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摘   要 

 近幾年來，隨著網路的發展，網路頻寬已經從 10M bps 成長到 100M bps，

現在已經有 10G bps 網路環境。影響網路頻寬的因素，已由網路硬體，移到網路

協定軟體. 在傳統的架構之下，當封包在不同協定層中傳遞時，會發生許多次的

資料複製，有許多增進效能的研究，致力於改善資料複製的問題。在本篇論文中，

我們將實做一個新提出的遠端直接記憶體存取 (Remote Direct Memory Access

ㄝ RDMA)網路協定，RDMA 這是一個能夠將資料直接搬移到指定的記憶體位址的網

路協定，來達到減少資料複製的發生。結果顯示利用 RDMA 方法在傳遞封包大小

較大的封包時，能夠很有效的增加傳輸頻寬. 我們發現 RDMA 協定適用在傳遞封

包較大的環境下，效能將會有相當大的增益。 
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Abstract 
 With the increase of network bandwidth from 10M to 10G bps, the factors that affect 

network system performance have found to be relevant with Network Protocol.  In traditional 

architecture, the packets are copied among different protocol layers, before they are transmitted.   

The data copy consumes many recourses and leads to system inefficiency.  However, few 

studies concern about increasing system efficiency from this point of view.  In this thesis, we 

implement a new Network Protocol, called as Remote Direct Memory Access (RDMA), which 

can move data packets to a specific memory address.  Therefore, the system performance can 

be improved.  Numerical results show that RDMA can achieve a better performance if the 

packet size is large.   
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Chapter 1

Introduction

With the development of network bandwidth, the bandwidth has increased

from 10M bps to 100M bps in these years. Up to now, the bandwidth could

reach 10G bps in network hardware. However, studies have pointed out that the

main factor having bandwidth of data source between data sink is no longer from

the network hardware. By this point of view, I would address this issue from

network protocol perspective. When the data source transfers data packets, data

sink would consume the greatest resource in data copying because when processing

data packets, the system would copy a temporary data in each network protocol

layer. This process would reduce system efficiency and waste system sources,

which both lead to transfer inefficiency. The transfer efficiency can improved by

implementing the following ideas: (1) copy-avoidance [1] [2] and (2) Marker PDU

Aligned (MPA) [3] and Direct Data Placement (DDP) [4].

In Linux, for instance, to increase system efficiency, zero copy [1] [2] is taken

to avoid data copy in transferring data packets. Many studies have pointed out

that by doing so, system efficiency could increase extra forty to eighty percent [5],

compared with those with data copy processes. Therefore, in this light, to avoid

sources consuming process caused by data copying, copy avoidance might be a
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solution.

The second approach, is to apply MPA and DDP protocol to process data

packets. This approach can increase network bandwidth and reduce the time

in processing data packets. Consider that a network used TCP as its transport

protocol. If some data packets lose in transmitting process, TCP will re-transmit

data packets and reassemble data packets in order. If we use MPA Protocol,

even though the data packets are out of order, the data packets will be quickly

transmit to Upper Layer Protocol (ULP). Then, DDP Protocol will directly move

the content of data packets to assigned memory address. Therefore, by combining

these two processes, system efficiency can be increased.

In this thesis, we investigate the following problems: (1)what are possible so-

lutions for increasing network bandwidth? (2)Does copy avoidance, which reduced

data copy, increase system efficiency? (3)Does the combination of MPA and DDP

reduce the time in transferring network packets?

This thesis is organized into five chapters. The first chapter is to introduce

basic background for understanding the relevant concepts; Chapter 2 to introduces

concepts about Copy Avoidance, DDP Protocol, and MPA Protocol; Chapter 3

introduces uC/OS-II, lwIP [6] and RDMA [7]; The implementation and its evalua-

tion are given in Chapter 4; finally, Chapter 5 gives conclusion and possible future

thesis.
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Chapter 2

Related Works

To provide a background for understanding how this thesis constructed, a re-

view of relevant works about Zero copy, DDP Protocol, MPA Protocol and RDMA

Protocol is given in this chapter.

2.1 Zero Copy

The overhead, produced in processing data copy and checksum, was the main

cause for bandwidth reduction and system inefficiency. Some studies have shown

that the f Zero copy can reduce the number of times in copying data. In general,

Data copy would happen once in single-copy process when the application requests

to read data from transport layer. Statistically, single-copy process would reduce

60% overhead in this process. However, Zero-Copy is the shared memory mixed

with application or kernel or NIC interface. When the application is going to

transmit data, all it needs to do is to store the data in shared memory. Therefore,

the system could retrieve the data from it without the process of data copy. System

efficiency would increase greatly. Figure 2.1 shows data copy occurs in transmitting

data in a network.

Note that in Figure 2.1, whether the data is transmitted from NIC interface to
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Move data from application

to  system buffer

TCP/IP Protocol

Compare Checks

Transmit packet to

network interface

Network Driver

Move data from application

to  system buffer

TCP/IP Protocol

Compare Checks

Transmit packet to

network interface

Network Driver

Figure 2.1: Process of Data Copy.

Kernel Driver, or from Driver to TCP/IP layer, or from Application to TCP/IP,

data copy happened. Once data copy happens, the process causes inefficiency and

resources waste.

2.1.1 Structure of Zero Copy

To increase system efficiency, the number of times of data copy should be

reduced. This reduction could be done by shared memory. As we see from Fig-

ure 2.2, instead of copying the data, all involved processes will refer to the same

memory address in transmitting information. Thus, the number of data copy is

reduced.
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file system
communication

system

application

file system
communication

system

application

user space

kernel space

buf

Network

mbuf

b_data m_data

Figure 2.2: Time reduction of data copy by using shared memory.

2.1.2 Zero Copy Scheme [8]

In [8], it present four methods to implement the Zero Copy scheme as follow.

1. User accessible interface memory

When we use user accessible interface memory, user or kernel should be able

to access to the memory in NIC interface. User or kernel must readdress the

memory space in order to be later used. Some requirements are necessary.

(a) This method has to have hardware support and modified software.

(b) In sink node, network hardware must know about which process that the

data packets belong to. This is for correctly transmit the data packets

to memory address it belongs to.

(c) Because we readdress memory space, other memory managements to

manage the memory space must be taken.

(d) Due to the limited memory space in NIC interface, it is possible to

encounter problems about inadequate resource in running.

10



2. Kernel-network shared memory

(a) It refers to OS kernel management of memory space of NIC interface

Also, it refers to utilize DMA or PIO(Program I/O) to move data from

Application buffer to NIC interface.

(b) Application does not need to change software if we take the method

suggested above.

(c) As for OS kernel, due to the limited memory space in NIC interface, we

should be particularly careful with the memory space management.

3. User-kernel shared memory (see Figure 2.3)

(a) Some new APIs are created between user and kernel in order to read-

dress memory space.

(b) To utilize DMA to move information between shared memory and NIC.

(c) The NIC hardware must be able to receive the incoming data, which

will be move to the correct memory address by DMA.

4. User-kernel page remapping + COW (copy-on-write)

(a) The system will modify the content of system MMU (Memory Man-

agement Unit) in order to remap the buffer page. This modification is

needed for two reasons: when we have to quickly switch the memory

space and transmit data without data copy.

(b) After doing so, socket and VM system do not need to make any modi-

fication.
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Figure 2.3: OS illustration of user-kernel shared memory.

(c) Every buffer differs in size, which is required to be the same with page

size. In other words, the size of the buffer corresponds to a page.

(d) Application must avoid reusing the same buffer too quickly.

Based on the above ideas, data copy times could be decreased to increase

system efficiency. Therefore, the goal of creating a wider bandwidth could be

reached.

2.2 MPA Protocol

MPA, an extra layer out of protocol, exists above TCP and under DDP. The

layer of protocol is ahown in Figure 2.4. The main feature of MPA is pointing out

how many octets between Marker and Framing Protocol Data Unit (FPDU).

In transmitting information in TCP, byte streaming is always the only way.

Yet, packets could be simply received one by one without being able to know where

12



ULP

DDP

MPA

TCP*

Transport

ULP messages

ULPUDs

FPDUs (containing ULPDUs)

TCP Segments (containing FPDUs)

*   TCP or MPA-aware TCP

Figure 2.4: DDP, MPA, and TCP layering.

the FPDU is in byte streaming. Its position in byte streaming must be known by

reassembling the packets through TCP Protocol. Subsequently, DDP could get

the information after FPDU reassemble.

Marker is defined for the purpose of implementing MPA Protocol. In the

process of transmitting PDU to MPA layer by DDP, MPA needs to add marker in

received PDU between each 512 octet interval. As long as sink node receives seg-

ment, it would define the position stored in FPDU on the basis of the information

that marker has stored, as Figure 2.5 shows.

ULP Message

ULPDU ULPDU ULPDUDDP DDP DDP

             FPDU M
C

R

C

MPA        FPDUMPA

C

R

C

MPA       FPDU
C

R

C

M M

Figure 2.5: MPA Framing process.
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With a support of TCP to MPA, as long as TCP receives segment in MPA

format, it would quickly transmit FPDUs to MPA. MPA would recognize which

FPDU the received information belongs to from the Marker. Even though the

packet would pass through the re-segment, the recognition would still succeed as

shown in Figure 2.6 and 2.7.

T M D
..

.
m

..

.
C

T M D
..

.
m

..

.
m

..

.
C

SeqNum = 113

400

512

SeqNum = 913

800

800

FPDUPTR = 112

Marker SeqNum = 1025

(113+400+512)

FPDUPTR = 624

Marker SeqNum = 1537

(113+400+512*2)

512 176

FPDUPTR = 400

Marker SeqNum = 513

(113+400)

Figure 2.6: FPDU with Marker.
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400
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SeqNum = 1313

512
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FPDUPTR = 112

Marker SeqNum = 1025

(113+400+512)

FPDUPTR = 624

Marker SeqNum = 1537

(113+400+512*2)

Figure 2.7: re-segment with Marker.
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Therefore, as we see, MPA Protocol provides framing mechanism in TCP

for DDP. Utilizing the mechanism provided by MPA, we could know what FPDU

every received packet belongs to in byte streaming process. In this way, the re-

ceived content in every packet could be quickly transmitted to DDP. Finally, DDP

would write in the correct memory address without waiting for TCP reassembles

or retransmits. Therefore, transmit time could be reduced and bandwidth would

sequentially increase.

2.3 DDP Protocol

DDP takes care of moving the information to a designated memory ad-

dress without system processing. Therefore, DDP would increase system efficiency.

To understand how DDP works, a brief introduction is fiven in the following:

DDP refers to a mechanism placing information to a correct memory address

without involve ULP process. A STag, a signal defined as to represent memory ad-

dress in DDP Protocol, would communicate and register between sink and source

nodes before transmitting information. Therefore, when data packets are trans-

mitted, the STag would be included in data packets. DDP Protocol defines a STag

used for signaling a memory address. Before transmitting data, sink node will

register a STag to source node after their communication between each other. As

long as the data is transmitting, STag will be embedded in data packet. When

source node starts to transmit data, it would segment the message first and embed

the STag in a data packet. Then the data packet would be transmitted to sink

node as a result. When the data packet is arrived at sink node, sink node is able

to get a STag. Sink node will know what the memory address is according to the

received STag. Even though the data are out of order, sink node is still able to
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move the data to the correct memory address by DDP Protocol.

In general, DDP supports two transmit the following models:

1. Tagged Buffer data transfer model see Figure 2.8:

As ULP registers a memory address for source node to use, DDP would give

ULP a the-only-one code name, called STag, to mark the memory address

for the received information.

In the process of transmitting information from source node to sink node by

utilizing STag and Tagged Offset, the correct buffer could be found by STag.

Then the correct address of received information in buffer could be known

by Tagged Offset. Therefore, Random-Access is an essential feature of DDP.

ULP buffer needs to register only once and then gets a STag. DDsP could

reuse the STag having being registered.

Queue

Element

Buffer

Buffer CRC STag

Table
Buffer

Send

Queue

TO

STag

Data Source Data Sink

Figure 2.8: Tagged Message Model.

2. Untagged Buffer data transfer model see Figure 2.9:

Information of this sort can be transferred directly without ULP registration.

The sink node has to manage buffers for Untagged Message storage. When

there is an Untagged Message arriving at sink node, one buffer is required

to receive one untagged. A buffer could not be used for storing another

Untagged Message unless the buffer has been declared deleted.

Untagged Message, different from Tagged Message, is a model for sink node
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and source node to communicate with control message or error message.

Queue
Element

Buffer

Buffer CRC

Send

Queue

Data Source Data Sink

Queue
Element

Recv

Queue

Buffer

Buffer

MO

QN, MSN

Figure 2.9: Untagged Message Model.

2.4 RDMA Protocol

Based on the functions provided by DDP, RDMA contributes to nearly com-

plete Protocol functions. Instead of having simply one-way function of Write of

DDP, RDMA, utilizes features of Untagged and Tagged Message, has achieved

two-way transmit function. Details of features of RDMA Protocol are illustrated

as follows.

RDMA improves disadvantages of DDP, such as improving one-way transmit

to two-way transmit. Types of operations provided by RDMA would be discussed

below and illustrated in Figure 2.10:

1. Send Operation Type

Source node will directly transmit an untagged message to sink node. Before

this transmitting data, there is no need registering a STag between these two

node

2. RDMA Write

Before source node transmits data to sink node, two nodes must exchange

STag. The STag, provided by sink node, will be transmitted to source node

17



before transferring data. RDMA write process is identical with the process

of how system deals with DDP Tagged message.

3. RDMA Read

Sink node will register a STag. This STag will be accompanied with the re-

quest of send operation and subsequently sent to source node. When source

node receives the request, it would write the data into memory address the

STag represents in sink node. This is done by utilizing RDMA write oper-

ation. Therefore, UDMA read is an operation built by Send Operation and

RDMA Write Operation.

Buffer

Buffer

Buffer

C

R

C

C

R

C

C

R

C

Queue

Element

Queue

Element

Queue

Element

Queue

Element

STag

Table

Queue

Element

C

R

C
STag

Table
Buffer

Buffer

Buffer

Buffer

Buffer

Send Operation

RDMA Write

RDMA Read

Figure 2.10: RDMA Operations.
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Chapter 3

System Architectures

In this chapter, we will show how RDMA system works, and elements com-

posing of the whole RDMA system architecture, such as OS, the portability of

TCP/IP RDMA Protocol in details.

3.1 Overview

Our prototype of RDMA system is created on a development platform, which

is the core of MIPS and has 16 MB ROM to be used. Also, on the platform, there

is an Ethernet, which could be used to transmit data packets.

In addition, we port uC/OS-II to the platform having been mentioned ear-

lier. uC/OS-II has multitasking and priority mechanism, which both altogether

contribute to execute the task with higher priority. We create our RDMA system

on the basis of these features of uC/OS-II. However, uC/OS-II does not support

TCP/IP protocol, light weight IP (lwIP) is selected and ported to uC/OS-II.

Our analysis of the increased system efficiency would base on the result of

implementing RDMA protocol to uC/OS-II platform.
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3.2 uC/OS-II

Now, we turn to introduce uC/OS-II, which are relevant to our implementa-

tion environment.

3.2.1 Features [9]

The uC/OS-II is a real-time kernel OS. It has the following features:

1. Source Code

uC/OS-II is a free open source, which allows arbitrary modifications. There-

fore, the programming code is easy to read.

2. Portable

ANSIC is utilized to create uC/OS-II programming code. Therefore, the

programming code would not be incompatible.

The assembly language is taken to make complete of the part of micro-

processor in general. Theoretically, if we modify assembly code, uC/OS-II

will be easily ported to other different kinds of processors. Therefore, uC/OS-

II is able to operate on 8/16/32 bits micro-processor or micro controller.

3. ROMable

As long as having suitable tools, such as C compilerBassembler linker and

locator, uC/OS-II will become a part of the product.

4. Scalable

We could choose programming code we need on the basis of the features the

product posses. Subsequently, we shrink programming code confirming to

our needs as to put the programming code into ROM/RAM.
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5. Preemptive

There is a priority in each task. uC/OS-II will execute the READY and task

with the highest priority, as shown in Figure 3.1 and Figure 3.2.

TASK

WAITING

TASK

DORMANT

TASK

READY

TASK

RUNNING

ISR

RUNNING

TASK

WAITING

TASK

DORMANT

TASK

READY

TASK

RUNNING

ISR

RUNNING

Figure 3.1: Task State.

6. Multi-tasking(see Figure 3.3)

uC/OS-II, in supporting multi-tasking, could maximally provide 64 tasks.

Out of these 64 tasks, 8 of them would be reserved for the system.

7. Task Stack

Because uC/OS-II allows different stack size for each task, the stack size could

be decreased based on needs. Therefore, the efficacy would be maximized in

RAM.

8. Services
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Task

LOW Priority

Task

(1) (2)

(3)

(4)

(5)

(6)

(7)

ISR makes the high

priority task ready

Time

HIGH Priority

Task

LOW Priority

Task

ISR(1) (2)

(3)

(4)

(5)

(6)

(7)

Figure 3.2: Process of executing the task with the highest priority.

uC/OS-II supports various services, such as Mailbox, Queues, Semaphores,

Fixed-sized memory partitions, Time related function and so forth.

9. Interrupt Management

Interrupt could interrupt any task in process. There are 255 different level

interrupts defined in uC/OS-II.

3.2.2 Modification

As long as we have a corresponding C Compiler, we could port uC/OS-II

to specific a processor. Most porting is carried out in the content switching in

multi-tasking. Saving and restoring value of register exemplify content switching

process, which is completed by utilizing assembly langauge. To do content switch-
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Figure 3.3: Multi-tasking.

ing for each processor, files need modifying are OS CPU.H, OS CPU C.C, and

OS CPU A.S.

The following is to explain what modifications are required for these files:

1. OS CPU.H

(a) Definition of DATA TYPE (see Figure 3.4)

Data Type is relevant with what compiler being used because different

compilers would take different amounts of bytes to represent an identical

DATA TYPE. Take Integer as an example:

MS(VC++): 2 bytes

GNU(gcc): 4 bytes

(b) Stack Entry

The definition for the growing direction and length of the stack in a
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Figure 3.4: DATA TYPES.

task must be identical with the register of CPU.

(c) Definition of stack growing direction

The growing direction of stack is from low memory address to high, or

vice versa.

(d) Interruption and Content Switch (see Figure 3.5)

When running task is interrupted or content switch occurs, uC/OS-II

must define which stack memory address in a stack that the register

should be moved to.

2. OS CPU C.C (see Figure 3.6 and Figure 3.7)

In the initialized stack of a task, uC/OS-II will define each stack address,

which is used to save register value.

3. OS CPU A.S

Some relevant CPU behaviors are defined in OS CPU A.S. We now turn to

explain these behaviors in the following part.

(a) OSStartHighRdy()
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Figure 3.5: Interruption and Content Switch.

When the OSStart() is running, OSStartHighRdy() is in charge of get-

ting SP out of control block with the highest priority task, in TCB.

(b) OSCtxSw()

OSCtxSw() will save the previous register to its task stack and then get

the SP from another task with the highest priority from OSStartHigh-

Rdy(). Then OSCtxSw() will restores the value of register at CPU and

keeps this task running.

(c) OSIntCtxSw() It defines the behaviors of the interrupted level of content

switch.s
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Figure 3.6: Initialized stack of a task.

3.3 lwIP

3.3.1 Overview

LwIP, a sort of TCP/IP, is utilized in embedded system. It reserves functions

of TCP/IP and reduces the use amount of RAM. For instance, only 10 K RAM

and 40K ROM will be consumed in the process. Based on these two features,

even though resource is limited, better system efficiency could be maintained. In

addition, because of its easy portability feature, we would also port it to uC/OS-II.

The position of lwIP in protocol layering is shown in figure 3.8.

3.3.2 lwIP API

1. It supports Berkeley socket API

lwIP supports the Berkeley socket API utilized by general network program-

ming. It would transform Berkeley socket API into the API that is designed
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Figure 3.7: Initialized source code.

in lwIP. This transformation feature contributes to a significant compatibility

for a developed program, as Figure 3.9 shows.

2. Communication between Application and TCP/IP protocol

In lwIP, the work of data receiving or transferring is taken by two different

tasks. These two tasks utilize the mailbox provided by uC/OS-II to commu-

nicate or transmit data between applications. Each mailbox is responsible for

different jobs. For example, application could receive internet data packets

from recvbox. Therefore, the exchange of information between the two tasks

the application could be done by different mailboxes. Figure 3.10 clearly il-

lustrates how communication is achieved between the TCP/IP Protocol and

application by mailboxes.
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ULP

Embedded System

lwIP Protocol

uC/OS-II

Figure 3.8: lwIP Protocol Layering.

SOCKET API

bind

listen

connect

accept

recv

send

write

close

lwip_API

lwip_bind

lwip_listen

lwip_connect

lwip_accept

lwip_recv

lwip_send

lwip_write

lwip_close

netconn_API

netconn_bind

netconn_listen

netconn_connect

netconn_accept

netconn_recv

netconn_send

netconn_write

netconn_close

Figure 3.9: Transformation process of Berkeley socket API.

3. API types

There are four types of API provided by lwIP. The following part is going to

introduce these four in details.

(a) TYPE 1: BIND, LISTEN, CLOSE

Type 1, illustrated in Figure 3.11, includes three types of operations,

namely, BIND, LISTEN, CLOSE. We are now to explain them respec-

tively as follow. First is about BIND method:

i. Whenever ULP is going to bind, listen, or close, it would post

28



TASK 2

(data input)

TASK 3

(tcpip_thread )

mbox

TASK 1

(application 1)

recvmbox acceptmbox

TASK 1

(application 1)

recvmbox acceptmbox

TASK N

(application N)

recvmbox acceptmbox

TASK N

(application N)

recvmbox acceptmbox

Figure 3.10: Communication between Application and TCP/IP protocol.

TASK 2mbox

1 2

34

msg->type

* API_MSG_BIND

* API_MSG_LISTEN

Figure 3.11: API type 1.

a request to mbox, seen in Figure 3.11. Task 2, the task being

responsible for transmitting data, will keep detecting whether there

is any request in the mbox. At the meanwhile, the application will

wait for the response from task 2.

ii. As long as there is a request found in mbox, task 2 will discriminate

the request type and call the function responsible for this type of

request. However, the request in every mbox could be different,

such as examples in Figure 3.12, 3.13, and 3.14.

iii. Task 2 will immediately remit a response, whether successful or

failure, to mbox.

iv. While Application task receives the reply from mbox, it would know
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whether the request is successful or not.

netconn_bind do_bind

API_MSG_BIND

mbox

api_msg_postapi_msg_post sys_mbox_fetchsys_mbox_fetch

sys_mbox_postsys_mbox_postsys_mbox_fetchsys_mbox_fetch

tcp_bind

Figure 3.12: netconn bind.

Figure 3.12 shows that when the application operates a bind, it would

send an API MSG BIND to mbox. Bind will call tcp bind function,

which would build a relationship between application and the port.

Hence, lwIP would know which application the incoming data belong

to from the port.

netconn_listen do_listen

API_MSG_LISTEN

mbox

api_msg_postapi_msg_post sys_mbox_fetchsys_mbox_fetch

sys_mbox_postsys_mbox_postsys_mbox_fetchsys_mbox_fetch

pcb->accpet =accept_function

Figure 3.13: netconn listen.

Basically, the second method, called Listen, and third method, called

close, follows the similar procedures (i) to (iv) above. Yet, there are still

some slight differences between them: Listen would call accept funciton

and then accept connection. Close would call tcp close and releases the

occupied resource.

netconn_close do_close

API_MSG_CLOSE

mbox

api_msg_postapi_msg_post sys_mbox_fetchsys_mbox_fetch

sys_mbox_postsys_mbox_postsys_mbox_fetchsys_mbox_fetch

tcp_close

Figure 3.14: netconn close.
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(b) TYPE 2: CONNECT

Type 2 is the type of operation called CONNECT, illustrated in Figure

3.15 and Figure 3.16 below.

i. When application is going to connect to another node, ULP wil

post a request to mbox. Task 2, the task being responsible for

transmitting data, will keep detecting whether there is any request

in the mbox.

ii. As long as there is a request found in mbox, task 2 will discriminate

the request type and call the function responsible for this type of

request. If the request type is discriminated as connect, task 2 will

send a SYN packet to another node.

iii. When task 3, the task being responsible for receiving data, receives

the acknowledgement of SYN, it will post the reply to mbox to

inform application.

iv. After Application task receives the reply, it would know whether

the connection is successful or not accordingly.

TASK 1

TASK 2

mbox

1

2
msg->type

* API_MSG_CONNECT

TASK 3

3
4

Figure 3.15: API type 2.

When ULP signals connect request, the connect request will transmit
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netconn_connect

do_connect

pcb->connected = do_connected

pcb->state = SYN_SENT

tcp_enqueue ()

tcp_output ()

tcp_input() , tcp_process ()

switch case: SYNSENT

pcb->connected

do_connected

mbox

api_msg_postapi_msg_post

sys_mbox_fetch

sys_mbox_postsys_mbox_post

sys_mbox_fetchsys_mbox_fetch

Figure 3.16: netconn connect.

data packet to another node by do connect. Application, at the mean-

while, will wait for the reply. After do connected receives the acknowl-

edgement of SYN, do connect will inform the application. Consequen-

tially, connection will be established by Application.

(c) TYPE 3:SEND, WRITE

Type 3, including two types of operations, namely, SEND and WRITE,

illustrated as Figure 3.17.

TASK 1 mbox

1 2

34

msg->type

* API_MSG_SEND

* API_MSG_WRITE

TASK 2

udp_output

or

tcp_write

Figure 3.17: API type 3.

i. When ULP is going to send or receive packets, ULP will post a
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request to mbox. Task 2, the task being responsible for transmitting

data, will keep detecting whether there is any request in the mbox.

ii. As long as there is a request found in mbox, task 2 will discriminate

the request type and call the function responsible for this type of

request.

iii. Task 2 will immediately remit a response, whether successful or

failure, to mbox.

iv. While Application task receives the reply from mbox, it would know

whether the request is successful or not.

Examples are illustrated as Figure 3.18 and 3.19.

netconn_send do_send

API_MSG_SEND

mbox

api_msg_postapi_msg_post sys_mbox_fetchsys_mbox_fetch

sys_mbox_postsys_mbox_postsys_mbox_fetchsys_mbox_fetch

udp_output

Figure 3.18: netconn send.

Whenever there is a UDP data to be sent, application will post the data

and API MSG SEND to mbox. When there is a request in mbox found

by task 2, it would call do send and transmit the data to another node

by udp output.

netconn_write do_write

API_MSG_WRITE

mbox

api_msg_postapi_msg_post sys_mbox_fetchsys_mbox_fetch

sys_mbox_postsys_mbox_postsys_mbox_fetchsys_mbox_fetch

tcp_enqueue

tcp_output

Figure 3.19: netconn write.

Whenever there is a UDP data to be sent, application will post the
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data and API MSG WRITE to mbox. When there is a request in mbox

found by task 2, it would call do write and transmit the data to another

node by tcp output. However, before tcp output transmits data, task 2

would call tcp enqueue to make sure of TCP reliable mechanism. The

packet in queue will be removed only when the data is correctly received.

(d) TYPE 4: ACCEPT, RECV

Type 4 includes two operations. They are ACCEPT and RECV, illus-

trated as Figure 3.20.

TASK 3TASK 1

12 acceptmbox

or

recvmbox

TASK 2mbox

3 4

56

msg->type

* API_MSG_RECV

Figure 3.20: API type 4.

i. When task 3 receives data, it would what application the received

data packet belongs to according to the PCB. It would also post

the data packet to acceptbox or recvbox.

ii. When there is any data packet found in acceptbox or recvbox, ap-

plication would get the content in the data packet back. Because

of TCP reliable mechanism, the application will transmit an ACK

to source node to inform the success of sending data.
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iii. When ULP is going to send ACK message, ULP will post a request

to mbox. Task 2, the task being responsible for transmitting data,

will keep detecting whether there is any request in the mbox.

iv. As long as there is a request found in mbox, task 2 will discriminate

the request type and call the function responsible for this type of

request.

v. Task 2 will immediately remit a response, whether successful or

failure, to mbox.

vi. While Application task receives the reply from mbox, it would know

whether the request is successful or not.

Examples are illustrated as Figure 3.21 and 3.22.

in tcp_process

pcb->accept

accept_functionnetconn_accept acceptmbox
sys_mbox_postsys_mbox_postsys_mbox_fetchsys_mbox_fetch

Figure 3.21: netconn accept.

The accept funtion will receive accepted reply and it will post the reply

to accept box. When application receives the reply from the box, it

would know that another node has accepted the connection.

After the application receives a data packet, it would send out an ACK

to source node.

4. Example
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recv_tcpnetconn_recv recvmbox

do_recvmbox

API_MSG_RECV

intcp_input()

pcb->recv

sys_mbox_postsys_mbox_fetch

api_msg_postapi_msg_post sys_mbox_fetch

sys_mbox_postsys_mbox_fetchsys_mbox_fetch

Let the stack know that

we have taken the data

Figure 3.22: netconn recv.

3.4 RDMA Protocol

We are now to introduce RDMA protocol.

3.4.1 RDMA Operation

Two RDMA operations, read and write operations, are given as follows.

1. RDMA Write Operation

The sequence RDMA write operation is (see Figure 3.25):

(a) Application sink informs Application Source not only that it is ready

to write but also the length of data.

(b) Application Source informs RDMA the memory address for later writ-

ing.

(c) RDMA Engine informs STag, representing the known memory address,

to Application Source.
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Server

netconn_new

netconn_bind

netconn_listen

netconn_accept

netconn_recv

netconn_write

netconn_close

do_bind

do_listen

accept_function

recv_tcp

do_write

do_recv

do_close

mbox

acceptmbox

recvmbox

mbox

mbox

mbox

mbox

TASK 1 TASK 2 TASK 3

Figure 3.23: The procedure of server.

(d) Application Source informs Application Sink the STag, which will be

subsequently used in transmitting data.

(e) Application Sink informs RDMA Engine the STag and files to be trans-

mitted.

(f) While transmitting data, RDMA Engine will include STag in the data

packets being transmitting.

(g) Application Source utilizes RDMA Protocol to transmit the data to

Application Sink.

(h) Application Sink RDMA Engine would directly write the data into the

memory address known from the STag from the received data packets.

(i) Application Source will wait for the completion of data transmitting
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Client

netconn_new

netconn_bind

netconn_connect

netconn_recv

netconn_write

netconn_close

do_bind

do_connect

do_connected

recv_tcp

do_write

do_recv

do_close

mbox

recvmbox

mbox

mbox

mbox

mbox

TASK 1 TASK 2 TASK 3

Figure 3.24: The procedure of client.

process.

2. RDMA Read Operation

The sequence RDMA read operation is (see Figure 3.26):

(a) Application Sink informs RDMA Engine the memory address of the

data to be received.

(b) RDMA Engine replies a STag to Application Sink.

(c) Application Sink transmits the STag to Application Source for subse-

quent data transmitting. It would also inform Application Source for

its readiness of file transmitting.

(d) Application Source will inform the STag and files to be transmitted to
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source

RDMA

Engine

sink

RDMA

Engine

databuffer

(e)(i)(c)

(a)

(b)

(g)

(h) (f)

(d)

Figure 3.25: RDMA Write Operation.

sink

RDMA

Engine

source

RDMA

Engine

bufferdata

(a)(h) (b)

(c)

(d)

(f)

(e) (g)

Figure 3.26: RDMA Read Operation.

RDMA Engine.

(e) While transmitting data, RDMA Engine will include STag in the data

packets being transmitting.

(f) Application Source utilizes RDMA Protocol to transmit the data to

Application Sink.

(g) Application Sink RDMA Engine would directly write the data into the

memory address known from the STag from the received data packets

(h) Application Sink will wait for the completion of data transmitting pro-

cess.
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3.4.2 The flow chart of RDMA

In this section, we introduce the details for RDMA processes.

1. RDMA Write (See Figure 3.27)

Tx

Data

Rx

Dest.

R

shm (1)write resq.

(2)Post Address.

(4) Pend Address.

(3) register

(5) STag

(7) listen

(6)Stag, Port

(9)write

(10) direct placement

(8)Read Data

Figure 3.27: Flow chart of RDMA Write.

(1) Source node sends a ”write resq” message to sink node.

(2), (3), and (4) Sink node posts a memory address to RDMA task and

registers a STag.

(5) RDMA informs a STag to sink node.

(6) Sink node sends a STag and a port number to source node.

(7) RDMA task will wait for connect.

(8), (9) Source node will connect to the RDMA task and write data to sink

node.

(10) RDMA task would directly write the data into the memory address from

STag from the received data packets.
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2. RDMA Read (see Figure 3.28)

Tx

Data

Rx

Dest.

R

shm

(1) Post Address.

(3)PendAddress.

(2) register

(4)STag

(6)listen

(5) Stag, Port

(8) write

(9) direct placement

(7) ReadData

Figure 3.28: Flow chart of RDMA Read.

In (1), (2), and (3), sink node posts a memory address to RDMA task and

registers a STag.

(4) RDMA informs a STag to sink node.

(5) Sink node sends a STag and a port number to source node.

(6) RDMA task will wait for connect.

(7), (8) Source node will connect to the RDMA task and write data to sink

node.

(9) RDMA task would directly write the data into the memory address from

STag from the received data packets.

3.4.3 RDMA and DDP API

In this section, provide the APIs with relevance to DDP and RDMA. Ac-

cording to the definition of spec., RDMA is constructed on the basis of DDP.
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Theoretically, as long as we complete the API of DDP, RDMA API could be com-

pleted with minor modifications. Therefore, ULP could either transmit data by

RDMA or DDP protocol or by Transport layer(TCP/IP) as shown in Figure 3.29g.

ULP (Upper Layer Protocol)

Transport

DDP

RDMA

Figure 3.29: Protocol Layering.

1. DDP APIs

(a) ddp send(socket t s, message t m)

Send an untagged message.

(b) ddp send ddp(socket t s, message t m, ddp addr t d, ddp notify t n)

Send a tagged message to remote buffer address d.

(c) ddp post recv(socket t s, bdesc t b)

Post a registered buffer to accept a single received untagged message.

Each buffer is returned to the caller in a ddp recv() untagged message

reception indication, in the order in which it was posted. The same

buffer may be enabled on multiple sockets, receipt of an untagged mes-

sage into the buffer from any of these sockets unposts the buffer from

all sockets.

(d) ddp recv(socket t s)
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Get the next received untagged message, tagged message reception in-

dication, or tagged message error.

(e) ddp register(socket t s, ddp buffer t b)

Register a buffer for DDP on a socket. The same buffer may be regis-

tered multiple times on the same or different sockets. The same buffer

registered on different sockets may result in a common registration.

Different buffers may also refer to portions of the same underlying ad-

dressable object (buffer aliasing).

(f) ddp deregister(bhand t bh)

Remove a registration from a buffer.

(g) ddp max msizes(socket t s)

Get the current maximum untagged and tagged message sizes that will

fit in a single transport message.

2. RDMA APIs

(a) rdma send(socket t s, message t m)

Send a message, delivering it to the next untagged RDMA buffer at the

remote peer.

(b) rdma write(socket t s, message t m, ddp addr t d, rdma notify t n)

RDMA Write to remote buffer address d.

(c) rdma read(socket t s, ddp addr t s, length t l, ddp addr t d)

RDMA Read l octets from remote buffer address s to local buffer address

d.

(d) rdma post recv(socket t s, bdesc t b)
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Post a registered buffer to accept a single Send message, to be filled and

returned in-order to a subsequent caller of rdma recv(). As with DDP,

buffers may be enabled on multiple sockets, in which case ordering guar-

antees are relaxed. Also as with DDP, local interfaces must manage the

mechanisms of allocation and management of buffers posted to multiple

sockets.

(e) rdma recv(socket t s)

Get the next received Send message, RDMA Write completion identifier,

or RDMA error.

(f) rdma register(socket t s, rdma buffer t b, bmode t mode)

Register a buffer for RDMA on a socket (for read access, write access

or both). As with DDP, the same buffer may be registered multiple

times on the same or different sockets, and different buffers may refer

to portions of the same underlying addressable object.

(g) rdma deregister(bhand t bh)

Remove a registration from a buffer.

(h) rdma max msizes(socket t s)

Get the current maximum Send (max untagged) and RDMA Read or

Write (max tagged) operations that will fit in a single transport mes-

sage. The values returned by rdma max msizes() are closely related to

the values returned by ddp max msizes(), but may not be equal.
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Chapter 4

Implementation and evaluation

In this chapter, we introduce our experimental environment and evaluate

whether RDMA approach increases system efficiency or not.

4.1 Experimental environment

The experimental environment is composed of two parts: software tools and

hardware tools. They are described as follows.

1. Software tools:

The software tools used to develop RDMA system are listed as follows.

• MIPS core GNU C++ 3.0: Because our developing platform utilizes

MIPS core, which is a kind of CPU, we have to take a complier which is

compatible with our developing platform. Therefore, we choose MIPS

core GNU C++ 3.0 to develop RDMA protocol.

• The API fo uC/OS-II and lwIP: It was used to develop the main frame

of our system. The version of uC/OS-II is 2.70u and version of lwIP is

0.53.
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• MIDE: It was utilized to download a program to develop platform. It

could be used to display the value of register and memory, which are

facilitative of debugging for programmers.

• HyperTerminal: It was utilized to receive message sent from com port

of develop platform.

2. Hardware environment:

Transmit node: It includes source node and sink node, which are defined

according to functions they have in transmitting data. They used uC/OS-

II as the Operation System (OS). In order to support TCP/IP Protocol, we

used the 0.53 version of lwIP. Because the CPU in our develop platform could

well handle the limited bandwidth, 10M bps, in network chip, we set option

in OS to make the speed correspond to what CPU could actually deal with.

Figure 4.1: Experimental environment.
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4.2 Evaluation and result

TCP/IP Protocol is taken in Network transfer in general. We would use two

approaches, RDMA and TCP/IP, to transmit data and test whether or not RDMA

can reach a better efficiency. As we have mentioned that different packet size might

influence transmitting speed, therefore, packet size might be one of variables to be

tested. We would take different packet sizes in these two approaches respectively

and see whether it would make any differences in system efficiency.

Figure 4.2 and Figure 4.3 show how many ticks are needed in transmitting

different packet sizes in TCP/IP and RDMA Protocol respectively.

Figure 4.2: Ticks taken in transmitting different packet sizes in TCP/IP.
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Figure 4.3: Ticks taken in transmitting different packet sizes in RDMA protocol.

When TCP/IP is transmitting data packets, data copy would happen in

different protocol layers. This copy process would consume much system resource

and take longer time. However, resource consuming and transmitting time would

be less if packet size is small. In Figure 4.2, if we aim at packet number 5,000,

we see different results. When the packet size is 50 KB, system would take 6,000

ticks. Likewise, when the packet size is 500KB, system would take 16,000 ticks

and 1,400KB, 20,000 ticks.

If we utilize RDMA Protocol to transmit data, the content of data packets

will be moved to a specific memory address by RDMA task. In this regard, prob-

lems occur in using TCP/IP is avoided. Therefore, no matter what size the packet
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is, the time taken in transmitting data would be the same.

In Figure 4.3, if we also aim at packet number 5,000, we see different results.

When the packet size is 50 KB, system would take 11,000 ticks. Similarly, when

the packet size is 500KB, system would take 11,000 ticks and 1,400KB, 11,000

ticks.

Figure 4.4 displays the result of transmitting data packet which is 1,400KB

in TCP/IP and RDMA protocol.

Figure 4.4: Result of transmitting 1,400KB data packet in TCP/IP and RDMA
protocol.

When transmitting 5,000 packets, the system would take 20,000 ticks in

TCP/IP Protocol but 11,000 ticks in RDMA protocol. The tick amount taken in

TCP/IP is almost double, compared with ticks taken in RDMA protocol, as Figure
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4.4 shows.

Figure 4.5 shows the result of transmitting data packet which is 500KB in

TCP/IP and RDMA protocol.

Figure 4.5: Result of transmitting 500KB data packet in TCP/IP and RDMA
protocol.

When transmitting 5,000 packets, the system would take 16,000 ticks in

TCP/IP Protocol but only 11,000 ticks in RDMA protocol. The tick amount

taken in TCP/IP is nearly one and half times, compared with ticks taken in RDMA

protocol, as Figure 4.5 illustrates.

Figure 4.6 shows the result of transmitting data packet which is 50KB in

TCP/IP and RDMA protocol.
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Figure 4.6: Result of transmitting 50KB data packet in TCP/IP and RDMA
protocol.

When packet size is small, the resources consumed in data copy process are

less. We could move a received packet to a specific memory address by STage in

RDMA protocol. This process could be done without data copy. When transmit-

ting 5,000 packets, the system would only take 6,000 ticks in TCP/IP Protocol

but 11,000 ticks in RDMA protocol. The tick amount taken in RDMA protocol

is almost double, compared with ticks taken in TCP/IP protocol, as Figure 4.6

shows.

Put above three results we found altogether, we would have Figure 4.7 as

follows.
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Figure 4.7: Conclusive Results.

From Figure 4.7, we conclude that the system efficiency is better when we

transmit a relatively larger data packet by RDMA protocol. Yet, as far as a small

packet as concerned, traditional method, TCP/IP Protocol, would have a better

system efficiency.
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Chapter 5

Conclusions

In this thesis, we have tested what approach would possibly increase the

bandwidth in traditional network protocol environment. The RDMA protocol,

approach taken in this thesis, is advantageous of avoiding the process of data copy

as what TCP/IP usually does. However, results suggest that RDMA protocol

would benefit system efficiency only in transmitting larger data packets whereas

TCP/IP dose not. Therefore, in data cluster environment, RDMA protocol is one

solution to problems occurred in the past and would thus increase more system

efficiency.

For further thesis, two suggestions are given here. First, two APIs, uDAPL

and kDAPL, are used to port RDMA protocol to Linux platform since they offer

direct access mechanism. By combining these two APIs, we could implement

RDMA protocol to Linux, which is an open source and has been widely utilized.

Second, TCP Offload Engine (TOE) is mainly taking care of processing checksum

of data packets in NIC. If TOE deals with its works along with RDMA protocol

in NIC, system efficiency would be greatly increased.
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