B B R 3B o s LenF iF

An Implementation of Remote Direct Memory Access

FREREBAL+T=F7XHA

BRI RETRB BB PP T

An Implementation of Remote Direct Memory Access

Boro4 Zi,,%\,ﬂijx Student : Chia-Tai Tsai

Ry gE Advisor : Rong-Hong Jan

A Thesis
Submitted to Institute.of Computer and Information Science
College of Electrical Engineering-and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China

PEARYL Sz ERD

B 17 32 3E N2
W 5T Fr i L& BR
MmN OB ETETECES

2N G4 I 2R B

FTiRam 0 s e M Bk 4l 0 A ey B 4E

An Implementation of Remote Direct Memory Access

SREEERKYE - ZRAZEGAFZT -

ORAZRA : Q%Jr'%?ﬂ,
21
ﬁfi%
f’m% %,

\

R
e

TERHER ¢

; %

o {
ST LN
h g REAFZ £ AR+ B

BRE g
M LR X TFHE L@RME

(REBEABITHRARXTHALAXBRHEZIREAR)

ABMEFBMZIAIAHAALBIRERAE(RR) TRHAE R
o 92 25EE — PHBRAALTEMZIAEX -

WX LA AT AR A RGO T
HEHKARE

M AE

AANBEARAZNMAMZ LI HXEX(2HE) URIEEE ~ B
HEARE 4 > ARk > BRI SR UBE - AR A &S
BT XBF LI RXEY > EFRHAIEZ LI HXRBHXEF
MATREABF X REBFEEANBAFEEFAMTZE EHRE B
B~ FTHRKINEP -

THBHENEYBBITLRARKBHERZLHE - RABRMZEITHE
BB EBATHA o RAIRMATAHZ ISR EH - BATRPHE
g@%%ﬁﬁoimﬂ%ﬁ$ﬂﬁzﬁm%*@ﬁ’$Amﬁﬁﬂ

ML BRER 23% 9123501

ﬂ%mﬁtiigawéa € 23 5P

v#RE 134] A Lja

ABRHEFARERE > BFEp 47 AP —HHEPRITN MR =2 — (A5 L3030
F)ZRA: A—OAWMEIREFHRILAAMYHE GHERREFIBARET® -

B ¥ X #® KX %
AL R EHRRAE

(RU{BBARITRAEARXTELRZIRAA)

ABRHMERBMZEXARALBR L TBRE(LR) RNALERA Ei
2 $EEE = FHRFALTFLZIBX -

#
WX LA e E RN RMR I 6 A ey T
‘MR MRE

E(F?]i; O FAR& (Afe#ELEEIRHTER M)

AARAAEFNMAMZ LRI EX(SHB)ATH > RTFTARBAEHL LA eHEH
R P oo (R B R M) o 4R MR - BFR SRR BOARSE ~ AR R B E B
7 A E RAEBABHATRLERAL -
ARXAHEAOBBEHERUMERFHEIAN (KT FHERERFRTFEROMAZ—
FHXRA: CERAXREFHEXAHERFERLOH -

E(Fﬂt O A& (BEwAEBE)

FAARAFZEMAEAMZI LI RXEX(SRHB)FTH R TPHFHELEMIHEERAR
AR BAEEEE ANEGHREN "FREE -ZRAE 2L HEUBKETRE
WARZBE HETHHEREMEAETRAA LI BAALE EMF UMK - E40
A AEEMESEEREERN > AFRMREFR - R FFRTHERTEp -
ARXAAIAANGQEBELEEUAEATHIAN(RFFHEFAMGEKFRATES)OMFZ—
PHXRA: P HAXREFR XA HEAEERLM -

mAE

AANRAEFMAMZ LIRX2X(RE) RTALXBAEREHEBORE LS
MEm Ao n THALE - LRLH4, 2B AENBKETRPHARZE
g BARBALEEMAEHB 6 R A G E FEF R MG - BRI MRE 0 AR

b~ AR BRA S HBEMT XS LI EY EFRHMEZ EIRXRAXEF

:;#};x_};ﬁiﬂﬂ&ﬁit R EAMESEEREEN REFRITR ERE CME - TR
I F e

WXAX LE#HAEBAMZ EERFR
AREB LB LS RS L EBREE W R
I PR 438 | AP

LHEBEATHEATIRARKMEOE - KA BTHA R REBTHRA - RARHMPT
Bz sk EX - BROARALHABRARAHBEM - LEREARR EZIMAE XD FARER
Rl -

MEL D RAEE 3% : 9123501
WEEH ii% (B %)

PERE a\?# A A :f)a

N

B 32 33 A R B EEFAF 2 IUAT

i £

TAE K EERBEOF B RRAF T 5/ 10M bps & & ¥ 100M bps
Rote® 57 10Gbps R EE - PERRELDFF o PRAW B eR
B, @Al T FH A3 R Y QR § 8435 5 S
FHRAFEU § 37 SR] R4 L TR UOR I B H Y o
PR - BATIR D i ed B 4R e i 3 P~ (Remote Direct Memory Access
t RDMA) e g+ 2> RDMA 32 & — 1 ic 9 #- TR € 3288 Tldp Tehre R oyt o
Beth ® 0 REFIR S FRAFUDFES o L% BT 1" RDMA 2 i & @iiste <)
PoX DAt e PE o U5 (G AR e MR R S IR RDMA B g B @ifad

SR TIRET T Kg ARy T E o

An Implementation of Remote Direct
Memory Access

Student : Chia-Tai Tsai Advisor : Dr. Rong-Hong Jan

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

NATIONAL CHIAO TUNG UNIVERSITY

Abstract

With the increase of network bandwidth from 10M to 10G bps, the factors that affect
network system performance have found to be relevant with Network Protocol. In traditional
architecture, the packets are copied among different protocol layers, before they are transmitted.
The data copy consumes many recourses and leads to system inefficiency. However, few
studies concern about increasing system efficiency from this point of view. In this thesis, we
implement a new Network Protocol, called as Remote Direct Memory Access (RDMA), which
can move data packets to a specific memory address. Therefore, the system performance can
be improved. Numerical results show that RDMA can achieve a better performance if the

packet size is large.

Acknowledgements

Special thanks goes to my advisor Dr. Rong-Hong Jan for his guidance and
enduring support in the whole process of this thesis. Thanks also to all persons in

Computer Network Laboratory for their advice and support during these two years.

Finally and most importantly, | wish to thank my family for putting up with me

and supporting me during the ups and downs of writing this thesis.

Contents

Introduction

Related Works

2.1 Zero COpY . « . . o

2.2
2.3
24

3.1
3.2

3.3

3.4

2.1.1

2.1.2

Structure of Zero Copy

Zero Copy Sehieme [8] . 0le. . . L oL

MPA Protocol . = . . ——lslel e e L

DDP Protocol . % . . | o oL

RDMA Protocol .o 50 o o 0

System Architectures

OVErVIEW o o

WC/OSIL © oo

3.2.1
3.2.2

3.3.2

Features [9]
Modification Lo

OVerview o,

IWwIP APL

RDMA Protocol

10
12
15
17

3.4.1 RDMA Operation 36

3.4.2 The flow chart of RDMA 40
3.4.3 RDMA and DDP API 41
Implementation and evaluation 45
4.1 Experimental environment 45
4.2 Evaluation and result L 47
Conclusions 53

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Process of Data Copy. oL 9
Time reduction of data copy by using shared memory. 10
OS illustration of user-kernel shared memory. 12
DDP, MPA, and TCP layering. 13
MPA Framing process. 13
FPDU with Markera 2. . . e, o o o o o oo 14
re-segment with Marker. = =0 e 0s o oL 0oL oL 14
Tagged Message Model, 2t o © 0.o 16
Untagged Message'Model. . . . 0.o 17
RDMA Operations. . L5000 00000 18
Task State. 21
Process of executing the task with the highest priority. 22
Multi-tasking.o 23
DATA TYPES. 24
Interruption and Content Switch. 25
Initialized stack of a task. 26
Initialized source code.o 27
IwIP Protocol Layering., 28

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29

4.1
4.2
4.3

Transformation process of Berkeley socket API. 28

Communication between Application and TCP/IP protocol. 29

APl type 1. o 29
netconn_bind. 30
netconn_listen.o 30
netconn_close. Lo 30
APTtype 2. o 31
netconn_connect. Lo 32
APTtype 3. o 32
netconn_send. 33
netconn_write. L. Lo 33
APl typed. . . . a5 . e, 34
netconn_accept. = . .o EEL s U L L L L L 35
netconn_recv. L. . bl L T 36
The procedure of server. L 37
The procedure of client.” """ %", 38
RDMA Write Operation. 39
RDMA Read Operation. 39
Flow chart of RDMA Write. 40
Flow chart of RDMA Read. 41
Protocol Layering. oo 42
Experimental environment.o 46

Ticks taken in transmitting different packet sizes in TCP/IP. . . . 47

Ticks taken in transmitting different packet sizes in RDMA protocol. 48

4.4

4.5

4.6

4.7

Result of transmitting 1,400KB data packet in TCP/IP and RDMA
protocol. 49
Result of transmitting 500KB data packet in TCP/IP and RDMA
protocol. 50
Result of transmitting 50KB data packet in TCP/IP and RDMA
protocol. 51

Conclusive Results. 52

Chapter 1

Introduction

With the development of network bandwidth, the bandwidth has increased
from 10M bps to 100M bps in these years. Up to now, the bandwidth could
reach 10G bps in network hardware. However, studies have pointed out that the
main factor having bandwidth of data souree between data sink is no longer from
the network hardware. By this point.of «view, I would address this issue from
network protocol perspective. When the datassource transfers data packets, data
sink would consume the greatest resource in data copying because when processing
data packets, the system would copy a temporary data in each network protocol
layer. This process would reduce system efficiency and waste system sources,
which both lead to transfer inefficiency. The transfer efficiency can improved by
implementing the following ideas: (1) copy-avoidance [1] [2] and (2) Marker PDU
Aligned (MPA) [3] and Direct Data Placement (DDP) [4].

In Linux, for instance, to increase system efficiency, zero copy [1] [2] is taken
to avoid data copy in transferring data packets. Many studies have pointed out
that by doing so, system efficiency could increase extra forty to eighty percent [5],
compared with those with data copy processes. Therefore, in this light, to avoid

sources consuming process caused by data copying, copy avoidance might be a

solution.

The second approach, is to apply MPA and DDP protocol to process data
packets. This approach can increase network bandwidth and reduce the time
in processing data packets. Consider that a network used TCP as its transport
protocol. If some data packets lose in transmitting process, TCP will re-transmit
data packets and reassemble data packets in order. If we use MPA Protocol,
even though the data packets are out of order, the data packets will be quickly
transmit to Upper Layer Protocol (ULP). Then, DDP Protocol will directly move
the content of data packets to assigned memory address. Therefore, by combining
these two processes, system efficiency can be increased.

In this thesis, we investigate the following problems: (1)what are possible so-
lutions for increasing network’bandwidth?:(2)Does copy avoidance, which reduced
data copy, increase system-efficiency?:(3)Does the combination of MPA and DDP
reduce the time in transferring network packets?

This thesis is organized into five chapters. The first chapter is to introduce
basic background for understanding the relevant concepts; Chapter 2 to introduces
concepts about Copy Avoidance, DDP Protocol, and MPA Protocol; Chapter 3
introduces uC/OS-11, IwIP [6] and RDMA [7]; The implementation and its evalua-
tion are given in Chapter 4; finally, Chapter 5 gives conclusion and possible future

thesis.

Chapter 2
Related Works

To provide a background for understanding how this thesis constructed, a re-
view of relevant works about Zero copy, DDP Protocol, MPA Protocol and RDMA

Protocol is given in this chapter.

2.1 Zero Copy

The overhead, produeced in-processing data copy and checksum, was the main
cause for bandwidth reductionand systeminefficiency. Some studies have shown
that the f Zero copy can reduce the number of times in copying data. In general,
Data copy would happen once in single-copy process when the application requests
to read data from transport layer. Statistically, single-copy process would reduce
60% overhead in this process. However, Zero-Copy is the shared memory mixed
with application or kernel or NIC interface. When the application is going to
transmit data, all it needs to do is to store the data in shared memory. Therefore,
the system could retrieve the data from it without the process of data copy. System
efficiency would increase greatly. Figure 2.1 shows data copy occurs in transmitting
data in a network.

Note that in Figure 2.1, whether the data is transmitted from NIC interface to

Move data from application
to system buffer

A

Move data from application
to system buffer

TCP/IP Protocol

A

TCP/IP Protocol

Compare Checks

\ 4

Compare Checks

Network Driver

A

A

Network Driver

Transmit packet to

network interface

A

Transmit packet to

network interface

Figure 2.1:/Pr6cess of Data Copy.

Kernel Driver, or from Driver to TCP/IP layer, or from Application to TCP/IP,

data copy happened. Oncedata‘¢copy happens, the process causes inefficiency and

resources waste.

2.1.1 Structure of Zero Copy

To increase system efficiency, the number of times of data copy should be
reduced. This reduction could be done by shared memory. As we see from Fig-
ure 2.2, instead of copying the data, all involved processes will refer to the same

memory address in transmitting information. Thus, the number of data copy is

reduced.

application

user space

kernel space

communication

file system S system

Figure 2.2: Time reduction of data copy by using shared memory.

2.1.2 Zero Copy Scheme [8]

ab L L
&

In [8], it present four methg s to 1mplememﬁthe Zero Copy scheme as follow.

When we use user accQSSIbie-rrpb\?rfa:ce memory, user or kernel should be able

to access to the memory in N _Q mterface User or kernel must readdress the

un‘ au i L

memory space in order to be later used. Some requirements are necessary.

(a) This method has to have hardware support and modified software.

(b) In sink node, network hardware must know about which process that the
data packets belong to. This is for correctly transmit the data packets

to memory address it belongs to.

(¢) Because we readdress memory space, other memory managements to

manage the memory space must be taken.

(d) Due to the limited memory space in NIC interface, it is possible to

encounter problems about inadequate resource in running.

10

2. Kernel-network shared memory

(a) It refers to OS kernel management of memory space of NIC interface
Also, it refers to utilize DMA or PIO(Program I/0) to move data from

Application buffer to NIC interface.

(b) Application does not need to change software if we take the method

suggested above.
(c) As for OS kernel, due to the limited memory space in NIC interface, we
should be particularly careful with the memory space management.
3. User-kernel shared memory (see Figure 2.3)
(a) Some new APIs arg,ereated between user and kernel in order to read-
dress memory space.
(b) To utilize DMA to move information between shared memory and NIC.

(¢) The NIC hardware must be able'to receive the incoming data, which

will be move to the correct memory address by DMA.

4. User-kernel page remapping + COW (copy-on-write)

(a) The system will modify the content of system MMU (Memory Man-
agement Unit) in order to remap the buffer page. This modification is
needed for two reasons: when we have to quickly switch the memory

space and transmit data without data copy.

(b) After doing so, socket and VM system do not need to make any modi-

fication.

11

Process
A Process B

User
Process

Kernel

Bufs Manager

memory Disk
L Pool A Pool B)
-~

PAR4 N
/ File
1/0 subSystem

Figure 2.3: OS illustration of user-kernel shared memory.

(c) Every buffer differs in-size, which is required to be the same with page

size. In other words, the size of the"buffer corresponds to a page.

(d) Application must avoid reusing the same buffer too quickly.

Based on the above ideas, data copy times could be decreased to increase
system efficiency. Therefore, the goal of creating a wider bandwidth could be

reached.

2.2 MPA Protocol

MPA, an extra layer out of protocol, exists above TCP and under DDP. The
layer of protocol is ahown in Figure 2.4. The main feature of MPA is pointing out
how many octets between Marker and Framing Protocol Data Unit (FPDU).

In transmitting information in TCP, byte streaming is always the only way.

Yet, packets could be simply received one by one without being able to know where

12

ULP
< € ULP v ge:
DDP
{ < ULPUDs
MPA
>~ < € FPDUs (containing ULPDUs)
TCP*
> < <€ TCP Segments (containing FPDUs)
Transport
* TCP or MPA-aware TCP

Figure 2.4: DDP, MPA, and TCP layering.

the FPDU is in byte streaming. Its position in byte streaming must be known by
reassembling the packets throughs (FOP_Protocol. Subsequently, DDP could get
the information after FPDU reassémible:

Marker is defined for the purpese of implementing MPA Protocol. In the
process of transmitting PRU. to:MPAlayer by DDP, MPA needs to add marker in
received PDU between each 512-octet interval. As long as sink node receives seg-
ment, it would define the position stored in FPDU on the basis of the information

that marker has stored, as Figure 2.5 shows.

\

[ULP Message]
/ A} \
/ ya! I\ \
/ yau I\ \
/ /| oA \
/ / | | \ \
/ / | | \ \
/ / X \ \
ULPDU] (> ULPDU (o0 | ULPDU
7 |
/ / I \ \ \
/ / | \ \ \
/ / | \ \ \
|

/ |
[

)) CEED

Figure 2.5: MPA Framing process.

13

With a support of TCP to MPA, as long as TCP receives segment in MPA
format, it would quickly transmit FPDUs to MPA. MPA would recognize which
FPDU the received information belongs to from the Marker. Even though the
packet would pass through the re-segment, the recognition would still succeed as

shown in Figure 2.6 and 2.7.

— 800 —_—
T|m|o m c
400 > - 800 —
T|m|D m m c
512 —_— 512 — 176 —

FPDUPTR = 400

SeqNum =113 Marker SeqNum = 513
(113+400)
FPDUPTR = 112 FPDUPTR = 624
SeqNum = 913 Marker SeqNum = 1025 Marker SeqNum = 1537
(113+400+512) (113+440045122)
Figure 2.6: FPDU with Marker.
— 600 —_—
T|m]|o m
< 400 600 —
M D m
— D 400 —
T m c
FPDUPTR = 400
SeqNum =113 Marker SeqNum = 513
512 176 —

(113+400)

FPDUPTR = 112
SeqNum =713 Marker SeqNum = 1025
(113+4004512)

FPDUPTR = 624
SeqNum = 1313 Marker SeqNum = 1537
(113+4004512°2)

Figure 2.7: re-segment with Marker.

14

Therefore, as we see, MPA Protocol provides framing mechanism in TCP
for DDP. Utilizing the mechanism provided by MPA, we could know what FPDU
every received packet belongs to in byte streaming process. In this way, the re-
ceived content in every packet could be quickly transmitted to DDP. Finally, DDP
would write in the correct memory address without waiting for TCP reassembles
or retransmits. Therefore, transmit time could be reduced and bandwidth would

sequentially increase.

2.3 DDP Protocol

DDP takes care of moving the information to a designated memory ad-
dress without system processing. Therefore, DDP would increase system efficiency.
To understand how DDP werks, a_brief introduction is fiven in the following:

DDP refers to a mechanism placing: information to a correct memory address
without involve ULP process. A 'STag, asignal defined as to represent memory ad-
dress in DDP Protocol, would.communicate and register between sink and source
nodes before transmitting information. Therefore, when data packets are trans-
mitted, the STag would be included in data packets. DDP Protocol defines a STag
used for signaling a memory address. Before transmitting data, sink node will
register a STag to source node after their communication between each other. As
long as the data is transmitting, STag will be embedded in data packet. When
source node starts to transmit data, it would segment the message first and embed
the STag in a data packet. Then the data packet would be transmitted to sink
node as a result. When the data packet is arrived at sink node, sink node is able
to get a STag. Sink node will know what the memory address is according to the

received STag. Even though the data are out of order, sink node is still able to

15

move the data to the correct memory address by DDP Protocol.

In general, DDP supports two transmit the following models:

1. Tagged Buffer data transfer model see Figure 2.8:

As ULP registers a memory address for source node to use, DDP would give
ULP a the-only-one code name, called STag, to mark the memory address
for the received information.

In the process of transmitting information from source node to sink node by
utilizing STag and Tagged Offset, the correct buffer could be found by STag.
Then the correct address of received information in buffer could be known
by Tagged Offset. Therefore, Random-Access is an essential feature of DDP.
ULP buffer needs to registeryonly once and then gets a STag. DDsP could
reuse the STag having beingregistered.

Data Source Data Sink

Queue T0
Element
CRC | | STag
Table

Send
Queue STag

Figure 2.8: Tagged Message Model.

2. Untagged Buffer data transfer model see Figure 2.9:
Information of this sort can be transferred directly without ULP registration.
The sink node has to manage buffers for Untagged Message storage. When
there is an Untagged Message arriving at sink node, one buffer is required
to receive one untagged. A buffer could not be used for storing another
Untagged Message unless the buffer has been declared deleted.

Untagged Message, different from Tagged Message, is a model for sink node

16

and source node to communicate with control message or error message.

MO

Data Source Data Sink
Buffer Queue Queue b Buffer
' Element Element
= | | | m
\ 4 \ 4
Send Recv
Queue Queue

QN, MSN

Figure 2.9: Untagged Message Model.

2.4 RDMA Protocol

Based on the functions provided by DDP, RDMA contributes to nearly com-
plete Protocol functions. Instead of having simply one-way function of Write of
DDP, RDMA, utilizes features of Untagged and Tagged Message, has achieved
two-way transmit function. Details of features of RDMA Protocol are illustrated
as follows.

RDMA improves disadvantages of DPDP, such as improving one-way transmit
to two-way transmit. Types of operations provided by RDMA would be discussed

below and illustrated in Figure 2.10:

1. Send Operation Type
Source node will directly transmit an untagged message to sink node. Before
this transmitting data, there is no need registering a STag between these two

node

2. RDMA Write
Before source node transmits data to sink node, two nodes must exchange

STag. The STag, provided by sink node, will be transmitted to source node

17

before transferring data. RDMA write process is identical with the process

of how system deals with DDP Tagged message.

. RDMA Read
Sink node will register a STag. This STag will be accompanied with the re-
quest of send operation and subsequently sent to source node. When source
node receives the request, it would write the data into memory address the
STag represents in sink node. This is done by utilizing RDMA write oper-
ation. Therefore, UDMA read is an operation built by Send Operation and
RDMA Write Operation.

Send Operation
Queue
Buffer Element

RDMA Write

A

Queue

Buffer
Element

Buffer

Q
:

Queue

Element

RDMA Read

STag

Buffer <€

Table

Figure 2.10: RDMA Operations.

18

Chapter 3

System Architectures

In this chapter, we will show how RDMA system works, and elements com-
posing of the whole RDMA system architecture, such as OS, the portability of
TCP/IP RDMA Protocol in details.

3.1 Overview

Our prototype of RDMA system is created on a development platform, which
is the core of MIPS and has16.MB ROM te be used. Also, on the platform, there
is an Ethernet, which could be used to transmit data packets.

In addition, we port uC/OS-II to the platform having been mentioned ear-
lier. uC/OS-II has multitasking and priority mechanism, which both altogether
contribute to execute the task with higher priority. We create our RDMA system
on the basis of these features of uC/OS-II. However, uC/OS-II does not support
TCP/IP protocol, light weight IP (IwIP) is selected and ported to uC/OS-II.

Our analysis of the increased system efficiency would base on the result of

implementing RDMA protocol to uC/OS-II platform.

19

3.2 uC/OS-II

Now, we turn to introduce uC/OS-1I, which are relevant to our implementa-

tion environment.

3.2.1 Features [9]

The uC/OS-I1 is a real-time kernel OS. It has the following features:

1. Source Code
uC/OS-1I1 is a free open source, which allows arbitrary modifications. There-

fore, the programming code is easy to read.

2. Portable
ANSIC is utilized to ereate uC/OS=H programming code. Therefore, the
programming code would not be incompatible.
The assembly language is taken to make complete of the part of micro-
processor in general. “Theoretically, if*we modify assembly code, uC/OS-II
will be easily ported to other different kinds of processors. Therefore, uC/OS-

IT is able to operate on 8/16/32 bits micro-processor or micro controller.

3. ROMable
As long as having suitable tools, such as C compilerBassembler linker and

locator, uC/OS-II will become a part of the product.

4. Scalable
We could choose programming code we need on the basis of the features the
product posses. Subsequently, we shrink programming code confirming to

our needs as to put the programming code into ROM/RAM.

20

5. Preemptive
There is a priority in each task. uC/OS-II will execute the READY and task

with the highest priority, as shown in Figure 3.1 and Figure 3.2.

TASK TASK
DORMANT READY

Figure 3.1:-Task State.

6. Multi-tasking(see Figure 3.3)
uC/OS-II, in supporting multi-tasking, could maximally provide 64 tasks.

Out of these 64 tasks, 8 of them would be reserved for the system.

7. Task Stack
Because uC/OS-I1I allows different stack size for each task, the stack size could

be decreased based on needs. Therefore, the efficacy would be maximized in

RAM.

8. Services

21

LOW Priority

Task .
(1) @ ISR
HIGH Priority
4
- (4 o _ Task
@ Time
ISR makes the high (5)
priority task ready
<
(6)

)

Figure 3.2: Process-of executing the task with the highest priority.

uC/OS-1I supports various services; such as Mailbox, Queues, Semaphores,

Fixed-sized memory partitions, Time related function and so forth.

9. Interrupt Management
Interrupt could interrupt any task in process. There are 255 different level

interrupts defined in uC/OS-I1.

3.2.2 Modification

As long as we have a corresponding C Compiler, we could port uC/OS-II
to specific a processor. Most porting is carried out in the content switching in
multi-tasking. Saving and restoring value of register exemplify content switching

process, which is completed by utilizing assembly langauge. To do content switch-

22

TASK #1 TASK #2 TASK #n

tack
Stack Stack Sta

Task Control Block

Task Control Block Task Control Block

Figure; 3:3: Multi-tasking.

ing for each processor, files need modifying are OS_CPU.H, OS_CPU_C.C, and
OS_CPU_A.S.

The following is to explain‘what:modifications are required for these files:

1. OS.CPU.H

(a) Definition of DATA TYPE (see Figure 3.4)
Data Type is relevant with what compiler being used because different

compilers would take different amounts of bytes to represent an identical

DATA TYPE. Take Integer as an example:
MS(VC++): 2 bytes
GNU(gcc): 4 bytes

(b) Stack Entry

The definition for the growing direction and length of the stack in a

23

/’*

* DATA TYFPES

* {Compiler Specific)

*/

typedef unsigned char BOOLEAIN,

typedef unsigned char IINT8U, /* Unsigned 8 bit quantity */
typedef signed char INTBS; /* Signed 8 bit quantity *f
typedef unsigned int INT161; /¥ Unsigned 16 bit quantity *f
typedef signed int INT16S, /¥ Signed 16 bit quantity */
typedef unsigned long IINT32U, /¥ Unsigned 32 bit quantity */
typedef signed long INT32S, /* Signed 32 bit quantity ®f
typedef float FP3z, /* Single precision floating point *f
typedef double FPi4, /* Double precision floating point */
typedef unsigned int OS_STE, /* Each stack entry is 16-bit wide ®f

Figure 3.4: DATA TYPES.

task must be identical with the register of CPU.
(c) Definition of stack growing direction
The growing direction of stack is.from low memory address to high, or
vice versa.
(d) Interruption and Content Switch (see Figure 3.5)
When running task.is interrupted or content switch occurs, uC/OS-II

must define which stack memory address in a stack that the register

should be moved to.

2. OS_CPU_C.C (see Figure 3.6 and Figure 3.7)
In the initialized stack of a task, uC/OS-II will define each stack address,

which is used to save register value.

3. OS_.CPU_A.S
Some relevant CPU behaviors are defined in OS_.CPU_A.S. We now turn to

explain these behaviors in the following part.

(a) OSStartHighRdy()

24

#define OS5_CRITICAL_METHCD 1

#if OS_CRITICAL_METHOD ==1

#Hdefine OS_ENTER_CRITICAL{) asm ("CLI'™, /% Disable intermipts | *f
#define OS_EXIT_CRITICAL{) asm ('STIM; /* Enable internipts *f
Hendif

#it OS5_CRITICAL METHCOD == 2

#define ©S_ENTER _CRITICAL{) asm ("PUSHF"), asm("CLI"); /* Disable internipts *
Hdefine OS_EXIT_CRITICAL{) asm ('POPF™Y /* Enable intermipts *f
#Hendif

#if OS_CRITICAL METHOD ==

#define OS_ENTER_CRITICAL() (cpu_st = OSCPUSaveSR(Y) /* Disable intermipts */
#Hdefine OS_EXIT_CRITICAL{) (OSCPURestoreSE(cpu_st)) /* Enable intermipts *f
#Hendif

¥

* Intel 80286 (Real-Mode, Large Model) Miscellaneous

*f

Hdefine OS STHE GROWITH 1 /* Stack grows from HIGH to LOW memory on B0xB6 */
#define uCOS 0x80 /* Intermipt vector # used for context switch */

Hdefine OS_TASKE,_SW() asm('INT #80H" /% Was originally "int uCOS" */

Figure 3.5: Interruption and Content Switch.

When the OSStart() is running; OSStartHighRdy() is in charge of get-

ting SP out of control:block with the highest priority task, in TCB.

(b) OSCtxSw()
OSCtxSw() will save the previous register to its task stack and then get
the SP from another task with the highest priority from OSStartHigh-
Rdy(). Then OSCtxSw() will restores the value of register at CPU and

keeps this task running.

(c) OSIntCtxSw() It defines the behaviors of the interrupted level of content

switch.s

25

HIGH AX

CX

DX

BX

SP
BP

SI

DI

ES

LOW DS

Figure 3.6: Initialized stack of a task.

3.3 1wlIP

3.3.1 Overview

LwIP, a sort of TCP/IP, is atilized in_embedded system. It reserves functions
of TCP/IP and reduces the use amount of RAM. For instance, only 10 K RAM
and 40K ROM will be consumed in the process. Based on these two features,
even though resource is limited, better system efficiency could be maintained. In
addition, because of its easy portability feature, we would also port it to uC/OS-II.

The position of IwIP in protocol layering is shown in figure 3.8.

3.3.2 IwIP API

1. It supports Berkeley socket API
IwIP supports the Berkeley socket API utilized by general network program-

ming. It would transform Berkeley socket API into the API that is designed

26

OS_STK *OSTaskStkInit (void (*task)(void *pd), void *pdata, OS_STEK *ptos, IINT16U opt)

TINT161T *stk;

opt = opt; /¥ 'opt' is not used, prevent warning *f

stk = (INT16U *)ptos, /* Load stack pointer *f

stk-- = (INT16UFP_SEG(pdata); / Simulate call to function with argument *f
*stk— = (INT16U)FP_OFF(pdata);

*stk— = (INT16U)FP_SEG(task),

*stk = (INT16U)FP_OFF (task);

stk-- = (INT16170x0202, / SV = Intermipts enabled *f
stk-- = (INT16IFP_SEG(task), / Put pointer to task on top of stack *f
*stk- = (INT16UYFP_OFF(task),

*stk- = (INT160xAAAA, fF AT = IxAAAA *f
*sth— = (INT1611)0xCCCC; S CH = 0xCCCC *f
*sth— = (INT160zDD DD, /DX =0xDDDD *f
sth— = (INT'161)0xBEBE; / BX = 0xBBBB *f
stk—— = (IN'T16U)0x0000, / SP = 00000 *

*stk-- = (INT16100x1111, f*BE = 0x1111 *f

*stk-- = (INT161002222, 81 = 0x2222 */

stk-- = (INT1617)0x3333, f DI = 023333 *f

*stk-- = (INT1617)0x 4444, f*ES = Oxd444 *f

stk = _DS; [DS = Current value of DS *f

return ((O5_STK *)stk),

Figure 3.7: Thitialized-source code.

in IwIP. This transformation feature contributes to a significant compatibility

for a developed program, as Figure 3:9 shows.

Communication between Application and TCP /IP protocol

In IwIP, the work of data receiving or transferring is taken by two different
tasks. These two tasks utilize the mailbox provided by uC/OS-1II to commu-
nicate or transmit data between applications. Each mailbox is responsible for
different jobs. For example, application could receive internet data packets
from recvbox. Therefore, the exchange of information between the two tasks
the application could be done by different mailboxes. Figure 3.10 clearly il-
lustrates how communication is achieved between the TCP/IP Protocol and

application by mailboxes.

27

ULP

IwlP Protocol

uC/0s-li

Embedded System

Figure 3.8: IwIP Protocol Layering.

Figure 3.9: TransMss of Berkeley socket API.

3. API types
There are four types of API provided by IwIP. The following part is going to

introduce these four in details.

(a) TYPE 1: BIND, LISTEN, CLOSE
Type 1, illustrated in Figure 3.11, includes three types of operations,
namely, BIND, LISTEN, CLOSE. We are now to explain them respec-

tively as follow. First is about BIND method:

i. Whenever ULP is going to bind, listen, or close, it would post

28

mbox

Figure 3.10

@

: Communication between Application and TCP/IP protocol.

msg ->type
* API_MSG_BIND
* API_MSG_LISTEN @

" mbox L

@

ii.

iii.

iv.

a request to. 'gure 3.11. Task 2, the task being

responsible for {ransmiittis g data, will keep detecting whether there
is any request in the mbox. At the meanwhile, the application will

wait for the response from task 2.

As long as there is a request found in mbox, task 2 will discriminate
the request type and call the function responsible for this type of
request. However, the request in every mbox could be different,
such as examples in Figure 3.12, 3.13, and 3.14.

Task 2 will immediately remit a response, whether successful or

failure, to mbox.

While Application task receives the reply from mbox, it would know

29

whether the request is successful or not.

API_MSG_BIND

api_msg_post sys_mbox_fetch

sys_mbox_fetch sys_mbox_post

tcp_bind

Figure 3.12: netconn_bind.

Figure 3.12 shows that when the application operates a bind, it would
send an API_MSG_BIND to mbox. Bind will call tcp_bind function,
which would build a relationship between application and the port.

Hence, lwIP would know which application the incoming data belong

to from the port.

,i‘mﬂ‘u,
APl_MSG_LISTEN

api_msg_post sys_mbox_fetch

sys_mbox_fetch sys_mbox_post

pcb->accpet = accept_function

Basically, the second method, called Listen, and third method, called
close, follows the similar procedures (i) to (iv) above. Yet, there are still
some slight differences between them: Listen would call accept_funciton
and then accept connection. Close would call tcp_close and releases the

occupied resource.

API_MSG_CLOSE

api_msg_post sys_mbox_fetch

sys_mbox_fetch sys_mbox_post

tcp_close

Figure 3.14: netconn_close.

30

(b) TYPE 2: CONNECT

Type 2 is the type of operation called CONNECT, illustrated in Figure

3.15 and Figure 3.16 below.

1.

ii.

iii.

iv.

When application is going to connect to another node, ULP wil
post a request to mbox. Task 2, the task being responsible for
transmitting data, will keep detecting whether there is any request
in the mbox.

As long as there is a request found in mbox, task 2 will discriminate
the request type and call the function responsible for this type of
request. If the request type is discriminated as connect, task 2 will

send a SYN packe 0 another node.

When task 35 ‘tesponsible for receiving data, receives

the acknow eme of SY N it will post the reply to mbox to

After Application task re ceives the reply, it would know whether

the connection is successful or not accordingly.

msg ->type
* API_MSG_CONNECT

@

Figure 3.15: API type 2.

When ULP signals connect request, the connect request will transmit

31

sys_mbox_fetch

pcb->connected = do_connected
pcb->state = SYN_SENT
tcp_enqueue ()

tcp_output ()

sys_mbox_fetch

tcp_input () , tcp_process ()
switch case: SYNSENT
pcb->connected

sys_mbox_post

Figure 3.16: netconn_connect.

data packet to another node by do_connect. Application, at the mean-

illustrated as Figure 3.17.

msg ->type
* API_MSG_SEND
* API_MSG_WRITE

O @

@ ®

udp_output
or
tcp_write

Figure 3.17: API type 3.

i. When ULP is going to send or receive packets, ULP will post a

32

request to mbox. Task 2, the task being responsible for transmitting

data, will keep detecting whether there is any request in the mbox.

ii. As long as there is a request found in mbox, task 2 will discriminate

the request type and call the function responsible for this type of

request.

iii. Task 2 will immediately remit a response, whether successful or

failure, to mbox.

iv. While Application task receives the reply from mbox, it would know

whether the request is successful or not.

Examples are illustrated as Figure 3.18 and 3.19.

APl_MSG_SEND

api_msg_post

sys_mbox_fetch

e

Whenever there is a l P

mbox

sys_mbox_fetch

sys_mbox_post

udp_output

data to be sent, application will post the data

and API_MSG_SEND to mbox. When there is a request in mbox found

by task 2, it would call do_send and transmit the data to another node

by udp_output.

api_msg_post

sys_mbox_fetch

API_MSG_WRITE

mbox

sys_mbox_fetch

sys_mbox_post

tcp_enqueue
tcp_output

Figure 3.19: netconn_write.

Whenever there is a UDP data to be sent, application will post the

33

data and API_.MSG_WRITE to mbox. When there is a request in mbox
found by task 2, it would call do_write and transmit the data to another
node by tcp_output. However, before tcp_output transmits data, task 2
would call tcp_enqueue to make sure of TCP reliable mechanism. The

packet in queue will be removed only when the data is correctly received.

TYPE 4: ACCEPT, RECV
Type 4 includes two operations. They are ACCEPT and RECV, illus-

trated as Figure 3.20.

@ acceptmbox @

TASK 1 or ‘ TASK 3

recvmbox

v

! TS TSI T T T T T T T TSI TSI TSI TSI TSI TSI T I T E T T T AT ~

1 : ’ \

b

I msg ->type

1 1

1 1

1 1

i
|
1 *
® r APIMSG RECV (3

| ST ==F=-F . [T mmm====- >
2 R O

__

Figure 3.20: API type 4.

i. When task 3 receives data, it would what application the received
data packet belongs to according to the PCB. It would also post

the data packet to acceptbox or recvbox.

ii. When there is any data packet found in acceptbox or recvbox, ap-
plication would get the content in the data packet back. Because
of TCP reliable mechanism, the application will transmit an ACK

to source node to inform the success of sending data.

34

iii. When ULP is going to send ACK message, ULP will post a request
to mbox. Task 2, the task being responsible for transmitting data,
will keep detecting whether there is any request in the mbox.

iv. Aslong as there is a request found in mbox, task 2 will discriminate
the request type and call the function responsible for this type of

request.

v. Task 2 will immediately remit a response, whether successful or

failure, to mbox.

vi. While Application task receives the reply from mbox, it would know

whether the request is successful or not.
Examples are illustrated as'Figure 3.21 and 3.22.

in tcp_process
pcb ->accept

sys_mbox_fetch sys_mbox_post .
netconn_accept acceptmbox accept_function

Figure 3.21: netconn_accept.

The accept_funtion will receive accepted reply and it will post the reply
to accept box. When application receives the reply from the box, it

would know that another node has accepted the connection.

After the application receives a data packet, it would send out an ACK

to source node.

4. Example

35

in tcp_input ()
pcb->recv

sys_mbox_fetch sys_mbox_post
recvmbox

AP|_MSG_RECVY
> mbox

api_msg_post sys_mbox_fetch

sys_mbox_fetch sys_mbox_post

Let the stack know that
we have taken the data

Figure 3.22: netconn_recv.

3.4 RDMA Protocol

We are now to introduc
3.4.1 RDMA Operati
Two RDMA operations, redd

1. RDMA Write Operation
The sequence RDMA write operation is (see Figure 3.25):
(a) Application sink informs Application Source not only that it is ready
to write but also the length of data.

(b) Application Source informs RDMA the memory address for later writ-

ing.
(¢) RDMA Engine informs STag, representing the known memory address,

to Application Source.

36

Server

| netconn_new |

| netconn_bind |1—'>[mbox]1-—>| do_bind |

Inetconn_listen |‘—*[mbox]*—Fl do_listen |

hetconn accept |H+cemmbox 'ﬁ ccept function

netconn_recv do_recv
— mbox —

| netconn_write |1—'>[mbox]1-—P| do_write |

|netconn_close |1—'>[mbox]1-—P| do_close |

TASK 1 TASK 2 TASK 3

Figure 3.23: 'Fhe procedure of server.
Application Source inferms-Application Sink the STag, which will be
subsequently used'in-transmitting data.

Application Sink informs RDMA Engine the STag and files to be trans-

mitted.

While transmitting data, RDMA Engine will include STag in the data

packets being transmitting.

Application Source utilizes RDMA Protocol to transmit the data to

Application Sink.

Application Sink RDMA Engine would directly write the data into the

memory address known from the STag from the received data packets.

Application Source will wait for the completion of data transmitting

37

Client

| netconn_new

| netconn bind

k_

»{ mbox = do_bind |

/VI do_connect |

rletconn connect |‘—

-b[mbox]:

I netconn_recv

]

\

ecvmbox

do_recv

| netconn_write

|‘_

*[mbox]1-

—Pl do write |

| netconn_close

I‘_

-D[mbox]1-

—Pl do_close |

TASK 1

TASK 2

process.

Figure 3.24: The procedure of client.

recv_tc

TASK 3

2. RDMA Read Operation

The sequence RDMA read operation is (see Figure 3.26):

(a) Application Sink informs RDMA Engine the memory address of the

data to be received.

(b) RDMA Engine replies a STag to Application Sink.

(c) Application Sink transmits the STag to Application Source for subse-

quent data transmitting. It would also inform Application Source for

its readiness of file transmitting.

(d) Application Source will inform the STag and files to be transmitted to

38

(d)

(b)) @ (e)

RDMA RDMA
Engine Engine

(9

Figure 3.25: RDMA Write Operation.

T T

(h) (a) (b)

RDMA RDMA !
(e)
Engme Engme

Figure 3.26:"RDMA Read Operation.

RDMA Engine.

(e) While transmitting data, RDMA Engine will include STag in the data

packets being transmitting.

(f) Application Source utilizes RDMA Protocol to transmit the data to

Application Sink.

(g) Application Sink RDMA Engine would directly write the data into the

memory address known from the STag from the received data packets

(h) Application Sink will wait for the completion of data transmitting pro-

Cess.

39

3.4.2 The flow chart of RDMA

In this section, we introduce the details for RDMA processes.

1. RDMA Write (See Figure 3.27)

(2) Post Address.

(1) write res:

(8) Read Data

(3) register °
(4) Pend Address. (6)Stag, Por'r’_’/
(5) STag

Data

(7) listen

(9) write

(10) direct placement

Dest.

Figure 3.27: Flow chart off RDMA Write.

(1) Source node sends.a’write resq” miessage to sink node.

(2), (3), and (4) Sink node posts a memory address to RDMA task and

registers a STag.

(5) RDMA informs a STag to sink node.

(6) Sink node sends a STag and a port number to source node.
(7) RDMA task will wait for connect.

(8), (9) Source node will connect to the RDMA task and write data to sink

node.

(10) RDMA task would directly write the data into the memory address from

STag from the received data packets.

40

2. RDMA Read (see Figure 3.28)

(1) Post Address.

(5) Stag, P
(2) register /

(4) STag

(7) Read Data

(3) Pend Address.

(6) listen pate

(9) direct placement

Dest.

Figure 3.28: Flow chart of RDMA Read.

In (1), (2), and (3), sink node posts @ memory address to RDMA task and

registers a STag.
(4) RDMA informs a STag to sinmknode.
(5) Sink node sends a STagiand & port number to source node.

(6) RDMA task will wait for connect.

(7), (8) Source node will connect to the RDMA task and write data to sink

node.

(9) RDMA task would directly write the data into the memory address from

STag from the received data packets.

3.4.3 RDMA and DDP API

In this section, provide the APIs with relevance to DDP and RDMA. Ac-

cording to the definition of spec., RDMA is constructed on the basis of DDP.

41

Theoretically, as long as we complete the API of DDP, RDMA API could be com-
pleted with minor modifications. Therefore, ULP could either transmit data by

RDMA or DDP protocol or by Transport layer(TCP/IP) as shown in Figure 3.29g.

ULP (Upper Layer Protocol)

RDMA

DDP

Transport

Figure 3.29: Protocol Layering.

1. DDP APIs

(a) ddp_send(socket. t;s, messagé-t m)

Send an untagged niessage:

(b) ddp_send_ddp(socket tis;message t m, ddp_addr_t d, ddp_notify_t n)

Send a tagged message to remote buffer address d.

(¢) ddp_post_recv(socket_t s, bdesc_t b)
Post a registered buffer to accept a single received untagged message.
Each buffer is returned to the caller in a ddp_recv() untagged message
reception indication, in the order in which it was posted. The same
buffer may be enabled on multiple sockets, receipt of an untagged mes-
sage into the buffer from any of these sockets unposts the buffer from

all sockets.

(d) ddp_recv(socket_t s)

42

Get the next received untagged message, tagged message reception in-

dication, or tagged message error.

(e) ddp_register(socket_t s, ddp_buffer_t b)
Register a buffer for DDP on a socket. The same buffer may be regis-
tered multiple times on the same or different sockets. The same buffer
registered on different sockets may result in a common registration.
Different buffers may also refer to portions of the same underlying ad-

dressable object (buffer aliasing).

(f) ddp_deregister(bhand_t bh)

Remove a registration from a buffer.

(g) ddp-max msizes(socketit's)
Get the currentmaximum untagged and tagged message sizes that will

fit in a single transport message.
2. RDMA APIs

(a) rdma_send(socket_t s, message t m)
Send a message, delivering it to the next untagged RDMA buffer at the

remote peer.

(b) rdma_write(socket_t s, message_t m, ddp_addr_t d, rdma_notify_t n)
RDMA Write to remote buffer address d.

(¢) rdma_read(socket_t s, ddp_addr_t s, length_t 1, ddp_addr_t d)
RDMA Read 1 octets from remote buffer address s to local buffer address
d.

(d) rdma_post_recv(socket_t s, bdesc_t b)

43

Post a registered buffer to accept a single Send message, to be filled and
returned in-order to a subsequent caller of rdma_ recv(). As with DDP,
buffers may be enabled on multiple sockets, in which case ordering guar-
antees are relaxed. Also as with DDP, local interfaces must manage the
mechanisms of allocation and management of buffers posted to multiple

sockets.

rdma_recv(socket_t s)
Get the next received Send message, RDMA Write completion identifier,
or RDMA error.

rdma_register(socket_t s, rdma_buffer_t b, bmode_t mode)

Register a buffer for RDMA on a socket (for read access, write access
or both). As with DDPjsthe same buffer may be registered multiple
times on the same or different sockets, and different buffers may refer

to portions of the same-underlying addressable object.

rdma_deregister(bliandt-bh)

Remove a registration from a buffer.

rdma_max_msizes(socket_t s)

Get the current maximum Send (max_untagged) and RDMA Read or
Write (max_tagged) operations that will fit in a single transport mes-
sage. The values returned by rdma_max_msizes() are closely related to

the values returned by ddp_max_msizes(), but may not be equal.

44

Chapter 4

Implementation and evaluation

In this chapter, we introduce our experimental environment and evaluate

whether RDMA approach increases system efficiency or not.

4.1 Experimentalenvirenment

The experimental envirenment is«composed of two parts: software tools and

hardware tools. They are’described as follows:

1. Software tools:

The software tools used to develop RDMA system are listed as follows.

e MIPS core GNU C++ 3.0: Because our developing platform utilizes
MIPS core, which is a kind of CPU, we have to take a complier which is
compatible with our developing platform. Therefore, we choose MIPS

core GNU C++ 3.0 to develop RDMA protocol.

e The API fo uC/OS-IT and IwIP: It was used to develop the main frame
of our system. The version of uC/OS-II is 2.70u and version of IwIP is

0.53.

45

e MIDE: It was utilized to download a program to develop platform. It
could be used to display the value of register and memory, which are

facilitative of debugging for programmers.

e HyperTerminal: It was utilized to receive message sent from com port

of develop platform.

2. Hardware environment:
Transmit node: It includes source node and sink node, which are defined
according to functions they have in transmitting data. They used uC/OS-
IT as the Operation System (OS). In order to support TCP /TP Protocol, we
used the 0.53 version of IwIP. Because the CPU in our develop platform could
well handle the limited bandwidth;.10M bps, in network chip, we set option

in OS to make the speed;correspond to*what CPU could actually deal with.

Figure 4.1: Experimental environment.

46

4.2 Evaluation and result

TCP/IP Protocol is taken in Network transfer in general. We would use two
approaches, RDMA and TCP/IP, to transmit data and test whether or not RDMA
can reach a better efficiency. As we have mentioned that different packet size might
influence transmitting speed, therefore, packet size might be one of variables to be
tested. We would take different packet sizes in these two approaches respectively
and see whether it would make any differences in system efficiency.

Figure 4.2 and Figure 4.3 show how many ticks are needed in transmitting

different packet sizes in TCP /TP and RDMA Protocol respectively.

=— TCP 1400 bytes
e TCP 500 bytes

25,000 TCP 50 bytes
|
20,000 ...-'
"
"
-. ...
15,000 " o®®
—_ L °®
) - o®
= | L]
‘g’ 10,000 — o ge*’
£ " o0’
= a" ...
[ot g e0®
5,000 | ange**’
i _g®
ptee
gt®
0 - 4}
T T T T T T T T T
0 1,000 2,000 3,000 4,000 5,000
Number of Packets

Figure 4.2: Ticks taken in transmitting different packet sizes in TCP/IP.

47

12,000

10,000

8,000 H

6,000

4,000 —

Time (ticks)

2,000

RDMA 1400 bytes
RDMA 500 bytes
RDMA 50 bytes

—

T T T
2,000 3,000
Number of Packets

T T T
4,000 5,000

Figure 4.3: Ticks taken it transmitting different packet sizes in RDMA protocol.

When TCP/IP is transmitting data packets, data copy would happen in
different protocol layers. This copy process would consume much system resource
and take longer time. However, resource consuming and transmitting time would
be less if packet size is small. In Figure 4.2, if we aim at packet number 5,000,
we see different results. When the packet size is 50 KB, system would take 6,000
ticks. Likewise, when the packet size is Hb00KB, system would take 16,000 ticks
and 1,400KB, 20,000 ticks.

If we utilize RDMA Protocol to transmit data, the content of data packets
will be moved to a specific memory address by RDMA task. In this regard, prob-

lems occur in using TCP/IP is avoided. Therefore, no matter what size the packet

48

is, the time taken in transmitting data would be the same.

In Figure 4.3, if we also aim at packet number 5,000, we see different results.
When the packet size is 50 KB, system would take 11,000 ticks. Similarly, when
the packet size is 500KB, system would take 11,000 ticks and 1,400KB, 11,000
ticks.

Figure 4.4 displays the result of transmitting data packet which is 1,400KB
in TCP/IP and RDMA protocol.

=— TCP 1400 bytes
*— RDMA 1400 bytes

25,000
| |
20,000 - ...l'
l...
|}
.l
15,000 | .
—_— ! .-
Y "
L .-l'
—
= 10,000 " o00**®
GEJ =" ...'...
[-l... ooco"".
5,000 A eeeee”
" oooo"‘...
lll="'“
0 -
T T T T T T T T T T T
0 1,000 2,000 3,000 4,000 5,000
Number of Packets

Figure 4.4: Result of transmitting 1,400KB data packet in TCP/IP and RDMA
protocol.

When transmitting 5,000 packets, the system would take 20,000 ticks in
TCP/IP Protocol but 11,000 ticks in RDMA protocol. The tick amount taken in

TCP/IP is almost double, compared with ticks taken in RDMA protocol, as Figure

49

4.4 shows.

Figure 4.5 shows the result of transmitting data packet which is 500KB in

TCP/IP and RDMA protocol.

TCP 500 bytes
RDMA 500 bytes

18,000
16,000]
14,000]
12,000]
10,000] ="
8,000]

6,000 -

Time (ticks)

4,000

2,000

T T
2,000 3,000
Number of Packets

T T
0 1,000

T
4,000

T
5,000

Figure 4.5: Result of transmitting 500KB data packet in TCP/IP and RDMA

protocol.

When transmitting 5,000 packets, the system would take 16,000 ticks in

TCP/IP Protocol but only 11,000 ticks in RDMA protocol. The tick amount

taken in TCP/IP is nearly one and half times, compared with ticks taken in RDMA

protocol, as Figure 4.5 illustrates.

Figure 4.6 shows the result of transmitting data packet which is 50KB in

TCP/IP and RDMA protocol.

20

=— TCP 50 bytes
¢ RDMA 50 bytes

12,000
11,000
10,000 ..-"
9,000 - ®*
] ®
8,000 o°
7,000
b L
6,000 ..o'
5,000 o’
4,000 ° al
1 o ...I..
3,000 ®* = L]
2,000 -
1,000
0 -
-1,000 . ' . . | , ' T . . ,
0 1,000 2,000 3,000 4,000 5,000
Number of Packets

Time (ticks)

Figure 4.6: Result of transmitting 50KB dafa packet in TCP/IP and RDMA
protocol. ‘

When packet size is small, the résources consumed in data copy process are
less. We could move a received packet to a specific memory address by STage in
RDMA protocol. This process could be done without data copy. When transmit-
ting 5,000 packets, the system would only take 6,000 ticks in TCP/IP Protocol
but 11,000 ticks in RDMA protocol. The tick amount taken in RDMA protocol
is almost double, compared with ticks taken in TCP/IP protocol, as Figure 4.6
shows.

Put above three results we found altogether, we would have Figure 4.7 as

follows.

o1

----- =— TCP 1400 bytes
TCP 500 bytes
25,000 - TCP 50 bytes
v— RDMA 1400 bytes
RDMA 500 bytes "
20,000 1 +— RDMA 50 bytes -
- ..l.
n
15,000 ._.l" ...-"'
w u o®®
‘:é l.... o
‘é’ 10,000 . .l'.....0‘° Mﬁwv‘”
= u ® T
= a® _g® ot
5.000 - -.I:::... . -=|=,|,,‘|:‘I’“"P “““‘u
'.==..0 M""‘:‘ JR AAAAAAL
B !_ _‘Pq.v“PﬁP ““.“-
.A‘I‘ Add
D -
T T T T T T T ¥ T T T
0 1,000 2,000 3,000 4,000 5,000

Number of Packets

Figure A,‘Z‘:Njéonclﬁsivé Results.

From Figure 4.7, we conclude that the system efficiency is better when we
transmit a relatively larger data packet by RDMA protocol. Yet, as far as a small
packet as concerned, traditional method, TCP/IP Protocol, would have a better

system efficiency.

52

Chapter 5

Conclusions

In this thesis, we have tested what approach would possibly increase the
bandwidth in traditional network protocol environment. The RDMA protocol,
approach taken in this thesis, is advantageous of avoiding the process of data copy
as what TCP/IP usually dges. However;results suggest that RDMA protocol
would benefit system effidiency only in. transmitting larger data packets whereas
TCP/IP dose not. Therefore, in data cluster environment, RDMA protocol is one
solution to problems occurted. in the past'and would thus increase more system
efficiency.

For further thesis, two suggestions are given here. First, two APIs, uDAPL
and kDAPL, are used to port RDMA protocol to Linux platform since they offer
direct access mechanism. By combining these two APIs, we could implement
RDMA protocol to Linux, which is an open source and has been widely utilized.
Second, TCP Offload Engine (TOE) is mainly taking care of processing checksum
of data packets in NIC. If TOE deals with its works along with RDMA protocol

in NIC, system efficiency would be greatly increased.

23

Bibliography

1]

An overview of RDMA over IP [Online]. Available:

http://datatag.web.cern.ch/datatag/pfldnet2003/papers/

Host-Assisted Zero-Copy Remote Memory Access Communication on Infini-

Band [Online|. Available:http://nowlab.cis.ohio-state.edu/publications/conf-
papers/
P. Culley, and U. Elzur, and Rz Recio, and S. Bailey, and J. Carrier, ”Marker

PDU Aligned Framing for TCP Specification”, draft-ietf-rddp-mpa-01.txt, De-
cember. 2003.

H. Shah, and J. Pinkerton, and R. Recio, and P. Culley, ”Direct Data Place-

ment over Reliable Transports”, draft-ietf-rddp-ddp-02.tat, February. 2004.

Design and
implementation of RDMA as a best-efforts service and providing reliability

over it [Online]. Available: http://www.stanford.edu/ priyank9/projects/

Design and Implementation of the lwIP TCP/IP Stack [Online]. Available:

http://www.sics.se/ adam/lwip/

R. Recio, and P. Culley, and D. Garcia, and J. Hilland, ” An RDMA Protocol

Specification”, draft-recio-iwarp-rdmap-v1.0, October. 2002.

o4

[8] H. J. Chu, ”Zero-Copy TCP in Solaris”, Proceedings of the USENIX Annual

Technical Conference, January. 1996.

[9] MicroC/OS-II, The Real-Time Kernel [Online]. Available:

http://www.infineon.com/cmc_upload/documents/

[10] 1wIP Features [Online|. Available: http://www.sics.se/ adam/lwip/

95

