
國 立 交 通 大 學

資訊科學系

碩 士 論 文

有效減少通訊回合數且向前安全的會議金鑰建立協定

Round-Efficient Conference Key Agreement
Protocols with Forward Secrecy

研 究 生：李振魁

指導教授：曾文貴 教授

中 華 民 國 九 十 三 年 六 月

有效減少通訊回合數且向前安全的會議金鑰建立協定

Round-Efficient Conference Key Agreement
Protocols with Forward Secrecy

研 究 生：李振魁 Student ：Chen-Kuei Lee

指導教授：曾文貴 Advisor：Dr. Wen-Guey Tzeng

國 立 交 通 大 學
資 訊 科 學 系
碩 士 論 文

A Thesis
Submitted to Department of Computer and Information Science

College of Electrical Engineering and Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

Round-Efficient Conference Key Agreement

Protocols with Forward Secrecy

Student: Chen-Kuei Lee Advisor: Dr. Wen-Guey Tzeng

Department of Computer and Information Science

National Chiao Tung University

Abstract

A conference key agreement protocol allows a group of participants to estab-

lish a common secret key distributively, such that all their communications

afterward are encrypted by the key. By this way, the participants can commu-

nicate securely over an open network. We propose two provably forward secure

conference key agreement protocols under the broadcast channel model. Also,

we prove its security under the Bellare-Rogaway model. The adversary that

attacks our protocols can be either passive or active. A passive adversary tries

to learn the conference key by listening to the communication of participants,

while an active adversary tries to impersonate as a legal participant or disrupt

conference key establishment among the honest participants. Further, in our

protocol, we would like to focus on both round efficiency and forward secrecy.

Key words: Conference Key, Round-efficient, Forward-secure

i

有效減少通訊回合數且向前安全的會議金鑰建立協定

學生：李 振 魁 指導教授： 曾 文 貴 博士

國立交通大學資訊科學學系﹙研究所﹚碩士班

摘 要

當一群使用者想要在公開的網路上安全的召開會議、傳送訊息時，他

們需要一把共享的金鑰來對所傳送的訊息加密，以免遭到竊聽。而會議金

鑰建立協定，就是用來建立此一共享金鑰的方法。

在金鑰建立的過程中，我們須確保其正確性及隱密性。在有部分惡意

參與者從中傳送不正確訊息的情況下，其它的參與者仍要可以正確的建立

金鑰。同時我們也保證，不合法的使用者無法從金鑰建立的過程中所交換

的訊息，得知會議的金鑰。此外，我們希望會議金鑰的建立具有向前安全

的性質，也就是若使用者的私密金鑰遭到竊取，並不會影響到之前所建立

的會議金鑰的安全性。除了正確、安全之外，金鑰建立時的效率也是很重

要的考量，所以我們希望能儘量減少其通訊的回合數。

因此在本篇論文中，我們提出了兩個能有效減少通訊回合數且具向前

安全性質的會議金鑰建立協定，並且完整的證明其安全性。

關鍵詞：會議金鑰、有效減少回合數、向前安全

 ii

誌 謝

在此感謝我的指導老師曾文貴教授，在我碩士班兩年的學習過程中，

不只讓我在學業上受益良多，更在生活上以及言行上給我許多教導。此

外，我要感謝口試委員，交大資工系蔡錫鈞教授和清大資工系孫宏民教

授，在論文上給予我許多良好的建議和指導，讓我的論文更加完善。除此

之外我要感謝實驗室同學，尚宸、兆儀、坤杉和佩琳的幫忙，實驗室學長

成康、惠龍和季穎學姊的指導，以及實驗室學弟妹們在精神方面的鼓勵。

最後，我要感謝我的家人，不論在精神或物質上都給予我極大的支持，

讓我在無後顧之憂的情況下可以順利完成學業。在此，謹以此文獻給我所

有我想要感謝的人。

 iii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Previous Works . 3

1.3 Organization . 4

2 Preliminaries 6

2.1 Assumptions . 6

2.2 Basic Schemes . 9

2.3 Zero Knowledge Proof System 13

3 Our Models 16

3.1 Communication Model . 16

3.2 Security Model . 17

3.3 Security Requirements . 22

4 The New Protocols 24

4.1 Protocol Conf-1 . 25

4.2 Protocol Conf-2 . 33

4.3 Protocol Conf-3 . 40

iv

5 Conclusion 48

5.1 Comparison . 48

5.2 Conclusion . 50

v

List of Tables

3.1 Queries available to the adversary 18

4.1 Symbols and Notions . 24

5.1 Security Comparison of Conference Key Agreement Protocols . 49

5.2 Efficiency Comparison of Conference Key Agreement Protocols . 49

vi

List of Figures

4.1 Protocol Conf-1 . 26

4.2 Protocol Conf-2 . 34

4.3 Protocol Conf-3 . 42

vii

Chapter 1

Introduction

A conference key protocol allows a group of participants to establish a com-

mon secret key such that all their communications afterward are encrypted

by the key. Consequently, the participants can communicate securely over an

open network. The conference key protocol can be broadly divided into key

distribution and key agreement protocols [27]. In key distribution protocols, a

key is selected by a chairman and then securely transmitted to the other par-

ticipants. In key agreement protocols, all participants contribute information

to compute a common shared key.

In this thesis, we will propose two provably forward secure conference key

agreement protocols under the broadcast channel model, which assures all sent

messages can be received intact. The adversary that attacks our protocols can

be either passive or active. A passive adversary (eavesdropper) tries to learn

the conference key by listening to the communication of participants, while an

active adversary (impersonator and malicious participant) tries to impersonate

as a legal participant or disrupt conference key establishment among the honest

1

participants.

Besides, communication efficiency of a conference key protocol is also an

important issue. It usually concerned with the number of messages that been

sent and received during a protocol, and the number of rounds in the protocol.

In our protocols, we would like to focus on both round efficiency and forward

secrecy.

1.1 Motivation

To communicate with other people over the network has become a trend due

to the conveniences and economic benefits provided by Internet. Many peo-

ple start to exchange messages or hold conferences over the network so that

the participants have a long distance relationship can communicate with each

other easily. There are already many applications provide such service, like

the Internet Relay Chat (IRC), NetMeeting, or MSN Messenger. But these

applications usually use a centralized server to control or forward the messages

during the meeting, therefore every participant must connect to the server to

join the conference. Once the server fails, all conferences will be interrupted.

To solve this disadvantage, we may want a distributed approach, such that

the conference can be held without much help from the server. Participants

can use the existential Internet infrastructure to broadcast the messages over

the open network, instead of forwarding the messages by a single server. But

in this case, everyone joins the multicast group may receive the broadcasted

messages. If we want to provide the security and privacy of the conference,

we must use some techniques to encrypt the messages sent over the network.

2

The Conference Key Agreement Protocol can provide such functionality by

distributively generating a secret key from the participants of the conference.

In the Conference Key Agreement Protocol, the secret key used to encrypt

the messages is contributed by every participant, instead of being designated

by a central server or chairman. Thus, no participant can influence the final

secret key. However, we must avoid the case that if some participants want to

break the establishing process of the secret key by sending malicious message,

so we include the concept of Publicly Verifiable Secret (PVS), which is a zero

knowledge proof system, and can be used to provide checking for message

consistency in our protocol.

1.2 Previous Works

Conference Key Agreement. There have been a lot of researches on

conference key agreement protocols. Most of these protocols are based on

generalization of Diffie and Hellman’s famous key exchange protocol [16]. For

instance, Ingemarsson, Tang and Wong [21] give a set of protocols, and Steiner,

Tsudik and Waidner [29] also propose three protocols. None of their basic

protocols provide authentication of the participants. Thus, these protocols are

not secure against active attacks. Though Ateniese et al. [1, 2] propose two

methods to make one of the protocols of Steiner et al. provide authenticated

group key agreement, Pereira and Quisquater [28] have described a number of

potential attacks.

Burmester and Desmedt [13] proposed a round-efficient protocol which pro-

vides forward secrecy and costs only two rounds to establish the conference

3

key. However, their protocol can not resist the attack of malicious partici-

pants. Later, Just and Vaudenay [24] modified the protocol in [13] to provide

authentication, and recently Choi et al. [15] transform the protocol in [13]

into ID-based version which works in elliptic curve groups. The protocol of

Joux [23] is the only currently known group key agreement protocol that can

be completed in a single round and still provide forward secrecy, but their

protocol can only work with three parties. In terms of fault tolerance, most

proposed protocols except [26, 30] do not have this capability, so a malicious

participant can easily spoil the conference by making other participants to

compute different conference key.

Provable security for protocols. Another important contribution in

cryptographic protocol research is the first mathematical security proof of a

simple entity authentication protocol proposed by Bellare and Rogaway [4].

Though their work discuss only the two-party case, many authors extend the

same idea to include public-key base key transport [6], key agreement protocol

[7], password-based protocol [3, 9], and conference key protocols [12, 10, 11].

1.3 Organization

The remainder of this thesis is organized as follows. The next chapter reviews

some preliminaries and basic techniques. Chapter 3 describes the commu-

nication model and the security model, and defines security properties of a

conference key agreement protocol. Chapter 4 gives a formal proof of a proto-

col proposed by Tzeng and Tzeng based on the security definitions of Bellare

4

and Rogaway, and also presents two new forward secure conference key agree-

ment protocols with their proofs. Finally, chapter 5 gives the comparison of

new protocols with existed one, and then concludes.

5

Chapter 2

Preliminaries

In this chapter, we would like to introduce some assumptions that support the

security of our protocols. We also describe the general notations of an encryp-

tion scheme, signature scheme, and forward secure version of these schemes.

Finally, we review the concept of zero knowledge proof system. Then use this

tool to construct the Publicly Verifiable Secret (PVS) protocol, which we will

use in our protocol.

2.1 Assumptions

We will remind two algorithmic assumptions in this section — Discrete Loga-

rithm Assumption (DLA) and Decisional Diffie-Hellman Assumption (DDHA).

We use the following setting for these two assumptions:

– p : a large prime number that is 2q + 1, where q is also a large prime.

– g : a generator for the subgroup Gq of all quadratic residues in Z∗
p .

6

– x ∈R S denote that x is chosen from the set S uniformly and indepen-

dently.

Discrete Logarithm Assumption (DLA)

The discrete logarithm (DL) problem is to compute x ≡ logg y (mod p) from

given (y, g, p), where p = 2q + 1, g is a generator of Gq and y ∈R Gq. In

general, we assume that DL problem is computationally infeasible. Thus, we

have the following formal description of DLA.

Assumption 1 (Discrete Logarithm Assumption)

There is no probabilistic polynomial time algorithm that can solve any signif-

icant portion of instances of x ≡ logg y (mod p), where p = 2q + 1, p and q

are both prime, g is a generator for the subgroup Gq of all quadratic residues

in Z∗
p and y ∈R Gq. That is, assume Rn be the set of n-bit prime p = 2q + 1,

for any probabilistic polynomial time algorithm A, for any large enough prime

n, for any k > 0,

Pr
p∈Rn, g,y ∈Gq

[

A(y, g, p) = logg y mod p
]

≤ 1/nk.

Decisional Diffie-Hellman Assumption (DDHA)

The Decisional Diffie-Hellman (DDH) problem is to distinguish the following

two probability ensembles R = {Rn} and D = {Dn},

7

– Rn = (g, p , gx mod p , gy mod p , gz mod p), where

- p is a randomly chosen n-bit prime with p = 2q + 1 and q is also a

prime.

- g is a randomly chosen generator of order-q subgroup Gq of Z∗
p .

- x, y, z are chosen uniformly and independently from Z∗
q .

– Dn = (g, p , gx mod p , gy mod p , gxy mod p), where

- p is a randomly chosen n-bit prime with p = 2q + 1 and q is also a

prime.

- g is a randomly chosen generator of order-q subgroup Gq of Z∗
p .

- x and y are chosen uniformly and independently from Z∗
q .

In cryptology, we assume that probability ensembles R and D are not

polynomially distinguishable. Therefore, we have the following assumption.

Assumption 2 (Decisional Diffie-Hellman Assumption)

Let p = 2q + 1, p and q are both primes, g is a generator for the subgroup Gq

of all quadratic residues in Z∗
p and x, y, z ∈R Gq − {1}. Then the following

two random-variable tuples Dn = (g, p , gx, gy, gxy) and Rn = (g, p , gx, gy, gz)

are computationally indistinguishable. That is, for any probabilistic polynomial

time algorithm A, for any large enough prime n, for any k > 0,

|Pr [A(Rn) = 1] − Pr [A(Dn) = 1]| ≤ 1/nk.

8

2.2 Basic Schemes

In the new protocol that we will present later, we reduce its security to the

underlaying public key encryption and signature schemes. So we describe the

general notations of an encryption scheme, signature scheme, and forward

secure version of these schemes here.

Secure Encryption Scheme

Let k be the security parameter. A public key encryption scheme C =

(E.Gen, E.Enc, E.Dec) consists of three algorithms.

– The key generation algorithm E.Gen is a polynomial time probabilistic

algorithm, which on input 1k, output a pair (e, d) of matching public and

private keys, respectively.

– The encryption algorithm E.Enc(·) is a polynomial time probabilistic

algorithm, which takes a public key e and a message m chosen from a

message space M associated to e, and returns a ciphertext c. We denote

this as c ← E.Enc(e,m).

– The decryption algorithm E.Dec(·) is a polynomial time deterministic

algorithm, which takes a private key d and a ciphertext c, and returns

the corresponding plaintext m. We denote this as m ← E.Dec(d, c) and

assume E.Dec(d, E.Enc(e,m)) = (m) for every (e, d) ← E.Gen(1k).

We use the security definition called semantic security that proposed by

Goldwasser and Miicali [18]. For any probabilistic polynomial time adversary

9

A, he plays the IND-CCA game with the challenger. We define the advantage

of the adversary playing the IND-CCA game as AdvA(k) = 2 Pr [b′ = b] − 1.

We say that the encryption scheme C is secure if the adversary’s advantage is

negligible.

Secure Signature Scheme

Let k denote the security parameter. A digital signature scheme S =

(S.Gen,S.Sig,S.Ver) consists of three algorithms.

– The key generation algorithm S.Gen is a polynomial time probabilistic

algorithm, which on input 1k, output a pair (e, d), where e is the (public)

verification key and d is the corresponding (private) signing key.

– The signing algorithm S.Sig(·) is a polynomial time probabilistic al-

gorithm, which takes a signing key d and a message m chosen from

a message space M , and outputs a signature σ. We denote this as

σ ← S.Sig(d,m).

– The verification algorithm S.Ver(·) is a polynomial time deterministic

algorithm, which takes a verification key e, a message m and its cor-

responding signature σ, and outputs 1 if the signature is valid, other-

wise outputs 0. We assume that S.Ver(e,m, S.Sig(d,m)) = 1 for every

(e, d) ← S.Gen(1k).

We say a signature scheme is secure if it is computationally infeasible for

any adversary to forge a signature on any message (existential forgery) even

under adaptive chosen-message attacks [20].

10

Forward Secure PKI

Forward Secure Encryption Scheme Let k denote the security parameter,

N be the total number of time periods. A public-key key-evolving encryption

scheme FE = (FE.Gen,FE.Upd,FE.Enc,FE.Dec) consists of four algorithms.

– The key generation algorithm FE.Gen is a polynomial time probabilistic

algorithm, which on input 1k and N , output a public key PK and an

initial secret key SK0.

– The key update algorithm FE.Upd(·) is a polynomial time probabilistic

algorithm, which takes a public key PK and an index i < N of the

current time period, and the associated secret key SKi, and returns

the secret key SKi+1 for the following time period. This is denoted as

SKi+1 ← FE.Upd(PK, i, SKi)

– The encryption algorithm FE.Enc(·) is a polynomial time probabilistic

algorithm, which takes a public key PK, an index i ≤ N of a time

period, and a message m, and returns a ciphertext c. We denote this as

c ← FE.Enc(PK, i,m).

– The decryption algorithm FE.Dec(·) is a polynomial time deter-

ministic algorithm, which takes a public key PK, an index i ≤

N of the current time period, the associated secret key SKi,

and a ciphertext c, returns the corresponding plaintext m. This

is denoted as m ← FE.Dec(PK, i, SKi, c), and we assume that

FE.Dec(PK, i, SKi, FE.Enc(PK, i,m)) = (m) for any index i ∈ [0, N),

and for every (PK, SK0) ← FE.Gen(1k, N).

11

We use the security notion of forward-secure against chosen-ciphertext at-

tacks (fs-CCA) proposed in [14]. The advantage of the adversary playing the

fs-CCA game is defined as AdvA(k) = 2 Pr [b′ = b]− 1. We say that the public-

key key-evolving encryption scheme FE is secure if the adversary’s advantage

is negligible.

Forward Secure Signature Scheme Let k denote the security parameter,

N be the total number of time periods. A public-key key-evolving digital

signature scheme FS = (FS.Gen,FS.Upd,FS.Sig,FS.Ver) consists of four

algorithms.

– The key generation algorithm FS.Gen is a polynomial time probabilistic

algorithm, which on input 1k and N , and outputs a public key PK and

an initial secret key SK0.

– The key update algorithm FE.Upd(·) is a polynomial time probabilistic

algorithm, which takes an index i < N of the current time period, and

the associated secret key SKi, and returns the secret key SKi+1 for the

following time period. This is denoted as SKi+1 ← FS.Upd(i, SKi)

– The signing algorithm FS.Sig(·) is a polynomial time probabilistic algo-

rithm, which takes a signing key SKi, an index i ≤ N of a time period,

and a message m, and returns a signature σ for time period i. We denote

this as (i, σ) ← FS.Sig(SKi, i,m).

– The verification algorithm FS.Ver(·) is a polynomial time deterministic

algorithm, which takes a public key PK, a candidate signature (i, σ),

12

and a message m, then outputs 1 if the signature is valid, otherwise

outputs 0. We assume that FS.Ver(PK,m, FS.Sig(SKi,m)) = 1 for

every message m and time period i ∈ [0, N).

2.3 Zero Knowledge Proof System

In a Conference Key Agreement Protocol, since we can not assume that all

participants are honest, we must provide some methods to avoid the malicious

participants sending invalid messages to interfere the key agreement procedure.

The concept of zero knowledge proof system proposed by Goldwasser et al. [19]

can achieve this goal. Zero knowledge proofs are proofs that gives a conviction

and reveals nothing about the validity of the assertion being proven. It must

satisfy the properties: completeness, soundness, and zero knowledge. Further,

we can use this tool to construct a Publicly Verifiable Secret (PVS) protocol,

which one user can send a secret to the other participants while everyone can

verify that all participants receive the same secret. In this section, we review

the PVS protocol presented by Tzeng and Tzeng [31], and give a more general

form of PVS protocol that use any secure encryption scheme.

Publicly Verifiable Secret Protocol (PVS)

Assume that (xi, yi) is the private and public key pair of participant Ui. If

participant Ui wants to send to secret gk
i mod q to all the other participants in

a public verifiable way, he broadcasts ui,j = yki

j mod p , for i ≤ j ≤ n, where

ki ∈R Zq. Another participant Uj can obtain the shared secret gki mod p from

13

Ui by computing (Ui,j)
x−1

j mod p . The PVS proof system shows that

– logy1
ui,1 ≡ logy2

ui,2 ≡ · · · ≡ logyn
ui,n (mod p) , and

– Ui knows the exponent ki = logyj
ui,j (mod p) , for 1 ≤ j ≤ n.

with negligible error probability 1/2t according to security parameter t. The

PVS proof system is:

1. P → V : bj = yr
j mod p , 1 ≤ j ≤ n, where r ∈R Zq ;

2. V → P : c ∈R [0..2t − 1] ;

3. P → V : w = r − cki mod q ;

4. V checks whether bj = yw
j · uc

i,j mod p , 1 ≤ j ≤ n.

Theorem 1 ([31]) Assume the DLA. The PVS proof system above is com-

plete, sound and zero knowledge.

Non-interactive PVS

We want a proof system to provide fault tolerance in our protocol, but for

efficiency we want it to be non-interactive. We give some basic ideas of the non-

interactive proof system in the following. In a non-interactive proof system,

the prover P produces a string to meet all the properties of an interactive

proof system without interacting with the verifier V . Hence, we need a collision

resistant hash function H to replace the verifier’s role in the original interactive

proof system (i.e. generating the challenge c). We achieve this goal by applying

well known technique proposed by Feige et al. [17]. We describe the non-

interactive PVS (NIPVS) used later as follows:

14

– The prover Ui randomly selects r ∈ Zq , and computes

c = H(g‖y1‖ · · · ‖yn‖ui,1‖ · · · ‖ui,n‖y
r
1‖ · · · ‖y

r
n),

where ‖ is the concatenation operation of strings.

– The prover Ui sets w = r − cki, and sends (c, w) as his proof.

– The verifier checks (c, w) sent by Ui for NIPVS satisfies

c = H(g‖y1‖ · · · ‖yn‖ui,1‖ · · · ‖ui,n‖y
w
1 uc

i,1‖ · · · ‖y
w
n uc

i,n),

then he can assure that logy1
ui,1 ≡ logy2

ui,2 ≡ · · · ≡ logyn
ui,n (mod p) ,

which means all participants receive the same secret gki .

Zero Knowledge Proof for any NP Problem

Based on standard intractability assumptions, it is already known how to con-

struct a non-interactive zero knowledge proof for any NP-set [25]. Thus, we

can assume that we can find a non-interactive zero knowledge proof for the

following problem.

More generally, if we assume that the secure encryption scheme exists, and

again, if the participant Ui wants to send the secret value gk
i mod q to all

the other participants in a public verifiable way. Then he broadcasts ui,j =

Enc(yj, g
ki) , for i ≤ j ≤ n, where ki ∈R Zq. We can use the PVS proof system

to shows that

– Dec(y1, ui,1) ≡ Dec(y2, ui,2) ≡ · · · ≡ Dec(yn, ui,n) , and

– Ui knows the secret gki = Dec(yj, ui,j) , for 1 ≤ j ≤ n.

And, we use NIP(Consistence of gki) to denote this proof system in our pro-

tocol.

15

Chapter 3

Our Models

We introduce the communication model and the security model used in our

protocol as well as the precise security requirement of a conference key agree-

ment protocol as follows.

3.1 Communication Model

The communication model we use later for distributed security was first pro-

posed by Bellara and Rogaway [4, 5], who give a formal specification on entity

authentication and authenticated key distribution protocols. We will use its

refined version [3], which is more suitable for the multi-party environment.

Protocol Participants. In this communication model, we have a finite

and nonempty set ID = {U1, . . . , UN} of all users in system, and the total

number of users N is polynomial in the security parameter k. Each user has

an unique identifier U from the set ID, where user U ∈ ID is named by a

16

fixed length string, and a group of users who want to establish a conference

key is called the set of participants.

Communication Environment. In our communication model, all users

are connected by a broadcast network, which is an unauthenticated broadcast

channel, and there is no private channel existed between users. All messages

sent cannot be altered, blocked or delayed, that is, the adversary faithfully re-

lays flows between participants. Nevertheless, the attacker can inject malicious

messages. For simplicity, we assume that the network is fully synchronous,

which means all users send their messages to the other recipients (or receive

messages from the other senders) simultaneously in a single round.

Long-Lived Keys. Each user in system has a long-lived secret key, and a

corresponding public key, obtained at the beginning of the protocol using a

key distribution algorithm Gen. The system also has a public directory that

can be accessed by everyone, which contains the system’s public parameters

and each user’s public key.

3.2 Security Model

For security, we assume that all communication among interacting parties are

controlled by the adversary. The main idea is to model instances of users

via oracles available to the adversary, modeling various kinds of attacks by

appropriate queries to these oracles, having some notion of partnering, and

requiring semantic security of the session key via Test queries.

17

Adversary. The adversary A is a probabilistic polynomial-time Turing ma-

chine that controls all the communications during the protocol runs, and does

this by interacting with a set of oracles. Oracle Πs
U represents the actions

of participant U in the protocol run indexed by instance s, each participant

may run many instances at the same time, and interactions with the adversary

are called oracle queries. We now explain each query that is available to the

adversary, and summarize it in Table 3.1.

(1) Send(U, s,m) — This query allows the adversary to send message m to

oracle Πs
U . The oracle runs the protocol normally, and sends back the

response. If the received message m is not of the expected format, the

oracle may simply halt. Otherwise, the adversary can know whether the

oracle accepts the session key or not, as well as the session ID and the

partner ID. The adversary can use this query to initiate a new protocol

instance by sending a special message m=Init to a participant. This query

models the possibility of an adversary A causing an instance to come into

existence in the real-world, for that instance to receive communications

faked by A, and to respond what a honest participant does in protocol.

Send(U, s,m) Send message m to oracle Πs
U

Reveal(U, s) Reveal session key accepted by Πs
U

Corrupt(U) Reveal the long-lived secret key hold by U

Test(U, s) Ask a challenge to distinguish session key accepted by Πs
U

Table 3.1: Queries available to the adversary

18

(2) Reveal(U, s) — This query models the adversary’s ability to get session

keys. In real-world, the session key might be lost for many kinds of reasons,

like hacking or cryptoanalysis, thus loss of a session key should not be

damaging to other sessions. If an oracle Πs
U has accepted, holding some

session key sk, then this query returns sk to the adversary. We call an

oracle is opened if it has been the object of a Reveal query.

(3) Corrupt(U) — This query tries to model the insider attacks by adversary,

as the dishonest participant tries to disrupt the process of key agreement in

real-world. This query returns the oracle’s long-lived key to the adversary,

thus the adversary can then control the behavior of participant U . We call

a participant is corrupted if it has been the object of a Corrupt query.

(4) Test(U, s) — Once the oracle Πs
U has accepted, holding a session key sk,

then the adversary can ask for a challenge to distinguish sk from a random

key. The oracle will flips a coin b, if b = 1 then sk is returned, otherwise a

random string drawn from the same distribution as session key is returned.

This query is asked just once by the adversary.

(5) h(m) — Finally, this is a collision-resistant ideal hash function, which is

used in random oracle model. Not only the adversary, but the protocol

and the long-lived key generator may depend on this hash function. To

avoid the replay attack, we always compute it involve with session ID SID

(or session token ST).

Oracle Partnering. There are various ways to define partner oracles in

Bellare-Rogaway model. In this thesis, we use the adaptations from [3]. Fix

19

a protocol P , an adversary A, and during the protocol execution, we say that

oracles Π i
U and Π i′

U ′ are partnered if both oracles accepted, holding the same

session key, session ID and partner ID. In our protocol, we assume that the

partner ID is the concatenation of each user’s identifier U in set of participants

U . Thus, we define the partnering of a set of oracles formally as follow.

Definition 3 A set of oracles are partnered if the following conditions hold:

– They agree on the same set of participants U ⊆ ID.

– They have accepted with the same sk, SID and PID.

Oracle Status. As we mention above, we call an oracle is opened if it has

been the object of a Reveal query, and we call an oracle is corrupted if it has

been the object of a Corrupt query. Besides, during the protocol runs, an

oracle may accept at any time, which means the oracle has hold a particular

session key (sk), session ID (SID) and partner ID (PID). The session key sk is

used to protect the following communication during conference. The SID is an

identifier which can be used to uniquely name the sequence of conference ses-

sion established by a participant, while the PID names the set of participants

which the instance believes it has just communicate with. The SID and PID

are not secret, so the adversary can know these information. Oracle also has

a status called terminate, which means oracle has what it wants, and won’t

send any further messages. An instance may wish to accept now, and termi-

nate later. As in real-world, a participate believes he is now holding a correct

session key, but before using that key, he may want to wait for a confirmation

message to terminate.

20

Freshness. We have two notions of freshness — with and without forward

secrecy, both depend on the status of oracle. Their formal definition are as

follows.

Definition 4 (Basic Freshness) We say that an oracle Πs
U is fresh at end

of its execution if:

– Πs
U has accepted with set of participants Π∗.

– Πs
U and all other oracles in Π∗ are unopened.

– All participants within Π∗ are uncorrupted.

Definition 5 (Freshness with forward secrecy) We say that an oracle

Πs
U is fs-fresh at end of its execution if:

– Πs
U has accepted with set of participants Π∗.

– Πs
U and all other oracles in Π∗ are unopened.

– All participants within Π∗ are uncorrupted before Test query.

Security. We define the security of the protocol by the following game played

by adversary A and a set of oracles Πs
U for some U = {U1, . . . , Un}. At first, the

key generation function Gen will assign the long-lived private key to each user

and publish the system security parameters, as well as all user’s public key.

Then adversary A(1k) starts interacting with oracles and making any queries

of Send, Reveal, or Corrupt. At some stage during execution, A does a Test

query on a fresh (or fs-fresh) oracle Πs
U to get a return challenge sk′. Then

the adversary may continue to make other queries. Finally, he terminates and

21

outputs a bit b′. If the adversary guesses that sk′ is the corresponding session

key which Πs
U is involved, then outputs b′ = 1, else outputs b′ = 0, and we say

that the adversary wins the game if b′ = b. Assume Success be the event that

A wins the game, his advantage is AdvA(k) = 2 Pr [Success] − 1.

3.3 Security Requirements

From [31, 8], we can summarize that a conference key agreement protocol

should meet the following requirements:

– Authentication: an outsider of set of participants cannot impersonate

as a legal participant.

– Validity: in the presence of a benign adversary, all honest partner ora-

cles accept the same session key.

– Fairness: the session key should be determined unbiasedly by all honest

participants together.

– Fault tolerance: no coalition of malicious participants can spoil the

conference by making honest participants compute different session key.

– Indistinguishability: for every probabilistic polynomial time adversary

A, the advantage AdvA(k) to distinguishing test keys is negligible.

– Forward secrecy: exposure of the long-lived secret key does not enable

an adversary to break the session key established at any prior time.

Then we derived a formal definition of secure conference key agreement

protocol, and the version that with forward secrecy.

22

Definition 6 We say that a protocol P is a secure conference key agreement

protocol if the following properties are satisfied: Authentication, Validity, Fair-

ness, Fault tolerance, and Indistinguishability.

Definition 7 A protocol P is a forward secure conference key agreement pro-

tocol if the following properties are satisfied: Authentication, Validity, Fair-

ness, Fault tolerance, Indistinguishability, and Forward secrecy.

23

Chapter 4

The New Protocols

We start to describe three conference key agreement protocols. First one is

an adaptation from Tzeng and Tzeng’s protocol [31], and then two new pro-

tocols with forward secrecy will be presented. Some notions and symbols used

throughout our protocols are provided in Table 4.1.

Symbol Description

P The protocol

A The adversary

U The set of participants involved in protocol

Πs
U The s-th instance of participant U

SKi (xi) Long-lived (secret) key of user Ui

PKi (yi) Public key of user Ui

SID Session ID

PID Partner ID

ST Session token

sk Session key (Conference key)

Table 4.1: Symbols and Notions

24

4.1 Protocol Conf-1

Protocol. Let U = {U1, . . . , Un} be the initial participant set, and each

participant Ui, 1 ≤ i ≤ n, knows U . Without loss of generality, we assume

that U1 is the initiator who calls for a conference for the set U and sets the

session token ST. Before executing this protocol, each participant are given a

public key and private key pair by running algorithm Gen, and the key pair

(PKi, SKi) = (yi, xi) satisfies yi = gxi mod p . Let h be a collision-resistant

hash function, which is used in the modified ElGamal signature scheme, and

it always computed involving with session token ST, which is unique for each

conference session to prevent the replay attack.

In our protocol, each participant Ui first select a random value ki and

compute his partial secret gki mod p, then transfers this secret to the other

participants by sending ui,j = yki

j mod p, 1 ≤ j ≤ n, thus ensure that only

the participant Uj ∈ U can extract the partial secret gki mod p using his secret

key xi. Ui also sends NIPVS(g, y1, . . . , yn, ui,1, . . . , ui,n) to convincing the other

participants that all the other participants receive the same partial secret,

along with the signature (ri, si) of his partial secret for authentication.

After receiving messages from the other participants, Ui starts to check

whether each participant Uj, j 6= i, sends the valid messages and authenti-

cates Uj’s identity. If the check fails, Ui excludes Uj from the set of honest

participants. Finally, Ui computes the conference key according to the set of

honest participants. We now formalize our protocol in Figure 4.1.

25

– System parameters are g, p , q, and hash function h(·)

– Each participant Ui holds his secret key xi, and can access all other
participants public keys yj, for 1 ≤ j ≤ n.

The participant Ui does the following two steps:

Step 1. Message Sending

(a) Randomly select ki, Ri ∈ Zq.

(b) Broadcast ui,j = yki

j mod p, for all j 6= i.

(c) Broadcast NIPVS(g, y1, . . . , yn, ui,1, . . . , ui,n).

(d) Broadcast signature of partial secret, Sig(gki) = (ri, si)
where ri = gRi mod p and
si = R−1

i (h(SID, ri, g
ki) − ri xi) mod q.

Step 2. Conference Key Computing

(a) Compute cj = (uj, i)
x−1

i mod p, for all j 6= i.

(b) Check (rj, sj) is the correct signature1 of cj, for all j 6= i.

(c) Verify NIPVS(g, y1, . . . , yn, uj,1, . . . , uj,n).

(d) If participant Uj’s message passes the check in previous
two steps, then add Uj to honest participant set U i.

(e) Compute the conference key sk of session SID, where

sk =
∏

j∈Ui

cj mod p = gkj,1+···+kj,m ,∀j ∈ U i

1Set zj = h(SID, ri, g
ki), and check whether gzj = y

rj

j r
sj

j .

Figure 4.1: Protocol Conf-1

26

Security Analysis. For security, we prove that protocol Conf-1 meets all

the security requirements defined in previous chapter, except for the forward

secrecy. First of all, we show that this protocol is validity, fairness, and fault

tolerance against malicious participants in Lemma 1. Then we follow Bellare

and Rogaway’s model closely to prove its authentication and indistinguisha-

bility in Lemma 2 and Lemma 3 respectively. Last, we conclude our proofs in

Theorem 2.

Lemma 1 (Fault tolerance, Validity and Fairness [31]) All honest par-

ticipants who follow the protocol compute a common conference key with an

overwhelming probability no matter how many participants are malicious. Fur-

thermore, the common conference key is determined by the honest participants

unbiasedly.

Proof. For fault tolerance, we show that all honest participants will com-

pute the same honest participant set in a high probability. Because all

users only connected with broadcast network in our model, every partici-

pant receives the same messages. If a malicious participant Ui wants to send

(y1, . . . , yn, ui,1, . . . , ui,n) such that not all logyj
ui,j, 1 ≤ j ≤ n, are equal, the

probability that he can construct NIPVS(g, y1, . . . , yn, ui,1, . . . , ui,n) is at most

T/q, which is negligible, where T is Ui’s runtime. Using this tool, all hon-

est participants can exclude the malicious participants with high probability,

and an honest participant who follow the protocol would be accepted by other

honest participants as “honest” with high probability, too. Thus, any honest

participant will not be excluded by any other honest participants, and any ma-

27

licious participant who tries to cheat other participants to accept a different

partial secret will be excluded by all honest participants. Eventually, all honest

participants who follow our protocol will compute the same honest participant

set with high probability.

For validity, we show that all honest participants compute the same con-

ference key. Since we provide fault tolerance in our protocol, each honest par-

ticipant Ui would compute the same participant set U i, for 1 ≤ i ≤ m, then Ui

uses his private key xi to compute the partial key cj = (uj, i)
x−1

i = gkj mod p,

for all j 6= i. Therefore, all users in honest participant set derive the same

session key with an overwhelming probability.

For fairness, our session key is the multiplication of all partial key ci, for

1 ≤ i ≤ m, no one can biased this value since each honest participant choose

ki uniformly and independently over Zq. Thus, no honest participants can bias

the session key in our protocols. 2

Among many extensions of Bellare and Rogaway’s model, we follow Bres-

son et al. [12] to divide the proof into two cases, the adversary A breaks our

protocol either by forging a signature with respect to some participant’s sign-

ing key, or without forging a signature. For authentication, we show that if A

gains her advantage by forging a signature, we use A to construct a signature

forging algorithm F against signature scheme S, by guessing which partici-

pant that A will choose to producing a forgery during the protocol runs. For

indistinguishability, if A could break the protocol without altering the content

of the flows (i.e. forging a signature of some messages), then we can construct

an algorithm D to solve an instance of the DDH problem.

28

Lemma 2 (Authentication) Assume the random oracle model. If an out-

sider A can impersonate as a legal participant Ui by forging his signature with

a non-negligible advantages ǫ within time t, being allowed to query the signing

oracle qs times. Then we can use A to construct a signature forging algorithm

F against signature scheme S, which succeeds with a non-negligible advantages

ǫ/n within time t′ ≤ t + qsT (k).

Proof. We use A to construct a forging algorithm F for the signature scheme

S. Given some participant’s public key e in signature scheme S and accessed

to a signing oracle for the corresponding secret key d. The successful F must

output a valid signature1 (m,σ) for some message m, which was not asked to

the signing oracle previously. The forger F does as following:

1. Setup

(a) Randomly choose a participant U ′ ∈ U .

(b) For participant Ui = U ′, assign the given e as his public key yi.

(c) For other participants Ui 6= U ′, runs key generating function Gen of

protocol to assign user Ui’s key pair (yi, xi), where yi = gxi .

2. F runs A as subroutine

F answers A’s queries as follows, and maintains a list H for hash queries.

– Send(Ui, s,m) : F outputs what he should output, follows the protocol.

When he needs to generate the signature of partial secret Sig(gki) for

selected user Ui = U ′, he queries the signing oracle. Otherwise, he can

sign by himself because he owns all keys.

– Reveal(Ui, s) : returns sk that Πs
Ui

was involved.

1i.e. S.Ver(e,m, σ) = 1

29

– Corrupt(Ui) : If Ui = U ′ then F fails, else returns participant Ui’s long-

lived secret key xi.

– h(m) : If (m,h(m)) is not in F ’s list H, returns a random string r and

adds (m, r) to the list, else returns message m’s corresponding hash value.

3. Output

During the execution of A, if A makes a query Send(· , (m,σ)), where σ is

a valid signature on m, respect to yi for Ui = U ′, and m was not queried to

signing oracle previously, then F outputs (m,σ) as his forgery. Otherwise,

when A terminates, the forger F fails.

At the beginning, we assume that A can forge a signature with a non-

negligible advantages ǫ within time t. And the probability of this forgery

respected to our chosen participant U ′ is at least 1/n. Thus the forger F

will succeed with probability Succcma
S (F) ≥ ǫ/n, and the running time is

t′ ≤ t + qsT (k), where T (k) is the running of querying a signing oracle. 2

Lemma 3 (Indistinguishability) Assume the random oracle model. If an

adversary A could break the protocol without altering the content of the flows,

with advantages at least ǫ within time t. Then we can construct an algorithm

D to solve an instance of the DDH problem with advantages ǫ/n within time

t′ ≤ t + qhT (k).

Proof. Given an instance of the DDH problem (g, p , u1, u2, u3), we show

that the algorithm D can distinguish the input (g, p , u1, u2, u3) ∈ Dn from

(g, p , u1, u2, u3) ∈ Rn with non-negligible advantages, while runs A as subrou-

tine. It does as following:

30

1. Setup

(a) Randomly choose two participants U ′, U ′′ ∈ U .

(b) For participant Ui = U ′′, assign the given u1 as his public key yi.

(c) For other participants Ui 6= U ′′, assigns user Ui’s key pair as follows:

random ri ∈ Zq, and set (yi, xi) = (gri , ri), thus his key pair is in correct

form yi = gxi .

2. D runs A as subroutine

D answers A’s queries as follows, and maintains a list H for hash queries.

– Send(Ui, s,m) : D does following steps

i. If Ui = U ′, then set ci = u2, else random ki ∈ Zq and set ci = gki .

ii. If Ui = U ′, then set ui,j = u3 for Uj = U ′′ and ui,j = u
rj

2 for

Uj 6= U ′, U ′′, else set ui,j = yki

j , for all j 6= i.

iii. Forges the NIPVS by hash oracle. Randomly selects (c, w) and sets

H(g‖y1‖ · · · ‖yn‖ui,1‖ · · · ‖ui,n‖y
w
1 uc

i,1‖ · · · ‖y
w
n uc

i,n) = c in list H.

iv. If Ui = U ′′, D needs to forge the signature of ci, he randomly selects

a ∈ Zq and b ∈ Z∗
q , then returns (ri, si) = (gayb

i ,−rib
−1), and set

H(SID, ri, u2) = −riab−1 in list H. Otherwise he can sign by himself

because he generates all other participants’ key.

– Reveal(Ui, s) : Returns sk that Πs
Ui

was involved. Though D does not

know Ui’s secret key when Ui = U ′′, he can compute the session key sk

from other participants under his control.

– Corrupt(Ui) : If Ui = U ′′ then D fails, else returns participant Ui’s long-

lived secret key xi.

31

– Test(Ui, s) : Flips a coin b ∈ {0, 1}. If b = 1 then returns the sk =

u2 ·
∏

gkj , for j ∈ U i, else returns a random string drawn from the same

distribution as session key.

– h(m) : If (m,h(m)) is not in F ’s list H, returns a random string r and

adds (m, r) to the list, else returns message m’s corresponding hash value.

3. Output

Eventually, adversary A will output a guess b′, and wins the game if b = b′.

If adversary A wins, then the distinguisher D outputs b, otherwise output

a random bit b′′ ∈ {0, 1}.

At the beginning, we assume that break the protocol without altering the

content of the flows, with advantages at least ǫ within time t. And the prob-

ability that D gives the random sk is 1/2. The probability that adversary

A uses messages sent to U ′′ distinguishing real sk is at least 1/n. Thus the

distinguisher D will succeed with probability SuccDDH(D) ≥ 1/2 + ǫ/n , and

the running time is t′ ≤ t + qhT (k), where T (k) is the running of querying a

hash oracle. 2

Theorem 2 Assume the random oracle model and broadcast channel. The

protocol Conf-1 meets all security requirements: Authentication, Validity,

Fairness, Fault tolerance, and Indistinguishability.

Proof. Firstly we show the protocol is validity, fairness, and fault tolerance

in Lemma 1. Then its authentication proved in Lemma 2, and finally the

indistinguishability is proved in Lemma 3. Thus we can conclude that the

protocol meets all security requirements as mentioned. 2

32

4.2 Protocol Conf-2

Though the protocol Conf-1 is round-efficiency, it does not provide forward

secrecy. In protocol Conf-2, we add an extra round to exchange a temporary

random public key. In this way, our protocol can provide forward secrecy.

Protocol. Let U = {U1, . . . , Un} be the initial participant set, and each

participant Ui, 1 ≤ i ≤ n, knows U . Without loss of generality, we assume

that U1 is the initiator who calls for a conference for the set U and sets the

session token ST. Before executing this protocol, each participant are given a

public key and private key pair by running algorithm Gen, and the key pair

(PKi, SKi) = (yi, xi) satisfies yi = gxi mod p . Let h be a collision-resistant

hash function, which is used in the modified ElGamal signature scheme, and

it always computed involving with session token ST, which is unique for each

conference session to prevent the replay attack.

In this protocol, each participant Ui first selects a random value vi and

compute his temporal public key Yi = yvi

i mod p, then transfers this key to

the other participants along with its signature. After all participants can

authenticate the new public key, then the set of participants in conference

using this temporal public key to run Conf-1. We formalize this protocol in

Figure 4.2.

Security Analysis. For security, we prove that protocol Conf-2 meets all

the security requirements defined in previous chapter. First of all, we show

that this protocol is validity, fairness, and fault tolerance against malicious

33

– System parameters are the same as Conf-1.

The participant Ui does the following four steps:

Step 1. Temporal Public Key Exchange

(a) Randomly select R′
i ∈ Zq and vi ∈ Z∗

q .

(b) Broadcast Yi = yvi

i mod p.

(c) Broadcast signature of temporal key, Sig(Yi) = (r′i, s
′
i)

where r′i = gR′

i mod p and
s′i = R′−1

i (h(SID, r′i, Yi) − r′i xi) mod q.

Step 2. Temporal Public Key Verification

(a) Check (r′j, s
′
j) is the correct signature of Yj, for all j 6= i.

Step 3. Message Sending

(a) Randomly select ki, Ri ∈ Zq.

(b) Broadcast ui,j = Y ki

j mod p, for all j 6= i.

(c) Broadcast NIPVS(g, Y1, . . . , Yn, ui,1, . . . , ui,n).

(d) Broadcast signature of partial secret, Sig(gki) = (ri, si)
where ri = gRi mod p and
si = R−1

i (h(SID, ri, g
ki) − ri xi) mod q.

Step 4. Conference Key Computing

(a) Compute cj = (uj, i)
(xi vi)

−1

mod p, for all j 6= i.

(b) Check (rj, sj) is the correct signature of cj, for all j 6= i.

(c) Verify NIPVS(g, Y1, . . . , Yn, uj,1, . . . , uj,n).

(d) If participant Uj’s message passes the check in previous
two steps, then add Uj to honest participant set U i.

(e) Compute the conference key sk of session SID, where

sk =
∏

j∈Ui

cj mod p = gkj,1+···+kj,m ,∀j ∈ U i

Figure 4.2: Protocol Conf-2

34

participants in Lemma 4. Then we follow Bellare and Rogaway’s model to

prove its authentication and indistinguishability in Lemma 5 and Lemma 6

respectively. Finally, conclude our proofs in Theorem 3. The forward secrecy

is achieved by using the fs-fresh oracle definition, and we will explain them

later.

Lemma 4 (Fault tolerance, Validity and Fairness) All honest partici-

pants who follow the protocol compute a common conference key with an over-

whelming probability no matter how many participants are malicious. Fur-

thermore, the common conference key is determined by the honest participants

unbiasedly.

Proof. In this protocol, all user can authenticate the temporal public keys,

since we use a the modified ElGamal signature scheme to sign the temporal

key. When the temporal keys are authenticated, the rest steps are identical

to the protocol Conf-1, thus its fault tolerance, validity and fairness can be

proved similarly. 2

Here, we also follow Bresson et al. [12] to divide the proof into two cases,

the adversary A breaks our protocol either by forging a signature with respect

to some participant’s signing key, or without forging a signature. For authen-

tication, we show that if A gains her advantage by forging a signature, we

use A to construct a signature forging algorithm F against signature scheme

S, by guessing which participant that A will choose to producing a forgery

during the protocol runs. For indistinguishability, if A could break the proto-

col without altering the content of the flows (i.e. forging a signature of some

35

messages), then we can construct an algorithm D to solve an instance of the

DDH problem.

For forward secrecy, we use the different definition on fresh oracle, which

called fs-fresh as we mentioned in section 3.2. In this definition, the adversary

A can make a Corrupt query on U after asking a Test query on U , and since

the query Corrupt(U) only returns participant U ’s long-lived secret key, it will

not disclose the information of session key established previously in forward

secure setting.

Lemma 5 (Authentication) Assume the random oracle model. If an out-

sider A can impersonate as a legal participant Ui by forging his signature with

a non-negligible advantages ǫ within time t, being allowed to query the signing

oracle qs times. Then we can use A to construct a signature forging algorithm

F against signature scheme S, which succeeds with a non-negligible advantages

ǫ/n within time t′ ≤ t + qsT (k).

Proof. We use A to construct a forging algorithm F for the signature scheme

S. Given some participant’s public key e in signature scheme S and accessed

to a signing oracle for the corresponding secret key d. The successful F must

output a valid signature2 (m,σ) for some message m, which was not asked to

the signing oracle previously. The forger F does as following:

1. Setup

(a) Randomly choose a participant U ′ ∈ U .

(b) For participant Ui = U ′, assign the given e as his public key yi.

2i.e. S.Ver(e,m, σ) = 1

36

(c) For other participants Ui 6= U ′, runs key generating function Gen of

protocol to assign user Ui’s key pair (yi, xi), where yi = gxi .

2. F runs A as subroutine

F answers A’s queries as follows, and maintains a list H for hash queries.

– Send(Ui, s,m) : F outputs what he should output, follows the protocol.

When he needs to generate the signature of partial secret Sig(gki) for

selected user Ui = U ′, he queries the signing oracle. Otherwise, he can

sign by himself because he owns all keys.

– Reveal(Ui, s) : returns sk that Πs
Ui

was involved.

– Corrupt(Ui) : If Ui = U ′ then F fails, else returns participant Ui’s long-

lived secret key xi.

– h(m) : If (m,h(m)) is not in F ’s list H, returns a random string r and

adds (m, r) to the list, else returns message m’s corresponding hash value.

3. Output

During the execution of A, if A makes a query Send(· , (m,σ)), where σ is

a valid signature on m, respect to yi for Ui = U ′, and m was not queried to

signing oracle previously, then F outputs (m,σ) as his forgery. Otherwise,

when A terminates, the forger F fails.

At the beginning, we assume that A can forge a signature with a non-

negligible advantages ǫ within time t. And the probability of this forgery

respected to our chosen participant U ′ is at least 1/n. Thus the forger F

will succeed with probability Succcma
S (F) ≥ ǫ/n, and the running time is

t′ ≤ t + qsT (k), where T (k) is the running of querying a signing oracle. 2

37

Lemma 6 (Indistinguishability) Assume the random oracle model. If an

adversary A could break the protocol without altering the content of the flows,

with advantages at least ǫ within time t. Then we can construct an algorithm

D to solve an instance of the DDH problem with advantages ǫ/n within time

t′ ≤ t + qhT (k).

Proof. Given an instance of the DDH problem (g, p , u1, u2, u3), we show

that the algorithm D can distinguish the input (g, p , u1, u2, u3) ∈ Dn from

(g, p , u1, u2, u3) ∈ Rn with non-negligible advantages, while runs A as subrou-

tine. It does as following:

1. Setup

(a) Randomly choose two participants U ′, U ′′ ∈ U .

(b) For participant Ui = U ′′, assign the given u1 as his public key yi.

(c) For other participants Ui 6= U ′′, assigns user Ui’s key pair as follows:

random ri ∈ Zq, and set (yi, xi) = (gri , ri), thus his key pair is in correct

form yi = gxi .

2. D runs A as subroutine

D answers A’s queries as follows, and maintains a list H for hash queries.

– Send(Ui, s,m) : If the query is executed step 1 or step 2 , D would follow

protocol. Otherwise, does following steps

i. If Ui = U ′, then set ci = u2, else random ki ∈ Zq and set ci = gki .

ii. If Ui = U ′, then set ui,j = u3 for Uj = U ′′ and ui,j = u
rj vj

2 for

Uj 6= U ′, U ′′, else set ui,j = Y ki

j , for all j 6= i.

iii. Forges the NIPVS by hash oracle. Randomly selects (c, w) and sets

H(g‖Y1‖ · · · ‖Yn‖ui,1‖ · · · ‖ui,n‖Y
w
1 uc

i,1‖ · · · ‖Y
w
n uc

i,n) = c in list H.

38

iv. If Ui = U ′′, D needs to forge the signature of ci, he randomly selects

a ∈ Zq and b ∈ Z∗
q , then returns (ri, si) = (gayb

i ,−rib
−1), and set

H(SID, ri, u2) = −riab−1 in list H. Otherwise he can sign by himself

because he generates all other participants’ key.

– Reveal(Ui, s) : Returns sk that Πs
Ui

was involved. Though D does not

know Ui’s secret key when Ui = U ′′, he can compute the session key sk

from other participants under his control.

– Corrupt(Ui) : If Ui = U ′′ then D fails, else returns participant Ui’s long-

lived secret key xi.

– Test(Ui, s) : Flips a coin b ∈ {0, 1}. If b = 1 then returns the sk =

u2 ·
∏

gkj , for j ∈ U i, else returns a random string drawn from the same

distribution as session key.

– h(m) : If (m,h(m)) is not in F ’s list H, returns a random string r and

adds (m, r) to the list, else returns message m’s corresponding hash value.

3. Output

Eventually, adversary A will output a guess b′, and wins the game if b = b′.

If adversary A wins, then the distinguisher D outputs b, otherwise output

a random bit b′′ ∈ {0, 1}.

Initially, we assume that break the protocol without altering the content of

the flows, with advantages at least ǫ within time t. Then the probability that

D gives the random sk is 1/2. The probability that adversary A uses messages

sent to U ′′ distinguishing real sk is at least 1/n. Thus the distinguisher D will

succeed with probability SuccDDH(D) ≥ 1/2 + ǫ/n , and the running time is

t′ ≤ t + qhT (k), where T (k) is the running of querying a hash oracle. 2

39

Theorem 3 Assume the random oracle model and broadcast channel. The

protocol Conf-1 meets all security requirements: Authentication, Validity,

Fairness, Fault tolerance, Indistinguishability, and forward secrecy.

Proof. Firstly we show the protocol is validity, fairness, and fault tolerance

in Lemma 4. Then its authentication proved in Lemma 5, and finally the

indistinguishability is proved in Lemma 6. And the forward secrecy is achieved

by using the fs-fresh definition on oracle, which allows Corrupt queries after

asking a Test query on some user U . Thus we can conclude that the protocol

meets all security requirements as mentioned. 2

4.3 Protocol Conf-3

In previous section, we use an extra round to exchange the temporal public key

to provide forward secrecy. In this section we will combine the forward-secure

PKI with previous protocol Conf-1 to achieve forward secrecy. We describe

our motivation as follows. Since we use the public-key cryptosystem in our

protocol, in the working flows, all users must connect to a trusted Certification

Authority (CA) to confirm the validity of other participants’ public keys before

performing key agreement. Moreover, since many forward secure cryptosystem

have been proposed (e.g. [14, 22]), we can assume that our system provides

such functionality. Therefore, we can use CA as a token service server (TSS) ,

when we queries the Certificate Revocation List (CRL) from CA, it issues the

common session token ST simultaneously. Thus all conference participants

can update their keys to the same time period.

40

Protocol. Let U = {U1, . . . , Un} be the initial participant set, and each

participant Ui, 1 ≤ i ≤ n, knows U . Without loss of generality, we assume

that U1 is the initiator who calls for a conference for the set U and register U

along with SID to the TSS. Before executing this protocol, each participant

are given a public key and private key pair which can be update periodically,

which are provided by forward secure PKI.

At the beginning, each participant Ui updates his secret key to the time

period ST, which he gets from the TSS. Then he runs similar step as pro-

tocol Conf-1, except for encrypting and signing the partial secret using the

corresponding key of time period ST. After he computes the session sk, he

must update the secret key again (i.e. update his key to time period ST + 1).

This step is important to our forward secrecy property, because once the par-

ticipant’s key is obtained by attacker, the updated key prevents the attacker

to trace back the encryption key we used in conference key agreement. We

describe the detail of this protocol in Figure 4.3.

Security Analysis. For security, we prove that protocol Conf-3 meets

all the security requirements defined in previous chapter. Again, we show

that this protocol is validity, fairness, and fault tolerance against malicious

participants in Lemma 7. Then prove its authentication and indistinguisha-

bility in Lemma 8 and Lemma 9 respectively. Finally, conclude our proofs in

Theorem 4.

41

– System parameters are g, p , q, and hash function h(·)

– Each participant Ui holds his secret key xi(t), which can be updated
to corresponding time period t, and can access all other participants
public keys yj, for 1 ≤ j ≤ n.

– Before each conference starts, all participants must connect to the
Token Service Server (TSS) , to get the session token ST.

The participant Ui does the following two steps:

Step 1. Message Sending

(a) Update key xi(t) to the time period ST, i.e. xi(ST).

(b) Randomly select ki ∈ Zq.

(c) Broadcast ui,j = FE.Enc(yj, ST, gki), for all j 6= i.

(d) Broadcast NIP(Consistence of gki).

(e) Broadcast si = FS.Sig(xi(ST), ST, (ui,1, . . . , ui,n, ST)).

Step 2. Conference Key Computing

(a) Compute cj = FS.Dec(yi, ST, xi(ST), uj, i), for all j 6= i.

(b) Check FS.Ver(yj, (uj,1, . . . , uj,n, ST), sj) = 1, for all j 6= i.

(c) Verify NIP(Consistence of gkj).

(d) If participant Uj’s message passes the check in previous
two steps, then add Uj to honest participant set U i.

(e) Compute the conference key sk of session SID, where

sk = h(
∏

j∈Ui

cj mod p , SID,ST),∀j ∈ U i

(f) Update key xi(ST) to the next time period, i.e. xi(ST+1).

Figure 4.3: Protocol Conf-3

42

Lemma 7 (Fault tolerance, Validity and Fairness) All honest partici-

pants who follow the protocol compute a common conference key with an over-

whelming probability no matter how many participants are malicious. Fur-

thermore, the common conference key is determined by the honest participants

unbiasedly.

Proof. In this protocol, all arguments about its validity and fairness are sim-

ilar to lemma 1. For fault tolerance, we use an generic form of non-interactive

proof (NIP) system to prove the consistence of the partial secret that par-

ticipant sent. We can design a NIP based on what kind of forward secure

encryption scheme we use, because based on standard intractability assump-

tions, it is known how to construct a non-interactive zero-knowledge proof for

any NP-set [25]. Once we has the NIP, the fault tolerance is guaranteed as we

explain in lemma 1. 2

As previous proof for protocol Conf-2, we assume that the adversary A

breaks our protocol either by forging a signature with respect to some partici-

pant’s signing key, or without forging a signature. For authentication, we show

that if A gains her advantage by forging a signature, we use A to construct a

signature forging algorithm F against a forward secure signature scheme FS,

by guessing which participant that A will choose to producing a forgery dur-

ing the protocol runs. For indistinguishability, if A could break the protocol

without altering the content of the flows (i.e. forging a signature of some mes-

sages), then we can construct an algorithm X against the underlying forward

secure encryption scheme FE in the multi-user setting.

43

Lemma 8 (Authentication) Assume the random oracle model. If an out-

sider A can impersonate as a legal participant Ui by forging his signature with

a non-negligible advantages ǫ within time t, being allowed to query the signing

oracle qs times. Then we can use A to construct a signature forging algo-

rithm F against forward secure signature scheme FS, which succeeds with a

non-negligible advantages ǫ/n within time t′ ≤ t + qsT (k).

Proof. We use A to construct a forging algorithm F for the forward secure

signature scheme FS. Given some participant’s public key e in signature

scheme S and accessed to a signing oracle for the corresponding secret key d.

The successful F must output a valid signature3 (m,σ) for some message m,

which was not asked to the signing oracle previously. The forger F does as

following:

1. Setup

(a) Randomly choose a participant U ′ ∈ U .

(b) For participant Ui = U ′, assign the given e as his public key yi.

(c) For other participants Ui 6= U ′, runs key generating function Gen of

protocol to assign user Ui’s key pair (yi, xi(t)), where t = 0 at initially.

2. F runs A as subroutine

F answers A’s queries as follows, and maintains a list H for hash queries.

– Send(Ui, s,m) : F outputs what he should output, follows the protocol.

When he needs to generate the signature of partial secret FS.Sig(·) for

selected user Ui = U ′, he queries the signing oracle. Otherwise, he can

sign by himself because he owns all keys.

3i.e. FS.Ver(e,m, σ) = 1

44

– Reveal(Ui, s) : returns sk that Πs
Ui

was involved.

– Corrupt(Ui) : If Ui = U ′ then F fails, else returns participant Ui’s long-

lived secret key xi(t), for some time period t.

– h(m) : If (m,h(m)) is not in F ’s list H, returns a random string r and

adds (m, r) to the list, else returns message m’s corresponding hash value.

3. Output

During the execution of A, if A makes a query Send(· , (m,σ)), where σ is

a valid signature on m, respect to yi for Ui = U ′, and m was not queried to

signing oracle previously, then F outputs (m,σ) as his forgery. Otherwise,

when A terminates, the forger F fails.

At the beginning, we assume that A can forge a signature with a non-

negligible advantages ǫ within time t. And the probability of this forgery

respected to our chosen participant U ′ is at least 1/n. Thus the forger F

will succeed with probability Succ
fs−cma
S

(F) ≥ ǫ/n, and the running time is

t′ ≤ t + qsT (k), where T (k) is the running of querying a signing oracle. 2

Lemma 9 (Indistinguishability) Assume the random oracle model. If an

adversary A could break the protocol without altering the content of the flows,

with advantages at least ǫ within time t. Then we can construct an algorithm X

against the underlying forward secure encryption scheme FE in the multi-user

setting with ǫ/nqh within time t′ ≤ t + qhT (k).

Proof. Given an instance of fs-CCA Game in multi-user setting as follows:

– public keys e1, . . . , en−1 generated by algorithm Gen.

– two random string m1 and m2.

45

– ciphertexts C1 = FE.Enc(e1, T,mb), . . . , Cn−1 = FE.Enc(en−1, T,mb) for

some fixed time period T , and b ∈R {0, 1}.

The goal of X is to guess whether b = 0 or b = 1 with non-negligible advan-

tages, while runs A as subroutine. It does as following:

1. Setup

(a) Randomly choose a participant U1, . . . , Un ∈ U .

(b) For participant U1, . . . , Un−1, assign the given ei as his public key yi.

(c) For other participants in U , assigns their encryption key pair by FE.Gen,

but for simplicity, we exclude them in protocol runs except Un.

(d) For all participants in U , assigns user’s signing key pair using FS.Gen

2. X runs A as subroutine

X answers A’s queries as follows, and maintains a list H for hash queries.

– Send(Ui, s,m) : D does following steps

i. If ST = T and Ui = Un , then set ui,j = Cj for 1 ≤ j ≤ n−1, and set

else ui,j = FE.Enc(ej, T,m0). Otherwise, just follows the protocol.

ii. Forges the NIP(·) by hash oracle if necessary.

– Reveal(Ui, s) : Since we model the session key as the output of random

oracle, we only need to return a random string or the corresponding value

if the key revealed previously.

– Corrupt(Ui) : If Ui 6= Un then X fails, else returns participant Un’s

long-lived secret key xi(t) for some time period.

– Test(Ui, s) : returns a random string sk, which is selected from the

distribution of session key.

46

– h(m) : If (m,h(m)) is not in F ’s list H, returns a random string r and

adds (m, r) to the list, else returns message m’s corresponding hash value.

3. Output

Eventually, adversary A terminates and output a guess b′. X determinates

what should guess using the random oracles’s hash list H. He checks all

queries made by A of the form h = (z, SID,ST). If there exist an entry

such that z = m0 ·
∏

cj mod p , for all 1 ≤ j ≤ n, then X returns his guess

b′′ = 0, else returns b′′ = 1.

At the beginning, we assume that A can break the protocol without altering

the content of the flows, with advantages at least ǫ within time t. Thus the

algorithm X will succeed with probability Succ
fs−CCA
m−FE

(X) ≥ ǫ/nqh , where qh

is the number of hash queries made by adversary, and the running time is

t′ ≤ t + qhT (k), where T (k) is the running of querying a hash oracle. 2

Theorem 4 Assume the random oracle model and broadcast channel. The

protocol Conf-1 meets all security requirements: Authentication, Validity,

Fairness, Fault tolerance, Indistinguishability, and forward secrecy.

Proof. We have argued that the protocol is validity, fairness, and fault

tolerance in Lemma 7. Then its authentication is described in Lemma 8, and

the indistinguishability is proved in Lemma 9. Finally, we note that the forward

secrecy is implicit in breaking scheme FE and FS in the last two lemmas. Thus

we can say that the protocol meets all above security requirements. 2

47

Chapter 5

Conclusion

We have presented two new round-efficient conference key agreement protocols

and provided the proofs of their security. Both of these protocols meet all our

security requirements. In the following section, some proposed conference key

agreement protocols are compared with ours in terms of efficiency and security.

Finally, we give our conclusions and discuss some future works.

5.1 Comparison

Since our protocols are focus on forward secrecy and round efficiency, we com-

pare them with some existed conference key agreement protocols in this sec-

tion. For security, we consider the properties: authentication, fairness, forward

secrecy, and fault tolerance. It’s summarized in Table 5.1.

48

Protocol auth. fairness
forward
secrecy

fault
tolerance

Conf-1 Yes Yes No Yes

Conf-2 Yes Yes Yes Yes

Conf-3 Yes Yes Yes Yes

BD94 [13] No Yes Yes No

TT00 [31] Yes Yes No Yes

BM03 [8] Yes1 Yes No No

Table 5.1: Security Comparison of Conference Key Agreement Protocols

For efficiency, we analyze the performance of the protocols in terms of com-

munication rounds and messages complexity. We compare them in Table 5.2.

Protocol rounds broadcasts
messages
size2

total
messages

Conf-1 1 1 O(n) O(n2)

Conf-2 2 2 O(n) O(n2)

Conf-3 1 1 O(n) O(n2)

BD94 [13] 2 2 O(1) O(n)

TT00 [31] 1 1 O(n) O(n2)

BM03 [8] 1 1 O(1) O(n)

Table 5.2: Efficiency Comparison of Conference Key Agreement Protocols

1It will suffer from replay attack.
2It counts number of messages that one participant sent.

49

5.2 Conclusion

We have proposed two new conference key agreement protocols, which used

different approach to achieve the forward secrecy. Both of these protocols have

been proved secure under Bellare and Rogaway’s model and meet the security

requirements: authentication, validity, fairness, fault tolerance, indistinguisha-

bility and forward secrecy. Though protocol Conf-2 adds an extra round to

provide forward secrecy, it can still be done in constant rounds, and as effi-

cient as the well known protocol proposed by Burmester and Desmedt [13].

Our original aim is finally realized in protocol Conf-3, which combines the

forward secure encryption scheme, forward secure signature scheme, and uses

a trusted Token Service Server. It needs only a single round to complete the

key agreement, and also provides forward secrecy.

Since we do not assume that all participants are honest, we use the Publicly

Verifiable Secret protocol to ensure that all participants send out consistent

partial secrets to other participants. This seems to be the major disadvan-

tage of our protocols, because of the message complexity become O(n2) for n

participants.

Therefore, it would be interesting to find a single round protocol that meets

all our security requirements and costs only O(n) messages complexity. Be-

sides, it remains an open problem that whether it is possible to construct a

multi-party contributory conference key agreement protocol which completes

in single round and also provides forward secrecy, while without the help of

the underlying forward secure schemes.

50

Bibliography

[1] G. Ateniese, M. Steiner, and G. Tsudik. Authenticated group key agree-

ment and friends. In Proceedings of the 5th ACM Conference on Computer

and Communications Security (CCS ’98), pages 17–26. ACM Press, 1998.

[2] G. Ateniese, M. Steiner, and G. Tsudik. New multiparty authentication

services and key agreement protocols. IEEE Journal on Selected Areas in

Communications, 18(4):628–639, 2000.

[3] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange

secure against dictionary attacks. In Proceedings of Advances in Cryptol-

ogy - EUROCRYPT ’00, volume 1807 of LNCS, pages 139–155. Springer-

Verlag, 2000.

[4] M. Bellare and P. Rogaway. Entity authentication and key distribution.

In Proceedings of Advances in Cryptology - CRYPTO ’93, volume 773 of

LNCS, pages 232–249. Springer-Verlag, 1994.

[5] M. Bellare and P. Rogaway. Provably secure session key distribution: the

three party case. In Proceedings of the 27th Annual ACM Symposium on

the Theory of Computing (STOC ’95), pages 57–66. ACM Press, 1995.

51

[6] S. Blake-Wilson and A. Menezes. Entity authentication and authenticated

key transport protocols employing asymmetric techniques. In Proceedings

of 5th Security Protocols Workshop, volume 1361 of LNCS, pages 137–158.

Springer-Verlag, 1998.

[7] S. Blake-Wilson and A. Menezes. Authenticated diffie-hellman key agree-

ment protocols. In Proceedings of Selected Areas in Cryptography (SAC

’98), volume 1556 of LNCS, pages 339–361. Springer-Verlag, 1999.

[8] C. Boyd and J. M. G. Nieto. Round-optimal contributory conference key

agreement. In Proceedings of the Public-Key Cryptography (PKC ’03),

volume 2567 of LNCS, pages 161–174. Springer-Verlag, 2002.

[9] V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-

authenticated key exchange using diffie-hellman. In Proceedings of Ad-

vances in Cryptology - EUROCRYPT ’00, volume 1807 of LNCS, pages

156–171. Springer-Verlag, 2000.

[10] V. Boyko, P. D. MacKenzie, and S. Patel. Provably authenticated group

diffie-hellman key exchange - the dynamic case. In Proceedings of Ad-

vances in Cryptology - Asiacrypt ’01, volume 2248 of LNCS, pages 290–

309. Springer-Verlag, 2001.

[11] V. Boyko, P. D. MacKenzie, and S. Patel. Dynamic group diffie-hellman

key exchange under standard assumptions. In Proceedings of Advances in

Cryptology - EUROCRYPT ’02, volume 2332 of LNCS, pages 321–336.

Springer-Verlag, 2002.

52

[12] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably

authenticated group diffie-hellman key exchange. In Proceedings of the

8th ACM conference on Computer and Communications Security (CCS

’01), pages 255–264. ACM Press, 2001.

[13] M. V. Burmester and Y. Desmedt. A secure and efficient conference key

distribution system. In Proceedings of Advances in Cryptology - EURO-

CRYPT ’94, volume 950 of LNCS, pages 275–286. Springer-Verlag, 1995.

[14] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption

scheme. In Proceedings of Advances in Cryptology - EUROCRYPT ’03,

volume 2656 of LNCS, pages 255–271. Springer-Verlag, 2003.

[15] K. Y. Choi, J. Y. Hwang, and D. H. Lee. Efficient id-based group key

agreement with bilinear maps. In Proceedings of the Public-Key Cryptog-

raphy (PKC ’04), volume 2947 of LNCS, pages 130–144. Springer-Verlag,

2004.

[16] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, IT-22(6):644–654, 1976.

[17] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity.

Journal of Cryptology, 1(2):77–94, 1988.

[18] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Com-

puter and System Sciences, 28(2):270–299, 1984.

53

[19] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of

interactive proof systems. SIAM Journal on Computing, 18(1):186–208,

1989.

[20] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme

secure against adaptive chosen-message attacks. SIAM Journal on Com-

puting, 17(2):281–308, 1988.

[21] I. Ingemarsson, D. T. Tang, and C. K. Wong. A conference key distribu-

tion system. IEEE Transactions on Information Theory, IT-28(5):714–

720, 1982.

[22] G. Itkis and L. Reyzin. Forward-secure signatures with optimal signing

and verifying. In Proceedings of Advances in Cryptology - CRYPTO ’01,

volume 2139 of LNCS, pages 332–354. Springer-Verlag, 2001.

[23] A. Joux. A one round protocol for tripartite diffie-hellman. In Proceed-

ings of the 4th International Symposium on Algorithmic Number Theory

(ANTS ’00), volume 1838 of LNCS, pages 385–394. Springer-Verlag, 2000.

[24] M. Just and S. Vaudenay. Authenticated multi-party key agreement. In

Proceedings of Advances in Cryptology - ASIACRYPT ’96, volume 1163

of LNCS, pages 36–49. Springer-Verlag, 1996.

[25] J. Kilian and E. Petrank. An efficient noninteractive zero-knowledge proof

system for np with general assumptions. Journal of Cryptology, 11(1):1–

27, 1988.

54

[26] B. Klein, M. Otten, and T. Beth. Conference key distribution protocols

in distributed systems. In Proceedings of 4th IMA Conference on Cryp-

tography and Coding, pages 225–242, 1995.

[27] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone. Handbook of

Applied Cryptography. CRC Press, Inc., 1996.

[28] O. Pereira and J.-J. Quisquater. A security analysis of the Cliques proto-

cols suites. In Proceedings of 14th IEEE Computer Security Foundations

Workshop (CSFW ’01), pages 73–81. IEEE Computer Society Press, 2001.

[29] M. Steiner, G. Tsudik, and M. Waidner. Diffie-hellman key distribution

extended to group communication. In Proceedings of the 3rd ACM Confer-

ence on Computer and Communications Security (CCS ’96), pages 31–37.

ACM Press, 1996.

[30] W.-G. Tzeng. A practical and secure-fault-tolerant conference-key agree-

ment protocol. In Proceedings of the Public-Key Cryptography (PKC ’00),

volume 1751 of LNCS, pages 1–13. Springer-Verlag, 2000.

[31] W.-G. Tzeng and Z.-J. Tzeng. Round-efficient conference key agreement

protocols with provable security. In Proceedings of Advances in Cryptol-

ogy - ASIACRYPT ’00, volume 1976 of LNCS, pages 614–628. Springer-

Verlag, 2000.

55

	摘要
	Round-Efficient Conference Key Agreement�Protocols with Forw
	Round-Efficient Conference Key Agreement
	Protocols with Forward Secrecy
	誌 謝

