
J. Math. Anal. Appl. 366 (2010) 700–705
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Unitary part of a contraction

Hwa-Long Gau a,∗, Pei Yuan Wu b

a Department of Mathematics, National Central University, Chung-Li 320, Taiwan
b Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 July 2009
Available online 27 January 2010
Submitted by J.A. Ball

Keywords:
Contraction
Unitary part
Completely nonunitary part
Sn-operator
Norm-one index

For a contraction A on a Hilbert space H , we define the index j(A) (resp., k(A)) as the
smallest nonnegative integer j (resp., k) such that ker(I − A j∗ A j) (resp., ker(I − Ak∗ Ak) ∩
ker(I − Ak Ak∗)) equals the subspace of H on which the unitary part of A acts. We show
that if n = dim H < ∞, then j(A) � n (resp., k(A) � �n/2�), and the equality holds if and
only if A is of class Sn (resp., one of the three conditions is true: (1) A is of class Sn , (2) n is
even and A is completely nonunitary with ‖An−2‖ = 1 and ‖An−1‖ < 1, and (3) n is even
and A = U ⊕ A′, where U is unitary on a one-dimensional space and A′ is of class Sn−1).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a complex Hilbert space with inner product 〈·,·〉 and norm ‖ · ‖ and let A be a contraction (‖A‖ � 1) on H .
There is a canonical decomposition of H as the direct sum H1 ⊕ H2 of reducing subspaces H1 and H2 for A so that A|H1
is unitary and A|H2 is completely nonunitary. (Recall that an operator B on K is completely nonunitary (c.n.u.) if there
is no (nonzero) reducing subspace L of B such that B|L is unitary.) In this case, H1 and H2 are uniquely determined
by A: H1 = {x ∈ H: ‖A j x‖ = ‖x‖ = ‖A j∗x‖ for all j � 0} and H2 = H 
 H1, and U = A|H1 and A′ = A|H2 are called the
unitary part and completely nonunitary part of A, respectively (cf. [3, Theorem I.3.2]). Another expression for the subspace
H1 is

⋂∞
j=0(ker(I − A j∗ A j) ∩ ker(I − A j A j∗)). Thus it is natural to consider the smallest integer j (resp., k) for which

ker(I − A j∗ A j) = H1 (resp., ker(I − Ak∗ Ak) ∩ ker(I − Ak Ak∗) = H1). For this purpose, we give the following definitions:

Definition 1.1. For a contraction A on H , let

H j(A) =
{

ker(I − A j∗ A j) if 0 � j < ∞,⋂∞
j=0 ker(I − A j∗ A j) if j = ∞,

j(A) = min
{

j: 0 � j � ∞, H j(A) = H∞(A) ∩ H∞
(

A∗)},
and

k(A) = min
{
k: 0 � k � ∞, Hk(A) ∩ Hk

(
A∗) = H∞(A) ∩ H∞

(
A∗)}.
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The next example gives values of such indices for the n-by-n Jordan block

Jn =

⎡
⎢⎢⎢⎣

0 1

0
. . .
. . . 1

0

⎤
⎥⎥⎥⎦ .

Example 1.2. If A = Jn , then j(A) = n and k(A) = �n/2�, the ceiling of n/2 (that is, the smallest integer which is larger than
or equal to n/2). This is because simple computations yield that

H j(A) =
{ {0} ⊕ C

n− j if 0 � j � n,

{0} if n < j � ∞,

H j
(

A∗) =
{

C
n− j ⊕ {0} if 0 � j � n,

{0} if n < j � ∞,

and H∞(A) ∩ H∞(A∗) = {0}.

In the following, we will show that if A is a contraction on an n-dimensional space, then j(A) and k(A) can be at most
n and �n/2�, respectively. The extremal cases can also be completely characterized. Recall that an n-dimensional operator A
is said to be of class Sn if it is a contraction, its eigenvalues are all in the open unit disc D ≡ {z ∈ C: |z| < 1} and it satisfies
rank(In − A∗ A) = 1. One example of such operators is Jn . More generally, it is known [1, Corollary 1.3] that an n-by-n matrix
is of class Sn if and only if it is unitarily equivalent to a matrix of the form [aij]n

i, j=1, where |aii| < 1 for all i and

aij =
{

(1 − |aii|2)1/2(1 − |a jj|2)1/2(
∏ j−1

k=i+1(−akk)) if i < j,
0 if i > j.

We show that a contraction A on an n-dimensional space is such that j(A) = n (resp., k(A) = �n/2�) if and only if it is
of class Sn (resp., one of the following holds: (1) A is of class Sn , (2) n is even and A is completely nonunitary with
‖An−2‖ = 1 and ‖An−1‖ < 1, and (3) n is even and A = U ⊕ A′ , where U is unitary on a one-dimensional space and A′ is of
class Sn−1). These will be given in Sections 2 and 3, respectively.

Throughout this paper, we will frequently use the fact that, for a contraction A and an integer j � 0, x is in H j(A) if and
only if ‖A j x‖ = ‖x‖.

We end this section with some basic properties of the H j(A)’s, j(A) and k(A).

Proposition 1.3. Let A be a contraction on H. Then

(1) H0(A) = H0(A∗) = H,
(2) H j(A) ↓ H∞(A) as j → ∞,
(3) dim H j(A) = dim H j(A∗) for all j, 0 � j � ∞,
(4) 0 � k(A) � j(A) � ∞,
(5) the following conditions are equivalent: (a) j(A) = 0, (b) k(A) = 0, and (c) A is unitary,
(6) j(A) = j (1 � j < ∞) if and only if A = U ⊕ A′ on H = H1 ⊕ H2 , where U is unitary, H j(A′) = {0} and H j−1(A′) �= {0},
(7) j(A) = j(A∗) and k(A) = k(A∗),
(8) j(A ⊕ B) = max{ j(A), j(B)} and k(A ⊕ B) = max{k(A),k(B)} for any other contraction B, and
(9) for A normal, H j(A) = H∞(A) for all j � 1 and thus j(A) = k(A) � 1.

For the proof of (3), we need the next lemma.

Lemma 1.4. For any operator A on H, let A∗ A = A1 ⊕ 0 (resp., A A∗ = A2 ⊕ 0) on H = ran A∗ ⊕ ker A (resp., H = ran A ⊕ ker A∗).
Then A1 and A2 are unitarily equivalent.

Proof. Since ran A∗ = ran(A∗ A)1/2 (resp., ran A = ran(A A∗)1/2), we may define V : ran A∗ → ran A (resp., W : ran A →
ran A∗) by V ((A∗ A)1/2x) = Ax for x in H (resp., W ((A A∗)1/2 y) = A∗ y for y in H). Then V and W are surjective isometries
satisfying

〈
V

(
A∗ A

)1/2
x,

(
A A∗)1/2

y
〉 = 〈

Ax,
(

A A∗)1/2
y
〉 = 〈

x, A∗(A A∗)1/2
y
〉

= 〈
x,

(
A∗ A

)1/2
A∗ y

〉 = 〈(
A∗ A

)1/2
x, W

(
A A∗)1/2

y
〉

= 〈
W ∗(A∗ A

)1/2
x,

(
A A∗)1/2

y
〉
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for all x and y. Thus V = W ∗ . We have

(
V ∗ A2 V

)(
A∗ A

)1/2
x = W A2 Ax = W

(
A A∗)Ax

= W
(

A A∗)1/2(
A A∗)1/2

Ax = A∗(A A∗)1/2
Ax = (

A∗ A
)(

A∗ A
)1/2

x

= A1
(

A∗ A
)1/2

x,

which shows that V ∗ A2 V = A1, completing the proof. �
Proof of Proposition 1.3. (1), (2), (4), (5), (6) and (8) are trivial. (3) is an easy consequence of Lemma 1.4 and (7) follows
from (6) and (3). We now prove (9). Indeed, if A is normal, then from I − A j∗ A j = (

∑ j−1
k=0 Ak∗ Ak)(I − A∗ A) we obtain

H1(A) ⊆ H j(A) for any j � 1. Since H j(A) ⊆ H1(A) by (2), the equality H j(A) = H1(A) holds for all j � 1. Our assertions
follow immediately. �
2. The index j(A)

The main result of this section is the following theorem.

Theorem 2.1. If A is a contraction on an n-dimensional space, then j(A) � n. The equality holds if and only if A is of class Sn.

For its proof, we need the next two lemmas.

Lemma 2.2. If A is a contraction on an n-dimensional space with dim H j(A) > n − j for some j, 1 � j � n, then j(A) < j.

Proof. Assume that A acts on the space H with dim H = n. Since there are j + 1 subspaces in the sequence H j(A) ⊆
H j−1(A) ⊆ · · · ⊆ H1(A) ⊆ H0(A) (= H), our assumption on H j(A) implies, by the pigeonhole principle, the equality of Hk(A)

and Hk+1(A) for some k, 0 � k < j. If x is in Hk+1(A), then

‖x‖ = ∥∥Ak+1x
∥∥ � ‖Ax‖ � ‖x‖,

which yields that ‖Ak(Ax)‖ = ‖Ax‖ = ‖x‖. Hence Ax is in Hk(A) = Hk+1(A) and thus A maps Hk(A) into itself isometrically.
Therefore, A = A1 ⊕ A2 on H = Hk(A) ⊕ Hk(A)⊥ with A1 unitary. This shows that Hk(A) ⊆ H∞(A) ∩ H∞(A∗). Since the
converse containment is trivial, we have Hk(A) = H∞(A) ∩ H∞(A∗) and therefore j(A) � k < j as asserted. �

We note that the above arguments are essentially contained in the proof of [2, Lemma 2.3].

Lemma 2.3. A contraction A on an n-dimensional space is of class Sn if and only if dim H j(A) = n − j for all j, 1 � j � n.

This characterization of Sn-operators is from [2, Theorem 3.1].

Proof of Theorem 2.1. If Hn(A) = {0}, then obviously H∞(A)∩ H∞(A∗) = {0} and j(A) � n; otherwise, the assertion j(A) < n
follows from Lemma 2.2.

For the remaining part, we need only check, in view of Lemma 2.3, that j(A) = n implies dim H j(A) = n − j for all j,
1 � j � n. Indeed, if dim H j(A) < n − j for some j, 1 � j < n, then, as in the proof of Lemma 2.2, the pigeonhole principle
yields the equality of Hk(A) and Hk+1(A) for some k, j � k < n. We then proceed as before to infer that A maps Hk(A) into
itself isometrically and that Hk(A) = H∞(A) ∩ H∞(A∗). This leads to n = j(A) � k < n, a contradiction. Thus we must have
dim H j(A) � n − j for all j. If the strict inequality “>” holds for any j, 1 � j � n, then Lemma 2.2 says that j(A) < j � n,
again a contradiction. Therefore, we have dim H j(A) = n − j for all j. Thus A is of class Sn by Lemma 2.3. This completes
the proof. �

To conclude this section, we give two remarks. Firstly, the assertion j(A) � n in Theorem 2.1 can be slightly improved.
Namely, if A is a finite-dimensional contraction, then j(A) is at most the degree of the minimal polynomial of A. To prove this, let
m denote this degree. Then, for any x in Hm(A), we have ‖Amx‖ = ‖x‖. Thus ‖Am−1x‖ = · · · = ‖Ax‖ = ‖x‖, which shows
that Am−1x, . . . , Ax, x are all in H1(A). Since Amx is a linear combination of these vectors, it is also in H1(A). We can then
deduce successively that all the A j x’s, j � m, are in H1(A). If K denotes the subspace generated by x, Ax, A2x, . . . , then
K is an invariant subspace of A contained in H1(A). Hence A1 ≡ A|K is isometric on K . On a finite-dimensional space,
A1 is unitary. Thus K is contained in H∞(A) ∩ H∞(A∗). This shows that x ∈ H∞(A) ∩ H∞(A∗) for any x in Hm(A) or
Hm(A) ⊆ H∞(A)∩ H∞(A∗). Since the converse containment is trivial, we obtain Hm(A) = H∞(A)∩ H∞(A∗). Thus j(A) � m
follows.
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Secondly, for any finite-dimensional contraction A, the inequality

dim H j+1(A) � max
{

dim H j(A) − 1,dim
(

H∞(A) ∩ H∞
(

A∗))} (a)

holds for all j � 0. This is a consequence of [2, Lemma 2.3]. Indeed, if dim H j+1(A) � dim H j(A) − 1, then we are done.
Otherwise, since H j+1(A) ⊆ H j(A), we must have H j+1(A) = H j(A). By [2, Lemma 2.3] or the arguments in the proof of
Lemma 2.2, A|H j+1(A) is unitary. This implies that H j+1(A) ⊆ H∞(A) ∩ H∞(A∗). Hence these two subspaces are equal and
thus (a) also holds. Note that this can be used to give an alternative proof of j(A) � n in Theorem 2.1.

3. The index k(A)

Our first result relates k(A) to the norm-one index kA for a contraction A. Recall that if A is a contraction, then its
norm-one index kA is defined as sup{k � 0: ‖Ak‖ = 1} (cf. [2, p. 364]). It is easily seen that (1) 0 � kA � ∞, (2) kA = 0 if
and only if ‖A‖ < 1, and (3) kA = ∞ if and only if its spectral radius r(A) (≡ max{|λ|: λ ∈ σ(A)}) equals 1. In fact, it was
shown in [2, Proposition 2.1(c) or Theorem 2.2] that, for an n-dimensional contraction A, kA is either infinity or less than
or equal to n − 1.

Theorem 3.1. If A is a c.n.u. contraction, then k(A) � �(kA +1)/2�. If, in addition, A is compact, then the equality k(A) = �(kA +1)/2�
holds.

The proof depends on the following lemma relating H j(A) ∩ Hk(A∗) and H j+k(A).

Lemma 3.2. If A is a contraction, then Ak∗ maps H j(A)∩ Hk(A∗) onto H j+k(A) isometrically for any j, 0 � j � ∞, and k, 0 � k < ∞,
and, in particular, j(A) � 2k(A).

Proof. We first check that Ak∗ maps H j(A) ∩ Hk(A∗) to H j+k(A) for 0 � j,k < ∞. Indeed, if x is in H j(A) ∩ Hk(A∗), then

‖x‖ �
∥∥Ak∗x

∥∥ �
∥∥A j+k Ak∗x

∥∥ = ∥∥A j(Ak Ak∗x
)∥∥ = ∥∥A jx

∥∥ = ‖x‖, (b)

where the last two equalities follow from the assumptions that x ∈ Hk(A∗) and x ∈ H j(A), respectively. It follows that
‖A j+k(Ak∗x)‖ = ‖Ak∗x‖ and thus Ak∗x is in H j+k(A). (b) above also implies that ‖Ak∗x‖ = ‖x‖ and thus Ak∗ : H j(A) ∩
Hk(A∗) → H j+k(A) is isometric. To show the surjectivity of the asserted map, let y be in H j+k(A). Then

‖y‖ �
∥∥Ak y

∥∥ �
∥∥A j(Ak y

)∥∥ = ‖y‖,
showing that Ak y is in H j(A). We now prove that x ≡ Ak y is also in Hk(A∗). Indeed, this is so because

Ak Ak∗x = Ak(Ak∗ Ak y
) = Ak y = x,

where the second equality follows from y ∈ H j+k(A) ⊆ Hk(A). Finally, the equalities

Ak∗x = Ak∗ Ak y = y

show that Ak∗ maps x in H j(A)∩ Hk(A∗) to y. This proves our assertion for finite j and k. The case for j = ∞ can be easily
shown to be true from above.

To prove j(A) � 2k(A), we decompose A as U ⊕ A′ , where U is unitary and A′ is c.n.u. Since j(A) = j(A′) and
k(A) = k(A′) by Proposition 1.3(8) and (5), we need only check j(A′) � 2k(A′). Assuming k = k(A′) < ∞, we have
Hk(A′) ∩ Hk(A′∗) = {0}. Hence H2k(A′) = {0} from above. Thus j(A′) � 2k = 2k(A′) as desired. �
Proof of Theorem 3.1. Since A is c.n.u., we have H∞(A) ∩ H∞(A∗) = {0}. If k(A) = ∞, then Hk(A) ∩ Hk(A∗) �= {0} for any k,
0 � k < ∞. Thus Hk(A) �= {0} or ‖Ak‖ = 1 for all k � 0. It follows that k(A) = ∞ = �(kA + 1)/2�.

Now assume that k ≡ k(A) is finite (resp., k ≡ k(A) is finite and A is compact). We have Hk−1(A) ∩ Hk−1(A∗) �= {0}
and Hk(A) ∩ Hk(A∗) = {0}. Apply Lemma 3.2 to infer that H2k−2(A) �= {0} and H2k(A) = {0}. Hence ‖A2k−2‖ = 1 (resp.,
‖A2k−2‖ = 1 and ‖A2k‖ < 1 because the compact A2k attains its norm). It follows that kA � 2k − 2 (resp., kA = 2k − 1 or
2k − 2). Therefore, k(A) � (kA + 2)/2 (resp., k(A) = (kA + 1)/2 or (kA + 2)/2). We conclude that k(A) � �(kA + 1)/2� (resp.,
k(A) = �(kA + 1)/2�). �

Note that, in this theorem, the equality is in general false. One example is the c.n.u. normal contraction A =
diag(1/2,2/3, . . . , (n − 1)/n, . . .) on l2. In this case, k(A) = 1 and kA = ∞.

Corollary 3.3. Let A be a contraction on a finite-dimensional space. Then k(A) = 1 if and only if A = U ⊕ A′ , where U is unitary, A′ is
not missing, and ‖A′‖ < 1 or ‖A′‖ = 1 and ‖A′2‖ < 1.
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This is an easy consequence of Proposition 1.3 and Theorem 3.1. It is comparable to the corresponding condition for
j(A) = 1, namely, A = U ⊕ A′ , where U is unitary, A′ is not missing and ‖A′‖ < 1 (cf. Proposition 1.3(6)).

The next theorem is the main result of this section.

Theorem 3.4. If A is a contraction on an n-dimensional space, then k(A) � �n/2�. For an operator A of class Sn, we have the equality
k(A) = �n/2�.

Proof. Let A = U ⊕ A′ , where U is unitary and A′ is c.n.u. Then k(A) = max{k(U ),k(A′)} = k(A′) by Proposition 1.3. Since
k(A′) = �(kA′ + 1)/2� by Theorem 3.1 and kA′ � n − 1 by [2, Proposition 2.1(c) or Theorem 2.2], we infer that k(A) �
�((n − 1) + 1)/2� = �n/2� as asserted.

If A is of class Sn , then kA = n − 1 by [2, Theorem 3.1] and hence k(A) = �((n − 1) + 1)/2� = �n/2� from above. �
We now give another proof for the first assertion in Theorem 3.4 which is more in line of the arguments in Section 2

and does not involve the norm-one index.
For the n-dimensional contraction A, let k = �n/2�. We show that Ak∗ maps Hk(A) ∩ Hk(A∗) onto itself isometrically.

Indeed, if x is any vector in Hk(A) ∩ Hk(A∗), then

‖x‖ �
∥∥Ak∗x

∥∥ �
∥∥An(Ak∗x

)∥∥ = ∥∥An−k(Ak Ak∗x
)∥∥ = ∥∥An−kx

∥∥ = ‖x‖,
where the last two equalities follow from the assumptions that x ∈ Hk(A∗) and x ∈ Hk(A) ⊆ Hn−k(A), respectively. It follows
that ‖An(Ak∗x)‖ = ‖Ak∗x‖ = ‖x‖ and thus, in particular, Ak∗x is in Hn(A). Hence

Ak∗(Hk(A) ∩ Hk
(

A∗)) ⊆ Hn(A) = H∞(A) ∩ H∞
(

A∗) ⊆ Hk(A) ∩ Hk
(

A∗), (c)

where the equality in the middle is by Theorem 2.1. Therefore, Ak∗ maps Hk(A) ∩ Hk(A∗) onto itself isometrically and thus
we have equalities throughout (c). This yields Hk(A) ∩ Hk(A∗) = H∞(A) ∩ H∞(A∗) and thus k(A) � k = �n/2�.

The final result of this section is a characterization of n-dimensional contractions A with k(A) = �n/2�.

Theorem 3.5. Let A be a contraction on an n-dimensional space. Then k(A) = �n/2� if and only if one of the following holds:

(1) A is of class Sn,
(2) n is even and A is c.n.u. with ‖An−2‖ = 1 and ‖An−1‖ < 1, and
(3) n is even and A = U ⊕ A′ , where U is unitary on a one-dimensional space and A′ is of class Sn−1 .

Proof. Assume that k(A) = �n/2�. Let A = U ⊕ A′ , where U is unitary on a space of dimension n − m and A′ is c.n.u. on a
space of dimension m, 0 � m � n. Since

�n/2� = k(A) = max
{
k(U ),k

(
A′)} = k

(
A′)

= ⌈
(kA′ + 1)/2

⌉
� �m/2� � �n/2�,

where the first inequality is by [2, Proposition 2.1(c) or Theorem 2.2], we have equalities throughout. In particular, �(kA′ +
1)/2� = �m/2� and �m/2� = �n/2� hold. The latter implies that either m = n or n is even and m = n − 1:

(i) If n = m = 2k + 1 is odd, then �(kA′ + 1)/2� = k + 1, which implies that kA′ = 2k or 2k + 1. In the former case, we have
kA′ = n − 1 and hence A = A′ is of class Sn by [2, Theorem 3.1]. For the latter, we have kA′ = n, which is impossible by
[2, Proposition 2.1(c) or Theorem 2.2]. Thus, in this case, (1) holds.

(ii) If n = m = 2k is even, then �(kA′ + 1)/2� = k, which implies that kA′ = 2k − 1 or 2k − 2. For the former, we have
kA′ = n − 1 and thus A = A′ is of class Sn , that is, (1) holds. For the latter, kA′ = n − 2, which yields (2).

(iii) If n = 2k is even and m = n − 1, then �(kA′ + 1)/2� = k, and hence kA′ = 2k − 1 or 2k − 2. The former says that kA′ = m,
which is impossible by [2, Proposition 2.1(c) or Theorem 2.2]. The latter implies that kA′ = m − 1 and hence A′ is of
class Sn−1 by [2, Theorem 3.1]. Thus, in this case, (3) holds.

That (1) and (3) give k(A) = �n/2� is easily seen from Theorem 3.4 while (2) yields this equality is by Theorem 3.1. �
We conclude this paper by remarking that, analogous to the situation for j(A) in Section 2, we can (1) slightly improve

k(A) � �n/2� in Theorem 3.4 by proving that, for a finite-dimensional contraction A, k(A) � �m/2�, where m is the degree of the
minimal polynomial of A, and (2) relate the dimensions of Hk+1(A) ∩ Hk+1(A∗) and Hk(A) ∩ Hk(A∗) as

dim
(

Hk+1(A) ∩ Hk+1
(

A∗)) � max
{

dim
(

Hk(A) ∩ Hk
(

A∗)) − 2,dim
(

H∞(A) ∩ H∞
(

A∗))}
for a finite-dimensional contraction A and k � 0. To prove (1), we let l = �m/2�. Then 2l � m and hence H2l(A) ⊆ Hm(A). Since
Hm(A) = H∞(A)∩ H∞(A∗) as was proved in Section 2, we have H2l(A) = H∞(A)∩ H∞(A∗). Thus Hl(A)∩ Hl(A∗) = H∞(A)∩
H∞(A∗) by Lemma 3.2. Therefore, k(A) � l = �m/2�. For the proof of (2), note that dim(Hk(A) ∩ Hk(A∗)) = dim H2k(A) for
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all k � 0 by Lemma 3.2. Hence

dim
(

Hk+1(A) ∩ Hk+1
(

A∗))
= dim H2k+2(A)

� max
{

dim H2k+1(A) − 1,dim
(

H∞(A) ∩ H∞
(

A∗))} (
by (a)

)
� max

{
max

{
dim H2k(A) − 1,dim

(
H∞(A) ∩ H∞

(
A∗))} − 1,dim

(
H∞(A) ∩ H∞

(
A∗))} (

by (a)
)

= max
{

dim H2k(A) − 2,dim
(

H∞(A) ∩ H∞
(

A∗))}
= max

{
dim

(
Hk(A) ∩ Hk

(
A∗)) − 2,dim

(
H∞(A) ∩ H∞

(
A∗))}.

As before, this can be used to give an alternative proof of k(A) � �n/2� in Theorem 3.4.
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