with

n′j > nj. We will show that such a j must be in M(s′). Indeed, such j

cannot be in U(s′) for the assertion U(s) ⊇ U(s′) would imply j ∈ U(s) and

n′j > nj = Uj; such j can neither be in L(s′) because n′j > nj ≥ Lj. So, j

must be in M(s′). By Lemma 3.1.3, there can be at most a single part in

M(s′). Thus, M(s′) = {j} and j is the single coordinate for which s′ exceeds

s.

Now, for i in U(s′), n′i = Ui > Li. As n′j < Uj, the (a)⇒(c) part of

Lemma 3.1.3 implies that n′j < n′i = Ui, proving (3.1.6).

Next, assume that i is in U(s) \ U(s′). As s and s′ differ by at least

3 coordinates (Corollary 3.1.6), as j is the single coordinate for which s′

exceeds s and as ni = Ui > n′i, we have that i 6= j′ and

n′j − nj > ni − n′i = Ui − n′i. (3.2.3)

Assume that Ui > n′j and we will establish a contradiction. By summing

Ui > n′j and (3.2.3), we get that ni > nj. As i is not in U(s′), n′i < Ui.

Consider the shape obtained from s′ by increasing n′i to Ui and decreasing n′j
to n′j − [Ui − n′i]. As Ui > n′j, this shape majorizes s′ (recall Lemma 3.1.2).

Further, (3.2.3) implies that n′j − [Ui − n′i] > nj ≥ Lj, assuring that the new

shape is in Γ(L,U). As s′ is assumed to be nonmajorized, we have derived a

contradiction which established (3.2.2).

Corollary 3.2.2. Suppose s, s′ and s′′ are nonmajorized shapes where no

pair consists of two equivalent shapes, and suppose U(s′) and U(s′′) are both

included in U(s). Then U(s′) and U(s′′) are ordered by set-inclusion.

Proof. Let s′ = (n′1, . . . , n
′
p) and s′′ = (n′′1, . . . , n

′′
p). Part (b) of Lemma

3.2.1 assures that M(s′) and M(s′′) are nonempty. Let M(s′) = {i} and

19

M(s′′) = {j}. Without loss of generality, assume that n′i ≤ n′′j . By Lemma

3.2.1(a), U(s′) 6= U(s′′). Suppose U(s′) + U(s′′). Then there exists k ∈
U(s′′)∩ (U(s) \U(s′)). By Lemma 3.2.1(b), n′i ≥ Uk > n′′j , contradicting our

assumption n′i ≤ n′′j .

We next explore the combinatorial restriction imposed by the conclusion

of Corollary 3.2.2. For that purpose, for each integer p ≥ 1, let f(p) be

the maximal size of a class C of subsets of {1, . . . , p} which satisfies the

conclusions of Corollary 3.2.2, that is, every pair of subsets in C that are

included in a third subset of C must be comparable by set-inclusion. The

next table lists values of f(p) for p = 0, 1, 2, 3, 4, 5, 6.
p f(p) A realizing class for f(p)
0 1 φ
1 2 {1}, φ
2 3 {1, 2}, {1}, φ
3 5 {1, 2}, {1 3}, {2, 3}, {1}, φ
4 8 {1, 2}, {1 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1}, φ
5 14 {1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1}, φ
6 23 All subsets of {1, . . . , 6} of size 3, {1, 2}, {1}, φ

Table 1

Theorem 3.2.3. f(p) ≤ 2p−1 for p ≥ 4.

Proof. Consider any p ∈ {1, 2, . . .} and let F (p) realize f(p). Also, let

F0(p) = {U ∈ F (p) : p 6∈ U} and F1(p) = {U ∈ F (p) : p ∈ U}. As F0(p) and

{U \{p} : U ∈ F1(p)} are classes of subsets of {1, . . . , p−1} with the property

that every pair of sets in class that are included in a third set in the class

must be comparable by set-inclusion, we have that |F0(p)| ≤ f(p − 1) and

|F1(p)| ≤ f(p−1), implying that f(p) = |F (p)| = |F0(p)|+|F1(p)| ≤ 2f(p−1).

As f(4) = 8 = 23, we conclude that f(p) ≤ 2p−1 for each p ≥ 4.

Corollary 3.2.4. For p ≥ 4, there are at most 2p−1 nonmajorized shape-

types.

20

Proof. Corollary 3.2.2 and Lemma 3.2.1 show that f(p) bounds the number

of nonmajorized shape-types and Theorem 3.2.3 shows that f(p) ≤ 2p−1.

The proof of Corollary 3.2.4 relies on the facts that 2p−1 is an upper

bound on f(p) (for p ≥ 4) and that f(p) is an upper bound on the number

of unmajorized shape-types. Table 1 demonstrates that 2p−1 is not a tight

bound on f(p) and we believe that neither is the second bound. In fact, we

conjecture that the number of nonmajorized shape-types can be bounded by(
p−1

b(p−1)/2c
)
, a smaller expression than 2p−1. (By the Sperner’s lemma [19],(

p−1
b(p−1)/2c

)
is the maximum number of independent subsets in the lattice of

subsets of {1, . . . , p−1} with set-inclusion as the partial order.) The following

examples achieve this (conjectured) bound.

Example 5. Let U = (20, 19, 18, 17, 16), L = (1, 2, 3, 4, 5), n = 51. Using

the algorithms of Section 4 (see Example 7), one can show that the set of all

nonmajorized shape-types contains 6 shapes that are listed below in Table 2.

n1 n2 n3 n4 n5

20 19 3 4 5
20 2 18 4 7
20 2 3 17 9
1 19 18 4 9
1 19 3 17 11
1 2 18 17 13

Table 2

Example 6. For any p ≥ 3, let U = (2(p + (dp−1
2
e)(bp−1

2
c)) − 1, 2(p +

(dp−1
2
e)(bp−1

2
c))−2, . . . , p+2(dp−1

2
e)(bp−1

2
c)), L = (1, 2, . . . , p), and n = p2 +

(p−X(p))(dp−1
2
e)(bp−1

2
c), where X(p) = 1, if p is odd, otherwise, X(p) = 0.

Then the number of nonmajorized shape-types achieve conjectured bound.

3.3 Identifying all nonmajorized shapes and

shape-types

Algorithm 1. (For enumerating all nonmajorized shapes in Γ(L,U))

21

The input for the algorithm consists of integer p-vectors L and U that

satisfy (1.1.1) and L ¿ U .

(a) For u = 1, ..., p and A ⊆ {1, ..., p} \ {u} do:

(i) Set B = {1, . . . , p} \ A \ {u}, UA =
∑

i∈A Ui, LB =
∑

i∈B Li and

Mu = n− UA − LB.

(ii) If Lu ≤ Mu ≤ Uu, set

nj = {
Uj for j ∈ A ,
Lj for j ∈ B ,
Mu for j = u ,

and include (n1, . . . , np) in a temporary list that

we denote TEMP.

(b) Test each shape in TEMP for being nonmajorized by testing if it

majorized by any shape in TEMP.

The next lemma analyzes Algorithm 1. For the complexity analysis, com-

putational effort counts arithmetic operations and comparisons.

Lemma 3.3.1. (a) At the end of step (a), TEMP contains all nonmajorized

shapes.

(b) The output of Algorithm 1 consists of all nonmajorized shapes in

Γ(L,U).

(c) The computational time in executing step (a) of Algorithm 1 is bounded

by O(p2p−1), and the computational time in executing the complete algorithm

is bounded by O(p32p).

Proof. (a) Lemma 3.1.3 (part (b)) assures that at the completion of step (a),

TEMP contains all nonmajorized shapes.

(b) As transitivity of the majorization relation assures that a majorized

shape is majorized by some nonmajorized shape, a test for a shape to be

nonmajorized is to compare it with all the shapes in TEMP.

(c) The number of iterations within step (a) is p2p−1. The initial calcula-

tion of the quantity UA, LB and Mu requires p− 1 addition/subtraction and

the updates within each iteration requires O(1) computational time. Hence,

the total time to execute step (a) is O(p2p−1) and the output may contain

up to p2p−1 shapes.

22

In step (b), each output shape of step (a) is tested against all others.

The test requires determining the order statistics of the shapes, creating

their partial sums, and executing p comparisons for each pair of shapes. The

total time is then bounded by O[(p+p lg p)p2p−1 +(p2p−1)2p] = O[p322p].

Given integer p-vectors L and U satisfying (1.1.1)–(1.1.2), the set of float-

ing indices of (L,U) is defined as {i = 1, . . . , p : Li < Ui}. Also, if G is the set

of indices of (L,U) which are not floating, we refer to n−∑
i∈G

Li(= n−∑
i∈G

Ui)

as the availability under (L,U). We say that the upper bound of index i is

effective for (L,U) if

Ui +
∑

j 6=i

Lj ≤ n; (3.3.1)

when the upper bound of index i is not effective, we refer to the replacement

of Ui by n−∑
j 6=i

Lj ≥ Li as the adjustment of the upper bound of i. Similarly,

we say that the lower bound of index i is effective for (L,U) if

Li +
∑

j 6=i

Uj ≥ n, (3.3.2)

and if the lower bound of index i is not effective, we refer to the replacement of

Li by n−∑
j 6=i Uj ≤ Ui as the adjustment of the upper bound of i. Evidently,

(1.2.6) and (1.1.1) stay in effect when an upper bound or a lower bound is

adjusted.

Lemma 3.3.2. Consecutive adjustment of bounds results in a pair of vectors

for which all bounds are effective, and this outcome is independent of the

order in which bounds are adjusted.

Proof. Trivially, consecutive adjustment of bounds must terminate with a

pair of vectors for which all bounds are effective.

Evidently, (1.2.6) and (1.1.1) stay in effect when a bound is adjusted.

Further, if the upper bound of i needs adjustment, all the lower bounds of

indices j 6= i are effective throughout any sequence of adjustments; this is the

23

case because a decrease of an upper bound does not invalidate the effective-

ness of a lower bound and an increase of a lower bound does not invalidate

effectiveness of an upper bound. We conclude that if an upper/lower bound

of i is adjusted, no lower/upper bound of another j 6= i will require adjust-

ment. Further, the order of consecutive adjustment of upper bounds or of

lower bounds has no effect on the outcome. The only remaining case is the

adjustment of the upper bound and the lower bound of a particular i—it is

easy to verify that here, too, the order of executing these adjustments does

not influence the outcome.

We refer to the operation that is described in Lemma 3.3.2 as an ad-

justment of the bounds. We observe that (1.2.6) assures that the bounds of

indices that are not floating, are always effective and will therefore not be

affected by an adjustment of the bounds. But, bound-adjusting can reduce

the set of floating indices.

Algorithm 2. (For enumerating all nonmajorized shape-types in

Γ(L,U))

The input for the algorithm consists of integer p-vectors L and U that

satisfy (1.2.6). Set r = 1.

Iteration r:

(a) Adjust the bounds (L,U). Let F and v be the set of floating indices

and the availability with respect to the adjusted bounds and set ni = Li = Ui

for each i ∈ {1, . . . , p} \ F .

If F = ∅, set r = p and go to step (c). Otherwise, set α ≡ maxk∈F Uk

and β ≡ mink∈F Lk.

(b) Execute, in parallel and record separately the outcome of the following

three steps:

(i) Select i as any index that maximizes the lower bound among those

whose upper bound is α. Set ni ← Ui and Li ← Ui.

(ii) Select i as any index that minimizes the upper bound among those

whose lower bound is β. Set ni ← Li and Ui ← Li.

24

(iii) This option is executed only if one identifies an index i that satisfies

Ui = α > Uj for each j 6= i, Li = β < Lj for each j 6= i and F \ {i} can be

partitioned into two sets A and B such that

|A| ≥ 2, |B| ≥ 2 (3.3.3)

max
k∈B

Uk ≤ n−
∑
j∈A

Uj −
∑

k∈B

Lk ≤ min
j∈A

Lj (3.3.4)

and

Li < n−
∑
j∈A

Uj −
∑

k∈B

Lk < Ui. (3.3.5)

When the above holds with 3.3.4 in strict inequalities, do for each such pair

A,B the following: Set nt ← Ut and Lt ← Ut for t ∈ A, ns ← Ls and

Us ← Ls for s ∈ B, and ni ← µ ≡ n − ∑
j∈A Uj −

∑
k∈B Lk, Ui ← µ and

Li ← µ.

Let ni denote the middle part of 3.3.4. Suppose ni = max
k∈B

Uk ≡ Ux. Check

the existence of a part y in B \ {x} such that |(Lx, Ux)∩ (Ly, Uy)| ≥ 2. If no

such y exists, then output this shape-type as in the 3.3.4 in strict inequalities

case.

Similarly, suppose ni = min
j∈A

Lj = Lz. Check the existence of a part w in

A \ {z} such that |(Lz, Uz)∩ (Lw, Uw)| ≥ 2. If no such w exists, then output

this shape-type.

(c) If r = p, output the shape-types of all generated shapes in step (b)(i) and

(b)(ii). Otherwise, replace r with r +1 and go to step (a) with each outcome

of step (b)(i) and of step (b)(ii).

Remarks.

(1)Step (b) of Algorithm 2 allows a selection between 3 options. Option

(iii) can be executed only if one identifies an index i with Ui > Uj and Li < Lj

for each j 6= i. When such an index i is identified, options (i) and (ii) will be

executed with this particular selection of i. Option (iii) will then be followed

for each partition of F \ {i} into sets A and B that satisfy (3.3.3)–(3.3.5). It

is possible to have no such pair A,B, or alternatively, to have multiple pairs.

25

(2)Ambiguity can occur in Algorithm 2 only in steps (b)(i) and (b)(ii)

when there is more than one index i with Ui = α and Li = max{Lk : Uk = α}
or, respectively, with Li = B and Ui = min{Uk : Lk = β}. In these cases,

the corresponding outputs of the algorithm will obviously generate the same

shape-types.

(3)Whenever option (b)(iii) is completed with a particular selection of

A,B, there will be no free variables in the next iteration and the algorithm

will stop.

(4)If in a given iteration, option (b)(i)/(b)(ii) selects index i whose up-

per/lower bound was adjusted in that iteration, then the next iteration will

have F = ∅ and the algorithm will stop.

(5)If at the beginning of an iteration there is only one index i with Li < Ui,

then the adjustment of the bounds will result in F = ∅ and the algorithm

will stop. In particular, as each iteration eliminates at least one free index,

one will never enter step (b) in iteration p.

We refer to option (i), (ii) and (iii) in Algorithm 2 as, respectively, a

U -step, an L-step and an E-step. We refer to an E-shape as one that is

determined when an E-step is executed.

The next example shows how Algorithm 2 is executed without the need

for an E-step.

Example 7. Applying Algorithm 2 to Example 5 is summarized in Figure

1.

26

18

17

17

13

17

11

9

4

17

9

7

4

5

4

4

3

17

18

13

17

11

17

4

9

9

17

4

7

4

5

3

4

13

18

3

18

3

18

3

5

2

19

2

19

1

20

Figure 1.

The corresponding nonmajorized shapes are listed in Table 2.

The following examples demonstrate that there may be more than one

option in executing step (b)(iii) of Algorithm 2 and that step (b)(i) (or (b)(ii))

may be followed even when step (b)(iii) is possible.

Example 8. U = (13, 12, 12, 8, 8, 4, 4), L = (1, 10, 10, 6, 6, 2, 2) and n = 49.

Then the nonmajorized shapes (13, 10, 10, 6, 6, 2, 2) and (1, 12, 12, 8, 8, 4, 4)

are determined by following a U -step and an L-step, respectively, in the first

iteration. We also find two shapes (5, 12, 12, 8, 8, 2, 2) and (9, 12, 12, 6, 6, 2, 2),

by initial use of E-steps, corresponding respectively to the partitions A =

{2, 3, 4, 5}, B = {6, 7} and A′ = {2, 3}, B′ = {4, 5, 6, 7}.
There are two partitions of the three groups {2, 3}, {4, 5}, {6, 7} of parts

in Example 8 having, respectively, the same bounds. In general, g groups

would yield up to g − 1 partitions.

27

Example 9. U = (11, 10, 10, 10, 7, 7, 7, 5, 3, 3, 3), L = (1, 9, 9, 9, 6, 6, 6, 4, 2, 2,

2) and n = 66. Then the nonmajorized shapes are: s1 = (11, 9, 9, 9, 6, 6, 6, 4,

2, 2, 2), s2 = (8, 10, 10, 10, 6, 6, 6, 4, 2, 2, 2), s3 = (5, 10, 10, 10, 7, 7, 7, 4, 2, 2, 2),

s4 = (4, 10, 10, 10, 7, 7, 7, 5, 2, 2, 2) and s5 = (1, 10, 10, 10, 7, 7, 7, 5, 3, 3, 3).

Then s2 is an example of an E-shape with strict inequalities in (3.3.4), and

s3 and s4 are examples of an E-shape with nonstrict inequalities in (3.3.4).

Example 10. U = (11, 9, 8, 10, 4, 4, 4, 4, 4), L = (3, 6, 6, 0, 2, 2, 2, 2, 2) and

n = 43. If one starts with a U -step, an output can be determined in the

next iteration by an E-step, or a U -step resulting, respectively, in the output

(11, 9, 8, 5, 2, 2, 2, 2, 2) and (11, 6, 6, 10, 2, 2, 2, 2, 2). Alternatively, one may

start with an L-step, which will eliminate the option of an E-step with i = 4;

then L1 will be adjusted to 6, and the output (11, 9, 8, 0, 4, 4, 4, 3, 2) can be

generated.

The next lemma refers to sensitivity of being nonmajorized.

Lemma 3.3.3. Let {(Lj, Uj) | j = 1, . . . , p} and {(L′j, U ′
j) | j = 1, . . . , p}

be two sets of bounds which differ only in one bound corresponding to part

j where either Lj = L′j and Uj < U ′
j, or Lj > L′j and Uj = U ′

j. Then, for

a given n, every shape in Γ(L,U) is majorized by a nonmajorized shape in

Γ(L′, U ′).

Proof. Let s be a nonmajorized shape in Γ(L,U). Then s is also a shape

in Γ(L′, U ′). Thus, it is either a nonmajorized shape, or is majorized by a

nonmajorized shape in Γ(L′, U ′).

By Lemma 3.3.4, we order the upper bounds such that Ui Â Uj either if

Ui > Uj or Ui = Uj but Li > Lj. Similarly, Li ≺ Lj either if Li < Lj or

Li = Lj but Ui < Uj. Obviously, if Ui = Uj and Li = Lj, then the order

between i and j does not matter. Under ≺, we have a linear order for the

upper(lower) bounds.

Lemma 3.3.4. Let s be a shape output by Algorithm 2. Suppose Nk, con-

sisting of j upper bounds and k−j lower bounds, is the set of values obtained

28

before an E-step in s (if no E-step occurs, then k = p). Let s′ be any other

shape. If s′ majorizes s, then the j largest n′i and the k− j smallest n′i must

be equivalent to Nk.

Proof. We prove Lemma 3.3.4 by induction on k. The case k = 1 is trivial.

Consider a general k. Without loss of generality, assume the first step of s is

taking the largest upper bound U[1]. If the largest n′i < U[1]. Then s′ cannot

majorize s. If they are equal, then by Lemma 3.3.3 we may assume s′ takes

the same part as s. Delete this part from the problem and k is reduced to

k − 1. Use induction.

Corollary 3.3.5. A regular shape output by Algorithm 2 is nonmajorized.

Theorem 3.3.6. (a)Every shape that is constructed by Algorithm 2 is non-

majorized.

(b)For every nonmajorized shape, there is an equivalent shape that is con-

structed by Algorithm 2.

(c)The number of outputs of the algorithm is bounded by 2p+1 (duplica-

tions are possible).

(d)The computational time of all executions of Algorithm 2 is bounded by

O(2p + p2p−5 log p).

Proof. (a) By Corollary 3.3.5, we only need to consider an E-shape s. Sup-

pose to the contrary that s′ majorizes s. By Lemma 3.3.4, s′ majorizes s in

the remaining p − k parts. But this is impossible by our construction of an

E-shape whose largest k-sum, 1 ≤ k ≤ |A|, is ≥ the largest k-sum of s′, and

whose smallest k-sum, 1 ≤ k ≤ |B|, ≤ the smallest |B|-sum of s′. This proves

that for the remaining parts, s either majorize s′ or they are equivalent.

(b) Now, suppose at a given iteration, there exists a nonmajorized shape

s which contains neither the maximum upper bound Ui nor the minimum

lower bound Lj. Suppose i 6= j. Let s choose ni < Ui and nj > Lj.

Since Ui > nj and ni > Lj, we can choose n′i = max{ni, nj} + 1 and n′j =

min{ni, nj}−1 to obtain a shape majorizing s, contradicting the assumption

that s is nonmajorized.

29

Assume i = j but s takes ni such that Li < ni < Ui. By the comment

after Lemma 3.3.3, Ui Â Uj and Li ≺ Lj for any remaining part j.

Suppose there exists a part j such that Lj < ni < Uj. Without loss of

generality, assume nj = Uj. Then s is majorized by s′ with n′i = Uj + 1 and

n′j = ni − 1.

Next suppose Lj = ni, which implies nj = Uj, i.e., j ∈ A. Suppose that

there exists another part x in A such that (Lj, Uj) ∩ (Lx, Ux) 6= ∅. Then s

is majorized by s′ with n′i = max{Uj, Ux}+ 1, n′j = Lj, n′x = Ux − (n′i −Uj).

Note that if n′i = Ux + 1, then n′x = Uj − 1 ≥ Lx implies the part-j range

and the part-x range must overlap by at least 2. We have shown that s can

be a nonmajorized shape only if condition (3.3.4) is satisfied.

Finally, we justify (3.3.3). Suppose that there exists an E-shape s with

|A| = 1. Without loss of generality, assume U1 = max{Ui}, L1 = min{Li},
A = {2}, B = {3, 4, . . . , p}, L2 > n1 > Ui for all i ∈ B, and n = n1 +

U2 + (L3 + L4 + · · · + Lp). Then U1 is adjusted to U ′
1 such that U ′

1 < U2

because U1 + (L2 + L3 + · · · + Lp) > n. Then s, as an non-E-shape, will be

generated by selecting the largest upper bound U2. Therefore we can restrict

our construction of E-shape under the conditions |A| ≥ 2 and |B| ≥ 2.

(c) The underlying graph of the part of Algorithm 2 yielding regular

shapes is a complete binary tree with depth p − 1 (ni of the last part is

determined by the previous p − 1 choices). Hence there are at most 2p−1

terminal points yielding 2p−1 regular shapes. At every path and every stage

i, 1 ≤ i ≤ p− 4, an E-step may occur. The reason of the upper bound of i is

due to 3.3.3 which specifies that at lest 5 parts remain for an E-shape to exist.

The maximum number of E-shapes at stage i is 1+(n− i−4), since the first

A-set and the last B-set must contain at lest two parts, while the other A(B)-

set can increase by 1. Summing over i, we obtain 2p−1 +
p−4∑
i=1

2i(n− i− 3) =

(3
2
)× 2p−1 + 1.

(d) For easier analysis of time complexity, we write the subroutine which

separates the remaining parts into A and B in pseudo code. Suppose the

inputs are U = (U1, ..., Up), L = (L1, ..., Lp), and n. The outputs are all

30

possible combinations of A and B.

1: Obtain U1 ≥ U2 ≥ · · · ≥ Up by sorting U .

2: sep := L1

3: Determine the order statistic, say r, of sep in U .

4: for i = 2 to p do

5: if i=r then

6: sep := Lr

7: else if i = r − 1 then

8: Output A = {1, 2, . . . , i}, B = {i + 1, i + 2, . . . , p}
9: else if Li < sep then

10: sep := Li

11: Determine the order statistic, say r, of sep in U .

12: end if

13: end for

The running time in Line 1 needs O(p log p) to sort. Line 3 needs O(log p)

by using binary search. The loop from Line 5 to 13 runs p− 1 times. Inside

loop body, every line runs constant time except Line 12 which needs O(log p)

by using binary search. The total time is p log p + log p + (p − 1) log p =

O(p log p).

Furthermore, back to Algorithm 2, for every output of A and B from

above, we need to check whether (3.3.4) and (3.3.5) hold. We count
∑

Li

before the algorithm starts. Then count
∑
j∈A

Uj and
∑
j∈A

Lj in every loop.

Once Line 8 is executed, count
∑
j∈B

Lj =
∑

Li −
∑
j∈A

Lj. Thus we save the

checking time to constant time.

Therefore, an E-step taking O(p log p) time. There are O(2p) steps in

Algorithm 2 with at most O(2p−5) of them can contain an E-step. The

generation of regular shapes takes constant time at every step. Therefore

the total time is O(2p) + O(2p−5)O(p log p) = O(2p + p2p−5 log p).

31

3.4 Determining the existence of a majoriz-

ing shape

In some problems, the goal is to find a majorizing shape, or to determine if

one exists. If Algorithm 2 given in Section 3.3 yields a single shape, then it

is the majorizing shape. However, there is a much faster way of finding out

whether a majorizing shape exists, and identifying it if it exists. Even if our

goal is to find all nonmajorized shapes, we can still use the faster algorithm

as preprocessing. In case it finds a majorizing shape, then there is no need

to go through Algorithm 2.

This procedure constructs two nonmajorized shapes in Γ(L,U), i.e., the

one which goes the upper bound route as much as possible in Algorithm 2 and

the one which goes the lower bound route as much as possible. We will refer

to them as the top shape and the bottom shape. Note that in constructing

the top shape sT , we need only to adjust upper bounds; and in constructing

the bottom shape sB, only to adjust lower bounds.

Theorem 3.4.1. If sT and sB are equivalent, then either of them is a ma-

jorizing shape; if not, then no majorizing shape exists.

Proof. i) sT = sB. Suppose Ui = max
1≤j≤p

Uj. Consider the reduced problem

where part i is deleted and n changes to n−Ui. Let s′T , s′B be the two shapes

identified by our procedure in the reduced problem. Clearly, s′T = sT \ {Ui}.
We prove s′B = sB \ {Ui} (here we refer to shape-types as multisets).

A lower bound Lv will be adjusted in the reduced problem only if

Lv +
∑

j 6=i,v Uj < n− Ui

or equivalently,

Lv +
∑

j 6=v Uj < n,

which is the criterion of adjusting Lv in the original problem. Therefore, the

adjustment of lower bounds in choosing s′B is the same as sB, which implies

s′B = sB \ {Ui}.

32

Next we prove by induction on p that all regular shapes generated by

Algorithm 2 are equivalent to sT . It is trivially true for p = 1. Assume that

it holds for general p− 1 ≥ 1, we prove it for p.

Suppose to the contrary, that s′ 6= sT is also a nonmajorized regular

shape. Then s′ chooses Ui or Lk. Without loss of generality, assume s′

chooses Ui. By induction, s \ {Ui} majorizes s′ \ {Ui}. Hence, s majorizes s′.

Finally, we prove that no E-shape can exist. Let the common regular

shape contains r upper bounds and t lower bounds where r + t = p− 1 or p.

Suppose to the contrary that an E-step occurs at stage j + k after j upper

bounds and k lower bounds are selected. Among the remaining parts, the

largest(in the ≺ ordering) effective upper bound is U[j+1] and the smallest

effective lower bounds is L[k+1]. Necessarily, j < r + 1 and k < t + 1, or s(s′)

would not agree with the common regular shape. If U[j+1] and L[k+1] are from

the same part, then selecting one means not selecting the other in a shape.

In particular, L[k+1] would not be in s and U[j+1] not in s′, contradicting the

common regular shape.

(ii) If sT 6= sB, then Theorem 3.4.1 assures that both sT and sB are

nonmajorized shapes; in particular no majorizing shape exists.

If we calculate
∑

Li at the beginning, then U ′
i = min{Ui, n− (

∑
Li−Li)

can be computed with one subtraction. Therefore, adjusting each Ui takes

a constant time. It takes O(p) time to adjust all Ui in each calling of the

algorithm and O(p) time to select maximum of {U ′
i}. The algorithm is called

p times to obtain sT , so the total time is O(p(p + p)) = O(p2). The time

complexity of constructing sB is the same. Finally, checking sT = sB takes

O(p) time.

An improvement of this algorithm is to sort {Ui}, and to sort {Lj} among

those parts with the same upper bound at the beginning, so that we don’t

have to do it at every stage. But the running time is still O(p2).

Example 11. sT = (20, 19, 3, 4, 5) and sB = (1, 2, 18, 17, 13). Hence no

majorizing shape exists.

33

Example 12. U = (100, 90, 60, 50, 17), L = (10, 70, 10, 48, 10). If n = 228,

we obtain sT = sB = {90, 70, 10, 48, 10} which is a majorizing shape. But, if

219 ≤ n ≤ 226, then there is no majorizing shape.

34

Chapter 4

The Mean-partition Problem

In the mean-partition problem the goal is to partition a finite set of ele-

ments, each associated with a number, into p disjoint parts so as to optimize

an objective function which depends on the averages of the vectors that

are assigned to each part. A partition is then associated with a p-vector

θ̄π = (θ̄1, θ̄2, ..., θ̄p) where θ̄i is the mean of part i. A useful approach in

studying the problem is to explore the mean-partition polytope MΠ.

When f is quasi-convex, there exists an optimal partition π∗ with θ̄π being

a vertex of the mean-partition polytope MΠ. In such a case, it is useful

to study MΠ, in particular, to identify properties of partitions π for which

θ̄π is a vertex of the mean-partition polytope. In Sec 4.1, we will make a

linear transformation of the mean-partition polytope to the sum-partition

polytope, thus allowing the transformation of results from the latter to the

former. Unfortunately, this linear transformation technique can not be ex-

tended to the bounded-shape problem since we cannot identify the linear

transformation. We also explore the approache introduced in Sec. 1.3 for

the sum-partition problem to construct mean-partition polytopes. Note that

this approach works depending on two things: (i)Hλ ⊆ P ⊆ Cλ and (ii)λ is

supermodular. We will study the two issues separately for the single-shape

mean-partition problem. In particular, we will shaw that (i) is not satisfied

but (ii) is. Thus we cannot conclude Hλ = P = Cλ. However, the proof of

supermodularity is mathematically interesting, and hopefully, accomplishing

35

this challenging proof may bring some benefit in some unexpected direction

in the future.

4.1 Linear transformation of mean-partition

problems to sum-partition problems

We observe that the single-shape mean-partition problem with prescribed-

shape (n1, ..., np) and objective function given by (1.4.3) coincides with the

corresponding sum-partition problem with objective function given by (1.2.4)

where f satisfies

f(x1, ..., xp) = g(
x1

n1

, ...,
xp

np

) for x ∈ Rp (4.1.1)

In particular, properties of optimal solutions for single-shape mean-partition

problems are deducible from established properties of optimal solutions of

corresponding sum-partition problems. For example, it is known [3] that:

A real number function f is called quasi-convex if the maximum over

every line segment contained in the domain of f is attained at one of the two

endpoints.

Theorem 4.1.1. When the θπ’s are distinct, every single-shape sum-partition

problem with f quasi-convex has at least one consecutive optimal partition.

This result establish the polynomial solvability of the single-shape sum-

partition problem. Now, as a function g is quasi-convex if and only if so is

the function f that is defined through (4.1.1), we conclude Theorem 4.1.1

that when g is quasi-convex, each single-shape mean-partition problem has

at least one consecutive optimal solution and is solvable in polynomial time.

Furthermore, by applying the one-to-one transformation

(x1, ..., xp) = (
x1

n1

, ...,
xp

np

) (4.1.2)

we see that the single-shape mean-partition polytope is the one-to-one linear

image of the corresponding single-shape sum-partition polytope. A virtue of

36

this transformation is that it preserves vertices.

Let (n1, ..., np) be a vector of positive integers with coordinate-sum n and let

Π be the set of partitions with shape (n1, ..., np). We observe that for every

partition π ∈ Π, θ̄π = (
θπ1

n1
, ...,

θπp

np
), and therefore

MΠ = conv{θ̄π : π ∈ Π} = conv{(θπ1

n1

, . . . ,
θπp

np

) : π ∈ Π}

= {(x1

n1

, . . . ,
xp

np

) : (x1, . . . , xp) ∈ conv{θπ : π ∈ Π} = PΠ}

= {(y1, . . . , yp) : (n1y1, . . . , npyp) ∈ PΠ}.

Using the representation of PΠ through (1.3.1) we get the representation of

MΠ as the set of vectors y ∈ Rp that satisfy

∑
i∈I

niyi ≥ λ(I) for all I ⊆ {1, ..., p} and

p∑
i=1

niyi = λ({1, ..., p}). (4.1.3)

Thus we have Theorem 4.1.2.

Theorem 4.1.2. When the θπ’s are distinct, every single-shape mean-partition

problem with g quasi-convex has at least one consecutive optimal partition.

The linear transformation approach does not apply to the bounded-shape

mean-partition problem, since the variation in shape prevent the transforma-

tion form being linear as in (4.1.2). Consequently, vertices are not preserved

in this nonlinear transformation. Example 13 shows that a partition which

is not a vertex of bounded-shape sum-partition polytope becomes a vertex

of bounded-shape mean-partition polytope.

Example 13. Let n = 4, θi = i, for i = 1, ..., 4, p = 2, U = (2, 3), L =

(1, 2). Then the sum-partition polytope is the line-segment connecting (1, 9)

and (7, 3), the mean-partition polytope is the parallelogram with vertices

{(1, 3), (4, 2), (1.5, 3.5), (3.5, 1.5)}. A partition π = ({1, 2}, {3, 4}) is not a

vertex of the sum-partition polytope but is a vertex of the mean-partition

polytope.

37

Although we cannot use the linear transformation approach to obtain the

bounded shape mean-partition polytope, we still have the following result.

Theorem 4.1.3. When the θπ’s are distinct and g is quasi-convex, each

constrained-shape mean-partition problem has a consecutive optimal parti-

tion.

Proof. An optimal mean-partition must have a shape. Theorem 4.1.3 now

follows from Theorem 4.1.2.

Anily and Federgruen [1] studied the bounded-shape mean-partition prob-

lem under the objective function f(π) =
p∑

i=1

h(θ̄π, ni). They proved that if

for each ni, h(x, ni) is convex and nondecreasing in x, then there exists a

disjoint optimal partition. Their result follows form Theorem 4.1.3 when the

objective function f(π) as a special type of quasi-convex function. We note

that with stronger assumptions on h(x, y), Anily and Federgruen obtained

additional, tighter, results which are not available from our approach.

4.2 Supermodularity of λM

In this section, we explore a direct approach, along the line of Sec. 1.3 to con-

struct the single-shape mean partition polytope. Without loss of generality,

we assume that n1 ≤ n2 ≤ ... ≤ np.

For I = {i1, i2, ..., ik} ⊆ {1, ..., p}, we suppose that ii < i2 < ... < ik.

Define Nik =
k∑

x=1

nix for 1 ≤ k ≤ |I|. Set

λM(I) =

|I|∑

k=1

(

Nik∑
j=Nik−1

+1

θj/nik). (4.2.1)

Example 14. Let n = 3, θi = i, for i = 1, 2, 3, p = 2 and consider the mean

partition problem corresponding to the set Π of partitions with shape (1, 2).

The set Π contains the three partitions the three partitions ({1}, {2, 3}),
({2}, {1, 3}) and ({3}, {1, 2}) whose corresponding vectors are, respectively,

38

(1, 2.5), (2, 2) and (3, 1.5). The mean-partition polytope MΠ is then the line-

segment connecting (1, 2.5) and (3, 1.5). Also, we have that λM({1}) = 1
1

=

1, λM({2}) = 1+2
2

= 1.5 and λM({1, 2}) = min{1
1
+ 2+3

2
= 3.5, 2

1
+ 1+3

2
= 4, 3

1
+

1+2
2

= 4.5} = 3.5. So, CλM is the polytope defined by the inequalities x1 ≥
1, x2 ≥ 1.5, x1+x2 = 3.5, that is, it is the line-segment connecting (1, 2.5) and

(2, 1.5). Finally, the two permutations (1, 2) and (2, 1) of {1, 2} correspond,

respectively, to the vectors (λM)(1,2) = (λM({1}), λM({1, 2}) − λM({1}) =

(1, 2.5) and (λM)(2,1) = (λM({1, 2}) − λM({2}), λM({2})) = (2, 1.5), and

HλM is the line-segment connecting these points.

Example 14 explains that (i)HλM ⊆ MΠ ⊆ CλM isn’t satisfied. Now we

show that (ii)λM is supermodular. We first prove

Lemma 4.2.1. For any shape partition π = (π1, ..., πp) ,
∑
i∈I

θπi
≥ λM(I).

Proof. Define A = {θj : j ∈ πi, i ∈ I} and B = {θ1, ..., θNi|I|
}. Suppose

λM(I) is defined on A but A 6= B. Then we can reduce
∑
i∈I

θπi
by replacing

any θj ∈ A \B with a θk ∈ B \ A. Therefore we assume A = B. Note that

θπi
=

∑
j∈πi

θj(1/ni), (4.2.2)

and θ1, ..., θNi|I|
are ordered from small to large. In λM(I), the sequence of

the multipliers for the θj’s is

1

ni1

, ...,
1

ni1︸ ︷︷ ︸
ni1

,
1

ni2

, ...,
1

ni2︸ ︷︷ ︸
ni2

, ...,
1

ni|I|
, ...,

1

ni|I|︸ ︷︷ ︸
ni|I|

,

which are ordered from large to small. Since for any π,
∑
i∈I

θπi
is computed

by multiplying the same set of θj’s with the same set of multipliers, except

in different parings, λM(I) achieves the minimum by pairing reversely.

Define ∆I(π) = λM(I)− λM(I \ {i1}).

Lemma 4.2.2. Suppose I ⊂ J and i1 = j1. Then ∆I(π) ≤ ∆J(π).

39

Proof. First assume nj1 = 1

J :

πj1︷︸︸︷
θ1 ,

πj2︷ ︸︸ ︷
θ2, ..., θnj2

, θnj2
+1,

πj3︷ ︸︸ ︷
θnj2

+2, ..., θnj2
+nj3

, θnj2
+nj3

+1, ...

J ′ : θ1, θ2, ..., θnj2︸ ︷︷ ︸
π′j2

, θnj2
+1, θnj2

+2, ..., θnj2
+nj3︸ ︷︷ ︸

π′j3

, θnj2
+nj3

+1, ...

Figure 2.π(J) and π′(J ′)

Let π′ represent the corresponding partition on J ′ = J \{j1}. We use the

same subscript jk to remind the reader that njk
= n′jk

for all 2 ≤ k ≤ |J |.
Figure 2 illustrates π(J) and π′(J ′). Note that the components of θπjk

(as

in the representation (4.2.2)) cancels with the components in θπ′jk
except the

first one in θπjk
and the last one in θπ′jk

. Hence

θπjk
− θπ′jk

= (θNjk
− θNjk−1

)/njk
for 1 ≤ k ≤ |J |.

Consequently,

∆J(π) =
|J |∑

k=1

θNjk
−θNjk−1

njk
.

Similarly,

∆I(π) =
|I|∑

k=1

θNik
−θNik−1

nik
.

Suppose ik = jg(k) with k ≤ g(k), 2 ≤ k ≤ |I|. Then

Gk(J) ≡
g(k)∑

h=g(k−1)+1

θNjh
− θNjh−1

njh

≥
g(k)∑

h=g(k−1)+1

θNjh
− θNjh−1

njg(k)

=
θNjg(k)

− θNjg(k−1)

njg(k)

.

(4.2.3)

Note that

∆J(π)−∆I(π) ≥
|I|∑

x=1

[Gx(J)− (θNix
−θNix−1

)

nix
].

We prove for all 1 ≤ k ≤ |I|,
k∑

x=1

[Gx(J)− (θNix
−θNix−1

)

nix
] ≥

(θNjg(k)
−θNik

)

nik
,

40

by induction on k. For k = 1

G1(J)− (θNi1
−θNi0

)

ni1
=

(θNj1
−θNj0

)

nj1
− (θNi1

−θNi0
)

ni1
= 0

since j1 = i1, Ni1 = ni1 = nj1 = Nj1 = 1, θNj0
= θNi0

= 0. For general k > 1,

k∑
x=1

[Gx(J)− (θNix
−θNix−1

)

nix
] ≥ Gk(J)− (θNik

−θNik−1
)

nik
+

(θNjg(k−1)
−θNik−1

)

nik−1

≥
(θNjg(k)

−θNjg(k−1)
)

njg(k)

− (θNik
−θNik−1

)

nik
+

(θNjg(k−1)
−θNik−1

)

nik
=

(θNjg(k)
−θNik

)

nik
,

since njg(k)
= nik ≥ nik−1

. Lemma 4.2.2 is proved.

For nj > 1, we can handle in two ways. The first way is to notice that the

only difference from the nj1 = 1 case is that πjk
and π′jk

would miss each other

out in nj1 elements instead of 1 in Figure 2.1. So the numerator of (4.2.3)

would be a difference between two njk
-sums; but the same logic applies. The

second way is to notice that θnj1
gets cancelled out in ∆J(π) − ∆I(π). So

the scenario is to compare the impact on I and J when both moves back nj1

elements. But this is equivalent to moving one element back nj1 times.

Finally, we are ready to prove the main result of this section.

Theorem 4.2.3. λM as defined in (4.2.1) is supermodular.

Proof. Let I and J , be two subsets of {1, ..., p}. Without loss of generality,

assume I ∪ J = {1, 2, ..., m}. We prove Theorem 4.2.3 by induction on m.

Theorem 4.2.3 is trivially true for m = 1. We prove the general m ≥ 2 case.

Case(1) 1 ∈ I ∩ J , i.e. both I and J contain 1. Delete π1 and the θj’s in it.

Suppose n1 = k. Then the reduced partition problem is to partition the set

{θk+1, ..., θn} into p− 1 parts. Theorem 4.2.3 follows by induction.

Case(2) 1 6∈ I∩J . Without loss of generality, assume 1 ∈ I. Let J∗ = J∪{1}.
By case(1),

0 ≤ λM(I ∪ J∗) + λM(I ∩ J∗)− λM(I)− λM(J∗)

= [λM(I ∪ J∗)− λM(I)] + [λM(I ∩ J∗)− λM(J∗)]

≤ [λM(I ∪ J)− λM(I)] + [λM(I ∩ J)− λM(J)].

41

Since the first difference is unchanged, and the second becomes larger by

Lemma 4.2.2 , i.e, λM(I∩J∗)−λM(I∩J) = ∆I∩J∗(π) ≤ ∆J∗(π) = λM(J∗)−
λM(J).

4.3 Some new results in the mean-partition

problem

Given vectors a and b in Rp, we say that a weakly submajorizes b, written

a w Âb if
k∑

i=1

a[i] ≥
k∑

i=1

b[i] for k = 1, . . . , p (4.3.1)

It is also well known [17]:

Theorem 4.3.1. Suppose f is Schur convex nondecreasing and a w Âb. Then

f(a) ≥ f(b).

Lemma 4.3.2. Suppose (θ̄π∗1 , ..., θ̄π∗p) is the mean vector of the reverse size-

consecutive partition, π∗, and let (θ̄π1 , ..., θ̄πp) denote the mean vector of an

arbitrary partition π with the shape is equivalent to the shape of π∗. Then

(θ̄π∗1 , ..., θ̄π∗p) w Â(θ̄π1 , ..., θ̄πp).

Proof. It was proved in [5] that reverse size-consecutive is a 2-shape-sortable

property, namely, it suffices to prove Lemma 4.3.2 by assuming p = 2. Define

W to be the set consisting of 1
n1

, n1 of them, and 1
n2

, n2 of them. In the

sum θ̄π1 + θ̄π2 , each θj ∈ π1 contributes
θj

n1
and each θj ∈ π2 contributes

θj

n2
.

Therefore θ̄π1 + θ̄π2 is determined by a ont-to-one mapping between W and

the set of n1 +n2 θ’s. By the Hardy, Littlewood and Polya theorem, the sum

is maximized when the mapping is monotone, larger element in W mapped

to larger θ, which implies the reverse size-consecutive partition achieves the

maximum sum.

Next, we prove that

max{θ̄π∗1 , θ̄π∗2} ≥max{θ̄π1 , θ̄π2}.

42

Without loss of generality, assume n1 ≤ n2. It is trivial that θ̄π∗1 ≥ θ̄π1 .

Let π′2 consist of the n2 largest θ’s. Then clearly,

θ̄π2 ≤ θ̄π′2

and the average of the n1 largest θ’s is larger than the average of the n2

largest θ’s, that means

θ̄π′2 ≤ θ̄π∗1 .

So,

max{θ̄π∗1 , θ̄π∗2} = θ̄π∗1 ≥max{θ̄π1 , θ̄π2}.

Using Theorem 4.3.1 and Lemma 4.3.2, we obtain

Theorem 4.3.3. There exists a reverse size-consecutive optimal partition

for the single-shape mean partition problem.

Corollary 4.3.4. There exists a reverse size-consecutive optimal partition

for the constrained-shape mean partition problem.

Note that for a given shape, the size-consecutive partition is unique. So

for the mean-partition problem with the constrained-shape set Γ, we only

need to compare the f -values of |Γ| partitions, one from each shape in |Γ|.
For bounded-shape partitions, |Γ| is not explicit. It suffices to consider only

those shapes in |Γ| which is not majorized by any other shape in Γ. Further, in

Chapter 3, we bounded the number of these nonmajorized shape by 2p−1(Sec.

3.3).

Although we don’t know how to characterize the constrained-shape mean

partition polytope, we can bound its number of vertices by the sum of the

number of vertices on the single-shape mean-partition polytope for each

shape in Γ. Since there is a one-to-one mapping between the vertices of

the single-shape mean-partition polytope and the vertices of the single-shape

43

sum-partition polytope, and also a one-to-one mapping is well known [18] be-

tween the latter and the set of consecutive partitions, we obtain a bound of

|Γ|p!. This is indeed an upper bound as the following example shows that a

consecutive partition of a shape in Γ is not a vertex of the constrained-shape

polytope.

Example 15. Let Γ = {(1, 3), (2, 2), (3, 1)} n = 4, θi = i for i = 1...4, p = 2.

We give the two points generated by the two consecutive partitions for each

shape:

shape consecutive partitions
(1, 3) (1, 3) (4, 2)
(2, 2) (3

2
, 7

2
) (7

2
, 3

2
)

(3, 1) (3, 1) (2, 4)

Thus the polytope has 4 vertices (1, 3)(4, 2)(3, 1)(2, 4) while the two points

yielded by shape (2, 2) are internal.

Theorem 4.3.5. Suppose f is quasi-convex. Then there exists a consecutive

optimal partition in a set of cardinality at most |Γ|p! for the constrained-shape

mean-partition problem with set Γ.

44

Chapter 5

Conclusion and remarks

In this thesis, we develop the generation function approach to count the

number of bounded-shape partitions, which helps us to estimate the practi-

cability of the brute-force method to find an optimal partition. We extend

the concept of majorizing shape to the concept of nonmajorized shape for

bounded-shape sum-partition problem with Schur convex objective function,

we prove that there exists a nonmajorized shape for which the corresponding

size-consecutive partition is optimal. Moreover, we prove 2p−1 is an upper

bound of nonmajorized shape-types, and develop algorithms to find all non-

majorized shapes(shape-types). In the last chapter, we research the mean-

partition problem. We use the linear transformation approach to character-

ize the single-shape mean-partition polytope and prove that if the objective

function is quasi-convex, then there exist a consecutive optimal partition.

We also give a bound of the cardinality of the candidate set to find optimal

partition for constrained-shape mean-partition case.

We list some topics for future research:

(i) to find a more explicit formula to count the number of bounded-shape

partitions,

(ii) to give the exactly value of f(p),

(iii) prove our
(

p−1
b(p−1)/2c

)
conjecture,

45

(iv) develop the faster algorithm to find all nonmajorized shapes(shape-

types),

(v) characterize the bounded-shape mean-partition polytope.

46

References

[1] S. Anily and A. Federgruen, Structured partition problems, Oper. Res.

39 (1991), 130–149.

[2] R. A. Brualdi, Introductory Combinatorics, 3nd ed., Prentice Hall, 1999,

Chapter 8.

[3] E. R. Barnes, A. J. Hoffman and U. G. Rothblum, Optimal partitions

having disjoint convex and conic hulls, Mathematical Programming : Se-

ries A, 54 (1992) 69-86.

[4] F. H. Chang, H. B. Chen, J. Y. Guo, F. K. Hwang and U. G. Rothblum,

One-dimensional optimal bounded-shape partitions for Schur convex sum

objective functions, to appear.

[5] G. J. Chang, F. L. Chen, L. L. Hwang, F. K. Hwang, S. T. Nuan, U.

G. Rothblum, I-Fan Sun, J. W. Wang, and H. G. Yen, Sortabilities of

partition properties, Journal of Combinatorial Optimization 2 (1999) 413-

427.

[6] F. H. Chang, J. Y. Guo, F. K. Hwang and Y. C. Pan, A generating

function approach to count the number of bounded-shape partitions, to

appear.

[7] F. H. Chang and F. K. Hwang, Supermodularity in mean-partition prob-

lems, Journal of Global Optimization.

47

[8] F. H. Chang, F. K. Hwang and U. G. Rothblum, The mean-partition

problem, preprint.

[9] B. Gao, F. K. Hwang, W. W.-C. Li and U. G. Rothblum, Partition poly-

topes over 1-dimensional points, Math. Program. 85 (1999) 335–362.

[10] F. K. Hwang, M. M. Liao and C. Y. Chen, Supermodularity of various

partition problems, J. Global Optimization 18 (2000) 275–282.

[11] F. K. Hwang, J. S. Lee and U. G. Rothblum, Permutation polytopes

corresponding to strongly supermodular functions, Disc. Appl. Math. 142

(2004) 52–97.

[12] F. K. Hwang, S. Onn and U. G. Rothblum, Representations and char-

acterizations of vertices of bounded-shape partition polytopes, Linear

Algebra and its Applications, 278 (1998) 263-284.

[13] F. K. Hwang, S. Onn and U. G. Rothblum, Explicit solution of partition

problems over a 1-dimensional parameter space, Naval Research Logistics,

47 (2000) 531-540.

[14] F. K. Hwang and U. G. Rothblum, Directional-quasi-convexity, asym-

metric Schur-convexity and optionality of consecutive partitions, Math.

Oper. Res. 21 (1996) 540–554.

[15] F. K. Hwang and U. G. Rothblum, Partition-optimization with Schur-

convex sum objective functions, SIAM J. Disc. Math., to appear.

[16] F. K. Hwang and U. G. Rothblum, Partition: Optimality and clustering,

World Scientific, Singapore, to appear.

[17] A. W. Marshall and I. Olkin, Inequalties, Theory of majorization and

its applications, Academic Press, New York, 1979.

[18] L. S. Shapely, Cores of convex gormes, Intern. J. Game Theory 1 (1971)

11–29.

48

[19] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Mathe-

matische Zeitschrift. 27 (1928) 544-548.

49

