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論 文 摘 要 

 

快閃記憶體有許多吸引人的特徵，例如體積小，重量輕，不揮發性，耐撞性

和低耗電量。這些特徵使得快閃記憶體相當適合用在個人通訊設備還有嵌入式多

媒體系統上，如 MP3 撥放器和機上盒(Set-top box)。因為快閃記憶體在覆寫資

料前需要先抹除區塊。這個動作是相當耗時間跟能量的。除此之外，快閃記憶體

區塊的抹除次數有一定的限制。因此，要設計一個有效率，並以快閃記憶體為基

礎的儲存系統變得相當具有挑戰性。為了減少抹除快閃記憶體區塊的次數，前人

提出了許多資料管理的方法。但是這些方法當中，有些會產生區塊抹除次數不平

均的問題，另一些則需要很長的掛載時間。 

因此，我們提出了一項新的快閃記憶體資料管理方法。它加了一塊隨機存取

記憶體(RAM)來當做快閃記憶體的延伸。除此之外，我們也提出了一個新的資料

群集方法（Dynamic data clustering with extra buffer region）來管理我們

快閃記憶體裡頭的資料。並且我們也設計新的資料擺放（Data layout）使得我

們的快閃記憶體儲存系統可以更有效率的執行。在我們的方法裡頭，經常性的資

料更新是在隨機存取記憶體中進行。因此抹除快閃記憶體區塊的次數便會減少。

實驗結果顯示，我們的方法可以減少 45%~95% 的抹除次數，也因而能延長快閃

記憶體的使用期。除此之外，我們也確保可以平均的抹除每一個快閃記憶體區塊。 
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Abstract 
 Flash memory has many attractive features such as small, light weight, 

non-volatility, shock-resistant and low power consumption. These features are good 

for personal communication devices and embedded multimedia systems like MP3 

player and set-top boxes. However, the erasing-before-overwriting characteristic of 

flash memory makes the design of flash-based storage systems become challenging. 

The erase operations are slow and energy-wasted. Moreover, the number of erase 

times is also limited. To reduce the number of erase operations and evenly wear flash 

memory, many data management approach were proposed. However, some of them 

have the uneven-wearing problem on data blocks, while others such as JFFS and 

JFFS2 need a long mounting time. Therefore, we propose a new data management 

approach for flash memory that uses an additional RAM buffer as the extension of the 

flash. Besides, we design a new data clustering method, Dynamic data clustering with 

Extra Buffer region (DEB), to manage the data in the flash memory. Besides, we 

design a new data layout for the flash memory to make our storage system more 

efficient. In our approach, hot data is usually updated in the RAM buffer in order to 

reduce the number of erase operations. Performance results show that the number of 

erase operations can be reduced by 45%~95%, flash memory lifetime is prolonged, 
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and even wearing is ensured. 

Keywords: flash memory, cleaning policy, even wearing, and erase operations. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

Due to the small, lightweight, shock resistant, nonvolatile, and little power 

consumption, flash memory has been widely used for storing data in personal 

communication devices and embedded multimedia systems such as MP3 player and 

set-top boxes. However, some limitations of the flash memory have made it becomes 

challenging to design an efficient flash-based storage systems. One limitation is that 

the content cannot be overwritten directly. A data block needs to be erased before 

storing new data on it. Unfortunately, the erase operation usually takes about one 

second, which is too slow for current computing systems. In addition, it is 

energy-wasted. The other limitation is that the number of erase operations of a flash 

block is limited. 

Because of the two hardware limitations, a flash memory based storage system 

should perform erasing as few as possible for prolonging the flash lifetime, improving 

the system performance, and reducing the power consumption. Besides, in order to 

avoid wearing out some specific blocks, erase operations must be balanced over the 

whole flash memory. This is called wear leveling or even wearing. 

In order to reduce the number of erase operations and evenly wear flash memory, 

many data management approach were proposed. The DAC server [7] uses the data 

clustering method. And, it uses the non-in-place-update scheme for data updating to 

avoid per-update erasing. JFFS [9], similar to log-structured file systems [21], writes 

the data to flash memory sequentially. However, JFFS and JFFS2 need a long 
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mounting time, because their metadata is distributed over the total flash memory. 

In this thesis, we propose a new data management approach to overcome the 

flash hardware limitations. Based on the approach, we design and implement a flash 

memory storage system, LFSS (Log Flash Storage System). In order to reduce the 

number of erase operations, we use an additional battery-backed SDRAM buffer as 

the extension of the flash memory. Previous researches proved that separating data 

according to its access frequency can improve clean policies efficiency for flash 

memory. This technique is called data clustering. In this thesis, we design a new data 

clustering method, Dynamic data clustering with Extra Buffer region (DEB). It 

dynamically clusters data according to the data update frequencies. The data 

clustering is performed when segment cleaning and data updating. The basic idea of 

DEB is to make the hot data be updated in the SDRAM, instead of in the flash. 

Therefore, the erase operations can be reduced. Moreover, we propose a new data 

layout that separates the flash into two parts, super segments and data segments. 

During the system initialization, only the former needs to be scanned for building up 

the storage system, since it contains the metadata of the whole storage system. 

Besides, the real data is stored in the data segments sequentially. And, we implement 

three cleaning policies in the LFSS for segment cleaning. 

According to the performance results, LFSS can reduce 45% ~ 95% erase 

operations when compared to other flash storage systems. And, with the increase of 

the RAM region size, more erase operations can be eliminated. Moreover, experiment 

results shows that LFSS is suitable for different cleaning policies, and it can evenly 

wear flash memory. 
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1.2 Thesis Organization 

The rest of this thesis is organized as follows. Chapter 2 describes the 

background of the flash memory and cleaning process. Chapter 3 introduces related 

works. Chapter 4 describes the design and implementation of LFSS. Performance 

results are given in Chapter 5. And, Chapter 6 describes the conclusion and future 

work. 
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Chapter 2 

Background 

 

2.1 Flash Characteristics 

 Flash is a form of Electrically Erasable Read Only Memory (EEPROM), except 

that it is electrically erasable. It is available in two major types, which are the 

traditional NOR flash and the newer, cheaper NAND flash. 

Flash chips are divided into blocks, whose sizes are typically 64KB or 128KB on 

NOR flash or 8KB on NAND flash. These two types of flash share a most important 

characteristic that a write operation can only be done on a clean block (i.e., all bits in 

this block are logical one). 

 

Read Cycle Time 120 ~ 200 ns 

Write Cycle Time 6 ~ 9 us/byte 

Block Erase Time 60 ~ 80 ms 

Erase Block Size 64KB or 128 KB 

Erase Cycles / Block 100,000 ~ 1,000,000 times 

Table 2.1 NOR Flash Characteristics 

 

Table 2.1 lists the typical NOR flash memory characteristics. The read cycle time 

is comparable to the time of a DRAM read operation (i.e., less than 200ns). However, 

writing a byte to a clean block needs about 6us. Moreover, writing to a non-cleaned 

block requires the erase operation to be performed first, which takes around 70ms. 

The lifetime of a block is measured in erase cycles, with a typical value of 100,000 to 
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1,000,000 erases. To balance the lifetime of all the blocks, most flash-based storage 

systems attempt to ensure that erase operations are evenly distributed around the 

whole flash chip. This is a well-known process named wear leveling or even wearing 

[12]. 

 

2.2 Data Update Problem 

For flash memory, in-place update is not efficient since a block must be erased 

before being updated. Figure 2.1 shows the detailed operations for in-place update. In 

flash chips (e.g., 64 Kbytes or 128 Kbytes for Intel Series 2+ Flash Memory and 512 

bytes for SanDisk flash memory), all data in the to-be-updated block must first be 

copied to a system buffer (a). Then, the data is updated in the buffer and the dirty 

block is erased (b). After the block has been erased, the block in the buffer is written 

back to the flash (c). It is worth to mention that even a one-byte update requires a 

block-read, a slow erase, and a block write operations. Therefore, in-place update 

results in poor performance. Moreover, in-place update violates the rule of even 

wearing. Hot data blocks will soon reach their erase cycle limits.  

To avoid these problems, the non-in-place-update scheme was proposed. Figure 

2.2 shows the detailed operations for non-in-place-update. Instead of updating data at 

the same address, new data is written to an empty space in the flash memory and the 

obsolete data is left as garbage. A software cleaner will be triggered later to reclaim 

these garbage by migrating the valid data from the block to be cleaned to another 

block, and then erasing the block. Therefore, the block will be available for storing 

new data. 

 5



Write pointer The area to be updated 

 

Figure 2.1 : Updating Data in Place 
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Write pointer Prepare to update this data 

 
Figure 2.2 : Non-in-place-update 

 

2.3 Flash Memory Cleaning Policies 

2.3.1 Free Space Management : Segments 

w data, the invalid data must be 

 

s shown in Figure 2.3. 

First, as the Figure 2.3(a) illu

 In order to get more free space for storing ne

reclaimed. Many data management approach divides the flash memory into large, 

fix-sized segments for ease of reclaiming invalid data. A segment is made up of a 

number of contiguous blocks, where the number may be different for different data 

management approaches. When the number of free segments is less than a certain 

threshold, a software cleaning process (i.e., the cleaner) will be triggered to reclaim 

the invalid data. 

 

2.3.2 Three-stage Operations of Cleaning Process

The cleaning of the invalid data involves three stages, a

strates, the cleaning process selects a victim segment and 

then identifies the valid data in it. In the next stage, shown in Figure 2.3(b), the valid 

data is copied into another free space. Finally, the victim segment is erased, as shown 

the Figure 2.3(c).  

Invalid data 
Update 

Write pointer 
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Segment 

: invalid : free : used 

1: Select a segment to be cleaned 

2: Copy valid data to free space

3: Erase block 

(a)

(b)

(c)

 
Figure 2.3 : Th es of C g Process 

2.3.3 Issues of Cleaning Policies 

 In this section, we describe four issues that must be addressed by a cleaning 

ree Stag leanin

 

policy.  
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(1)  When should the cleaner be triggered? One approach is to continuously run it as 

(2)  e? Segment cleaning 

(3)   as the segment selection 

(4)  try 

 

.3.4 Segment Selection Algorithm 

segment selection algorithms. 

d is the simplest algorithm, which selects a segment with the 

large

 

2.3.4.2 Cost-Benefit Policy 

 [6] chooses to clean a segment that maximize the  

a low-priority task in the background. Another approach is to trigger it at night, 

or when disk space is nearly exhausted.  

How many segments should the cleaner process at a tim

offers an opportunity to reorganize data on flash memory. In general, the more 

segments we clean at once, the more free space we get. 

Which segments should be cleaned? This is referred to

algorithm. One may select a segment with the largest amount of garbage or 

select segments based on their attributes, such as age, update times, and etc.  

How should the valid blocks be arranged when they are copied out? One may

to enhance the locality by grouping files in the same directory into a single 

segment. Another possibility is to group the blocks with similar last-modified 

time into new segments. This can help cleaning policies executing more 

effectively. 

2

 In this section we shall introduce three 

2.3.4.1 Greedy Policy 

The greedy metho

st amount of garbage. According to the previous study [19], the greedy policy 

works well in the case of uniform access. However, it performs poorly under high 

locality of reference. 

The cost-benefit policy
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formula: 
u

uage
2

)1(* − , where 10 ≤< u . U is the ratio of valid data in the segment, 

and therefore (1-u) stands for the amount of free space that can be reclaimed. The age 

indicates the time elapsed since the most recent modification (i.e., the last block 

invalidation or writing), and it is used to represent the hotness of the valid data. The 

2u reflects the overheads of cleaning a segment (i.e., reading valid blocks and writing 

them to another segment). Cost-benefit policy performs well under high locality of 

reference. However, it does not perform as well as the greedy policy under uniform 

access. 

 

2.3.4.3 Cost Age Time (CAT) Policy 

A similar policy to the previous one is the Cost Age Times (CAT) policy [5,6], 

which chooses to clean segments that minimize the following formula:  

 Cleaning Cost * 
Age
1  * Number of Cleaning. 

The cleaning cost is defined as u/(1-u), where u is the percentage of valid data in 

a segment. The cleaning cost reflects the ratio of overheads to the benefit, which 

should be minimized. The definition of age is similar to cost-benefit policy. And, the 

number of cleaning stands for the number of times a segment has been erased. The 

basic idea of CAT is to minimize the cleaning costs, as well as gives the 

recently-cleaned segments more time to accumulate garbage for reclamation. In 

addition, to achieve the goal of wear-leveling, the segments with the fewest number of 

erases are given more chances to be selected for cleaning. 
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Chapter 3 

Related Work 

 

In this chapter, we will introduce four kinds of related work. Section 3.1 

describes MTD subsystem, which is an interface layer between file systems and 

memory device drivers. Section 3.2 shows two well-known flash file systems, JFFS 

and MFFS. Section 3.3 introduces four flash-memory based storage systems that are 

related to our design. Section 3.4 describes cleaning policies used in the flash 

memory. 

 

3.1 Memory Technology Device (MTD) Subsystem for 

Linux 

The Memory Technology Device (MTD) subsystem for Linux [8] provides a 

generic support for various types of memory devices, especially for Flash devices 

such as the M-Systems DiskOnChip and Common Flash Interface (CFI) onboard 

flash.  

 

Figure 3.1 : MTD Subsystem 

MTD layer 

CFI NOR Flash NAND Flash

File SystemFTL MTD User 
Modules 

LFSS 

MTD Hardware 
Device Drivers 
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The aim of this subsystem is to provide a generic interface between the hardware 

drivers and the upper layers of the system. Hardware drivers only need to supply 

simple routines such as reading, writing, erasing, and querying for the device. Data 

presentation of the device is handled by the upper layer components, such as FTL 

(Flash Translation Layer) and JFFS2, which are called MTD user modules (as shown 

in Figure 3.1). From the figure we can see that, LFSS is also implemented as a MTD 

user module. 

3.2 Flash File Systems 

3.2.1 JFFS 

Application Application Application

 
Figure 3.2 : JFFS in the Linux File System Framework 

Hardware 

JFFS 

Virtual File System 

Ext3 

Shared library 

User 
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Ext2 FAT 

Buffer Cache 

Disk Driver 
MTD 

Flash Driver 

Kernel 
space 

Flash Device Disk Device 
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JFFS is a ns AB in 

Swe

anges a flash device as a circular area, as shown in Figure 3.3.  

Mod

log-structured file system designed by Axis Communicatio

den. It is especially used for flash devices on embedded systems. Figure 3.2 

shows how JFFS fits into the file system framework in Linux. From the figure we can 

see that, JFFS sits between the VFS and the MTD layers. In addition, a major 

difference between JFFS and ordinary file systems is that the former does not rely on 

buffer cache. 

JFFS arr

ifications to the file system are written at the tail (i.e., the start of the free chunks). 

Invalid data blocks are reclaimed from the head. The basic data structure used for 

storing data on the flash device is the raw node. Each raw node is divided into two 

parts, metadata and real data. Similar to JFFS, LFSS also uses log-like structure to 

store data. However, the main difference is that LFSS separates the metadata and real 

data in different segments for reducing the system initial time. 

 

 
Head pointer 

Tail pointer 

 

 

Figure 3.3 : Data Arrangement in JFFS 

: Valid data : Invalid data : Free space 
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3.2.2 Microsoft Fl

provides complete file system 

capa

 

3.3 Flash-Memory Based Storage Systems 

orage systems. 

3.3.1

 flash memory and 

mana

ng to their write access frequencies and 

dyna

 

3.3.2 eNVy 

] is a large flash memory-based storage system, which provides a 

mem

ash File System (MFFS) 

Microsoft Flash File System (MFFS) [23] 

bilities for DOS. It uses linked lists to store and manage data in flash memory. 

Data are allocated as variable-sized regions instead of fix-sized blocks. And, the 

greedy policy is used for reclaiming invalid data. Previous research [13] reported that 

MFFS performs poor when accessing large files. Specifically, its write performance 

degrades linearly with the growth of file size. 

In this section, we introduce four flash-memory based st

 Dynamic Data Clustering Server (DAC Server) 

DAC server [5] uses the DAC approach to cluster data on

ges flash memory as fix-sized blocks and uses the non-in-place-update scheme 

for data blocks to avoid per-update erasing. 

DAC server is to classify data accordi

mic cluster them at the time when the data is updated or when the segments are 

cleaned. However, DAC approach is not suitable for our environment that has an 

additional battery-backed SDRAM buffer. 

eNVy [26

ory interface rather than a block-based disk interface. The hardware consists of 

the flash memory, a small battery-backed SRAM for write-buffering, a 

high-bandwidth parallel data path between them, and a controller for page mapping 

and cleaning. Figure 3.4 shows the page-remapping technique of eNVy.  
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Figure 3.4 : Page Remapping in eNVy (for a Write to Page 2) 

Flash 

Flash 
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Data o prevent 

upda

 

3.3.3 Flash Translation Layer (FTL) 

sh memory to emulate a hard disk. 

Basi

 

3.3.4 Large-Scale Flash Memory Storage System 
 scheme for large-scale 

ash

 

3.4 Cleaning Policies  

 important issue in flash storage systems. Rosenblum 

update is performed with the help of page-remapping in order t

te in place. It uses a hybrid cleaning policy that combines FIFO and locality 

gathering to minimize the cleaning costs for uniform access and high locality of 

reference. Simulation results show that it can handle 30,000 transactions per second at 

a flash utilization of 80%. Similar to eNVy, our design also uses a small 

battery-backed SRAM. However, LFSS uses DEB data clustering approach to make 

hotness data always be updated in SDRAM. Besides, CAT cleaning policy is used in 

LFSS. Therefore, LFSS can reduce more erase operations and even wearing. 

M-Systems’s TrueFFS [10] allows fla

cally, it is a software block device driver to be used with an existing file system. 

Flash memory is divided into fixed-sized blocks. The data presentation, which is 

patented by M-Systems, is called Flash Translation Layer (FTL) standard. And, some 

researches [24,25] implement over the flash translation layer for the compatibility of 

their applications and systems. 

 Chang, et al. [3], proposed to a flexible management
fl -memory storage systems. It efficiently manages high-capacity flash-memory 
storage systems based on the behaviors of realistic access patterns. Besides, it uses the 
real time garbage collection mechanism [4] to manage its invalid data. Therefore, 
their proposed scheme could significantly reduce the main-memory usages without 
noticeable performance degradation. 

Cleaning policies is another

 16



and 

ich we mentioned in Section 2.3.4.3, 

prov

es the greedy policy for 

clean

Ousterhout [21] suggested that the Log-structured File System (LFS), which 

writes data as appended log instead of updating data in place, can be applied to flash 

memory. In the paper, the authors showed that the greedy policy performs poorly 

under high localities of reference. Therefore, the cost-benefit policy was proposed. As 

we mentioned in Section 2.3.4.2, it tries to clean segments with cold data. As a result, 

it performs well under high locality of reference. 

The Cost Age Times (CAT) [5,6] policy, wh

ides better wear leveling than the cost-benefit policies because the number of 

erase operations performed on each segment is considered. 

Linux PCMCIA [11] flash memory driver also us

ing. However, to avoid concentrating erasures on a few segments, it sometimes 

chooses to clean the segment that has been erased the fewest number of times. This is 

called revised greedy policy. 
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Chapter 4 

Design and Implementation 

 

In this chapter, we describe the design and implementation of the Log Flash 

Storage System (LFSS). LFSS uses an additional battery-backed SDRAM buffer as 

the extension of the flash memory. Moreover, it integrates two techniques that we 

propose for improving the performance of the SDRAM-embedded flash memory 

system. The first technique is a data clustering method, Dynamic data clustering with 

Extra Buffer region (DEB). It makes the hot data to be updated in the extra RAM 

buffer so as to reduce the erasing times of flash blocks. The second technique is a data 

layout approach that separates the flash memory into two parts, super segments and 

data segments. Super segments contain a number of checkpoint nodes, each of which 

holds the total metadata in the flash. Therefore, we can simply scan the super 

segments, instead of the total flash memory, during the system initialization. As a 

result, LFSS can reduce the initialization time. The real data is stored in data segments 

sequentially, and LFSS manages flash memory as variable-sized blocks like as 

log-structured file systems. The non-in-place-update scheme is used when data blocks 

are updated. 

In addition to the two techniques, we also implement three cleaning policies in 

LFSS in order to evaluate the cleaning effectiveness. 

The system is implemented in Linux 2.4.20. Different from JFFS that provides 

an interface to the virtual file system, LFSS provides its interface directly to user 

space. As Figure 4.1 is shown, LFSS is implemented as a MTD user module. It 

provides functions such as read, write, erase, and update to application programs. For 

ease of experiment in the PC environment, we use SDRAM, instead of flash, for 

 18



performance evaluation. Therefore, we implement a SDRAM MTD driver to connect 

the MTD layer. All MTD user modules regard the SDRAM MTD driver as a normal 

flash. 

User 
space 

 
Figure 4.1 : LFSS in the Linux  

 

The rest of this chapter is organized as follows. We first describe the DEB data 

clustering approach in Sec

 

4.1 Dynamic Data Clustering with Extra Buffer Region 

When a segment is selected to be cleaned, the valid data in it should be migrated 

to anothe

tion 4.1. Section 4.2 introduces the flash data layout of 

LFSS. The cleaning policy we implemented in LFSS is represented in Section 4.3.  

r segment. If the system migrates the valid data to a segment that will be 

cleaned soon, the migration becomes useless and wasteful. Therefore, the data 

Virtual File System

LFSS FAT JFFS

MTD Layer 

SDRAM 

Kernel 
space 

FTL 

Application Application 

NAND NOR 

SDRAM driver NAND driver NOR driver

Hardware 
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reorganization is important to flash-memory based storage systems. Previous research 

[6,17,21,24] about data reorganization pointed out that separating hot data from cold 

data can reduce cleaning overhead. Hot data stands for the data that is updated 

frequently. On the contrary, cold data is stable. 

DAC (Dynamically dAta Clustering) approach [5] dynamically clusters data 

durin

 

ure 4.2 : D tering in D

 

DAC partitions the flash memory into several logical regions that contain data

with

g segment cleaning and data updating. Therefore, the hot data and cold data can 

be separated by migrating them to different flash memory spaces. 

 

Fig ata Clus AC 

 

 different degrees of hotness. Each region includes a set of flash segments, which 

are not needed to be physically contiguous. The basic idea of DAC is to cluster data 

segments with similar write access frequencies in the same region. Because data 

access frequencies may change over time, a data segment will be migrated among 

regions when its write access frequency changes. Figure 4.2 shows that if the update 

frequency increases, the data will be moved toward the hottest region. And, it will be 

moved toward the coldest region if the update frequency decreases. Besides, when a 

Too old
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Young & Young & Young & 
updated updated updated 

Too old Too old

Young & 
updated 
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segment is selected for cleaning, all of its valid old data will be moved to the free 

space in the next colder region. Therefore, the DAC approach is more fine-grained 

and more effective in data clustering than other research that just separates data into 

two classes, hot and cold. 

On the basis of adding a SDRAM buffer as the extension of the flash, we 

prop

 the second data clustering policy, DEB (Dynamically data 

clust

regio

 

ose two policies. First, we make the SDRAM to be the hottest region in DAC 

approach. Because the hottest data will be updated in SDRAM, we can reduce a lot of 

erase operation. However, this is not aggressive and effective. This is because the 

hottest data must be moved through total region to reach the hottest region. Moreover, 

some hotter data may be not reach the hottest region, because it is not hot enough to 

move through total region. 

Therefore, we propose

ering with Extra Buffer region). The basic idea is to make hot data be updated in 

SDRAM, instead of the flash memory so as to reduce the number of erase operations. 

Similar to DAC, DEB also partitions the flash memory into several logical 

ns. And, we always associate the extra RAM buffer to the Extra Buffer Region 

(EBR). As we mentioned before, each region contains a set of segments, which are 

not to be physically contiguous. Thus, each segment is associated with a single region 

at any given time. 

 
Figure 4.3 : Stable time interval 
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Each flash region has a corresponding stable time interval, as shown in Figure

4.3 i

 

Figure 4.4 : Data Clustering in DEB 

                                                

 

s shown, which defines the range of the appropriate stable time1 for the data in 

the region. Assuming that sst(n) represents the shortest stable time and lst(n) 

represents the longest stable time of the interval belonging to region n. From the 

figure we can see that, the value of sst(i) is equal to the value of lst(i+1). And, both sst 

and lst of a colder region are bigger than the corresponding values of a higher region. 

It is because the data in the former is more stable. 
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1 We define the stable time as the time period between the most recently two updates of the data. 
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Basically, an update involves two entities, the block and the region that the block 

associate order to simplify the description, we say an update is fast if the 

time between the update and the last update of the block (i.e., the stable time of the 

block) is less than the sst value of the region. Similarly, an update is said to be slow if 

the t ore than value of gion. Figu ws the data 

reorganization diagram in DEB. The data reorganization happens when data blocks 

are updated or when segment cleaning occurs. The rules of the data reorganization can 

be summarized as follow  

1. Newly created data blocks are placed in the RAM buffer, and thus they are 

associated with EBR. 

2. If a data block is to be updated and its stable time falls in the interval of the 

current region, the new data is written to the free space of the current region. 

f a fast , we check the last update of this block. If 

he last u  is written to the free space of 

the next hotter region (denoted as f1 in Figure 4.4). Otherwise, the new data 

is written to the free space in the EBR (denote as f2 in Figure 4.4). After

writing the new data, the obsolete data s 

ata means that the time elapsed since the last update 

s with. In 

 the lst ime is m  the re re 4.4 sho

s : 

And, the obsolete data block is invalidated as garbage. 

3. I update happens on a block

t pdate was not a fast one, the new data

 

block in the original region i

invalidated as garbage. 

4. If a slow update happens on a block, the new data is written to the free 

space of the next colder region (denoted as s in Figure 4.4). And, the 

obsolete data block in the original region is invalidated as garbage. 

5. If the used space in the EBR is greater than a certain threshold, we write 

back the oldest data in it to the suitable region until the used space in the 

EBR is lower than the half of threshold (denoted as w in Figure 4.4). The 

suitable region for the d
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of the data falls in the stable time interval of that region.  

If a data block update 6. happens in the EBR, the block is updated in place. 

 in the same region. 

data duri

frequenci

Besi

erased too

executed. ent will move to the hotter region if the erase times 

of th eg

We 

advantage ustering. 

Seco  it

in the EB

because S

4.2 Dat

with our design. In Section 4.2.1, we in

describe LFSS in Section 4.2.2. 

 

4.2.1 Data Layout in JFFS 

7. When a segment is selected for cleaning, all valid data blocks in it are 

copied to the free space of the next colder region. This is because valid data 

in the selected segment is usually colder than other data

From the above rules we can see that, EBR gathers the most frequently updated 

ng the recent accesses. And, the data blocks of similar write access 

es can be clustered. 

des data clustering, we also consider even-wearing in DEB. If a segment is 

 many times, it will be move to the colder region when cleaning process is 

 At the same time, a segm

is s ment are few. 

can summarize the advantage of DEB as follows. First, it inherits all the 

s of DAC, such as fine-grained, effective, and low-overhead data cl

nd,  reduces the number of erase operations on a flash, since the data is updated 

R for the most part. Moreover, the data updating is even more effective, 

DRAM has lower write access time than flash memory. 

 

a Layout on Flash 

In this section, we shall describe the data layout of LFSS, and compare JFFS 

troduce the data layout in JFFS. Then, we 

 

Figure 4.5 shows the data layout in JFFS. They are only two kinds of nodes in 
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the f

 is performed to a file or directory, a new raw node (with the 

new 

 

lash memory, raw node and invalid node. The basic data structure used when 

storing data on the flash device is the jffs_raw_inode structure. Basically, a raw node 

belongs to a file. It contains both the metadata of the file and a part of the file data. 

Each time a modification

data) is written. Therefore, the metadata of the total raw nodes contains all the 

information needed to build the file system. However, distributing metadata over the 

flash makes JFFS perform poorly in mounting. This is because JFFS needs to scan all 

the blocks in the flash to build the system. Invalid nodes will be erased by cleaning 

process. 

Invalid node Raw node Free space Raw node

… 

Raw node

Jffs_raw_inode 

 
Figure 4.5 : Data Layout in JFFS 
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4.2.2 Data Layout in LFSS 

Figure 4.6 shows the data layout in LFSS. From the figure we can see that LFSS 

divides flash into m d se  se two 

groups, super segments and data segments. 

Most of the segments are data segments, which are responsible for storing real 

data. Previous research reported that log-structured is more suitable for flash memory. 

Therefore, LFSS uses the log-structured to store data se der to avoid 

performing erase op  update. 

 The others are super segments, which locate at the beg ing of the flash. The 

basic data structure in each super segment is checkpoint node

contains the m e whole storage system  super 

segments only, instead of scanning the total flash memory, to find the most up-to-date 

checkpoint node for building the storage system during the sy itialization. This 

reduces the initialization time. Each checkpoint node records the following 

information : 

 Magic number 

The value of the magic number is 0xEECC2299. It is used for identifying a

checkpoint node. 

ment information block to describe 

any fix-sized segments an parates the gments into 

quentially in or

erations for each

inn

. Each checkpoint node 

etadata for th . Therefore, we can scan

stem in

 

 Used segments 

This value indicates the number of used segments. A used segment 

represents a segment that contains data in it. 

 Update time 

The last update time of the checkpoint node is stored in this field. It can be 

used for LFSS to find the most up-to-date checkpoint node. 

 Segment information block 

Each used segment has a seg
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segment-wide information such as the number of times the segment has 

been erased, the region number, an array of data information block, and etc.  

The region number indicates the region that this segment belongs to. The 

last erase timestamp records when the last erase operation happened on this 

segment. The free and dirty spaces represent how much free space and 

invalid space in this segment, respectively. The used data block stands for 

that the number of data blocks in this segment. And, the array of data 

 blocks contains the information of every block in the segment, 

 

information

such as update time, data size, and etc. 

Figure 4.6 : Data Layout in LFSS 
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 Whe kpoint node needs to be updated. 

However, this does not cause the uneven-wearing problem since LFSS makes the 

checkpoint nodes always be updated in the EBR. In addition, updating checkpoint 

nodes in EBR also eliminates a large number of erase operations and hence prolongs 

the flash lifetime. The checkpoint node is written back to flash periodically or when 

the system shuts do rre entation the write back in 0 

seconds.  

is chapter, we summarize the comparison of JFFS and 

LFSS in Table 4.1. 

 

 JFFS LFSS 

n a data block is updated, the chec

wn. In cu nt implem terval is 3

From the description in th

System
Initialization 

Scanning total 
flash 

Scanning a few of
blocks 

  

Storing Type Log Log 

Clusterin
A

g 
pproach 

No use DEB 

Metadata  
Location 

Distributed over 
the flash m

Distributed over the 
ents emory super segm

Table 4.1 Comparison of JFFS and LFSS 

cleaner selects the segment with the largest amount of invalid data for 

 

4.3 Cleaning Policy of LFSS 

In order to show that DEB data clustering is effective for reducing the cleaning 

costs under various cleaning policies, we implement the following three segment 

cleaning algorithms. 

I. Greedy Policy 

The 

cleaning. 
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II. Cost-Benefit Policy 

The cleaner chooses to clean segments that maximize the formula: 

u2
uage 1(* )− , whe 10 ≤< u . re 

Th memo zation and age ime since the most recent 

mo

III. C

T oses to at :  

e u is the flash ry utili  is the t

dification. 

AT Policy 

he cleaner cho clean segments th minimize the formula

tu * , where 0
ageu *)1( −

1≤< u . 

The u and age is the similar with the cost-benefit policy, and t is the number 
of times the segment has been erased. 
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Chapter 5 

Experimental Results and Analysis 

 

LFSS is implemented as a MTD user module in Linux 2.4.20. For ease of 

experiment in PC environment, we use SDRAM, instead of the flash memory, for 

performance evaluation. Therefore, we implement the SDRAM MTD driver to 

connect the MTD layer. And, it can record the number of erase operations of each 

segments. Note that using SDRAM for experiment does not affect the results since 

they are reported in number of erase operations. All measurements were performed on 

a machine with 2.0 GHz Pentium 4 and 256 Mbytes DDRAM. Since the cleaning 

overhead does not significantly affect performance at low flash utilization [6], we 

filled 90% of flash memory space before we did the experiments. Besides, we divide 

the flash into 4 regions in all experiments. And, the stable time intervals are 100, 200, 

300, 400 seconds, respectively. The DAC with 4Mb in figures means our first policy, 

which uses SDRAM to be the hottest region. 

The following sections show the experimental results. Section 5.1 presents the 

performance of LFSS under a file benchmark, Postmark. LFSS outperforms the other 

storage systems when the locality of reference increases, as shown in Section 5.2. 

Section 5.3 shows that LFSS performs well in various cleaning policies. Section 5.4 

presents the effect of EBR size on the system performance. Finally, Section 5.5 shows 

that LFSS ensures even wearing. 

 

5.1 LFSS Performance under a File Benchmark  

In order to verify that LFSS can reduce the number of erase operations, we 
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compare its perfor

4MBytes under a file benchmark, Postmark [16]. PostMark is configured to create a 

number of file initially. During the experiment, it performs transa

mance with those of JFFS, DAC server, and DAC server with 

ctions such as read, 

pend, create, and delete to those files randomly, and report the transaction rate as 

the r

ap

esult. Since we are interested in the number of erase operations performed during 

the experiment, we get this information from the SDRAM MTD diver. Because LFSS 

does not locate under the VFS layer, we modify the source code of postmark for 

connecting it to LFSS read, write interface. Figure 5.1 shows the performance results. 

The size of EBR is 4Mbytes and the flash size is 64 Mbytes. Moreover, the flash 

initial utilization is 90%. From the figure we can see that, the performance of LFSS is 

better than JFFS and DAC server. The performance difference between LFSS and 

DAC server with 4Mbytes is little, but the former still performs better than the latter. 

It is because DEB approach can move the hotter data to SDRAM efficient. 
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5.2 Effect of Reference Locality 

In this experiment, we measure the performance of LFSS under different degrees 

of reference locality. We use notation y/x for representing locality of reference, which 

means that x% of the accesses are referencing to y% of the data. In this experiment, 

the total flash size is 64Mbytes, the EBR size is 4Mbytes, and 40Mbytes of data is 

updated. Besides, we use the CAT cleaning policy. Finally, we take the results of the 

DAC server as a comparison. 

We implement a test program, which provides two parameters, initial size and 

reference locality. Initial size means the test program creates a number of files, which 

total size is it. The reference locality is the same with the above mention. 
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Figure 5.2 : Effect of Varied Reference Localities 

 

Figure 5.2 ies. As 

the reference locality increases, the reduction of the erase operations grows. Specially

 shows the performance results under varied reference localit

, 
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the LFSS outperforms DAC server and DAC server with 4Mbtes by 40% and 23% 

under the 50/50 locality of reference, re

er outperforms the latter under uniform access and 

high locality of reference. 

In order to prove that LFSS is not restricted to a specific cleaning policy, we

measure its performance under three cleaning policies mentioned in Section 4.3. In 

the experiment, we update 40Mbytes of data. The flash size is 64 Mbytes and flash 

utilization is 90%. We use the test program, which is mentioned in 5.2, under 10/90 

locality of reference. 

Table 5.1 shows the performance results. From the table we can see that, LFSS 

outperforms LFSS without EBR under all of the three cleaning policies. Specifically, 

about 93% of erase operations were eliminated for greedy policy, 91% for 

Cost-Benefit policy, and 82% for CAT policy.  

 

 LFSS (No EBR) LFSS (4Mbtes) Improvement 

spectively. Under the 10/90 locality of 

reference, however, LFSS and DAC server with 4Mbytes eliminate 88% of erase 

operations. This is because hottest data in LFSS and DAC server with 4Mbytes are 

both always updated in the SDRAM under high locality of reference. Therefore, we 

can see that LFSS performs the same with DAC server with 4Mbytes under very high 

locality of reference, and the form

 

5.3 Performance of Three Cleaning Policies 

 

Greedy 7818 548 93% 
Cost-Benefit 4898 417 91% 
CAT 1972 368 82% 

Table 5.1 Erase Times of Three Cleaning Policies 
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5.4 Effect of EBR Size 

Figure 5.3 shows the performance of LFSS under different sizes of EBR. The 

value of the zero-sized EBR represents the performance of LFSS without EBR, which 

is used for comparison. Besides, we also show the number of erase operations under 

the three cleaning policies. The test program and flash initialization are all the same 

with Section 5.2. 
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es. The LFSS with 4Mbytes of BER 

outperforms by 88% to 95%. This is because the bigger the EBR is, the more hot data 

can be updated in it. And therefore, more eras rations can be

 

5.5 Even Wea

Since even wearing is an important goal for flash-based storage systems, we

verify in this experiment that LFSS can achieve the goal. We use a 64Mbytes flash 

Figure 5.3 : Performance under Different Size of EBR 

 

As the figure shows, LFSS eliminates more erase operations under all the three 

cleaning policies when the size of EBR increas

e ope  eliminated. 

ring 
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with 1Mbyte segments. And, CAT cleaning policy is used in this experiment. The 

result is measured by running the postmark file benchmark for 100000 transactions.  

Figure 5.4 shows the number of erase operations on each segment. From the 

figure we can see that, the numbers of erase operations on segments are similar with 

each other. The numbers are between 180 and 220. Therefore, LFSS ensures even 

wearing. 
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Chapter 6 

Conclusions and Future Works 

e describe the design and implementation of Log Flash Storage 

System (LFSS) for the flash memory. Because of the flash limitations, a flash 

memory based storage system should perform erasing as few as possible for 

prolonging the flash lifetime, improving the system performance, and reducing the 

power consumption. LFSS use an additional RAM buffer as the extra buffer region of 

flash memory to reduce the number of erase operations. And, it has the DEB data 

reorganization technique for clustering data with the similar updating frequency.  

Moreover, we propose a new data layout for the flash memory. It separates the 

flash memory into two nts. During the system 

initialization, only the former needs to be scanned for building up the storage system, 

since it contains the metadata of the whole storage system. As a result, LFSS can 

reduce the initial time. And, LFSS uses the non-in-place-update approach to avoid 

erasing blocks during every updating, there are three cleaning policies, greedy, 

cost-benefit, and CAT are implemented in the LFSS.  

Performance evaluation shows that with CAT policy and DEB data clustering, 

LFSS not only reduces a large amount of erase operations, but also evenly wears flash 

memory. Under uniform access, LFSS with CAT cleaning policy outperforms DAC 

server by 40% and DAC server with 4MBytes by 23% in reducing the number of 

erase operations. Moreover, with the increase of the extra buffer size, the erase 

operations can be reduced more. Finally, the experiment shows that LFSS is suitable 

 

6.1 Conclusions 

In this thesis w

parts, super segments and data segme
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for different cleaning policies. 

 

6.2 Future Works 

In order to make application program easy to use LFSS, we will implement the 

. This allows LFSS to be placed under VFS layer in Linux, so 

that 

VFS interface for LFSS

application programs can use LFSS through ordinary file related system calls. 

After the implementation, we can analyze performance under a more diverse set of 

real workloads and real applications without modifying their source code to suit LFSS 

interface. 
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