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論 文 摘 要 

  

嵌入式系統在現代日常生活中到處可見，並且扮演了一個相當重要的角色。

嵌入式系統的特點在於它是一個應用程式特定的系統，而且通常硬體資源較為不

足。除此之外，有愈來愈多的嵌入式應用程式要求能夠即時地完成自己的工作，

並且希望能有與其他系統利用網際網路溝通的能力。 

為了能夠滿足以上的系統需求，我們發展了一個支援網際網路的即時嵌入式

作業系統，名叫 Seed。Seed 是一個小尺寸、富有彈性、高效能、具可攜性的嵌

入式作業系統核心。此外，Seed 核心為了支援即時系統，所提供的服務都是可

預測或者固定時間的行為模式。最後，為了能讓系統更進一步能夠有網際網路溝

通的能力，我們也移植了一個名叫 lwIP 的小型 TCP/IP 網路溝通協定模組在 Seed

作業系統上。  

Seed 作業系統核心目前支援先佔式多工、執行緒彼此間溝通和同步的機制、

以及記憶體、定時器、中斷的管理。核心影像檔若包含 lwIP 大小為 75 Kbytes，

若是不包含 lwIP 大小是 21 Kbytes。核心的尺寸相當地小因而適合嵌入式系統。

然後我們把 Seed 的效能測量出來，結果顯示出我們的系統相當適合小型的即時

嵌入式網路設備。 
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Abstract 

 

Embedded systems are ubiquitous and play a significant role in modern daily life. 

The characteristics of embedded systems are application-specific and scarce hardware 

resources. Besides, more and more applications in embedded system care not only 

real-time to complete their works, but also want to own Internet-access capability 

which allows the devices to communicate with other systems.  

To achieve these requirements, we developed an Internet-supported embedded 

real-time operating system called Seed. The Seed kernel is small, flexible, high 

performance, and portable for embedded system. Besides Seed have deterministic or 

constant timing behavior to support real-time system. Finally, to enable the 

Internet-access capability, we ported a small TCP/IP stack, lwIP, to Seed.  

Seed kernel currently provides preemptive multitasking, task synchronization / 

communication, and management of memory, timers and interrupts. The size of the 

kernel image is about 75Kbytes with lwIP, or 21Kbytes without lwIP. It is quite small 

and suitable to embedded system. The performance results show that Seed is quite 

suitable for a small real-time embedded network appliance. 
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Chapter 1 

Introduction 

1.1 Motivation 

Embedded systems are ubiquitous and play a significant role in modern daily life. 

They can be found everywhere, such as watches, VCD/DVD players, digital cameras, 

mobile phones, PDAs, missile systems, flight control systems and etc. Traditional 

embedded operating system usually addresses two issues: limited hardware resources 

and real-time support. Therefore, an embedded operating system must be able to run 

on top of limited resources as well as provide real-time support to its applications.  

With the popularity of Internet and rapid development of network technologies, 

Internet-access capability is becoming a necessarily for many embedded systems. 

Such network appliances can not only communicate with each other, but also enable 

many creative applications on them such as remote control functionality. For example, 

an user can control an in-home VCD/DVD recorder to record his favorite TV 

programs when he is working at office. 

Therefore, modern embedded operating systems should satisfy the requirements 

of running on the top of limited hardware resources, supporting real-time applications, 

and providing Internet-access capability. Many commercial real-time operating 

systems do satisfy the above requirements. However, they are usually expensive and 

not open source. On the other hand, non-commercial kernels often have limitations for 

fulfilling the requirements. This motivates us to design and implement a real-time 

embedded operating system, named Seed, for network appliances. Seed contains an 

OS kernel designed for time-critical embedded applications. Besides the basic kernel 

services, we also ported a small TCP/IP protocol stack called lwIP [7] to Seed. This 

makes systems based on Seed be Internet-enabled. 
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The kernel has the following four design goals. First, it is designed to be flexible 

for supporting various applications in embedded systems. Second, Seed supports 

real-time applications. For example, it provides preemptive multitasking and 

deterministic (or constant) timing services. Third, Seed is designed for high 

performance and small kernel size. And fourth, Seed is an extremely portable kernel. 

It is easy to port Seed to other hardware platforms by replacing the hardware 

abstraction layer. 

Seed is currently implemented on Samsung SNDS100 evaluation board. The 

kernel supports preemptive multitasking, task synchronization/communication, and 

management of memory, timers and interrupts. As we mentioned above, the TCP/IP 

stack is also ported. The size of the kernel image is about 75Kbytes with lwIP, or 

21Kbytes without lwIP, which is small enough for resource-limited systems. 

 

1.2 Thesis organization 

The rest of the thesis is organized as follows. The following chapter describes 

previous research related to real-time embedded kernels. Chapter 3 presents the 

design and implementation details of Seed kernel. Besides, we introduce lwIP and the 

porting status in this chapter. The experiment results are shown in Chapter 4. Finally, 

Chapter 5 gives conclusions. 
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Chapter 2 

Related Works 
In this chapter, we describe some of the related real-time embedded kernels.  

2.1 Linux & RTLinux 

 Linux is a famous open source operating system. Many vendors such as 

MontaVista [15] and Metrowerks [12] have put efforts on making Linux an 

Embedded RTOS. The techniques include shrinking the kernel and the libraries, 

reducing the timer interrupt intervals, inserting preemption points in the kernel, and 

etc. However, Linux kernel is inherently designed for general-purpose and 

non-real-time systems [3]. The techniques can not transform Linux to a true real-time 

kernel. 

Therefore, a Real-Time Linux (RTLinux) [8][17] was developed for real-time 

applications. In RTLinux, a real-time extension co-exists along with the original 

Linux kernel. And, each application is divided into the real-time part and the 

non-real-time part. The former runs directly on the real-time extension, while the 

latter runs on the original Linux kernel. However, the cooperation between the RT and 

non-RT parts not only consumes extra computing and memory resources but also 

make the application development complicated. 

 Seed is a pure real-time embedded kernel. Developing real-time applications on 

Seed is easy and instinctive without extra overheads. 

 

2.2 eCos 

 The eCos kernel [18] is a flexible, configurable, and real-time embedded kernel. 

It has a hardware abstraction layer for increasing portability. Similar to Seed, eCos 
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divides the interrupt handing into two parts: Interrupt Service Routine (ISR) and 

Deferred Service Routine (DSR). However, the DSR of eCos has no priority levels. 

By contrast, Seed has eight priority levels and supports constant time DSR scheduling.  

Moreover, eCos only supports 32 priority levels for constant time task scheduling, 

while Seed kernel supports 512 priority levels.  

 

2.3 μC/OS-II 

 μC/OS-II [10] is also a preemptive, real-time, multi-tasking kernel. However, 

Seed is more flexible and powerful thanμC/OS-II. For example, μC/OS-II supports 

only 64 task priorities. Moreover, different tasks must be associated with different 

priorities. This prevents the using of Round-Robin scheduling. Finally, μC/OS-II  

adopts only preemptive multitasking without the possibility of non-preemptive 

multitasking.  

 By contrast, Seed supports 512 task priorities and allows more than one tasks 

share the same priority. Round-Robin scheduling, preemptive or non-preemptive 

multitasking are all allowed in the Seed kernel.  

 

2.4 Commercial RTOSes 

 There are many commercial real-time embedded kernels in the market, such as 

WindowsCE[13], Nucleus[1], vxWORKS[23], QNX[16], Lynx[11] and etc. They 

support real-time applications and are suitable for embedded systems. However, all of 

them are proprietary. Some of them even do not open their source code. Seed is an 

open source project, so it is royalty and buyout free. 
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Chapter 3 

Design and Implementation 

 In this chapter, we will describe the design goals and actual implementation of 

the Seed kernel. In Section 3.1, we first give an overview of the kernel. Then, we 

describe each Seed component from Section 3.2 to Section 3.8. Finally, we describe 

the status of implementation in Section 3.9. 

3.1 Kernel Overview 

 Seed OS kernel is designed for embedded systems and real-time systems. Due to 

the limited memory and CPU resources of embedded system and the timing 

requirements of real-time systems, Seed has following features: 

 Flexibility 

Since embedded systems are application-specific, it is important to 

keep the kernel as flexible as possible. Seed kernel divides its code into 

several components for flexibility. Each component can be replaced, 

removed and modified without totally rewriting the kernel. The interfaces 

and files of each kernel component are explicitly defined. In addition to a 

component-based kernel, we implement a Seed component as flexible and 

simple as we can. For example, when we create a task, we can specify its 

time-slice value, option of preemptive or non-preemptive, and etc. 

Furthermore, changing these values at run-time is allowed by the exported 

interfaces of Seed. 

 Deterministic Timing (Real-Time support) 

Real time systems care not only the correctness of the computation, but 

also when the computation is completed. Therefore, a key requirement of a 

real-time kernel is deterministic timing. This means that the kernel services 
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should consume only expected amounts of time. In non-real-time kernels, 

their services may inject random delay into the application, and thus cause 

the unexpected response time. On the other hand, the real-time kernels 

(including Seed) have deterministic timing behaviors. Furthermore, 

real-time kernels should offer constant (load-independent) timing. In other 

words, a service consumes the same time to complete the job irrespective of 

the workload. The constant timing is always considered when we develop 

Seed kernel. With constant or deterministic timing, it is possible to analyze 

the worst-case performance of the real-time software. 

 Portability 

Seed explicitly divides the kernel source code into hardware-dependent 

part and hardware-independent part. The former is called Hardware 

Abstraction Layer (HAL). The HAL abstracts the underlying hardware, 

hence makes Seed portable. If we want to port Seed to another hardware 

platform, all we have to do is modify the HAL. All other components do not 

need to be changed at all. 

 High performance 

Since application is an embedded system should cooperate with the 

kernel, there is little need to implement multiple protection modes. Thus 

Seed selects single protection mode (i.e., kernel mode) for good 

performance. Traditional OS, such as Linux, adopts a dual-mode scheme 

(i.e. user mode and kernel mode) for kernel protection. Under this scheme, 

additional code is needed for changing protection domains. According to the 

previous research [4], single protection mode can save the time of system 

calls. Besides, for the sake of better performance, the Seed kernel is 

implemented in C language rather than other object-oriented languages such 
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as C++ and JAVA. 

Figure 3.1 shows the architecture of the Seed system. As shown in the figure, the 

applications run on top of the OS, and the hardware is under the control of the OS. 

Typical components in an OS are TCP/IP stack, file systems, window systems, and etc. 

However, the kernel (e.g., Seed kernel) is the real nucleus of the whole operating 

system. The kernel is the system resource manager that allocates resource (such as 

CPU time, memory and I/O devices) to the tasks. As shown in the right part of Figure 

3.1, Seed has following kernel components to manage the system:  

 Task management 

 Interrupt management 

 Memory management 

 Timer management 

 Message queue management 

 Semaphore management 

 Hardware Abstraction Layer (HAL) 

The features of these components are described from Section 3.2 to Section 3.8. 
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3.1 Task Management 

3.1.1 Design  

 A task (also called a process or a thread) is an instance of program in execution. 

An application may divide its work into tasks, each of which is responsible for a 

portion of the whole job. Each task has a Task Control Block (TCB), which contains 

CPU registers, stack, and etc. Seed kernel provides the following features on task 

management. 

 Multi-tasking 

Multi-tasking is the ability to support multiple concurrent tasks 

running on the same CPU. It creates pseudo parallelism and maximizes the 

use of the CPU. Besides, multi-tasking provides a modular construction 

mechanism for applications, which allows the application programs to be 

designed and maintained in an easier way. 

 Multiple priorities 

Each task can be assigned a priority when it is created by the 

application designer. The priority ranges from 0 to 511, where 0 is the 

highest priority and 511 is the lowest priority. Seed always schedules the 

task with the highest priority to run. 

 Preemptive 

Preemptive multi-tasking means that the running task can be 

interrupted at any time by another higher priority task. Oppositely, in the 

case of non-preemptive multi-tasking, the scheduling happens only when a 

task completes, or it explicitly releases the CPU. Seed kernel supports both 

kinds of multi-tasking. If we don’t want a task to be preempted, we can 

specify the task as non-preemptive. In a real-time system, it is prefer to 
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select preemptive multi-tasking for fast system responsiveness. 

 Constant time scheduling 

Seed always selects the highest priority task to run. In non-real-time 

kernels, the time spent by a scheduler for choosing the next task to run is 

usually non-deterministic. Some real-time kernels, including Seed, allow 

the task scheduler to find out the task that should be run next in a short 

constant time.(i.e., O(1) time) We will explain the details of the task 

scheduling mechanism in Section 3.2.2. 

 Time-Slicing ( Round-Robin scheduling ) 

Seed allows two or more tasks have the same priority. Each task runs 

for a determined amount of time of time (called quantum), and then the 

scheduler selects another task with the same priority to run. The time 

quantum can be assigned while a task is created, or be changed at run-time. 

Note that time-slicing is disabled if the task is non-preemptive. 

  

At any given time, a Seed task is always in one of the following states: create, 

running, ready, suspend, and terminate. As shown in Figure 3.2, a task enters the 

create state when it is created. When the task is inserted into the ready queue1 and 

waiting for execution, it is in the ready state. Once the scheduler selects the task to 

execute, the task goes to the running state. When the task is suspended and waiting 

for certain system resources, it will go into the suspend state. The task will be 

resumed and enter into the ready state while the resource is available. Finally, the task 

goes to the terminate state when it has been killed or its job is completed. 

 

                                                 
1  The tasks that are ready for execution are kept on a list called ready queue. 
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3.1.2 Implementation 

 In this section, we describe the implementation of Seed scheduler and the task 

ready queue. 

We implemented Seed scheduler in a fashion similar to the μ C/OS-II 

scheduler[10] . However, we extended it to support more priorities (i.e., 512 priorities) 

and keep the scheduling job in a constant time. As shown in Figure 3.3, we represent 

512 task priorities in an 8 × 8 × 8 cube data structure, Priority_Ready_Table. The 

Priority_Ready_Table is an array of 64 elements, where each element is a 8-bit 

bitmap. Each bit is used to indicate the existence of tasks with the corresponding 

priority. For example, in Priority_Ready_Table [0][0], the binary value 00001000 

means that there is at least one ready task with priority 3. To determinate which task 

Ready 

Suspend 

Running 

Task is terminated, or 
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to run, the scheduler will select the lowest priority number that has its bit set in the 

Priority_Ready_Table. For the sake of efficiency, we use two data structure as the 

indexes of this array, Priority_Ready_Row_Groups and Priority_Ready_Col_Groups. 

Each of them is an 8-bit bitmap and each bit corresponds to a priority group. 

Priority_Ready_Row_Groups is the row index of this array, and 

Priority_Ready_Col_Groups is the column index. For example, if the bit 0 of 

Priority_Ready_Row_Groups and the bit 0 of Priority_Ready_Col_Groups are set, 

there is at least one task, with its priority between 0 to 7, ready for execution. This is 

because the two indexes point to the element 0 of the array (i.e., 

Priority_Ready_Table [0][0]) , which has the bitmap that stands for priority 0 through 

7. 
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Priority_Ready_Row_Groups 

0 

0 

0 

0 

0 

0 

0 

1 

1 

Priority_Ready_Table[8][8] Priority_Ready_ 
Col_Groups 

1 

There is at least one task with priority 3. 

Figure 3.3 Data Structures for Task Scheduling  

 

Using the data structures described above to find out the highest priority task, we 

use a table-lookup approach. Figure 3.4 shows a mapping table with 256 (28) values 

that is used for finding the highest priority task. In fact, it is a priority resolution table. 

Given an index, the corresponding value in the table stands for the lowest set bit of 

that index. This is used to determine the highest task priority represented by the 
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previously mentioned bitmaps. For example, if the element of Priority_Ready_Table 

[0][0] is 8 (i.e., 1000b), we look up the value of Mapping_Table[8] , and the value 3. 

It means that the lowest bit of 8 is bit 3, and hence the highest task priority is 3. By 

using the Mapping_Table, we can find the highest task priority via three times of 

table-lookup, which is shown in Figure 3.5. First, we look up the lowest bit of 

Priority_Ready_Row_Groups and Priority_Ready_Col_Groups. With these two bits, 

we can find out the corresponding bitmap of the Priority_Ready_Table. Finally we 

look up the lowest bit of this bitmap.  

UNSIGNED_CHAR Mapping_Table [256] = {                                 

     0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     

 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     

 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     

 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     

 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 

};    

Figure 3.4 Mapping Table for Finding the Highest Priority Task 

 
 

Row = Mapping_Table [Priority_Ready_Row_Groups]; 
 Col = Mapping_Table [Priority_Ready_Col_Groups]; 
 highest_ready_priority = (UNSIGNED) ( (Row << 6) + (Col << 

3) + Mapping_Table [Priority_Ready_Table[Row][Col]] ); 

 
 
 
 
 
 

Figure 3.5 Pseudo Code for Finding the Highest Priority Task 
 

 

No matter how many tasks are in the system, the cost of task scheduling in Seed 
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is fixed. However, when the number of tasks is quite small, the Seed scheduling time 

may be slower than some non-real-time kernels. This is due to that a non-real-time 

kernel usually adopts non-deterministic scheduling, which may find out the highest 

priority rapidly when there are very few tasks. But the term real-time does not mean 

as fast as possible. Instead, it requires consistent, repeatable, known timing 

performance. Therefore, in order to achieve deterministic timing, the small and fixed 

computation overhead of Seed scheduling is worthy. 

 After finding out the highest priority task, Seed will de-queue a task control 

block from the ready queue. As shown in Figure 3.6, the Priority_Ready_Task_List is 

an array of SEED_TASK (task control block) pointers. Each pointer stands for a single 

priority, and points to a list of ready tasks (specifically, TCBs) with that priority. The 

TCB list is a doubly-linked list so that we can insert and remove a TCB in a constant 

time. 
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Figure 3.6 Task Priority Ready Queues with Priorities 
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4. ask: This function terminates the task we specified. 
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1. Seed_Create_Task: This function creates a new task. The user can sp
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Seed_Resume_Task: This function resumes a previously suspended or 

created task. It will call the scheduler to check if a reschedule is needed. 

Seed_Suspend_Task: This function suspends the specified task. If it is the 

current running task, the function will invoke the scheduler to selects next 

ready task to run. 

Seed_Terminate_T

5. Seed_Relinquish_Task: This function will yield the control of CPU to next 

same-priority task, and put the task to the end of the corresponding ready 

SEED_TASK SEED_TASK SEED_TASK

Priority 
1 

SEED_TASK

Priority 
2 

SEED_TASK SEED_TASK

Priority 
511 

SEED_TASK SEED_TASK SEED_TASK

Priority 
0 

Priority_Ready_Task_List 

 16



TCB list. 

Seed_Task6. _Sleep: This function suspends the calling task for the specified 

7. n changes the priority of the 

8.  

9. lice: This function changes the time slice of the 

 

The interface routines for internal use are as follows: 

Seed_Initialize (i.e., the system 

2. ng to execute 

3. Scheduler: This function implements the task scheduling algorithm. It 

4. ntext_Switch: This function is invoked to perform a task context 

number of timer ticks (1 timer tick = 10ms). 

Seed_Change_Task_Priority: This functio

specified task to the new priority value. This function will call the scheduler 

to check if Seed needs to preempt the executing task with new priority task. 

Seed_Change_Task_Preemption: This function changes the preemption

state of currently executing task. If the preemption value is changed from 

non-preemptive to preemptive, it will call the scheduler to check if a 

preemption is needed. 

Seed_Change_Time_S

specified task to the specified value. If the new time slice value is zero, the 

time slicing of the task is disabled. 

1. Task_Initialize: This function is called by 

initialization function). It is responsible for setting the initial value of the 

internal variables and global data structures in task component. 

Task_Start: This function will be invoked when the task is goi

at the first time. It will call the task entry function with the parameters of the 

task. 

Task_

is responsible for finding out the highest priority task, and checks the 

preemption state of the executing task to see if a task context-switch is 

needed. 

Task_Co
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switch. The context (i.e., CPU registers) of the original task is saved into 

memory, and the context of the resumed task is loaded into the CPU. 

Spinlock_Lock: This function is called to lock a spinlock that protect critica5. l 

6. e code 

7. d when the time slice of a task is run 

8. _Timeout: This function is called to process the task suspension timeout 

9. sk scheduling. The 

10.  Lock_Scheduler 

 

system resources (e.g., kernel data structures) from simultaneous access. If 

other task has already held this spinlock, the calling task will perform context 

switch and give the control of CPU to the task that hold the spinlock. 

Spinlock_Unlock: This function is called to unlock the spinlock. Th

between Spinlock_lock function and Spinlock_Unlock function will become a 

critical section that is mutual exclusive. 

Task_Time_Slice: This function is calle

out. It is responsible for moving the task to the end of the corresponding TCB 

list. 

Task

condition. It will resume the task from the suspend state. 

Lock_Scheduler: This function is used to prevent ta

scheduler is temporarily stopped after calling this function. 

 Unlock_Scheduler: This function is the counterpart of

function. It is used to continue task scheduling. 
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3.3 Interrupt Management 

3.3.1 Design 

 Interrupt is a mechanism for providing immediate response to an external 

hardware event. When an interrupt occurs, the CPU suspends the current path of 

execution and transfers control to the appropriate ISR (Interrupt Service Routine). 

Seed allows a component such as a device driver to register an ISR, un-register an 

ISR with for an IRQ number (interrupt request number) dynamically. The HAL 

interrupt component will recognize the IRQ, save the CPU context, execute to the ISR, 

and restore the context of CPU. The details will be described in section 3.8. 

 In order to protect the internal data structures from simultaneous access, we 

usually disable the interrupts when we are serving an interrupt. However, it is not 

desirable to disable the interrupts for a long time in a real-time system. Therefore, 

Seed adopts 2-stage interrupt handling scheme, which is also adopted by other 

real-time kernels, e.g. the eCos RTOS [18]. The interrupt handling is separated into 

two stages, ISR stage and DISR (Deferred Interrupt Service Routine) stage. 

 In the ISR stage, a normal ISR is executed with interrupts disabled. During the 

execution, the ISR may activate a DISR to complete the service later. When the ISR is 

finished, the DISR starts. A DISR is allowed to be run with interrupts enabled. Each 

DISR has its own stack and control block, and hence it can temporarily be blocked for 

synchronization or mutual exclusion purpose. In other words, a DISR is just like a 

task except that it is activated by an ISR. Under this 2-stage interrupt handling 

mechanism, the interrupts won’t be disabled for a long time. 

 The eCos kernel also supports DISR. However, the DISRs do not have priorities, 

and hence that are executed in FIFO order. This might cause problems when a DISR 

activated by a higher priority ISR is blocked by another one that is activated by a 
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lower priority ISR. By contrast, there are eight priority levels available for Seed 

her priority DISR (i.e., activated by a higher priority ISR) becomes 

management system, we also take advantage of the mapping table to find 

DISRs. If a hig

ready, the lower priority DISR is preempted. And, DISRs with the same priority are 

executed in the order they are activated. The same as the task scheduling time, the 

time of scheduling a DISR is a small constant time. 

3.3.2 Implementation 

 The implementation of the interrupt system is divided into two parts, namely the 

ISR and the DISR components. 

 ISR component 

We define an array called IRQ_Handlers. Each element is a function 

pointer to an ISR, and the IRQ number is used for indexing the array. 

Therefore, an ISR can be registered and un-registered with this array 

dynamically. When an interrupt occurs, the interrupt part of the HAL 

component will get the IRQ number from the hardware register, and invoke 

the corresponding ISR. 

 DISR component 

The data structures for implementing the DISR component are similar 

with the Seed tasks. It has an 8-bit bitmap, named Active_DISR_Priority, 

for the priority status. Since there are only eight priorities for DISRs, the 

Active_DISR_Priority is enough to represent the priority status. Besides, 

there is ready queue called Active_DISR_First with eight elements for 

queuing DISRs. Each element contains a doubly-linked list of DISR control 

blocks (i.e., SEED_DISR). Figure 3.7 shows an example. In this figure, 

there are DISRs with priority 0 and 7. Therefore, the Active_DISR_Priority 

bitmap is 129 (i.e., 10000001b). Similar to the approach used in the task 
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out the highest priority DISR in a constant time period. It is worth to note 

that the scheduler always selects the DISRs to run before running the tasks 

in order to completing the interrupt service as fast as possible. 

 

Active_DISR_First 

SEED_DISR SEED_DISR SEED_DISR 

 

 

3.3.3 Interface

The interface exported b

1. Seed_Register_ISR

num

2. Seed_Unr

routin

Figure 3.7 DISR Data Structures 

 

y the interrupt system is shown in the following. 

: This function registers the ISR for the specified IRQ 

ber. If the IRQ number has been registered, it will replace the old one. 

egister_ISR: This function un-register the interrupt service 

e. 

Priority 
1 

Priority 
7 

SEED_DISR SEED_DISR SEED_DISR 

Priority 
0 

NULL 

Active_DISR_Priority 

1 0 0 0 0 0 0 1 
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3. S

b

4. S ISR. It will 

insert the control block of the DISR into the corresponding ready queue. This 

 

 

The interface routines for internal use are as follows. 

1. Interrupt_Initialize: This function is invoked by Seed_Initialize (i.e., the 

system ponsible for setting the initial value of 

the internal variables and global data structures used by the interrupt system.  

2. Forward_ISR: This function is called by the interrupt part of Seed HAL. It 

calls the corresponding ISR for the given IRQ number. 

3. D t: This fu rapper to R funct e 

invoked at the first time. It calls the DISR entry function. In addition, it 

updates the related global data structures of the DISR after the DISR has 

 

 
 

eed_Create_DISR: This function creates a DISR and initializes its control 

lock. 

eed_Activate_DISR: This function activates the specified D

function is usually called by an ISR.

 initialization function). It is res

ISR_Star nction is a w  the real DIS ion. It will b

finished its job. 
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3.4 m

3.4.1 Design 

 

time-slic

components (e.g., task m e-sensitive applications. The basic time 

tick, which is the time between two successive hardware timer interrupts. In 

e classify the timers into two 

types accord

The application tim

dynamically by the applications. T

they are exp

can be treated as a useful tool for app r 

is the task tim

suspend for a specified tim

 

3.4.2 Implementation 

The implementation of the timing system can be separated into the following two 

arts: 

Timer Interrupt Handling  

Periodic timer interrupt is the base of whole timing system. The HAL of Seed 

will initialize the hardware timer and interrupt controller (see Section 3.8). Each 

time a timer interrupt happens, the time ISR (i.e., Timer_ISR function) increases 

the system clock (i.e., jiffies), and decreases the time-slice value of the running 

task and the remaining-time value of the running timer. If the time-slice or the 

remaining-time value reaches zero, the Timer_ISR will activate the Timer_DISR, 

Ti er Management 

This component provides all timing facilities in Seed, including timer ISR, 

ing and the timer service. The timer service is used frequently by other kernel 

anagement) and tim

unit is 

our current implementation, a tick is equal to 10 ms. W

ing to their usage, the application timers and the task timers. 

ers can be created, deleted, enabled, and disabled 

hese timers execute user-supplied routines when 

ired. The user-supplied routine is specified while creating the timer, and 

lication programming. The second kind of time

er. Every Seed task has a built-in task timer, which allows a task to 

e period. 

 

p
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which processes the quantum expiration of the task (i.e., call the 

Slice function), and handles the timer expiration. The timer 

adjusting the entire list on every timer 

 

 

Task_Time_

expiration either resumes the suspended task for the timeout of task timer, or 

calls the user-specified expiration function of application timer. 

Timer maintenance 

The internal data structure for implementing a task timer or an application 

timer is timer control block called BASIC_TIMER. As shown in Figure 3.8, the 

active (i.e., enabled) timers are maintained in a doubly-linked list, and the 

Active_Timer_List_First pointer references to the first timer (i.e. the running 

timer) of the list. The timer list is maintained in the order of expiration time. 

Each timer control block contains a remaining-time field, which represents the 

timing difference between the expiration time of the timer and the expiration 

time of its previous timer. When the field becomes zero, the timer expires. This 

approach is used in order to avoid 

interrupt. 

 

Figure 3.8 Active Timer List 

BASIC_TIMER 

Active_Timer_List_First 

BASIC_TIMER BASIC_TIMER 
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3.4.

The 

pecified timeout 

2. S

 

The 

_Initialize: This function is called by Seed_Initialize (i.e., the system 

initialization function). It is responsible for setting the initial value of the 

internal variables and global data structures in timer component. 

2. Run_Timer: This function is used to enable an application or task timer. The 

timers will be inserted into the active timer list. 

3. Stop_Timer: This function is used to disable an application or task timer. 

The timers will be removed the active timer list. 

4. Timer_ISR: This function is the ISR of timer interrupt. It increases the 

system clock and check the tim

5. Timer_DISR: This function is the DISR of timer interrupt. It will be 

activated by Timer_ISR when the running timer is timeout or the current 

task’s time-slice runs out. 

3 Interface 

interface exported by the timer system is shown in the following. 

1. Seed_Create_Timer: This function creates an application timer. The 

user-specified expiration function is executed when the s

value runs out. 

eed_Control_Timer: This function is used to enable and disable the 

specified application timer. 

3. Seed_Retrieve_System_Clock: This function returns the current value of the 

system clock, which is the number of ticks since the system boots up. The 

value increases by one every timer interrupt. 

4. Seed_Set_System_Clock: This function sets the system clock to the new 

specified value. 

interface routines for internal use are as follows. 

1. Timer

eout situation. 
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6. Timer_Expiration: This function is invoked by Timer_DISR. If a task timer 

 the suspended 

 

is expired, it will call the Task_Timeout function to resume

task. If an application timer is expired, it will call the user-specified 

expiration function. 
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3.5 M

3.5.1 Design 

 Dyna

free functions. However e of malloc and free is generally 

non-deterministic due to the memory management algorithms. In addition, this 

mechanism is easily to suffer from the fragmentation problem. 

For this reason, in addition to the traditional mechanism, Seed provides an 

alternative memory management mechanism which is also adopted by other real-time 

kernels, such as μC/OS-II and Nucleus. This alternative mechanism allows the 

applications to obtain fixed-sized memory blocks from a partition, which is made of a 

contiguous memory area. All memory blocks are the same size in a partition. The 

allocation and de-allocation of memory blocks is done in a small constant time. In 

addition, this type of memory management also avoids the fragmentation problem. 

The limitation of this approach is its inflexibility. If an application needs memory 

blocks with different sizes, it has to create many partitions. This makes application 

programming a little inconvenient. However, in order to achieve constant timing and 

avoid fragmentation, it is still worthy to create partitions. 

It deserves to be mentioned that Seed provides options for suspension when 

allocating memory. When a task attempts to allocate a memory block from an empty 

partition, it can suspend and wait for available block. The task can be resumed when a 

block is returned to the partition. There are three kinds of suspension. 

 Always suspend: The task always suspends and waits for a block. It is only 

resumed until a block is available. 

 Suspend with a timeout: The task suspends for a block. However, it only 

waits for a specified timeout ticks. 

emory Management 

mic memory management is traditionally implemented in the malloc and 

, the execution tim
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 No suspend: If there is no available block in the partition, the task just get 

r message without suspension. 

 

pointer (i.e., 

allocated. E

pointer to the partition contro is useful when de-allocating 

a block. It a

does not specify the corresponding p rol block when it de-allocates a block. 

We prevent application from specifying the partition control block for the following 

an erro

Besides, if multiple tasks suspend on a single memory partition, the tasks are 

resumed in one of the following, which can be specified when the memory partition 

was created.  

 FIFO (First-In-First-Out) order: Tasks are resumed in the order they were

suspended. 

 Priority order: Tasks are resumed in the order of their priorities. 

This suspension mechanism is similar to Nucleus and μC/OS-II. However, μ

C/OS-II does not support FIFO suspending order, and it does not provide suspension 

options when allocating a block from an empty memory partition. 

 

.3.5.2 Implementation 

 In this section, we describe how a memory partition is implemented. The internal 

data structure of a memory partition is a partition control block called 

SEED_PARITION. As shown in Figure 3.9, the partition control block manages a 

contiguous memory area. It divides this area into fix-sized blocks, and contains a 

free_list) that points to the first free block. The free blocks are linked as a 

list by using the linking pointers, the first four bytes of the block data space. Block 

allocation and de-allocation involves only the head of the list. Therefore, the time is 

constant. Note that the linking pointer can used to store data when the block is 

ach block has a four-byte overhead (i.e., block header) that contains a 

l block. This reverse pointer 

llows constant time de-allocation under the condition that the application 

artition cont
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reaso If

system m drawback of using this pointer is that 

it ad

artition. 

 

n.  the application returns the block to a wrong partition control block, the 

ay crash. As we mentioned above, the 

ds four-byte overhead to each block. This makes the available blocks in a 

partition become fewer. For example, there will be only four 20-byte blocks available 

in a 100-byte p

SE ON 

(Partition Control Block) 

Block Header
Linking pointer 

ED_PARITI

Block Header
Linking pointer 

Block Header
Linking pointer 

NULL 

free_list 

Figure 3.9 Memory Partition Data Structure 

  

 

The memory partition implementation of Seed is more robust than μC/OS-II. 

Specifically, a Seed memory partition provides a reverse pointer to avoid system crash, 

which is not available inμC/OS-II. On the other side, a Seed memory partition uses 

less space overhead than Nucleus. The latter includes the linking pointers into the 

block headers so that the linking pointers cannot be used to store data. 
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As for the implementation of suspension, every partition control block has a 

waiting list for suspended tasks that are sorted in FIFO or Priority order. If another 

task returns a block back to the empty partition, Seed will resume the first waiting 

task in the list and give the block directly to the resumed task. 

 
 

e memory partition is shown in th  

1. Seed_Create_Memory_Partition: This function creates a memory 

partition with fixed-size blocks. The partition size, the block size, and the 

task resuming order can be specified by the caller. 

2. Seed_Delete_Memory_Partition: This f a previous created 

memory partition. It resumes all the waiting on that partition. 

3. Seed_Allocate_Memory_Block: This function allocates a memory block 

from the partition. The suspension type is specified by the caller. Note that 

the size of the block is already defined when the partition is created. 

4. Seed_Free_Memory_Block: This function returns a memory block back to 

the partition. If there are tasks waiting on this partition, this function will 

resume the first task and give the block to it. Note that the caller does not 

need to specify the corresponding partition. 

e are as follows. 

 the in

Terminate_Task 

3.5.3 Interface 

The interface exported by th e following.

unction deletes 

 

 

The interface routines for internal us

1. Memory_Partition_Initialize: This function is called by Seed_Initialize 

(i.e., the system initialization function). It is responsible for setting the 

initial value of ternal variables and global data structures in memory 

partition component. 

2. Memory_Partition_Cleanup: This function is invoked by 
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or Task_Timeout. It will remove the task from the waiting list of the 

memory partition. 
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3.6 Me

3.6.1 Design 

 Message queue is a mechanism for tasks to communicate between each other. 

Each message queue is capable of holding multiple messages. When a task sends a 

message, it will be copied into the message queue. Then the receiving task will copy 

the message out of the message queue. A message can be placed at the front of the 

queue or at the end of the queue. A message consists of one or more bytes, which can 

be specified while creating the queue. However, we suggest that applications set the 

message size to the pointer size, that is to say, each message is a pointer. The pointer 

can be initialized to point to some application’s data structure that will actually be 

referenced by the receiver. By this way, copying a large message can be avoided. In 

our implementation, the processing time of sending and receiving a message is 

deterministic, and it is relative to the message size. 

Seed provides a suspension service for message queue as the memory partition 

does in Section 3.5.1. Here are two reasons for suspension. First, when a task is 

attempting to send a message to a full message queue, it is suspended and then waits 

for available space of the queue. The task is resumed when other task gets a message 

from the queue. Second, when a task tries to receive a message from an empty queue, 

it is suspended to wait for an incoming message. The task will be resumed when other 

task sends a message to the queue. The suspension options (i.e., Always suspend, 

Suspend with a timeout, and No suspend) and the suspension orders (i.e., FIFO order 

and Priority order) are all the same with the memory partition in Section 3.5.1. 

Besides, it is allowed to broadcast a message to all the waiting tasks with Seed 

message queue. 

 

ssage Queue 
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3.6.2 Implementation 

 The internal of the message queue is a circular buffer, as shown in Figure 3.10. 

 

plementation of suspension is similar to memory partition. There is also a 

waiting list for suspending tasks. Note that if other tasks want to send a message into 

The implementation of Seed is similar to other real-time kernels. The read pointer 

points to the first message of the queue, and the write pointer points to the location 

where the next message will be inserted. However, if we send a message at the head 

of the queue, the message will be inserted into the preceding entry of the read pointer. 

The start pointer indicates the starting address of the queue area, and the end pointer 

points to the ending address of the queue area. The read and write pointers can wrap 

the queue to implement circular buffer. 

 

Figure 3.10 Message Queue Data Structure 

 

The im

start 

read 

end 

write 
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the empty queue, Seed will resume the waiting task and directly copy this message to 

fied by caller. 

2. Seed_Delete_Message_Queue: This function deletes a created message 

queue. 

3. Seed_Send_Message_To_Queue: This function places a message at the tail 

of the specified queue. If there is not enough queue space, a suspension is 

allowed. 

4. Seed_Send_Message_To_Front_Of_Queue: This function places a 

message at the head of the specified queue. If there is no enough space in 

the queue, a suspension is allowed. 

5. Seed_Receive_Message_From_Queue: This function receives a message 

from specified queue. If there is no message in the queue, a suspension is 

allowed. 

6. Seed_Boradcast_Message_To_Queue: This function broadcasts a message 

to all tasks that are waiting for an incoming message with the specified 

message qu

The 

the resumed task without copying into the queue. This mechanism saves message 

copying time. 

 

3.6.3 Interface 

The interface exported by the message queue is shown in the following. 

1. Seed_Create_Message_Queue: This function creates a message queue 

from a memory area specified by the caller. The queue size, message size, 

and suspension order are speci

ssage queue. It resumes all the tasks waiting on that me

eue. 

 

interface routines for internal use are shown as follows: 

1. Message_Queue_Initialize: This function is called by Seed_Initialize (i.e., 
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the system initialization function). It is responsible for setting the initial 

value of the internal variables and global data structures in the message 

queue component. 

2. Message_Queue_Cleanup: This function is invoked by Terminate_Task or 

eout. It will remove the suspending task from the waiting list of Task_Tim

the message queue. 
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3.7 Sem

3.7.1 Design 

 Sema  for synchronizing the execution of the critical section 

in an application. Seed pr

ranges from 0 to 2

mutual exclusion. T maphore are obtain and release. When 

a task wants to get into the critical section (e.g., access the shared resource), it tries to 

obtain the semaphore. If the semaphore is obtained successfully, the counter of the 

semaphore will be decreased by one. Inversely, when a task leaves the critical section, 

the task will release the semaphore and increases the counter by one.  

However, if a task fails to obtain the semaphore (i.e., the counter of semaphore is 

zero), the task may suspend on the waiting list until it is available. The suspension 

options and suspension orders are the same with the memory partition and the 

message queue (Section 3.5.1 and Section 3.6.1). These options and orders are free for 

applications to choose. The optional timeout on obtain-semaphore suspension can be 

used to recover from a deadlock. 

 Priority inversion is a common problem in real-time kernels. It occurs when a 

higher priority task is suspended on a semaphore that a lower priority has. This 

problem can be solved via the priority-inheritance protocol [22]. In this protocol, 

kernel increases the priority of the lower priority task to the priority of the higher 

priority task (i.e., inherit the priority of higher priority task). When the priority 

inherited task release the semaphore, the priority is reverted to its original value. Seed 

supports priority-inheritance for semaphores in order to help the higher priority task 

obtaining the semaphore as soon as possible.  

Note that theμC/OS-II kernel does not support a general priority-inheritance 

aphore 

phore is a mechanism

ovides counting semaphores. The value of each semaphore 

32 -1. If the semaphore value is 1, it is a binary semaphore for 

wo basic operations of a se
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protocol. It requires the users to reserve some priority levels for priority-inheritance 

n not allow two tasks to share the same priority. Seed kernel does not 

prior

inal priority (i.e., invoking 

aphore. 

semaphore. If the counter of semaphore is zero, a suspension is allowed. 

usage since it ca

have such limitation, so that it can implement the general priority-inheritance 

protocol. 

 

3.7.2 Implementation 

 The internal structure of a semaphore is a 32-bit integer. Besides, there is also a 

waiting list for the suspending tasks. If other tasks release a semaphore, Seed will 

resume the waiting task and pass the semaphore directly to the resumed task. 

 When an application creates a semaphore, it can specify whether 

ity-inheritance is enabled or not. If priority-inheritance is enabled and a task is 

suspended on an un-available semaphore, the semaphore will check whether the 

priority of owner task is lower than the suspending task. If so, the owner task will 

inherit the highest priority among the suspending tasks and save the original priority 

(i.e., invoking Inherit_Priority function). After the owner task releases the semaphore, 

the priority of the owner task is reverted to the orig

Disinherit_Priority function). 

 

3.7.3 Interface 

The interface exported by the semaphore is shown in the following. 

1. Seed_Create_Semaphore: This function creates a semaphore. The 

counting value and the suspension order are specified by caller. 

2. Seed_Delete_Semaphore: This function deletes a created semaphore. It 

resumes all the tasks waiting on that sem

3. Seed_Obtain_Semaphore: This function tries to obtain an instance of 
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4. Seed_Release_Semaphore: This function releases an instance of 

semaphore. It will resume and give the semaphore to the suspended task if it 

is waiting. 

 

The interface routines for internal use are shown as follows: 

alize: This function is called by Seed_Initialize (i.e., the 

Task or 

 

 
 
 
 
 
 
 

1. Semaphore_Initi

system initialization function). It is responsible for setting the initial value 

of the internal variables and global data structures in semaphore component. 

2. Semaphore_Cleanup: This function is invoked by Terminate_

Task_Timeout. It will remove the suspending task from the waiting list of 

the semaphore. 

3. Inherit_Priority: This function is used to implement the priority 

inheritance protocol. It helps the owner task to inherit higher priority of the 

waiting task. 

4. Disinherit_Priority: This function is used to implement the priority 

inheritance protocol. It helps the owner task to restore the original priority. 
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3.8 r

 In this sec

the hardware dependent portion of the kernel. We can port Seed kernel to another 

hardware platform more efficiently by only replacing or modifying the HAL. 

plementation as 

an example to introdu

Interrupt, 

subsections.  

3.8.1 Boot 

As shown i

kernel image into the memory, and jumps to the boot part of the HAL (i.e., the entry 

point of Se

devices. In other words, it contains the lo

board, it does following jobs: 

save CPU contexts, branch exception handlers, and restore CPU contexts). 

 System map initialization: It sets up the system memory mapping of the 

board. 

 Stack assignment: It assigns stack space for each CPU operation modes. 

 Hardware devices initialization: It initializes hardware devices on the board 

(e.g., hardware timer, interrupt controller, terminal driver and etc.). 

After hardware initialization is finished, the boot part of HAL will invoke the 

eed_Initialize function. This function is hardware-independent and is used to call the 

initial functions of other Seed components. It creates an idle task and application tasks, 

Ha dware Abstract Layer (HAL) 

tion, we introduce the Hardware Abstraction Layer (HAL). The HAL is 

Currently, Seed is running on SNDS100 board. And, we take our im

ce the HAL. The HAL are divided into four parts: Boot, 

CPU Context and Devices. Each part of HAL is described in the following 

n Figure 3.11, the default boot loader of SNDS100 loads the Seed 

ed kernel). The boot part is responsible for initializing the hardware 

w-level initialization functions. In SNDS100 

 Vector table setting: It sets the vector table which corresponds to the ARM 

exception modes [9][21]. Then, it handles the branch of an exception (i.e., 

S
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and invokes the scheduler to start these tasks. 

Boot loader of SNDS100 

 

itialize the interrupt controller at the beginning. 

Then it ena

Service Routines (ISRs) with 

 In addition, the interrupt pa

hardware interrupt occurs, 

1. e memory buffer which is a member of 

2. 

Figure 3.11 Seed Boot Flow 

 

3.8.2 Interrupt 

 The interrupt part of HAL manages the hardware interrupt system. The 

HAL_IRQ_Init function is used to in

bles the interrupts that we want to handle, and registers the Interrupt 

corresponding IRQ numbers.  

rt of HAL helps kernel to handle interrupts. When a 

it takes following steps: 

It saves the CPU contexts into th

task control block (i.e., jmpbuf). Because an interrupt may occur at any 

time, it must save all of the CPU registers. 

It recognizes the IRQ number by reading the hardware register. Then it 

invokes the corresponding ISR. 

3. After the ISR is finished, the interrupt part of HAL will check whether 

there is a ready DISR. If there is a ready DISR, its previous saved context 

Boot part of HAL 

Seed_Initialize function 

Seed Kernel 
Hardware-dependent 

Hardware-independent 
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will be loaded. 

4. If there is not a ready DISR and the interrupted task is preemptive, the 

inter eck whether there is a higher priority task 

ready to run. If there is a higher priority task, its previous saved context 

. Otherwise, the kernel loads the context of the interrupted 

task. 

Besides, the interrupt part of HAL provides the interfaces to enable or disable 

interrupts, name HAL_Disable_IRQ, respectively. 

 

3.8.3 CPU Context 

This part of HAL provides a set of , it provides 

interfaces for saving and restoring the CPU context. When a task A is switched to 

d invokes HAL_CS_Save_Context function to save the context of 

ber of restored CPU 

ay occur at any time, 

all of the CPU registers are saved. However

the Task_C

registers (i.e., a1 to a4 in 

 

3.8.4 Devices

 This part of HAL

rupt part of HAL will ch

will be loaded

ly HAL_Enable_IRQ and 

 CPU primitives. Specifically

another task B, See

A and HAL_CS_Restore_Context function to restore the context of B. However, there 

is still another interface called HAL_Interrupt_Restore_Context for context restoration. 

This function is used to restore the context that was saved by interrupt part of HAL. 

The difference between these two restoring functions is the num

registers. The HAL_Interrupt_Restore_Context function restore more registers than 

the HAL_CS_Restore_Context function. Because an interrupt m

, the normal context switch only occurs at 

ontext_Switch function, which does not care the content of argument 

ARM CPU). 

 
 is responsible for controlling the other devices on the platform. 
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For examp  timer and UART driver of SNDS100 are initialized by the 

HAL_

initializes 

HAL_UAR

device. 

In addition, the data types of Seed are defined in a single header file for the case 

of po

erefore, if 

the type is different at other hardware platforms, we only have to modify this file. 

 

 

 

le, the hardware

Timer_Init and HAL_UART_Init functions, respectively. The HAL_Timer_Init 

the timer controller and assigns the timer interrupt period as 10ms. The 

T_Init initializes the UART device and sets a proper baud rate for that 

rting. For example, the type UNSIGNED means a 32-bit unsigned long integer in 

Seed. Every Seed component and applications include this header file. Th
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3.9 Implementation Status 
 In this section, we describe the status of the implementation. 

3.9.1 Platform 

 Seed is currently implemented on Samsung SNDS100 Evaluation Board, which 

is based on the S3C4510B/KS32C50100 microcontroller [19][20]. Samsung 

S3C4510B i

RAM module, SDRAM, serial ports for console, and Ethernet interface. Figure 4.1 

lustrates the SNDS100 block diagram. 

Seed works correctly with the SNDS100 board. The Seed HAL is responsible for 

anaging the SNDS100 board. The Ethernet and UART drivers are well ported and 

erating correctly. 

ed Kernel Components 

The implemented and tested kernel components are shown as follow:  

 Task management 

 Interrupt management (ISR and DISR) 

 Memory partition  

 Timer management 

 Message queue management 

 Semaphore management 

 Hardware Abstraction Layer (HAL) 

 

s a 16/32-bit RISC microcontroller built around the ARM7TDMI RISC 

processor. It integrates an Ethernet controller. Thus, it is a good choice for 

Ethernet-based embedded systems. The S3C4510B can operate in a frequency up to 

50MHz. Besides the S3C4510B, the SNDS100 Board also consists of boot EEPROM, 

D

il

 

m

op

 

3.9.2 Implement

 

 43



 

 

Figure 4.1 SNDS100 Block Diagram2

sted drivers on SNDS100 board are shown as follow: 

3.9.4 LW

 r ability, we ported a small TCP/IP stack 

                                                

 

3.9.3 Implemented Drivers 
The implemented and te

 UART driver 

 Timer driver 

 Ethernet driver 

 

IP Integration 
In o der to provide the Internet-access cap

 
2 This figure is obtained from the application note of S3C4510B [19]. 
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called lwIP (i.e., lightweight IP) [5][7] to the Seed kernel. lwIP is an open source 

implementation of TCP/IP stack. Its design goal is to reduce memory usage and code 

size, making it suitable for use in an embedded system. lwIP defines a common 

interface called OS emulation layer between its code and the underlying OS kernel. 

To port lwIP to Seed kernel, we only have to modify this layer. This layer requires the 

functionalities such as multi-tasking, memory management, timer, semaphore and 

message queue. These functionalities are fully supported by Seed kernel services. 

Table 3.1 shows the function mapping between OS emulation layer and the Seed 

kernel. Each function in the OS emulation layer is mainly implemented by a single 

Seed kernel function with argument adjustment. 

 

Functions in OS Emulation Layer Seed Kernel Functions 

sys_thread_new Seed_Create_Task 

sys_mbox_new Seed_Create_Message_Queue 

sys_mbox_free Seed_Delete_Message_Queue 

sys_mbox_post Seed_Send_Message_To_Queue 

sys_arch_mbox_fetch Seed_Receive_Message_From_Queue 

sys_sem_new Seed_Create_Semaphore 

s se Seed_Delete_Semaphore ys_ m_free 

sys_arch_sem_wait Seed_Obtain_Semaphore 

sy se Seed_Release_Semaphore s_ m_signal 

Table 3.1 Function Mapping between lwIP OS Emulation Layer and Seed kernel  

 

support lwIP. The network applications that currently run on lwIP / Seed are as 

Besides, we also ported on Ethernet driver to the SNDS100 board in order to 
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following: 

 TCP Echo server 

 UDP Echo server 

 Simple HTTP server 

 Shell program (i.e., a telnet server). 
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Chapter 4 

Experimental Results 
In this chapter eriment results of Seed kernel. The code size 

and primitiv We measure the 

network performance in Section 4.2. 

4.1 Basic Measurement 

4.1.1 Code Size 

 The code was compiled for ARM7TDMI using ARM Developer Suite 1.2 [2]. 

The resulting size of the compiled code is shown in Table 4.1. The Code size column 

shows the size of the compiled executable object code, and the Data size column 

shows the data size used by the object code. The total code size of Seed OS is about 

16K bytes and the total data size is about 35K. The libraries are some primitive 

libraries for applications, such as string library, standard library (stdlib) and etc. The 

kernel image generated by the linker is about 21K bytes. In conclusion, Seed kernel is 

very small and is suitable for embedded systems whose hardware resources are 

scarce. 

 

Function Code size (bytes) Data size (bytes) 

, we present the exp

e performance measurement are presented in Section 4.1. 

HAL 2356 27388 

Task Management 3164 2500 

Interrupt Management 1036 257 

Timer Management 1404 1256 

Memory Partition 664 0 

Message Queue 2004 0 
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Semaphore 776 0 

Other kernel services 956

Libraries 4248 

 3441 

308 

Total 16608 35150 

Table 4.1 Code Size of Seed Kernel 

 

 Measurement 

 we measure the performance of the primary functions in Seed. 

Table 4.2 Performance of Seed Kernel Functions 

 

4.1.2 Primitive Performance

 In this section,

The performance result is shown in Table 4.2. Note that interrupts are disabled during 

the performance measurement. These results can be treated as a reference while 

creating applications on Seed kernel. 

 
Function Time (μ-sec) Cycles 
Task_Schduler 16.079 843 
Task_Context_Switch 18.081 948 
Create_Task 47.207 2475 
Resume_Task 8.545 448 
Suspend_Task 14.763 774 
Create_Message_Queue 10.147 532 
Send_Message_To_Queue 16.479 864 
Receive_Message_From_Queue 16.193 849 
Create_Semaphore 4.101  215
Obtain_Semaphore 4.120 216 
Re 6 4 lease_Semaphore 7.70 40
Create_Memory_Partition 18.959 94 9
Allocate_Memory_Block 4.005 210 
Fr 0 7 ee_Memory_Block 4.52 23
Cr 954 1151 eate_Timer 21.
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 In addition, we measure the performance of interrupt handling. Interrupt 

handling can be divided into three portions. The first portion is interrupt latency 

which as the time that a s rt run the interrupt code. In 

other w e of the inte sabled period p me for branching 

to the exception handler. ave the CPU context of 

nning task and branch to the ISR. The third portion is interrupt recovery. It is the 

nd the time to restore the CPU 

Table 4.3 Latency of Seed Interrupt Handling 

 

4.2 Performance Measurem  the Networ ystem 

, we measure the mance of lwIP on Seed kernel. At the 

beg sure the throughp ur system. We connect an 800 MHz 

Pentium

board which runs Seed kernel and lwIP 10Mbits/Sec Eth  link. Besides, we 

use a widely-used benchmarking tool called Test TCP (TTCP measure the TCP 

thro  TTCP to send 8M bytes of data from one device to the other. 

The testing result is shown in Table 4.4. When the SNDS100 board acts as the 

rece is 115.93 KB/second. When it acts as the sender, the 

throughput can reach to 190.54 KB/second. The throughput is lower when it acts as 

. The reason is lwIP needs another task responsible for receiving Ethernet 

is defined ystem takes to sta ning 

ords, it is the tim rrupt di lus the ti

 The second portion is the time to s

ru

time to determinate if a higher priority task is ready a

context. Table 4.3 illustrates the latency of each interrupt portion. 

 

Function Time (μ-sec) Cycles 
Interrupt Latency 34.695 1819 
Time to save CPU context 20.409 1070 
Interrupt Recovery 35.667 1870 

ent of k S

In this section  perfor

inning, we mea ut of o

 III notebook (IBM Thinkpad X22) running Linux 2.4.18 to the SNDS100 

 with a ernet

) to 

ughput. We configure

iver, the throughput 

the receiver

 49



packets. This will involves more task context switches, thus there is an unavoidable 

performance degradation for lwIP receiving packets. 

 

 

 Throughput (KBytes/Sec) 
lwIP Rx 115.93 KB/Sec 
lwIP Tx 190.54 KB/Sec 

Table 4.4 Throughput of LWIP Running on Seed 

 

 Besides the throughput, we also measure the round-trip time of lwIP running on 

See asurement was taken u ogram. The average round-trip 

time  we send 1000 of 64-byte to the S100 board. The 

perf wn in this se e comparable with previous ones [6]. 

However, we do not s are different. 

At last, we measure the performance of a simple web server that running on lwIP. 

ion 2.5. 

We c

d. This me sing the ping pr

 is 0.991 ms when packets  SND

ormance results sho ction ar

 perform precise comparison since the platform

 

The performance is measured by using the WebStone [14] benchmark vers

onfigure the profile as that a client continuously requests a single homepage file 

in ten minutes. The testing result is shown in Table 4.5. The result shows that the 

performance of the small HTTP server is acceptable for small embedded devices. 

  

Server Connection Rate 39.05   Connections/ Sec  
Server Throughput  147.20  KBytes/ Sec  
Average Response Time 25.59   ms 

Table 4.5 Performance of Simple Web Server Running on lwIP 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

In this thesis, we describe the arch eed, a real-tome 

embedded kernel rnet-access cap n goal of Seed is to support 

small network app ded requirements. 

he kernel is flexible and high performance. In addition, it has a hardware abstraction 

S

eed 

can reach to 190.54 KB/Sec. These results show that Seed is suitable for non-high 

speed embed at requ

 

5.2 Futu

In the future, we want to implement Earliest Deadline First (EDF) scheduling 

algorithm on Seed. This is much easier to accomplish because the kernel services are 

deterministic or constant, and the priority can be dynamically changed at run-time. 

itecture and internal of S

 with Inte ability. The desig

liances which may also have real-time and embed

T

layer which eases the effort of porting the kernel to different hardware platforms. 

These features make Seed suitable for embedded systems. Moreover, the Seed kernel 

services have deterministic timing behavior, so it is also suitable for the real-time 

applications. Finally, a small TCP/IP stack named lwIP was ported to Seed to enable 

the Internet-access capability. 

eed is currently implemented on Samsung SNDS100 evaluation board. It 

provides preemptive multitasking, task synchronization/communication, and 

management of memory, timers and interrupts. The size of the kernel image is about 

75Kbytes with lwIP, or 21Kbytes without lwIP. And the interrupt handling latency is 

about 90μs for a 50 MHz processor. Besides, the network throughput of lwIP/S

ded network appliance th ires real-time support.  

re work 
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Besides, we want t

on Seed. With these systems, Seed will be more su

which are equipped with storage or display. Finally

o build up embedded file systems and embedded graphic systems 

itable for the embedded devices 

, we would like to port Seed to 

ms to demonstrate its portability. more hardware platfor
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