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Abstract

Embedded systems are ubiquitous-and play-a significant role in modern daily life.
The characteristics of embedded-Systems are application-specific and scarce hardware
resources. Besides, more and more applications in embedded system care not only
real-time to complete their works; but also want.:to own Internet-access capability
which allows the devices to communicate with other systems.

To achieve these requirements, we developed an Internet-supported embedded
real-time operating system called Seed. The Seed kernel is small, flexible, high
performance, and portable for embedded system. Besides Seed have deterministic or
constant timing behavior to support real-time system. Finally, to enable the
Internet-access capability, we ported a small TCP/IP stack, IwlP, to Seed.

Seed kernel currently provides preemptive multitasking, task synchronization /
communication, and management of memory, timers and interrupts. The size of the
kernel image is about 75Kbytes with IwlIP, or 21Kbytes without IwlP. It is quite small
and suitable to embedded system. The performance results show that Seed is quite

suitable for a small real-time embedded network appliance.
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Chapter 1
Introduction

1.1 Motivation

Embedded systems are ubiquitous and play a significant role in modern daily life.
They can be found everywhere, such as watches, VCD/DVD players, digital cameras,
mobile phones, PDAs, missile systems, flight control systems and etc. Traditional
embedded operating system usually addresses two issues: limited hardware resources
and real-time support. Therefore, an embedded operating system must be able to run
on top of limited resources as well as provide real-time support to its applications.

With the popularity of Internet and rapid development of network technologies,
Internet-access capability is becoming a necessarily for many embedded systems.
Such network appliances can net only communicate-with each other, but also enable
many creative applications on them such-as-remote control functionality. For example,
an user can control an in-home"MCD/DVD recorder to record his favorite TV
programs when he is working at office.

Therefore, modern embedded operating systems should satisfy the requirements
of running on the top of limited hardware resources, supporting real-time applications,
and providing Internet-access capability. Many commercial real-time operating
systems do satisfy the above requirements. However, they are usually expensive and
not open source. On the other hand, non-commercial kernels often have limitations for
fulfilling the requirements. This motivates us to design and implement a real-time
embedded operating system, named Seed, for network appliances. Seed contains an
OS kernel designed for time-critical embedded applications. Besides the basic kernel
services, we also ported a small TCP/IP protocol stack called IwlP [7] to Seed. This

makes systems based on Seed be Internet-enabled.
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The kernel has the following four design goals. First, it is designed to be flexible
for supporting various applications in embedded systems. Second, Seed supports
real-time applications. For example, it provides preemptive multitasking and
deterministic (or constant) timing services. Third, Seed is designed for high
performance and small kernel size. And fourth, Seed is an extremely portable kernel.
It is easy to port Seed to other hardware platforms by replacing the hardware
abstraction layer.

Seed is currently implemented on Samsung SNDS100 evaluation board. The
kernel supports preemptive multitasking, task synchronization/communication, and
management of memory, timers and interrupts. As we mentioned above, the TCP/IP
stack is also ported. The size of the kernel image is about 75Kbytes with IwlIP, or

21Kbytes without IwlIP, which is small enough for:resource-limited systems.

1.2 Thesis organization

The rest of the thesis is organized as follows. The following chapter describes
previous research related to real-time embedded kernels. Chapter 3 presents the
design and implementation details of Seed kernel. Besides, we introduce IwIP and the
porting status in this chapter. The experiment results are shown in Chapter 4. Finally,

Chapter 5 gives conclusions.



Chapter 2
Related Works

In this chapter, we describe some of the related real-time embedded kernels.

2.1 Linux & RTLinux

Linux is a famous open source operating system. Many vendors such as
MontaVista [15] and Metrowerks [12] have put efforts on making Linux an
Embedded RTOS. The techniques include shrinking the kernel and the libraries,
reducing the timer interrupt intervals, inserting preemption points in the kernel, and
etc. However, Linux kernel is inherently designed for general-purpose and
non-real-time systems [3]. The techniques can not transform Linux to a true real-time
kernel.

Therefore, a Real-Time Linux (RTLinux) [8][17] was developed for real-time
applications. In RTLinux, a real-time extension co-exists along with the original
Linux kernel. And, each application.is divided into the real-time part and the
non-real-time part. The former runs directly on the real-time extension, while the
latter runs on the original Linux kernel. However, the cooperation between the RT and
non-RT parts not only consumes extra computing and memory resources but also
make the application development complicated.

Seed is a pure real-time embedded kernel. Developing real-time applications on

Seed is easy and instinctive without extra overheads.

2.2 eCos

The eCos kernel [18] is a flexible, configurable, and real-time embedded kernel.

It has a hardware abstraction layer for increasing portability. Similar to Seed, eCos



divides the interrupt handing into two parts: Interrupt Service Routine (ISR) and
Deferred Service Routine (DSR). However, the DSR of eCos has no priority levels.
By contrast, Seed has eight priority levels and supports constant time DSR scheduling.
Moreover, eCos only supports 32 priority levels for constant time task scheduling,

while Seed kernel supports 512 priority levels.

2.3 nC/IOS-11

« C/OS-11 [10] is also a preemptive, real-time, multi-tasking kernel. However,
Seed is more flexible and powerful than ¢z C/OS-II. For example, 1 C/OS-II supports
only 64 task priorities. Moreover, different tasks must be associated with different
priorities. This prevents the using of Round-Robin scheduling. Finally, ¢ C/OS-II
adopts only preemptive multitasking . witheut the possibility of non-preemptive
multitasking.

By contrast, Seed supports-512-task priorities-and allows more than one tasks
share the same priority. Round-Robin 'scheduling, preemptive or non-preemptive

multitasking are all allowed in the Seed kernel.

2.4 Commercial RTOSes

There are many commercial real-time embedded kernels in the market, such as
WindowsCE[13], Nucleus[1], vxXWORKS[23], QNX][16], Lynx[11] and etc. They
support real-time applications and are suitable for embedded systems. However, all of
them are proprietary. Some of them even do not open their source code. Seed is an

open source project, so it is royalty and buyout free.



Chapter 3

Design and Implementation

In this chapter, we will describe the design goals and actual implementation of
the Seed kernel. In Section 3.1, we first give an overview of the kernel. Then, we
describe each Seed component from Section 3.2 to Section 3.8. Finally, we describe

the status of implementation in Section 3.9.

3.1 Kernel Overview

Seed OS kernel is designed for embedded systems and real-time systems. Due to
the limited memory and CPU resources of embedded system and the timing
requirements of real-time systems, Seed has following features:

® Flexibility

Since embedded- systems are..application-specific, it is important to
keep the kernel as flexible as-possible. Seed kernel divides its code into
several components for«flexibility: Each component can be replaced,
removed and modified without totally rewriting the kernel. The interfaces
and files of each kernel component are explicitly defined. In addition to a
component-based kernel, we implement a Seed component as flexible and
simple as we can. For example, when we create a task, we can specify its
time-slice value, option of preemptive or non-preemptive, and etc.
Furthermore, changing these values at run-time is allowed by the exported
interfaces of Seed.

® Deterministic Timing (Real-Time support)

Real time systems care not only the correctness of the computation, but
also when the computation is completed. Therefore, a key requirement of a

real-time kernel is deterministic timing. This means that the kernel services
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should consume only expected amounts of time. In non-real-time kernels,
their services may inject random delay into the application, and thus cause
the unexpected response time. On the other hand, the real-time kernels
(including Seed) have deterministic timing behaviors. Furthermore,
real-time kernels should offer constant (load-independent) timing. In other
words, a service consumes the same time to complete the job irrespective of
the workload. The constant timing is always considered when we develop
Seed kernel. With constant or deterministic timing, it is possible to analyze
the worst-case performance of the real-time software.
Portability

Seed explicitly divides the kernel source code into hardware-dependent
part and hardware-independent part.=.The former is called Hardware
Abstraction Layer (HAL). The HAL abstracts the underlying hardware,
hence makes Seed portable. - we-want to port Seed to another hardware
platform, all we have to de is.modify the HAL. All other components do not
need to be changed at all.
High performance

Since application is an embedded system should cooperate with the
kernel, there is little need to implement multiple protection modes. Thus
Seed selects single protection mode (i.e., kernel mode) for good
performance. Traditional OS, such as Linux, adopts a dual-mode scheme
(i.e. user mode and kernel mode) for kernel protection. Under this scheme,
additional code is needed for changing protection domains. According to the
previous research [4], single protection mode can save the time of system
calls. Besides, for the sake of better performance, the Seed kernel is

implemented in C language rather than other object-oriented languages such

6



as C++ and JAVA.

Figure 3.1 shows the architecture of the Seed system. As shown in the figure, the
applications run on top of the OS, and the hardware is under the control of the OS.
Typical components in an OS are TCP/IP stack, file systems, window systems, and etc.
However, the kernel (e.g., Seed kernel) is the real nucleus of the whole operating
system. The kernel is the system resource manager that allocates resource (such as
CPU time, memory and 1/O devices) to the tasks. As shown in the right part of Figure
3.1, Seed has following kernel components to manage the system:

® Task management

® Interrupt management

® Memory management

® Timer management

® Message queue management

® Semaphore management

® Hardware Abstraction Layer(HAL)

The features of these components are described from Section 3.2 to Section 3.8.
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3.1 Task Management

3.1.1 Design
A task (also called a process or a thread) is an instance of program in execution.
An application may divide its work into tasks, each of which is responsible for a
portion of the whole job. Each task has a Task Control Block (TCB), which contains
CPU registers, stack, and etc. Seed kernel provides the following features on task
management.
® Multi-tasking
Multi-tasking is the ability to support multiple concurrent tasks
running on the same CPU. It creates pseudo parallelism and maximizes the
use of the CPU. Besides, multi-tasking provides a modular construction
mechanism for applications, which-allows the application programs to be
designed and maintained-in an easier way.
® Multiple priorities
Each task can be assigned'a" priority when it is created by the
application designer. The priority ranges from 0 to 511, where 0 is the
highest priority and 511 is the lowest priority. Seed always schedules the
task with the highest priority to run.
® Preemptive
Preemptive multi-tasking means that the running task can be
interrupted at any time by another higher priority task. Oppositely, in the
case of non-preemptive multi-tasking, the scheduling happens only when a
task completes, or it explicitly releases the CPU. Seed kernel supports both
kinds of multi-tasking. If we don’t want a task to be preempted, we can

specify the task as non-preemptive. In a real-time system, it is prefer to



select preemptive multi-tasking for fast system responsiveness.
Constant time scheduling

Seed always selects the highest priority task to run. In non-real-time
kernels, the time spent by a scheduler for choosing the next task to run is
usually non-deterministic. Some real-time kernels, including Seed, allow
the task scheduler to find out the task that should be run next in a short
constant time.(i.e., O(1) time) We will explain the details of the task
scheduling mechanism in Section 3.2.2.

Time-Slicing ( Round-Robin scheduling )

Seed allows two or more tasks have the same priority. Each task runs
for a determined amount of time of time (called quantum), and then the
scheduler selects another task with the same priority to run. The time
quantum can be assigned.while a task is,created, or be changed at run-time.

Note that time-slicing-is disabled-if the task is non-preemptive.

At any given time, a Seed task is always in one of the following states: create,

running, ready, suspend, and terminate. As shown in Figure 3.2, a task enters the

create state when it is created. When the task is inserted into the ready queue! and

waiting for execution, it is in the ready state. Once the scheduler selects the task to

execute, the task goes to the running state. When the task is suspended and waiting

for certain system resources, it will go into the suspend state. The task will be

resumed and enter into the ready state while the resource is available. Finally, the task

goes to the terminate state when it has been killed or its job is completed.

1

The tasks that are ready for execution are kept on a list called ready queue.
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Create_Task ()

Task is terminated, or
the job is completed
Insert into ready queue Terminate_Task ()

Resume_Task ()

Task is waiting
for 1/0 or Event
Task_Suspned ()

Task is resumed
Resume_Task ()

Figure 3.2 Task-States

3.1.2 Implementation

In this section, we describe the implementation of Seed scheduler and the task
ready queue.

We implemented Seed scheduler in a fashion similar to the px C/OS-II
scheduler[10] . However, we extended it to support more priorities (i.e., 512 priorities)
and keep the scheduling job in a constant time. As shown in Figure 3.3, we represent
512 task priorities in an 8 x 8 x 8 cube data structure, Priority_Ready Table. The
Priority_Ready Table is an array of 64 elements, where each element is a 8-bit
bitmap. Each bit is used to indicate the existence of tasks with the corresponding
priority. For example, in Priority_Ready Table [0][0], the binary value 00001000

means that there is at least one ready task with priority 3. To determinate which task

11



to run, the scheduler will select the lowest priority number that has its bit set in the
Priority_Ready Table. For the sake of efficiency, we use two data structure as the
indexes of this array, Priority_Ready Row_Groups and Priority_Ready Col_Groups.
Each of them is an 8-bit bitmap and each bit corresponds to a priority group.
Priority Ready Row_Groups is the row index of this array, and
Priority Ready Col Groups is the column index. For example, if the bit 0 of
Priority_Ready Row_Groups and the bit 0 of Priority_Ready Col_Groups are set,
there is at least one task, with its priority between 0 to 7, ready for execution. This is
because the two indexes point to the element O of the array (i.e,
Priority_Ready Table [0][0]) , which has the bitmap that stands for priority O through

7.
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Priority_Ready_Row_Groups

Priority Ready Priority_Ready Table[8][8]

Col_Groups

There is at least one task with priority 3. /

Figure 3.3 Data Structures for Task Scheduling

Using the data structures described above to find out the highest priority task, we
use a table-lookup approach. Figure 3.4 shows a mapping table with 256 (2°) values
that is used for finding the highest priority task. In fact, it is a priority resolution table.
Given an index, the corresponding value in the table stands for the lowest set bit of

that index. This is used to determine the highest task priority represented by the

13



previously mentioned bitmaps. For example, if the element of Priority_Ready Table
[0][0] is 8 (i.e., 1000b), we look up the value of Mapping_Table[8] , and the value 3.
It means that the lowest bit of 8 is bit 3, and hence the highest task priority is 3. By
using the Mapping_Table, we can find the highest task priority via three times of
table-lookup, which is shown in Figure 3.5. First, we look up the lowest bit of
Priority Ready Row_Groups and Priority Ready Col Groups. With these two bits,
we can find out the corresponding bitmap of the Priority_Ready Table. Finally we

look up the lowest bit of this bitmap.

UNSIGNED_CHAR Mapping_Table [256] ={
0010,20103010201040102010,301020,1,0,
5010,2010,3010201040102010,301020,1,0,
6,0,10,2,0,1,0,30,10,201,0,4010,2010,3010,20,1,0,
5010,2,010,3010,201040102010,301020,1,0,
7010,20103010201040102010,301020,1,0,
5010,2,010,3,010,2010,40102010,3010,20,1,0,
6,0,10,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1, 0,
5010,2,010,3010201040102010,30,10,201,0
3

Figure 3.4 Mapping Table for Finding the Highest Priority Task

Row= Mapping_Table [Priority_Ready Row_Groups];

Col = Mapping_Table [Priority_Ready_Col_Groups];
highest_ready_priority = (UNSIGNED) ( (Row << 6) + (Col <<
3) + Mapping_Table [Priority_Ready_ Table[Row][Col]] );

Figure 3.5 Pseudo Code for Finding the Highest Priority Task

No matter how many tasks are in the system, the cost of task scheduling in Seed

14



is fixed. However, when the number of tasks is quite small, the Seed scheduling time
may be slower than some non-real-time kernels. This is due to that a non-real-time
kernel usually adopts non-deterministic scheduling, which may find out the highest
priority rapidly when there are very few tasks. But the term real-time does not mean
as fast as possible. Instead, it requires consistent, repeatable, known timing
performance. Therefore, in order to achieve deterministic timing, the small and fixed
computation overhead of Seed scheduling is worthy.

After finding out the highest priority task, Seed will de-queue a task control
block from the ready queue. As shown in Figure 3.6, the Priority_Ready Task List is
an array of SEED_TASK (task control block) pointers. Each pointer stands for a single
priority, and points to a list of ready tasks (specifically, TCBs) with that priority. The
TCB list is a doubly-linked list so.that we can insert and remove a TCB in a constant

time.
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Priority SEED_TASK SEED_TASK SEED_TASK
0 4 T 7'y

Priority > | SEED_TASK
1

Priority | — | SEED_TASK | _*| SEED_TASK
2 A I

Priority >| SEED _TASK |2 _®| SEED TASK |Z__*| SEED TASK
511 A | 7}

Priority_Ready Task List

Figure 3.6 TaskPriority Ready Queues with Priorities

3.1.3 Interface
The interface exported by the task management component is as follows:

1. Seed_Create_Task: This function creates a new task. The user can specify
the time-slice value, preemptive or non-preemptive, priority and so on.

2. Seed_Resume_Task: This function resumes a previously suspended or
created task. It will call the scheduler to check if a reschedule is needed.

3. Seed_Suspend_Task: This function suspends the specified task. If it is the
current running task, the function will invoke the scheduler to selects next
ready task to run.

4. Seed_Terminate_Task: This function terminates the task we specified.

5. Seed_Relinquish_Task: This function will yield the control of CPU to next

same-priority task, and put the task to the end of the corresponding ready

16



TCB list.

6. Seed_Task_Sleep: This function suspends the calling task for the specified
number of timer ticks (1 timer tick = 10ms).

7. Seed_Change_Task Priority: This function changes the priority of the
specified task to the new priority value. This function will call the scheduler
to check if Seed needs to preempt the executing task with new priority task.

8. Seed_Change_Task Preemption: This function changes the preemption
state of currently executing task. If the preemption value is changed from
non-preemptive to preemptive, it will call the scheduler to check if a
preemption is needed.

9. Seed_Change_Time_Slice: This function changes the time slice of the
specified task to the specified value. If the new time slice value is zero, the

time slicing of the task-is disabled.

The interface routines for internal use are as follows:

1. Task_Initialize: This function is called by Seed_Initialize (i.e., the system
initialization function). It is responsible for setting the initial value of the
internal variables and global data structures in task component.

2. Task_Start: This function will be invoked when the task is going to execute
at the first time. It will call the task entry function with the parameters of the
task.

3. Task_Scheduler: This function implements the task scheduling algorithm. It
is responsible for finding out the highest priority task, and checks the
preemption state of the executing task to see if a task context-switch is
needed.

4. Task_Context_Switch: This function is invoked to perform a task context

17



10.

switch. The context (i.e., CPU registers) of the original task is saved into
memory, and the context of the resumed task is loaded into the CPU.
Spinlock_Lock: This function is called to lock a spinlock that protect critical
system resources (e.g., kernel data structures) from simultaneous access. If
other task has already held this spinlock, the calling task will perform context
switch and give the control of CPU to the task that hold the spinlock.
Spinlock_Unlock: This function is called to unlock the spinlock. The code
between Spinlock_lock function and Spinlock_Unlock function will become a
critical section that is mutual exclusive.

Task_Time_Slice: This function is called when the time slice of a task is run
out. It is responsible for moving the task to the end of the corresponding TCB
list.

Task_Timeout: This function is called to.precess the task suspension timeout
condition. It will resume the:task-from-the suspend state.

Lock_Scheduler: This function_is-used to prevent task scheduling. The
scheduler is temporarily stopped after calling this function.
Unlock_Scheduler: This function is the counterpart of Lock Scheduler

function. It is used to continue task scheduling.
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3.3 Interrupt Management

3.3.1 Design

Interrupt is a mechanism for providing immediate response to an external
hardware event. When an interrupt occurs, the CPU suspends the current path of
execution and transfers control to the appropriate ISR (Interrupt Service Routine).
Seed allows a component such as a device driver to register an ISR, un-register an
ISR with for an IRQ number (interrupt request number) dynamically. The HAL
interrupt component will recognize the IRQ, save the CPU context, execute to the ISR,
and restore the context of CPU. The details will be described in section 3.8.

In order to protect the internal data structures from simultaneous access, we
usually disable the interrupts when we, are serving an interrupt. However, it is not
desirable to disable the interrupts for azlong time'in a real-time system. Therefore,
Seed adopts 2-stage interrupt-handling scheme, which is also adopted by other
real-time kernels, e.g. the eCos"RTOS.[18}.-Fhe_interrupt handling is separated into
two stages, ISR stage and DISR (Deferred Interrupt Service Routine) stage.

In the ISR stage, a normal ISR is executed with interrupts disabled. During the
execution, the ISR may activate a DISR to complete the service later. When the ISR is
finished, the DISR starts. A DISR is allowed to be run with interrupts enabled. Each
DISR has its own stack and control block, and hence it can temporarily be blocked for
synchronization or mutual exclusion purpose. In other words, a DISR is just like a
task except that it is activated by an ISR. Under this 2-stage interrupt handling
mechanism, the interrupts won’t be disabled for a long time.

The eCos kernel also supports DISR. However, the DISRs do not have priorities,
and hence that are executed in FIFO order. This might cause problems when a DISR

activated by a higher priority ISR is blocked by another one that is activated by a
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lower priority ISR. By contrast, there are eight priority levels available for Seed
DISRs. If a higher priority DISR (i.e., activated by a higher priority ISR) becomes
ready, the lower priority DISR is preempted. And, DISRs with the same priority are
executed in the order they are activated. The same as the task scheduling time, the
time of scheduling a DISR is a small constant time.
3.3.2 Implementation
The implementation of the interrupt system is divided into two parts, namely the
ISR and the DISR components.
® ISR component
We define an array called IRQ_Handlers. Each element is a function
pointer to an ISR, and the IRQ number is used for indexing the array.
Therefore, an ISR can.'be registered and un-registered with this array
dynamically. When an .nterrupt occurs, -the interrupt part of the HAL
component will get the IRQ-number-from the hardware register, and invoke
the corresponding ISR.
® DISR component
The data structures for implementing the DISR component are similar
with the Seed tasks. It has an 8-bit bitmap, named Active_DISR_Priority,
for the priority status. Since there are only eight priorities for DISRs, the
Active_DISR_Priority is enough to represent the priority status. Besides,
there is ready queue called Active DISR_First with eight elements for
queuing DISRs. Each element contains a doubly-linked list of DISR control
blocks (i.e., SEED_DISR). Figure 3.7 shows an example. In this figure,
there are DISRs with priority 0 and 7. Therefore, the Active_DISR_Priority
bitmap is 129 (i.e., 10000001b). Similar to the approach used in the task

management system, we also take advantage of the mapping table to find
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out the highest priority DISR in a constant time period. It is worth to note

that the scheduler always selects the DISRs to run before running the tasks

in order to completing the interrupt service as fast as possible.

Active_DISR_First

Priority
0

Priority
1

Priority
7

’ SEED _DISR SEED_DISR SEED_DISR
) &

> NULL

SEED_DISR I SEED_DISR SEED DISR
) -

Active_DISR_Priority

3.3.3 Interface

Figure 3.7 DISR Data Structures

The interface exported by the interrupt system is shown in the following.

1. Seed_Register_ISR: This function registers the ISR for the specified IRQ

number. If the IRQ number has been registered, it will replace the old one.

2. Seed_Unregister ISR: This function un-register the interrupt service

routine.
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3. Seed_Create DISR: This function creates a DISR and initializes its control
block.

4. Seed_Activate_DISR: This function activates the specified DISR. It will
insert the control block of the DISR into the corresponding ready queue. This

function is usually called by an ISR.

The interface routines for internal use are as follows.

1. Interrupt_Initialize: This function is invoked by Seed Initialize (i.e., the
system initialization function). It is responsible for setting the initial value of
the internal variables and global data structures used by the interrupt system.

2. Forward_ISR: This function is called by the interrupt part of Seed HAL. It
calls the corresponding ISR for the given‘IRQ number.

3. DISR_Start: This funection.is a wrapper to the real DISR function. It will be
invoked at the first time. It calls-the DISR entry function. In addition, it
updates the related global-data. structures of the DISR after the DISR has

finished its job.
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3.4 Timer Management

3.4.1 Design

This component provides all timing facilities in Seed, including timer ISR,
time-slicing and the timer service. The timer service is used frequently by other kernel
components (e.g., task management) and time-sensitive applications. The basic time
unit is tick, which is the time between two successive hardware timer interrupts. In
our current implementation, a tick is equal to 10 ms. We classify the timers into two
types according to their usage, the application timers and the task timers.

The application timers can be created, deleted, enabled, and disabled
dynamically by the applications. These timers execute user-supplied routines when
they are expired. The user-supplied routine. is specified while creating the timer, and
can be treated as a useful tool for'application.programming. The second kind of timer
is the task timer. Every Seed task has a built-in task timer, which allows a task to

suspend for a specified time period.

3.4.2 Implementation
The implementation of the timing system can be separated into the following two
parts:
Timer Interrupt Handling
Periodic timer interrupt is the base of whole timing system. The HAL of Seed
will initialize the hardware timer and interrupt controller (see Section 3.8). Each
time a timer interrupt happens, the time ISR (i.e., Timer_ISR function) increases
the system clock (i.e., jiffies), and decreases the time-slice value of the running
task and the remaining-time value of the running timer. If the time-slice or the

remaining-time value reaches zero, the Timer_ISR will activate the Timer_DISR,
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which processes the quantum expiration of the task (i.e., call the
Task_Time_Slice function), and handles the timer expiration. The timer
expiration either resumes the suspended task for the timeout of task timer, or
calls the user-specified expiration function of application timer.
Timer maintenance

The internal data structure for implementing a task timer or an application
timer is timer control block called BASIC_TIMER. As shown in Figure 3.8, the
active (i.e., enabled) timers are maintained in a doubly-linked list, and the
Active_Timer_List_First pointer references to the first timer (i.e. the running
timer) of the list. The timer list is maintained in the order of expiration time.
Each timer control block contains a remaining-time field, which represents the
timing difference between the expiration time of the timer and the expiration
time of its previous timer.-When the field becomes zero, the timer expires. This
approach is used in order to ravoid-adjusting the entire list on every timer

interrupt.

Active_Timer_List_First

\'

BASIC_TIMER I BASIC_TIMER BASIC_TIMER
) %

Figure 3.8 Active Timer List
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3.4.3 Interface
The interface exported by the timer system is shown in the following.

1. Seed Create_Timer: This function creates an application timer. The
user-specified expiration function is executed when the specified timeout
value runs out.

2. Seed_Control_Timer: This function is used to enable and disable the
specified application timer.

3. Seed_Retrieve_System_Clock: This function returns the current value of the
system clock, which is the number of ticks since the system boots up. The
value increases by one every timer interrupt.

4. Seed_Set System_Clock: This function sets the system clock to the new

specified value.

The interface routines for internal use.are-as-follows.

1. Timer_Initialize: This functien.is.called by Seed_Initialize (i.e., the system
initialization function). It is responsible for setting the initial value of the
internal variables and global data structures in timer component.

2. Run_Timer: This function is used to enable an application or task timer. The
timers will be inserted into the active timer list.

3. Stop_Timer: This function is used to disable an application or task timer.
The timers will be removed the active timer list.

4. Timer_ISR: This function is the ISR of timer interrupt. It increases the
system clock and check the timeout situation.

5. Timer_DISR: This function is the DISR of timer interrupt. It will be
activated by Timer_ISR when the running timer is timeout or the current

task’s time-slice runs out.
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6. Timer_Expiration: This function is invoked by Timer_DISR. If a task timer
is expired, it will call the Task_Timeout function to resume the suspended
task. If an application timer is expired, it will call the user-specified

expiration function.
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3.5 Memory Management

3.5.1 Design

Dynamic memory management is traditionally implemented in the malloc and
free functions. However, the execution time of malloc and free is generally
non-deterministic due to the memory management algorithms. In addition, this
mechanism is easily to suffer from the fragmentation problem.

For this reason, in addition to the traditional mechanism, Seed provides an
alternative memory management mechanism which is also adopted by other real-time
kernels, such as y C/OS-II and Nucleus. This alternative mechanism allows the
applications to obtain fixed-sized memory blocks from a partition, which is made of a
contiguous memory area. All memory blocks are the same size in a partition. The
allocation and de-allocation of memorysblocks is‘done in a small constant time. In
addition, this type of memory-management also avoids the fragmentation problem.
The limitation of this approach-is. its.inflexibility.-1f an application needs memory
blocks with different sizes, it has to ‘create many partitions. This makes application
programming a little inconvenient. However, in order to achieve constant timing and
avoid fragmentation, it is still worthy to create partitions.

It deserves to be mentioned that Seed provides options for suspension when
allocating memory. When a task attempts to allocate a memory block from an empty
partition, it can suspend and wait for available block. The task can be resumed when a
block is returned to the partition. There are three kinds of suspension.

® Always suspend: The task always suspends and waits for a block. It is only

resumed until a block is available.

® Suspend with a timeout: The task suspends for a block. However, it only

waits for a specified timeout ticks.
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® No suspend: If there is no available block in the partition, the task just get

an error message without suspension.

Besides, if multiple tasks suspend on a single memory partition, the tasks are
resumed in one of the following, which can be specified when the memory partition
was created.

® FIFO (First-In-First-Out) order: Tasks are resumed in the order they were

suspended.

® Priority order: Tasks are resumed in the order of their priorities.

This suspension mechanism is similar to Nucleus and . C/OS-11. However, u
C/OS-11 does not support FIFO suspending order, and it does not provide suspension

options when allocating a block from an empty memory partition.

3.5.2 Implementation

In this section, we describe-how:a memory-partition is implemented. The internal
data structure of a memory partition s a partition control block called
SEED_PARITION. As shown in Figure 3.9, the partition control block manages a
contiguous memory area. It divides this area into fix-sized blocks, and contains a
pointer (i.e., free_list) that points to the first free block. The free blocks are linked as a
list by using the linking pointers, the first four bytes of the block data space. Block
allocation and de-allocation involves only the head of the list. Therefore, the time is
constant. Note that the linking pointer can used to store data when the block is
allocated. Each block has a four-byte overhead (i.e., block header) that contains a
pointer to the partition control block. This reverse pointer is useful when de-allocating
a block. It allows constant time de-allocation under the condition that the application
does not specify the corresponding partition control block when it de-allocates a block.

We prevent application from specifying the partition control block for the following
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reason. If the application returns the block to a wrong partition control block, the
system may crash. As we mentioned above, the drawback of using this pointer is that
it adds four-byte overhead to each block. This makes the available blocks in a
partition become fewer. For example, there will be only four 20-byte blocks available

in a 100-byte partition.

SEED_PARITION D Block Header

(Partition Control Block) [ free Tist | -inking pointer
"

b Block Header

A

\ Linking pointer

Block Header
Linking pointer

A

NULL

Figure 3.9 Memory Partition Data Structure

The memory partition implementation of Seed is more robust than  C/OS-II.
Specifically, a Seed memory partition provides a reverse pointer to avoid system crash,
which is not available in ¢ C/OS-I1. On the other side, a Seed memory partition uses
less space overhead than Nucleus. The latter includes the linking pointers into the

block headers so that the linking pointers cannot be used to store data.
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As for the implementation of suspension, every partition control block has a

waiting list for suspended tasks that are sorted in FIFO or Priority order. If another

task returns a block back to the empty partition, Seed will resume the first waiting

task in the list and give the block directly to the resumed task.

3.5.3 Interface

The interface exported by the memory partition is shown in the following.

1.

Seed_Create_Memory_ Partition: This function creates a memory
partition with fixed-size blocks. The partition size, the block size, and the
task resuming order can be specified by the caller.
Seed_Delete_Memory_Partition: This function deletes a previous created
memory partition. It resumes all the waiting on that partition.
Seed_Allocate_Memery..Block: This function allocates a memory block
from the partition. The suspension-type is specified by the caller. Note that
the size of the block is already. defined when the partition is created.
Seed_Free_Memory_Block: This function returns a memory block back to
the partition. If there are tasks waiting on this partition, this function will
resume the first task and give the block to it. Note that the caller does not

need to specify the corresponding partition.

The interface routines for internal use are as follows.

1.

Memory_Partition_Initialize: This function is called by Seed_Initialize
(i.e., the system initialization function). It is responsible for setting the
initial value of the internal variables and global data structures in memory
partition component.

Memory_Partition_Cleanup: This function is invoked by Terminate_Task
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or Task_Timeout. It will remove the task from the waiting list of the

memory partition.
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3.6 Message Queue

3.6.1 Design

Message queue is a mechanism for tasks to communicate between each other.
Each message queue is capable of holding multiple messages. When a task sends a
message, it will be copied into the message queue. Then the receiving task will copy
the message out of the message queue. A message can be placed at the front of the
queue or at the end of the queue. A message consists of one or more bytes, which can
be specified while creating the queue. However, we suggest that applications set the
message size to the pointer size, that is to say, each message is a pointer. The pointer
can be initialized to point to some application’s data structure that will actually be
referenced by the receiver. By this way, copying a large message can be avoided. In
our implementation, the processing timerof sending and receiving a message is
deterministic, and it is relative to the message size.

Seed provides a suspension-service for-message queue as the memory partition
does in Section 3.5.1. Here are two reasons for suspension. First, when a task is
attempting to send a message to a full message queue, it is suspended and then waits
for available space of the queue. The task is resumed when other task gets a message
from the queue. Second, when a task tries to receive a message from an empty queue,
it is suspended to wait for an incoming message. The task will be resumed when other
task sends a message to the queue. The suspension options (i.e., Always suspend,
Suspend with a timeout, and No suspend) and the suspension orders (i.e., FIFO order
and Priority order) are all the same with the memory partition in Section 3.5.1.
Besides, it is allowed to broadcast a message to all the waiting tasks with Seed

message queue.
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3.6.2 Implementation

The internal of the message queue is a circular buffer, as shown in Figure 3.10.
The implementation of Seed is similar to other real-time kernels. The read pointer
points to the first message of the queue, and the write pointer points to the location
where the next message will be inserted. However, if we send a message at the head
of the queue, the message will be inserted into the preceding entry of the read pointer.
The start pointer indicates the starting address of the queue area, and the end pointer
points to the ending address of the queue area. The read and write pointers can wrap

the queue to implement circular buffer.

start end

read \

\ write

Figure 3.10 Message Queue Data Structure

The implementation of suspension is similar to memory partition. There is also a

waiting list for suspending tasks. Note that if other tasks want to send a message into
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the empty queue, Seed will resume the waiting task and directly copy this message to

the resumed task without copying into the queue. This mechanism saves message

copying time.

3.6.3 Interface

The interface exported by the message queue is shown in the following.

1.

Seed_Create_Message_Queue: This function creates a message queue
from a memory area specified by the caller. The queue size, message size,
and suspension order are specified by caller.
Seed_Delete_Message Queue: This function deletes a created message
queue. It resumes all the tasks waiting on that message queue.
Seed_Send_Message To- Queue: Thisfunction places a message at the tail
of the specified queue. If.there is not enough queue space, a suspension is
allowed.

Seed_Send_Message To: Front_Of Queue: This function places a
message at the head of the specified queue. If there is no enough space in
the queue, a suspension is allowed.

Seed_Receive_Message From_Queue: This function receives a message
from specified queue. If there is no message in the queue, a suspension is
allowed.

Seed_Boradcast_Message _To_Queue: This function broadcasts a message
to all tasks that are waiting for an incoming message with the specified

message queue.

The interface routines for internal use are shown as follows:

1.

Message_Queue_Initialize: This function is called by Seed_lInitialize (i.e.,
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the system initialization function). It is responsible for setting the initial
value of the internal variables and global data structures in the message
queue component.

Message Queue_Cleanup: This function is invoked by Terminate Task or
Task_Timeout. It will remove the suspending task from the waiting list of

the message queue.
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3.7 Semaphore

3.7.1 Design

Semaphore is a mechanism for synchronizing the execution of the critical section
in an application. Seed provides counting semaphores. The value of each semaphore
ranges from 0 to 2% -1. If the semaphore value is 1, it is a binary semaphore for
mutual exclusion. Two basic operations of a semaphore are obtain and release. When
a task wants to get into the critical section (e.g., access the shared resource), it tries to
obtain the semaphore. If the semaphore is obtained successfully, the counter of the
semaphore will be decreased by one. Inversely, when a task leaves the critical section,
the task will release the semaphore and increases the counter by one.

However, if a task fails to obtain the semaphore (i.e., the counter of semaphore is
zero), the task may suspend on .the waitimg list until it is available. The suspension
options and suspension orders are the same with-the memory partition and the
message queue (Section 3.5.1 and Section'3:6.1). These options and orders are free for
applications to choose. The optional timeout on obtain-semaphore suspension can be
used to recover from a deadlock.

Priority inversion is a common problem in real-time kernels. It occurs when a
higher priority task is suspended on a semaphore that a lower priority has. This
problem can be solved via the priority-inheritance protocol [22]. In this protocol,
kernel increases the priority of the lower priority task to the priority of the higher
priority task (i.e., inherit the priority of higher priority task). When the priority
inherited task release the semaphore, the priority is reverted to its original value. Seed
supports priority-inheritance for semaphores in order to help the higher priority task
obtaining the semaphore as soon as possible.

Note that the ¢z C/OS-11 kernel does not support a general priority-inheritance
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protocol. It requires the users to reserve some priority levels for priority-inheritance
usage since it can not allow two tasks to share the same priority. Seed kernel does not
have such limitation, so that it can implement the general priority-inheritance

protocol.

3.7.2 Implementation

The internal structure of a semaphore is a 32-bit integer. Besides, there is also a
waiting list for the suspending tasks. If other tasks release a semaphore, Seed will
resume the waiting task and pass the semaphore directly to the resumed task.

When an application creates a semaphore, it can specify whether
priority-inheritance is enabled or not. If priority-inheritance is enabled and a task is
suspended on an un-available semaphore, the semaphore will check whether the
priority of owner task is lower-than the suspending-task. If so, the owner task will
inherit the highest priority among the suspending tasks and save the original priority
(i.e., invoking Inherit_Priority function). After the owner task releases the semaphore,
the priority of the owner task is reverted to the original priority (i.e., invoking

Disinherit_Priority function).

3.7.3 Interface
The interface exported by the semaphore is shown in the following.
1. Seed Create_Semaphore: This function creates a semaphore. The
counting value and the suspension order are specified by caller.
2. Seed_Delete_Semaphore: This function deletes a created semaphore. It
resumes all the tasks waiting on that semaphore.
3. Seed_Obtain_Semaphore: This function tries to obtain an instance of

semaphore. If the counter of semaphore is zero, a suspension is allowed.
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4.

Seed_Release_Semaphore: This function releases an instance of
semaphore. It will resume and give the semaphore to the suspended task if it

IS waiting.

The interface routines for internal use are shown as follows:

1.

Semaphore_lInitialize: This function is called by Seed_Initialize (i.e., the
system initialization function). It is responsible for setting the initial value
of the internal variables and global data structures in semaphore component.
Semaphore_Cleanup: This function is invoked by Terminate Task or
Task_Timeout. It will remove the suspending task from the waiting list of
the semaphore.

Inherit_Priority: This.function is used to implement the priority
inheritance protocol. It helps the owner task to inherit higher priority of the
waiting task.

Disinherit_Priority: This function' Is used to implement the priority

inheritance protocol. It helps the owner task to restore the original priority.
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3.8 Hardware Abstract Layer (HAL)

In this section, we introduce the Hardware Abstraction Layer (HAL). The HAL is
the hardware dependent portion of the kernel. We can port Seed kernel to another
hardware platform more efficiently by only replacing or modifying the HAL.
Currently, Seed is running on SNDS100 board. And, we take our implementation as
an example to introduce the HAL. The HAL are divided into four parts: Boot,
Interrupt, CPU Context and Devices. Each part of HAL is described in the following
subsections.

3.8.1 Boot
As shown in Figure 3.11, the default boot loader of SNDS100 loads the Seed
kernel image into the memory, and jumps,to. the boot part of the HAL (i.e., the entry
point of Seed kernel). The boot part. isjiresponsible for initializing the hardware
devices. In other words, it contains the low-level initialization functions. In SNDS100
board, it does following jobs:
® \lector table setting: It sets the vector table which corresponds to the ARM
exception modes [9][21]. Then, it handles the branch of an exception (i.e.,
save CPU contexts, branch exception handlers, and restore CPU contexts).

® System map initialization: It sets up the system memory mapping of the
board.

® Stack assignment: It assigns stack space for each CPU operation modes.

® Hardware devices initialization: It initializes hardware devices on the board

(e.g., hardware timer, interrupt controller, terminal driver and etc.).

After hardware initialization is finished, the boot part of HAL will invoke the

Seed_Initialize function. This function is hardware-independent and is used to call the

initial functions of other Seed components. It creates an idle task and application tasks,
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and invokes the scheduler to start these tasks.

Boot loader of SNDS100

Seed Kernel

v Hardware-dependent
Boot part of HAL T

Seed_Initialize function .
- Hardware-independent

Figure 3.11 Seed Boot Flow

3.8.2 Interrupt

The interrupt part of HAL manages the hardware interrupt system. The
HAL_IRQ_Init function is used to initialize the interrupt controller at the beginning.
Then it enables the interrupts that we want to handle, and registers the Interrupt
Service Routines (ISRs) with corresponding IRQ numbers.

In addition, the interrupt part of HAL helps kernel to handle interrupts. When a
hardware interrupt occurs, it takes following steps:

1. It saves the CPU contexts into the memory buffer which is a member of
task control block (i.e., jmpbuf). Because an interrupt may occur at any
time, it must save all of the CPU registers.

2. It recognizes the IRQ number by reading the hardware register. Then it
invokes the corresponding ISR.

3. After the ISR is finished, the interrupt part of HAL will check whether

there is a ready DISR. If there is a ready DISR, its previous saved context
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will be loaded.

4. If there is not a ready DISR and the interrupted task is preemptive, the
interrupt part of HAL will check whether there is a higher priority task
ready to run. If there is a higher priority task, its previous saved context
will be loaded. Otherwise, the kernel loads the context of the interrupted
task.

Besides, the interrupt part of HAL provides the interfaces to enable or disable

interrupts, namely HAL_Enable_IRQ and HAL_Disable IRQ, respectively.

3.8.3 CPU Context

This part of HAL provides a set of CPU primitives. Specifically, it provides
interfaces for saving and restoring-the CPU context. When a task A is switched to
another task B, Seed invokes HAL.CS Save.Context function to save the context of
A and HAL_CS_Restore_Context function-to-restore the context of B. However, there
is still another interface called HAL - Interrupt.-Restore_Context for context restoration.
This function is used to restore the context that was saved by interrupt part of HAL.
The difference between these two restoring functions is the number of restored CPU
registers. The HAL_Interrupt_Restore_Context function restore more registers than
the HAL_CS_Restore_Context function. Because an interrupt may occur at any time,
all of the CPU registers are saved. However, the normal context switch only occurs at
the Task_Context_Switch function, which does not care the content of argument

registers (i.e., al to a4 in ARM CPU).

3.8.4 Devices

This part of HAL is responsible for controlling the other devices on the platform.
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For example, the hardware timer and UART driver of SNDS100 are initialized by the
HAL_Timer_Init and HAL_UART Init functions, respectively. The HAL_Timer_Init
initializes the timer controller and assigns the timer interrupt period as 10ms. The
HAL_UART _Init initializes the UART device and sets a proper baud rate for that
device.

In addition, the data types of Seed are defined in a single header file for the case
of porting. For example, the type UNSIGNED means a 32-bit unsigned long integer in
Seed. Every Seed component and applications include this header file. Therefore, if

the type is different at other hardware platforms, we only have to modify this file.
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3.9 Implementation Status

In this section, we describe the status of the implementation.
3.9.1 Platform

Seed is currently implemented on Samsung SNDS100 Evaluation Board, which
is based on the S3C4510B/KS32C50100 microcontroller [19][20]. Samsung
S3C4510B is a 16/32-bit RISC microcontroller built around the ARM7TDMI RISC
processor. It integrates an Ethernet controller. Thus, it is a good choice for
Ethernet-based embedded systems. The S3C4510B can operate in a frequency up to
50MHz. Besides the S3C4510B, the SNDS100 Board also consists of boot EEPROM,
DRAM module, SDRAM, serial ports for console, and Ethernet interface. Figure 4.1
illustrates the SNDS100 block diagram,

Seed works correctly with the SNDS100-board. The Seed HAL is responsible for
managing the SNDS100 board.-The Ethernet and UART drivers are well ported and

operating correctly.

3.9.2 Implemented Kernel Components
The implemented and tested kernel components are shown as follow:
® Task management
® Interrupt management (ISR and DISR)
® Memory partition
® Timer management
® Message queue management
® Semaphore management

® Hardware Abstraction Layer (HAL)
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Figure 4.1 SNDS100 Block Diagram?

3.9.3 Implemented Drivers

The implemented and tested drivers on SNDS100 board are shown as follow:

® UART driver

® Timer driver

® FEthernet driver

3.9.4 LWIP Integration

In order to provide the Internet-access capability, we ported a small TCP/IP stack

2 This figure is obtained from the application note of S3C4510B [19].
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called IwlP (i.e., lightweight IP) [5][7] to the Seed kernel. IwlIP is an open source
implementation of TCP/IP stack. Its design goal is to reduce memory usage and code
size, making it suitable for use in an embedded system. IwIP defines a common
interface called OS emulation layer between its code and the underlying OS kernel.
To port IwlP to Seed kernel, we only have to modify this layer. This layer requires the
functionalities such as multi-tasking, memory management, timer, semaphore and
message queue. These functionalities are fully supported by Seed kernel services.
Table 3.1 shows the function mapping between OS emulation layer and the Seed
kernel. Each function in the OS emulation layer is mainly implemented by a single

Seed kernel function with argument adjustment.

Functions in OS Emulation Layer | Seed Kernel Functions
sys_thread_new Seed Create Task

sys_mbox_new Seed Create_Message_Queue
sys_mbox_free Seed Delete_ Message Queue
sys_mbox_post Seed_Send _Message To_Queue
sys_arch_mbox_fetch Seed_Receive_Message From_Queue
Sys_sem_new Seed_Create_Semaphore
sys_sem_free Seed_Delete_Semaphore
sys_arch_sem_wait Seed_Obtain_Semaphore
sys_sem_signal Seed_Release_Semaphore

Table 3.1 Function Mapping between IwIP OS Emulation Layer and Seed kernel

Besides, we also ported on Ethernet driver to the SNDS100 board in order to

support IwlP. The network applications that currently run on IwlP / Seed are as
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following:
® TCP Echo server
® UDP Echo server
® Simple HTTP server

® Shell program (i.e., a telnet server).
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Chapter 4

Experimental Results

In this chapter, we present the experiment results of Seed kernel. The code size
and primitive performance measurement are presented in Section 4.1. We measure the

network performance in Section 4.2.

4.1 Basic Measurement

4.1.1 Code Size

The code was compiled for ARM7TDMI using ARM Developer Suite 1.2 [2].
The resulting size of the compiled code is shown in Table 4.1. The Code size column
shows the size of the compiled executable object code, and the Data size column
shows the data size used by the object code. The total code size of Seed OS is about
16K bytes and the total data size.is about.35K. Fhe libraries are some primitive
libraries for applications, such as string-library;.standard library (stdlib) and etc. The
kernel image generated by the linker is-about.21K bytes. In conclusion, Seed kernel is

very small and is suitable for embedded systems whose hardware resources are

scarce.
Function Code size (bytes) Data size (bytes)
HAL 2356 27388
Task Management 3164 2500
Interrupt Management 1036 257
Timer Management 1404 1256
Memory Partition 664 0
Message Queue 2004 0
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Semaphore 776 0

Other kernel services 956 3441
Libraries 4248 308
Total 16608 35150

Table 4.1 Code Size of Seed Kernel

4.1.2 Primitive Performance Measurement

In this section, we measure the performance of the primary functions in Seed.
The performance result is shown in Table 4.2. Note that interrupts are disabled during
the performance measurement. These results can be treated as a reference while

creating applications on Seed kernel.

Function Time (u-sec) Cycles
Task_Schduler 16.079 843
Task_Context_Switch 18.081 948
Create_Task 47.207 2475
Resume_Task 8.545 448
Suspend_Task 14.763 774
Create_Message_Queue 10.147 532
Send_Message_To_Queue 16.479 864
Receive_Message From_Queue | 16.193 849
Create_Semaphore 4.101 215
Obtain_Semaphore 4.120 216
Release_Semaphore 7.706 404
Create_Memory_Partition 18.959 994
Allocate_Memory_Block 4.005 210
Free_Memory_Block 4.520 237
Create_Timer 21.954 1151

Table 4.2 Performance of Seed Kernel Functions
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In addition, we measure the performance of interrupt handling. Interrupt
handling can be divided into three portions. The first portion is interrupt latency
which is defined as the time that a system takes to start running the interrupt code. In
other words, it is the time of the interrupt disabled period plus the time for branching
to the exception handler. The second portion is the time to save the CPU context of
running task and branch to the ISR. The third portion is interrupt recovery. It is the
time to determinate if a higher priority task is ready and the time to restore the CPU

context. Table 4.3 illustrates the latency of each interrupt portion.

Function Time (u -sec) Cycles
Interrupt Latency 34.695 1819
Time to save CPU context 20.409 1070
Interrupt Recovery 35:667 1870

Table 4.3 Latency of Seed.Interrupt Handling

4.2 Performance Measurement of the Network System

In this section, we measure the performance of IwlIP on Seed kernel. At the
beginning, we measure the throughput of our system. We connect an 800 MHz
Pentium 111 notebook (IBM Thinkpad X22) running Linux 2.4.18 to the SNDS100
board which runs Seed kernel and IwIP with a 10Mbits/Sec Ethernet link. Besides, we
use a widely-used benchmarking tool called Test TCP (TTCP) to measure the TCP
throughput. We configure TTCP to send 8M bytes of data from one device to the other.
The testing result is shown in Table 4.4. When the SNDS100 board acts as the
receiver, the throughput is 115.93 KB/second. When it acts as the sender, the
throughput can reach to 190.54 KB/second. The throughput is lower when it acts as

the receiver. The reason is IwIP needs another task responsible for receiving Ethernet
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packets. This will involves more task context switches, thus there is an unavoidable

performance degradation for IwIP receiving packets.

Throughput (KBytes/Sec)
IwIP Rx 115.93 KB/Sec
IwIP Tx 190.54 KB/Sec

Table 4.4 Throughput of LWIP Running on Seed

Besides the throughput, we also measure the round-trip time of IwlIP running on
Seed. This measurement was taken using the ping program. The average round-trip
time is 0.991 ms when we send 1000 packets of 64-byte to the SNDS100 board. The
performance results shown in this section are comparable with previous ones [6].
However, we do not perform precise comparison since the platforms are different.

At last, we measure the performance-of-a-simple-web server that running on IwlP.
The performance is measured by using-the WebStone [14] benchmark version 2.5.
We configure the profile as that a client continuously requests a single homepage file
in ten minutes. The testing result is shown in Table 4.5. The result shows that the

performance of the small HTTP server is acceptable for small embedded devices.

Server Connection Rate 39.05  Connections/ Sec
Server Throughput 147.20 KBytes/ Sec
Average Response Time 25.59 ms

Table 4.5 Performance of Simple Web Server Running on IwlIP
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Chapter 5
Conclusion and Future Work

5.1 Conclusion

In this thesis, we describe the architecture and internal of Seed, a real-tome
embedded kernel with Internet-access capability. The design goal of Seed is to support
small network appliances which may also have real-time and embedded requirements.
The kernel is flexible and high performance. In addition, it has a hardware abstraction
layer which eases the effort of porting the kernel to different hardware platforms.
These features make Seed suitable for embedded systems. Moreover, the Seed kernel
services have deterministic timing behavior, so it is also suitable for the real-time
applications. Finally, a small TCP/IP stack named.IwIP was ported to Seed to enable
the Internet-access capability.

Seed is currently implemented:on-—-Samsung: SNDS100 evaluation board. It
provides preemptive multitasking,;. task..~synchronization/communication, and
management of memory, timers and interrupts. The size of the kernel image is about
75Kbytes with IwlIP, or 21Kbytes without IwIP. And the interrupt handling latency is
about 90 i s for a 50 MHz processor. Besides, the network throughput of IwlP/Seed
can reach to 190.54 KB/Sec. These results show that Seed is suitable for non-high

speed embedded network appliance that requires real-time support.

5.2 Future work

In the future, we want to implement Earliest Deadline First (EDF) scheduling
algorithm on Seed. This is much easier to accomplish because the kernel services are

deterministic or constant, and the priority can be dynamically changed at run-time.
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Besides, we want to build up embedded file systems and embedded graphic systems
on Seed. With these systems, Seed will be more suitable for the embedded devices
which are equipped with storage or display. Finally, we would like to port Seed to

more hardware platforms to demonstrate its portability.
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