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Fig. 3-2.  Simulation of linearly graded doping device for (a) 2-D potential curves and (b) 
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Fig. 3-3.  Simulation of local heating effect in linearly graded doping device near the source 
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Fig. 4-11.  Transfer characteristics before and after excimer laser treatments for LTPS 
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breakdown voltage was measured by the protective current limit of 0.1 mA. 
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temperature and 400 °C irradiations. 
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(c) Output characteristics of LTPS LDMOS for optimal room temperature and 400 
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